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Abstract
The three-dimensional (3D) rotating Boussinesq system
governs the dynamics of fluid flows in the atmosphere
and the ocean. It admits a special two-dimensional (2D)
solutionwhich involves only verticalmotion and density
changes that both vary only in the horizontal plane. This
solution illustrates the important effect of gravity and
leads to the renowned Brunt–Väisälä frequency. A natu-
ral questionwith practical applications is whether or not
general 3D perturbations near this 2D solution are sta-
ble. This paper establishes the stability of any 3D pertur-
bations even when the Boussinesq system involves only
horizontal dissipation and horizontal thermal conduc-
tion. An anisotropic Sobolev setting is selected to reduce
the regularity assumption on the initial data.
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1 INTRODUCTION

The dynamics of fluid flows in the atmosphere and the ocean is controlled by the interaction of
gravity and the earth’s rotation with the density variations about a reference state. When the fluid
velocities are too slow to involve compressible effects, the model at work is the incompressible
rotating Boussinesq system.1,2 Mathematically, the Boussinesq equations can be written as

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝑣 ⋅ ∇𝑣 + 𝑓 𝑒3 × 𝑣 = −∇𝑝∗ + 𝜈Δ𝑣 −

𝑔

𝜌𝑏
𝜌∗ 𝑒3, 𝑥 ∈ ℝ3, 𝑡 > 0,

∇ ⋅ 𝑣 = 0,

𝜕𝑡𝜌
∗ + 𝑣 ⋅ ∇𝜌∗ = 𝜅Δ𝜌∗,

(1)

where 𝑣 = (𝑣1, 𝑣2, 𝑣3) denotes the fluid velocity, 𝑝∗ pressure, 𝑒3 = (0, 0, 1), 𝜌∗ is the density, 𝜌𝑏 is
the reference constant density, 𝜈 ≥ 0 is the coefficient of viscosity, 𝜅 ≥ 0 is the coefficient of heat
conduction, and 𝑓 = 𝑓(𝑥2) denotes the rotation frequency. We will assume that 𝑓 is smooth with
compact support.
For many scales of fluids in the atmosphere and in the ocean, the pressure gradients nearly

cancel the buoyancy term on the right of (1), namely,

−∇𝑝∗ −
𝑔

𝜌𝑏
𝜌∗𝑒3 = 0 (2)

or

−
𝜕𝑝∗

𝜕𝑥3
=

𝑔

𝜌𝑏
𝜌∗. (3)

Together with 𝑣 = 0, (3) is an exact solution of (1) when the pressure 𝑝∗(𝑥3) is a quadratic function
of 𝑥3 in the case of full dissipation. This special solution is referred to as hydrostatic balance. It is
natural to consider perturbations about a mean state in hydrostatic balance (𝑝̄, 𝜌̄), where 𝑝̄ and 𝜌̄
are in hydrostatic balance

𝜕

𝜕𝑥3
𝑝̄(𝑥3) = −

𝑔𝜌̄

𝜌𝑏
. (4)

Then, the perturbation (𝑣, 𝑝, 𝜌) with

𝑝 = 𝑝∗ − 𝑝̄(𝑥3), 𝜌(𝑥, 𝑡) = 𝜌∗ − 𝜌̄(𝑥3) (5)

solves

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑣 + 𝑣 ⋅ ∇𝑣 + 𝑓 𝑒3 × 𝑣 = −∇𝑝 + 𝜈Δ𝑣 −

𝑔𝜌

𝜌𝑏
𝑒3,

∇ ⋅ 𝑣 = 0,

𝜕𝑡𝜌 + 𝑣 ⋅ ∇𝜌 +
𝑑𝜌̄

𝑑𝑥3
𝑣3 = 𝜅Δ𝜌 + 𝜅𝜕𝑥3𝑥3 𝜌̄(𝑥3).

(6)
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1626 MA et al.

Equation (6) is the fundamental model for fluids in the atmosphere and in the ocean.When 𝑑𝜌̄

𝑑𝑥3
<

0, the situation is stable. Higher up in the atmosphere and in the deep ocean, the lighter fluid sits
atop heavier fluid in a stable situation.
We assume

𝑔 = 𝜌𝑏 = 1 and 𝜌̄(𝑥3) = −𝑥3. (7)

In addition, we assume there is only horizontal dissipation, even though all the results remain
valid for the full dissipation case. That is, our focus will be on the following Boussinesq system:

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝑣 ⋅ ∇𝑣 + 𝑓 𝑒3 × 𝑣 = −∇𝑝 + 𝜈Δℎ𝑣 − 𝜌𝑒3,

∇ ⋅ 𝑣 = 0,

𝜕𝑡𝜌 + 𝑣 ⋅ ∇𝜌 − 𝑣3 = 𝜅Δℎ𝜌,

(8)

where Δℎ = 𝜕2
1
+ 𝜕2

2
. Equation (8) admits an exact special solution, which represents the viscous

version of the solution expressed in terms of the Brunt–Väisälä frequency. To make the process of
verifying the special solution more transparent, we distinguish the difference between the hori-
zontal and the vertical components. We set

𝑣 = (𝑣ℎ, 𝑤), 𝑣ℎ = (𝑣1, 𝑣2), 𝑣⟂
ℎ
= (−𝑣2, 𝑣1), (9)

∇ℎ = (𝜕1, 𝜕2), ∇⟂
ℎ
= (−𝜕2, 𝜕1). (10)

Equation (8) can then be rewritten as

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑣ℎ + 𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑤𝜕3𝑣ℎ + 𝑓𝑣⟂
ℎ
= −∇ℎ𝑝 + 𝜈Δℎ𝑣ℎ,

𝜕𝑡𝑤 + 𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑤𝜕3𝑤 = −𝜕3𝑝 − 𝜌 + 𝜈Δℎ𝑤,

∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤 = 0,

𝜕𝑡𝜌 + 𝑣ℎ ⋅ ∇ℎ𝜌 + 𝑤𝜕3𝜌 − 𝑤 = 𝜅Δℎ𝜌.

(11)

A special solution of (11) is given by

(𝑣
(0)

ℎ
, 𝑤(0), 𝜌(0)) = (0, 𝑤(0)(𝑥ℎ, 𝑡), 𝜌

(0)(𝑥ℎ, 𝑡)), 𝑝(0) = 0 (12)

with (𝑤(0), 𝜌(0)) satisfying

⎧⎪⎨⎪⎩
𝜕𝑡𝑤

(0) = 𝜈Δℎ𝑤
(0) − 𝜌(0),

𝜕𝑡𝜌
(0) = 𝜅Δℎ𝜌

(0) + 𝑤(0),

𝑤(0)(𝑥ℎ, 0) = 𝑤
(0)
0

(𝑥ℎ), 𝜌(0)(𝑥ℎ, 0) = 𝜌
(0)
0
(𝑥ℎ).

(13)
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MA et al. 1627

This exact solution is two-dimensional (2D). This special 2D solution illustrates the effect of
gravity and, in the case of no dissipation or heat conduction, yields the solution in terms of the
renowned Brunt–Väisälä frequency, which measures the atmospheric stratification.
This paper intends to understand the stability properties of general three-dimensional (3D)

perturbations near this exact 2D solution. The study of this stability problem is very important
and fundamental to environmental fluid dynamics (see, e.g., Refs. 3, 4). This paper establishes
some of observed weather phenomena as rigorous mathematical facts. We assume either full dis-
sipation and heat conduction or horizontal dissipation and heat conduction. Mathematically, the
horizontal dissipation case is more challenging, and the results and techniques for the horizontal
dissipation case remain valid for the full dissipation case. Therefore, to reduce the redundancy,
we shall only present the details for the horizontal dissipation case.
When the dissipation is anisotropic and only in the horizontal direction, the Boussinesq system

is of mixed type, parabolic in the horizontal direction but hyperbolic in the vertical direction. In
order to reduce the regularity requirement on the initial data, the most suitable functional setting
appears to be an anisotropic Sobolev space. Let 𝒮′ be the space of tempered distributions. Let 𝜎1
and 𝜎2 be two real numbers. The inhomogeneous anisotropic Sobolev space is defined as follows:

𝐻𝜎1,𝜎2 =
{
𝑓 ∈ 𝒮′ ∶ ‖𝑓‖𝐻𝜎1,𝜎2 < ∞

}
, (14)

where

‖𝑓‖𝐻𝜎1,𝜎2 ∶=

[
∫
ℝ3

(1 + |𝜉ℎ|2)𝜎1 (1 + |𝜉3|2)𝜎2 |𝑓(𝜉)|2 𝑑𝜉] 1

2

. (15)

Here, 𝑓 is the Fourier transform of 𝑓. Anisotropic Sobolev spaces are appropriate functional
settings for anisotropic differential equations such as the anisotropic Navier–Stokes equations.5
It is worth remarking that the anisotropic Sobolev space 𝐻𝜎1,𝜎2 defined here corresponds to
𝐻𝜎1(ℝ2,𝐻𝜎2(ℝ)), and 𝐻𝜎1,𝜎2 with 𝜎1 = 𝜎2 is not the same as 𝐻𝜎1(ℝ3). We focus on (11) supple-
mented with the initial data

𝑣ℎ(𝑥, 0) = 𝑣0ℎ(𝑥), 𝑤(𝑥, 0) = 𝑤0(𝑥), 𝜌(𝑥, 0) = 𝜌0(𝑥). (16)

Our main conclusion is the following global existence, uniqueness and stability result.

Theorem 1. Consider (11) with 𝜈 > 0 and 𝜅 > 0. Let (𝑣0ℎ, 𝑤0, 𝜌0) ∈ 𝐻0,1(ℝ3) with ∇ℎ ⋅ 𝑣0ℎ +

𝜕3𝑤0 = 0. Assume the initial data (𝑤
(0)
0

, 𝜌
(0)
0
) for the special 2D solution in (13) is in 𝐿2(ℝ2). Then,

there exists a constant 𝜀0 = 𝜀0(𝜈, 𝜅) > 0 such that, if

‖(𝑣0ℎ, 𝑤0, 𝜌0) − (0, 𝑤
(0)
0

, 𝜌
(0)
0
)‖𝐻0,1 ≤ 𝜀 (17)

for some 𝜀 ≤ 𝜀0, then (11) has a unique global solution

(𝑣ℎ, 𝑤, 𝜌) ∈ 𝐶([0,∞); 𝐿2), (𝑣ℎ, 𝑤, 𝜌) ∈ 𝐿∞(0,∞;𝐻0,1),

(∇ℎ𝑣ℎ, ∇ℎ𝑤,∇ℎ𝜌) ∈ 𝐿2(0,∞;𝐻0,1). (18)
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1628 MA et al.

In addition, for a constant 𝐶 > 0 (independent of 𝜈 and 𝜅) and for any 𝑡 > 0,

‖(𝑣ℎ, 𝑤, 𝜌)(𝑡) − (0, 𝑤(0), 𝜌(0))(𝑡)‖𝐻0,1 ≤ 𝐶 𝜀, (19)

where (𝑤(0), 𝜌(0)) is the special 2D solution of (13).

Theorem 1 states that, when (𝑣0ℎ, 𝑤0, 𝜌0) is close to (0, 𝑤
(0)
0

, 𝜌
(0)
0
), then (11) has a unique global

solution that remains close to the special 2D solution given by (13) for all time. In the modeling
of air parcels in the atmosphere, the 2D structure of the special solution may not be exact 2D and
may contain 3D structures as perturbations, and this theorem assures us that the perturbed 2D
structure is stable. In addition, this stability result is different from many of the stability results
for which the special solution is steady and independent of time. The special solution involved
here is dynamic and requires additional treatment.
The proof of Theorem 1 consists of two main parts. The first part establishes a global a priori

bound of the solution in 𝐻0,1 while the second obtains the local existence and uniqueness. The
global bound is shown via a bootstrapping argument (see, e.g., Ref. 6). The process starts with the
equations of the difference (𝑣ℎ, 𝑤, 𝜌), where

𝑤 = 𝑤 − 𝑤(0), 𝜌 = 𝜌 − 𝜌(0). (20)

It is easy to check that (𝑣ℎ, 𝑤, 𝜌) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑣ℎ + 𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑤 𝜕3𝑣ℎ + 𝑤(0)𝜕3𝑣ℎ + 𝑓𝑣⟂
ℎ
= −∇ℎ𝑝 + 𝜈Δℎ𝑣ℎ,

𝜕𝑡𝑤 + 𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑤𝜕3𝑤 + 𝑣ℎ ⋅ ∇ℎ𝑤
(0) + 𝑤(0)𝜕3𝑤 = −𝜕3𝑝 − 𝜌 + 𝜈Δℎ𝑤,

∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤 = 0,

𝜕𝑡𝜌 + 𝑣ℎ ⋅ ∇ℎ𝜌 + 𝑤𝜕3𝜌 + 𝑣ℎ ⋅ ∇ℎ𝜌
(0) + 𝑤(0)𝜕3𝜌 − 𝑤 = 𝜅Δℎ𝜌,

(𝑣ℎ, 𝑤, 𝜌)|𝑡=0 = (𝑣0ℎ, 𝑤0, 𝜌0) ∶= (𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
).

(21)

For a solution (𝑣ℎ, 𝑤, 𝜌) of (21), we define the energy functional

𝐸(𝑡) = sup
0≤𝜏≤𝑡 ‖(𝑣ℎ, 𝑤, 𝜌)(𝜏)‖2

𝐻0,1

+ 𝜈 ∫
𝑡

0

‖(𝑣ℎ, 𝑤)(𝜏)‖2
𝐻1,1 𝑑𝜏 + 𝜅 ∫

𝑡

0

‖𝜌(𝜏)‖2
𝐻1,1 𝑑𝜏. (22)

Our main efforts are then devoted to proving the following inequality, for any 𝑡 > 0:

𝐸(𝑡) ≤ 𝐾0𝐸(0) + 𝐶 (𝜈−4 + 𝜈−1 𝜅−3) 𝐾0 𝐸(𝑡)
3, (23)

where 𝐶 is an absolute constant independent of 𝜈 and 𝜅, and

𝐾0 ∶= 𝑒
𝐶 (𝜈−2+𝜈

−
1
2 𝜅

−
3
2 ) ‖(𝑤(0)

0
𝜌
(0)
0

)‖2
𝐿2(ℝ2) . (24)
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MA et al. 1629

A direct application of the bootstrapping argument concludes that, if

𝐸(0) ∶= ‖(𝑣0ℎ, 𝑤0, 𝜌0)‖2𝐻0,1 ≤ 𝜀 (25)

for sufficiently small 𝜀 > 0, then, for a constant 𝐶 > 0 and for all 0 < 𝑡 < ∞,

𝐸(𝑡) ≤ 𝐶 𝜀, (26)

which, especially, yields the desired global bound on the solution ‖(𝑣ℎ, 𝑤, 𝜌)(𝜏)‖𝐻0,1 . We briefly
comment on how 𝜀 depends on 𝜈 and 𝜅. The energy inequality in (23) and the bootstrapping
argument hint at how 𝜀 depends on 𝜈 and 𝜅. The explicit coefficients in (23) allow us to deduce

that 𝜀 depends on 𝜈2, 𝜈
1

2 𝜅
3

2 , and 𝐾0. We note that 𝐾0 also depends on 𝜈 and 𝜅. The dependence of

𝜀 on 𝜈2 and 𝜈
1

2 𝜅
3

2 may be optimal, but it is extremely laborious to verify this since so many terms
are involved in the estimates.
The proof of (23) is not trivial. We fully exploit the structure of the system and make use of sev-

eral anisotropic Sobolev inequalities to take advantage of the anisotropic dissipation. Compared
with the isotropic dissipation case, it is much more delicate to bound the nonlinear terms when
we only have anisotropic dissipation. In view of the anisotropic dissipation, controlling the non-
linearity is highly nontrivial and requires different treatments on horizontal and vertical deriva-
tives. Anisotropic Sobolev inequalities instead of the standard ones are employed here to generate
favorable derivatives. More technical details are provided in Section 2.
The local existence and uniqueness part is shown via Friedrichs’ method. Its implemen-

tation consists of three steps. The first step constructs a sequence of approximate solutions
{(𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))}𝑛∈ℕ to regularized systems. These regularized systems result from the Fourier

cutoff of the terms in (21). For each fixed 𝑛 ∈ ℕ, the global (in time) existence and uniqueness is
a consequence of Bernstein’s inequality, and the existence and extension theory for ordinary dif-
ferential equations on Banach spaces. The second step is to establish uniform (in 𝑛) local bounds
on (𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) in the functional setting

𝐿∞(0, 𝑇;𝐻0,1) ∩ 𝐿2(0, 𝑇;𝐻1,1) (27)

for a uniform time interval [0, 𝑇]. This step is very involved and is accomplished by decomposing
(𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) into the sum of free solutions and the remainder. The third step is to show that a

subset of (𝑣(𝑛)
ℎ

, 𝑤(𝑛), 𝜌(𝑛)) converges to (𝑣ℎ, 𝑤, 𝜌), a solution of (21). This step invokes the Aubin–
Lions lemma. More technical details are left to Section 3. Due to the weak functional setting of
the solutions, the uniqueness is not obvious and its proof requires repeated applications of the
anisotropic inequalities.
We mention some related work. Due to their meteorological applications and mathematical

significance, stability and large-time behavior problems on the Boussinesq equations near sev-
eral important special solutions have attracted considerable interests. In particular, two classes of
steady states, hydrostatic balance and shear flows, are among the most prominent special solu-
tions to the Boussinesq equations. Mathematically, the systems governing the perturbations near
these steady states exhibit special properties such as enhanced dissipation and stabilizing phe-
nomenon. These properties have recently been discovered and exploited to solve several seem-
ingly impossible stability problems (see Refs. 7–23). One main difference between our stabil-
ity result presented here and the previous work is that the 2D special solution focused here is
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1630 MA et al.

time-dependent. This special solution represents the viscous version of the Brunt–Väisälä solu-
tion, which models the stable vertical oscillation near the original location on average. This is the
situation typically satisfied on both the atmosphere and ocean once one moves a sufficient dis-
tance from the atmosphere/ocean/land boundary.1 Our main result asserts the robustness of this
special 2D solution and the global stability under any 3D perturbations. We would like to men-
tion some important investigations of Stechmann and his collaborators on several aspects of the
Boussinesq systems near the hydrostatic balance such as the interaction between slow and fast
modes, and the energy decompositions (see Refs. 24, 25). In addition, there have been significant
developments on many well-posedness and related problems (see, e.g., Refs. 6, 7, 16–19, 26–55).
This list is by no means exhaustive.
The rest of this paper is divided into two main sections and an Appendix. Section 2 establishes

the global (in time) bound on the solutionwhile Section 3 prove the local existence anduniqueness
of the solution. The Appendix provides several facts that have been used in the first two sections.

2 GLOBAL A PRIORI BOUND

This section proves the energy inequality (23). More precisely, we establish the following
proposition.

Proposition 1. Assume that (𝑣ℎ, 𝑤, 𝜌) solves (21). Let 𝐸(𝑡) be defined as in (22), namely,

𝐸(𝑡) = sup
0≤𝜏≤𝑡 ‖(𝑣ℎ, 𝑤, 𝜌)(𝜏)‖2

𝐻0,1

+ 𝜈 ∫
𝑡

0

‖(𝑣ℎ, 𝑤)(𝜏)‖2
𝐻1,1 𝑑𝜏 + 𝜅 ∫

𝑡

0

‖𝜌(𝜏)‖2
𝐻1,1 𝑑𝜏. (28)

Then 𝐸(𝑡) satisfies, for any 0 < 𝑡 < ∞,

𝐸(𝑡) ≤ 𝐾0𝐸(0) + 𝐶 (𝜈−4 + 𝜈−2𝜅−2 + 𝜈−1 𝜅−3) 𝐾0 𝐸(𝑡)
3, (29)

where 𝐶 is an absolute constant independent of 𝜈 and 𝜅, and

𝐾0 ∶= 𝑒
𝐶 (𝜈−2+𝜈

−
1
2 𝜅

−
3
2 ) ‖(𝑤(0)

0
𝜌
(0)
0

)‖2
𝐿2(ℝ2) . (30)

To prove Proposition 1, we need the anisotropic upper bounds for triple products. Such inequal-
ities and their proofs can be found in several references.5,28 36,56

Lemma 1. There exists a constant 𝐶 > 0 such that

|||||∫ℝ3

𝐹(𝑥) 𝐺(𝑥)𝐻(𝑥) 𝑑𝑥
||||| ≤ 𝐶 ‖𝐹‖ 1

2

𝐿2
‖𝜕1𝐹‖ 1

2

𝐿2
‖𝐺‖ 1

2

𝐿2
‖𝜕2𝐺‖ 1

2

𝐿2
‖𝐻‖ 1

2

𝐿2
‖𝜕3𝐻‖ 1

2

𝐿2
,

|||||∫ℝ3

𝐹(𝑥) 𝐺(𝑥)𝐻(𝑥) 𝑑𝑥
||||| ≤ 𝐶 ‖𝐹‖ 1

4

𝐿2
‖𝜕3𝐹‖ 1

4

𝐿2
‖∇ℎ𝐹‖ 1

4

𝐿2
‖∇ℎ𝜕3𝐹‖ 1

4

𝐿2

× ‖𝐺‖𝐿2 ‖𝐻‖ 1

2

𝐿2
‖∇ℎ𝐻‖ 1

2

𝐿2
. (31)
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MA et al. 1631

We are now ready to prove Proposition 1.

Proof of Proposition 1. To simplify the notation, we remove tilde and write 𝑤 and 𝜌 for 𝑤 and 𝜌,
respectively. We focus on the system satisfied by (𝑣ℎ, 𝑤, 𝜌),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑣ℎ + 𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑤(0)𝜕3𝑣ℎ + 𝑤 𝜕3𝑣ℎ + 𝑓𝑣⟂
ℎ
= −∇ℎ𝑝 + 𝜈Δℎ𝑣ℎ,

𝜕𝑡𝑤 + 𝑣ℎ ⋅ ∇ℎ𝑤
(0) + 𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑤𝜕3𝑤 + 𝑤(0)𝜕3𝑤 = −𝜕3𝑝 − 𝜌 + 𝜈Δℎ𝑤,

∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤 = 0,

𝜕𝑡𝜌 + 𝑣ℎ ⋅ ∇ℎ𝜌 + 𝑣ℎ ⋅ ∇ℎ𝜌
(0) + 𝑤𝜕3𝜌 + 𝑤(0)𝜕3𝜌 − 𝑤 = 𝜅Δℎ𝜌,

(𝑣ℎ, 𝑤, 𝜌)|𝑡=0 = (𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
).

(32)

First, we recall that (𝑤(0), 𝜌(0)) = (𝑤(0)(𝑥ℎ, 𝑡), 𝜌
(0)(𝑥ℎ, 𝑡)) satisfies the following 2D system:

⎧⎪⎨⎪⎩
𝜕𝑡𝑤

(0) = 𝜈Δℎ𝑤
(0) − 𝜌(0),

𝜕𝑡𝜌
(0) = 𝜅Δℎ𝜌

(0) + 𝑤(0),

𝑤(0)(𝑥ℎ, 0) = 𝑤
(0)
0

(𝑥ℎ), 𝜌(0)(𝑥ℎ, 0) = 𝜌
(0)
0
(𝑥ℎ)

(33)

with (𝑤
(0)
0

, 𝜌
(0)
0
) ∈ 𝐿2(ℝ2). Dotting (33) with (𝑤(0), 𝜌(0)) and integrating in time yields

‖(𝑤(0), 𝜌(0))(𝑡)‖2
𝐿2(ℝ2)

+ 2𝜈 ∫
𝑡

0

‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
𝑑𝜏 + 2𝜅 ∫

𝑡

0

‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
𝑑𝜏

= ‖(𝑤(0)
0

𝜌
(0)
0
)‖2

𝐿2(ℝ2)
. (34)

Testing the equations of (𝑣ℎ, 𝑤, 𝜌) in (32) with (𝑣ℎ, 𝑤, 𝜌) yields

𝑑

𝑑𝑡
(‖𝑣ℎ‖2𝐿2 + ‖𝑤‖2

𝐿2
+ ‖𝜌‖2

𝐿2
) + 2𝜈‖∇ℎ𝑣ℎ‖2𝐿2 + 2𝜈‖∇ℎ𝑤‖2

𝐿2
+ 2𝜅‖∇ℎ𝜌‖2𝐿2

= −2∫ 𝑣ℎ ⋅ ∇ℎ𝑤
(0)𝑤 𝑑𝑥 − 2∫ 𝑣ℎ ⋅ ∇ℎ𝜌

(0) 𝜌 𝑑𝑥, (35)

where we have used the divergence-free condition and a simple fact

∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤 = 0, 𝑣⟂
ℎ
⋅ 𝑣ℎ = 0. (36)

In addition, we have used the fact that𝑤(0)(𝑥ℎ, 𝑡) only depends on the horizontal variable to obtain

∫ 𝑤(0)𝜕3𝑣ℎ ⋅ 𝑣ℎ 𝑑𝑥 = 0, ∫ 𝑤(0)𝜕3𝑤 𝑤 𝑑𝑥 = 0, ∫ 𝑤(0)𝜕3𝜌 𝜌 𝑑𝑥 = 0. (37)

It is worth remarking that the Coriolis forcing term does not contribute to the 𝐿2-norm. The two
terms in (35) can be bounded as follows. Noticing that 𝑤(0) and 𝜌(0) depend only on 𝑥ℎ, applying
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1632 MA et al.

Hölder’s inequality and Ladyzhenskaya’s inequality, we have

||||∫ 𝑣ℎ ⋅ ∇ℎ𝑤
(0)𝑤 𝑑𝑥

|||| ≤‖∇ℎ𝑤
(0)‖𝐿2(ℝ2) ‖𝑣ℎ‖𝐿2𝑥3𝐿4ℎ ‖𝑤‖𝐿2𝑥3𝐿4ℎ

≤𝐶 ‖∇ℎ𝑤
(0)‖𝐿2(ℝ2) ‖𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝑤‖ 1

2

𝐿2
‖∇ℎ𝑤‖ 1

2

𝐿2

≤𝜈

4
‖∇ℎ𝑣ℎ‖2𝐿2 + 𝜈

4
‖∇ℎ𝑤‖2

𝐿2

+ 𝐶 𝜈−1‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
(‖𝑣ℎ‖2𝐿2 + ‖𝑤‖2

𝐿2
). (38)

Similarly,

||||∫ 𝑣ℎ ⋅ ∇ℎ𝜌
(0)𝜌 𝑑𝑥

|||| ≤𝜈

4
‖∇ℎ𝑣ℎ‖2𝐿2 + 𝜅

4
‖∇ℎ𝜌‖2𝐿2

+ 𝐶 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
(‖𝑣ℎ‖2𝐿2 + ‖𝜌‖2

𝐿2
). (39)

Therefore,

𝑑

𝑑𝑡
(‖𝑣ℎ‖2𝐿2 + ‖𝑤‖2

𝐿2
+ ‖𝜌‖2

𝐿2
) + 𝜈‖∇ℎ𝑣ℎ‖2𝐿2 + 𝜈‖∇ℎ𝑤‖2

𝐿2
+ 𝜅‖∇ℎ𝜌‖2𝐿2

≤ 𝐶 (𝜈−1‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
+ 𝜈

−
1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
)(‖𝑣ℎ‖2𝐿2 + ‖𝑤‖2

𝐿2
+ ‖𝜌‖2

𝐿2
). (40)

We now estimate ‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

+ ‖𝜕3𝜌‖2𝐿2 . Applying 𝜕3 to the equations of (𝑣ℎ, 𝑤, 𝜌) in (32)
and testing with (𝜕3𝑣ℎ, 𝜕3𝑤, 𝜕3𝜌), we have

𝑑

𝑑𝑡
(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2

𝐿2
+ ‖𝜕3𝜌‖2𝐿2)

+ 2𝜈‖∇ℎ𝜕3𝑣ℎ‖2𝐿2 + 2𝜈‖∇ℎ𝜕3𝑤‖2
𝐿2

+ 2𝜅‖∇ℎ𝜕3𝜌‖2𝐿2
= 𝐼1 +⋯+ 𝐼8, (41)

where

𝐼1 = −∫ 𝜕3(𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑤 𝜕3𝑣ℎ) ⋅ 𝜕3𝑣ℎ 𝑑𝑥,

𝐼2 = −∫ 𝜕3(𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑤 𝜕3𝑤) ⋅ 𝜕3𝑤 𝑑𝑥,

𝐼3 = −∫ 𝜕3(𝑣ℎ ⋅ ∇ℎ𝜌 + 𝑤 𝜕3𝜌) ⋅ 𝜕3𝜌 𝑑𝑥,

𝐼4 = −∫ 𝜕3(𝑤
(0)𝜕3𝑣ℎ) ⋅ 𝜕3𝑣ℎ 𝑑𝑥,

𝐼5 = −∫ 𝜕3(𝑣ℎ ⋅ ∇ℎ𝑤
(0)) 𝜕3𝑤 𝑑𝑥,
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MA et al. 1633

𝐼6 = −∫ 𝜕3(𝑤
(0) ⋅ 𝜕3𝑤) 𝜕3𝑤 𝑑𝑥,

𝐼7 = −∫ 𝜕3(𝑣ℎ ⋅ ∇ℎ𝜌
(0)) 𝜕3𝜌 𝑑𝑥,

𝐼8 = −∫ 𝜕3(𝑤
(0) ⋅ 𝜕3𝜌) 𝜕3𝜌 𝑑𝑥. (42)

We have already used the following simple facts:

𝜕3𝑣
⟂
ℎ
⋅ 𝜕3𝑣ℎ = 0,

∫ (𝜕3∇ℎ𝑝 ⋅ 𝜕3𝑣ℎ + 𝜕2
3
𝑝𝜕3𝑤) 𝑑𝑥 = −∫ 𝜕3𝑝 𝜕3(∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤) 𝑑𝑥 = 0. (43)

We now estimate the terms 𝐼1 through 𝐼8 and start with 𝐼1. By the divergence-free condition ∇ℎ ⋅

𝑣ℎ + 𝜕3𝑤 = 0,

𝐼1 = −∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝑣ℎ ⋅ 𝜕3𝑣ℎ 𝑑𝑥 − ∫ 𝜕3𝑤 𝜕3𝑣ℎ ⋅ 𝜕3𝑣ℎ 𝑑𝑥

= −∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝑣ℎ ⋅ 𝜕3𝑣ℎ 𝑑𝑥 + ∫ ∇ℎ ⋅ 𝑣ℎ𝜕3𝑣ℎ ⋅ 𝜕3𝑣ℎ 𝑑𝑥. (44)

By the anisotropic upper bounds in Lemma 1,

|𝐼1| ≤ 𝐶 ‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝜕3∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕2𝜕3𝑣ℎ‖ 1

2

𝐿2

+ 𝐶 ‖∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕2𝜕3𝑣ℎ‖ 1

2

𝐿2

≤ 𝐶 ‖𝜕3∇ℎ𝑣ℎ‖ 3

2

𝐿2
‖∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑣ℎ‖𝐿2

≤ 𝜈

8
‖𝜕3∇ℎ𝑣ℎ‖2𝐿2 + 𝐶 𝜈−3‖∇ℎ𝑣ℎ‖2𝐿2 ‖𝜕3𝑣ℎ‖4𝐿2 , (45)

where 𝐶 is an absolute constant independent of 𝜈. The estimate of 𝐼2 is similar.

𝐼2 = −∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝑤 𝜕3𝑤 𝑑𝑥 − ∫ 𝜕3𝑤 𝜕3𝑤 𝜕3𝑤 𝑑𝑥

= −∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝑤 𝜕3𝑤 𝑑𝑥 + ∫ ∇ℎ ⋅ 𝑣ℎ (𝜕3𝑤)2 𝑑𝑥. (46)

By Lemma 1,

|𝐼2| ≤ 𝐶 ‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑤‖ 1

2

𝐿2
‖𝜕3∇ℎ𝑤‖ 1

2

𝐿2
‖𝜕3𝑤‖ 1

2

𝐿2
‖𝜕2𝜕3𝑤‖ 1

2

𝐿2

+ 𝐶 ‖∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑤‖ 1

2

𝐿2
‖𝜕1𝜕3𝑤‖ 1

2

𝐿2
‖𝜕3𝑤‖ 1

2

𝐿2
‖𝜕2𝜕3𝑤‖ 1

2

𝐿2
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1634 MA et al.

≤ 𝐶 ‖∇ℎ𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝜕3𝑤‖𝐿2 ‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑤‖ 1

2

𝐿2
‖𝜕3𝑤‖ 1

2

𝐿2

+ 𝐶 ‖∇ℎ𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝜕3𝑤‖𝐿2 ‖∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝑤‖𝐿2

≤ 𝜈

8
‖𝜕3∇ℎ𝑣ℎ‖2𝐿2 + 𝜈

8
‖𝜕3∇ℎ𝑤‖2

𝐿2
+ 𝐶 𝜈−3‖∇ℎ𝑤‖2

𝐿2
‖𝜕3𝑣ℎ‖2𝐿2 ‖𝜕3𝑤‖2

𝐿2

+ 𝐶 𝜈−3‖∇ℎ𝑣ℎ‖2𝐿2 ‖𝜕3𝑤‖4
𝐿2
. (47)

To deal with 𝐼3, we still use the divergence-free condition ∇ℎ ⋅ 𝑣ℎ + 𝜕3𝑤 = 0 to rewrite it as

𝐼3 = −∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝜌𝜕3𝜌 𝑑𝑥 + ∫ ∇ℎ ⋅ 𝑣ℎ (𝜕3𝜌)
2 𝑑𝑥. (48)

Applying Lemma 1 yields

|𝐼3| ≤ 𝐶 ‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝜌‖ 1

2

𝐿2
‖𝜕3∇ℎ𝜌‖ 1

2

𝐿2
‖𝜕3𝜌‖ 1

2

𝐿2
‖𝜕2𝜕3𝜌‖ 1

2

𝐿2

+ 𝐶 ‖∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3∇ℎ ⋅ 𝑣ℎ‖ 1

2

𝐿2
‖𝜕3𝜌‖ 1

2

𝐿2
‖𝜕1𝜕3𝜌‖ 1

2

𝐿2
‖𝜕3𝜌‖ 1

2

𝐿2
‖𝜕2𝜕3𝜌‖ 1

2

𝐿2

≤ 𝜈

8
‖𝜕3∇ℎ𝑣ℎ‖2𝐿2 + 𝜅

8
‖𝜕3∇ℎ𝜌‖2𝐿2 + 𝐶 𝜈−1 𝜅−2‖∇ℎ𝜌‖2𝐿2 ‖𝜕3𝑣ℎ‖2𝐿2 ‖𝜕3𝜌‖2𝐿2

+ 𝐶 𝜈−1 𝜅−2‖∇ℎ𝑣ℎ‖2𝐿2 ‖𝜕3𝜌‖4𝐿2 . (49)

Due to the fact that 𝑤(0) = 𝑤(0)(𝑥ℎ, 𝑡) is independent of 𝑥3,

𝐼4 = −
1

2 ∫ 𝑤(0)𝜕3(|𝜕3𝑣ℎ|2) 𝑑𝑥 = −
1

2 ∫ 𝜕3(𝑤
(0)|𝜕3𝑣ℎ|2) 𝑑𝑥 = 0. (50)

We now estimate 𝐼5. Noticing that ∇ℎ𝑤
(0) is independent of 𝑥3, and applying Hölder’s inequality

and Ladyzhenskaya’s inequality, we have

|𝐼5| = ||||∫ 𝜕3𝑣ℎ ⋅ ∇ℎ𝑤
(0) 𝜕3𝑤 𝑑𝑥

||||
≤ ‖𝜕3𝑣ℎ‖𝐿2𝑥3𝐿4ℎ ‖∇ℎ𝑤

(0)‖𝐿2
ℎ
‖𝜕3𝑤‖𝐿2𝑥3𝐿4ℎ

≤ 𝐶 ‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝜕3𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑤

(0)‖𝐿2(ℝ2) ‖𝜕3𝑤‖ 1

2

𝐿2
‖∇ℎ𝜕3𝑤‖ 1

2

𝐿2

≤ 𝜈

8
‖𝜕3∇ℎ𝑣ℎ‖2𝐿2 + 𝜈

8
‖𝜕3∇ℎ𝑤‖2

𝐿2

+ 𝐶 𝜈−1‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3𝑤‖𝐿2 . (51)

As in 𝐼4, we have

𝐼6 = 0. (52)
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MA et al. 1635

The estimate of 𝐼7 can be similarly bounded as 𝐼5. In fact,

|𝐼7| ≤ 𝜈

8
‖𝜕3∇ℎ𝑣ℎ‖2𝐿2 + 𝜅

8
‖𝜕3∇ℎ𝜌‖2𝐿2

+ 𝐶 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3𝜌‖𝐿2 . (53)

As in 𝐼4, 𝐼8 = 0. We have finished the estimates of all the terms in (41). Inserting (45), (47), (49),
(51), and (53) in (41) leads to

𝑑

𝑑𝑡
(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2

𝐿2
+ ‖𝜕3𝜌‖2𝐿2)

+ 𝜈‖∇ℎ𝜕3𝑣ℎ‖2𝐿2 + 𝜈‖∇ℎ𝜕3𝑤‖2
𝐿2

+ 𝜅‖∇ℎ𝜕3𝜌‖2𝐿2
≤ 𝐶𝜈−3

(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝑤‖2
𝐿2

)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

)2

+ 𝐶 𝜈−1 𝜅−2
(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝜌‖2𝐿2)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝜌‖2𝐿2)2

+ 𝐶 𝜈−1‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3𝑤‖𝐿2

+ 𝐶 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3𝜌‖𝐿2 . (54)

Adding (40) and (54) yields

𝑑

𝑑𝑡
(‖𝑣ℎ‖2𝐻0,1 + ‖𝑤‖2

𝐻0,1 + ‖𝜌‖2
𝐻0,1 )

+ 𝜈‖∇ℎ𝑣ℎ‖2𝐻0,1 + 𝜈‖∇ℎ𝑤‖2
𝐻0,1 + 𝜅‖∇ℎ𝜌‖2𝐻0,1

≤ 𝐶

(
𝜈−1‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

+ 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)

)
× (‖𝑣ℎ‖2𝐻0,1 + ‖𝑤‖2

𝐻0,1 + ‖𝜌‖2
𝐻0,1 )

+ 𝐶𝜈−3
(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝑤‖2

𝐿2

)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

)2

+ 𝐶 𝜈−1 𝜅−2
(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝜌‖2𝐿2)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝜌‖2𝐿2)2

. (55)

The inequality in (55) is of the form

𝑑

𝑑𝑡
𝑓(𝑡) + 𝑓1(𝑡) ≤ 𝑎(𝑡)𝑓(𝑡) + 𝑓2(𝑡). (56)

Gronwall’s inequality implies

𝑓(𝑡) + ∫
𝑡

0

𝑓1(𝜏) 𝑑𝜏 ≤ 𝑒∫
𝑡

0
𝑎(𝜏) 𝑑𝜏𝑓(0) + 𝑒∫

𝑡

0
𝑎(𝜏) 𝑑𝜏 ∫

𝑡

0

𝑓2(𝜏) 𝑑𝜏. (57)
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1636 MA et al.

Here

𝑎(𝑡) = 𝐶

(
𝜈−1‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

+ 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)

)
(58)

and (34) implies that

𝑒∫
𝑡

0
𝑎(𝜏) 𝑑𝜏 ≤ 𝑒

𝐶 (𝜈−2+𝜈
−
1
2 𝜅

−
3
2 ) ‖(𝑤(0)

0
𝜌
(0)
0

)‖2
𝐿2(ℝ2) ∶= 𝐾0, (59)

which depends only on 𝜈, 𝜅 and the initial data for the special 2D solution. Here

𝑓2(𝑡) ∶=𝐶𝜈
−3
(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝑤‖2

𝐿2

)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

)2

+ 𝐶 𝜈−1 𝜅−2
(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝜌‖2𝐿2)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝜌‖2𝐿2)2

. (60)

It then follows from the definition of 𝐸(𝑡) in (28) that

∫
𝑡

0

𝑓2(𝜏) 𝑑𝜏 ≤ 𝐶 (𝜈−4 + 𝜈−2𝜅−2 + 𝜈−1 𝜅−3) 𝐸(𝑡)3. (61)

In fact,

∫
𝑡

0

𝑓2(𝜏) 𝑑𝜏

= 𝐶𝜈−3 ∫
𝑡

0

(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝑤‖2
𝐿2

)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

)2

𝑑𝜏

+ 𝐶 𝜈−1 𝜅−2 ∫
𝑡

0

(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝜌‖2𝐿2)(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝜌‖2𝐿2)2

𝑑𝜏

≤ 𝐶𝜈−3 sup
0≤𝜏≤𝑡

(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝑤‖2
𝐿2

)2

∫
𝑡

0

(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝑤‖2
𝐿2

)
𝑑𝜏

+ 𝐶 𝜈−1 𝜅−2 sup
0≤𝜏≤𝑡

(‖𝜕3𝑣ℎ‖2𝐿2 + ‖𝜕3𝜌‖2𝐿2)2

∫
𝑡

0

(‖∇ℎ𝑣ℎ‖2𝐿2 + ‖∇ℎ𝜌‖2𝐿2) 𝑑𝜏

≤ 𝐶𝜈−3𝐸2(𝑡) 𝜈−1𝐸(𝑡) + 𝐶 𝜈−1 𝜅−2𝐸2(𝑡)(𝜈−1 + 𝜅−1)𝐸(𝑡)

= 𝐶 (𝜈−4 + 𝜈−2𝜅−2 + 𝜈−1 𝜅−3) 𝐸(𝑡)3. (62)

Equation (57) then yields

𝐸(𝑡) ≤ 𝐾0𝐸(0) + 𝐶 (𝜈−4 + 𝜈−2𝜅−2 + 𝜈−1 𝜅−3) 𝐾0 𝐸(𝑡)
3, (63)

where 𝐶 is an absolute constant independent of 𝜈 and 𝜅. This completes the proof of
Proposition 1. ■
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MA et al. 1637

3 LOCAL EXISTENCE AND UNIQUENESS

This section establishes the local existence and uniqueness of solutions to (21). More precisely, we
prove the following proposition.

Proposition 2. Consider the initial-value problem (21). Assume that the initial data (𝑣0ℎ, 𝑤0, 𝜌0) ∈

𝐻0,1 satisfies ∇ℎ ⋅ 𝑣0ℎ + 𝜕3𝑤0 = 0. Then, there is 𝑇0 > 0 and a unique solution (𝑣ℎ, 𝑤, 𝜌) of (21) on
([0, 𝑇0) satisfying

(𝑣ℎ, 𝑤, 𝜌) ∈ 𝐶([0, 𝑇0); 𝐿
2), (∇ℎ𝑣ℎ, ∇ℎ𝑤,∇ℎ𝜌) ∈ 𝐿2([0, 𝑇0);𝐻

0,1). (64)

Proof. Again for notational convenience, we omit tildes and write (𝑣ℎ, 𝑤, 𝜌) for (𝑣ℎ, 𝑤, 𝜌). The
local existence result is shown via Friedrichs’ method. We introduce a few notation. For 𝑛 ∈ ℕ+,
we define

𝔼𝑛𝑓 = −1(𝜒𝐵(0,𝑛)𝑓), (65)

𝐿2𝑛 =
{
𝑓 ∈ 𝐿2(ℝ3)| supp𝑓 ⊂ 𝐵(0, 𝑛)

}
, (66)

𝐿
2,𝜎
𝑛 =

{
𝑢 ∈ 𝐿2(ℝ3)|∇ ⋅ 𝑢 = 0, supp𝑢 ⊂ 𝐵(0, 𝑛)

}
, (67)

where 𝑓 and −1𝑓 denote the Fourier transform and the inverse Fourier transform, respectively,
and 𝜒𝐵(0,𝑛) denotes the characteristic function on the ball 𝐵(0, 𝑛). Both 𝐿2𝑛 and 𝐿

2,𝜎
𝑛 are equipped

with the 𝐿2-norm.
Due to the divergence-free condition, the pressure term can be represented in terms of

(𝑣ℎ, 𝑤, 𝜌). By taking the divergence of the velocity equation in (21), we obtain

−Δ𝑝 = ∇ℎ ⋅ 𝑃1 + 𝜕3𝑃2, (68)

where

𝑃1 = 𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑤𝜕3𝑣ℎ + 𝑤(0)𝜕3𝑣ℎ + 𝑓𝑣⟂
ℎ
, (69)

𝑃2 = 𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑤𝜕3𝑤 + 𝑣ℎ ⋅ ∇ℎ𝑤
(0) + 𝑤(0)𝜕3𝑤 + 𝜌. (70)

Therefore,

𝑝 = 𝑝(𝑣ℎ, 𝑤, 𝜌) ∶= (−Δ)−1(∇ℎ ⋅ 𝑃1 + 𝜕3𝑃2). (71)
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1638 MA et al.

To construct the solution of (21), we seek a sequence of solutions{
(𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))

}∞

𝑛=1
with (𝑣

(𝑛)

ℎ
, 𝑤(𝑛)) ∈ 𝐿

2,𝜎
𝑛 , 𝜌(𝑛) ∈ 𝐿2𝑛 (72)

to the following regularized system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣
(𝑛)

ℎ
+ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)

= −∇ℎ𝑝
(𝑛) + 𝜈Δℎ𝑣

(𝑛)

ℎ
,

𝜕𝑡𝑤
(𝑛) + 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(𝑛) + 𝑤(𝑛)𝜕3𝑤
(𝑛) + 𝑤(0)𝜕3𝑤

(𝑛)
)

= −𝜕3𝑝
(𝑛) − 𝜌(𝑛) + 𝜈Δℎ𝑤

(𝑛),

∇ℎ ⋅ 𝑣
(𝑛)

ℎ
+ 𝜕3𝑤

(𝑛) = 0,

𝜕𝑡𝜌
(𝑛) + 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(𝑛) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(0) + 𝑤(𝑛)𝜕3𝜌
(𝑛) + 𝑤(0)𝜕3𝜌

(𝑛)
)

−𝑤(𝑛) = 𝜅Δℎ𝜌
(𝑛),

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))|𝑡=0 = 𝔼𝑛(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
),

(73)

where 𝑝(𝑛) = 𝔼𝑛𝑝(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) with 𝑝 as defined in (71). The system in (73) can be written as

an ordinary differential equation

𝑑

𝑑𝑡
(𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) = 𝐹𝑛(𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) (74)

on the Banach space

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛)) ∈ 𝐿

2,𝜎
𝑛 , 𝜌(𝑛) ∈ 𝐿2𝑛. (75)

Here, 𝐹𝑛 denotes all other terms except those with the time derivative in the equations in (73). It
is not difficult to verify that 𝐹𝑛 maps 𝐿

2,𝜎
𝑛 × 𝐿2𝑛 to 𝐿

2,𝜎
𝑛 × 𝐿2𝑛, and is locally Lipschitz. We take the

term 𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
) from 𝐹𝑛 as an example on how to verify these properties. By Lemma A.1 on

the Bernstein inequality for functions whose Fourier transforms have compact supports,

‖𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
)‖𝐿2(ℝ3) ≤ ‖𝑣(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
‖𝐿2(ℝ3)

≤ ‖𝑣(𝑛)
ℎ

‖𝐿∞(ℝ3)‖∇ℎ𝑣
(𝑛)

ℎ
‖𝐿2(ℝ3)

≤ 𝐶 𝑛
3

2 ‖𝑣(𝑛)
ℎ

‖𝐿2(ℝ3) 𝑛‖𝑣(𝑛)ℎ
‖𝐿2(ℝ3)

= 𝐶 𝑛
5

2 ‖𝑣(𝑛)
ℎ

‖2
𝐿2(ℝ3)

. (76)

Similarly,

‖𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
) − 𝔼𝑛(𝑢

(𝑛)

ℎ
⋅ ∇ℎ𝑢

(𝑛)

ℎ
)‖𝐿2(ℝ3)

≤ ‖(𝑣(𝑛)
ℎ

− 𝑢
(𝑛)

ℎ
) ⋅ ∇ℎ𝑣

(𝑛)

ℎ
‖𝐿2(ℝ3) + ‖𝑢(𝑛)

ℎ
⋅ (∇ℎ𝑣

(𝑛)

ℎ
− ∇ℎ𝑢

(𝑛)

ℎ
)‖𝐿2(ℝ3)
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MA et al. 1639

≤ 𝐶 𝑛
5

2

(‖𝑣(𝑛)
ℎ

)‖2
𝐿2(ℝ3)

+ ‖𝑢(𝑛)

ℎ
‖2
𝐿2(ℝ3)

)‖𝑣(𝑛)
ℎ

− 𝑢
(𝑛)

ℎ
‖2
𝐿2(ℝ3)

. (77)

The local Lipschitz properties for other terms can be similarly verified. It then follows from the
local existence and uniqueness theory on the ODEs in Banach spaces (see Theorem A.1) that, for
any 𝑛 ∈ ℕ, there is 𝑇𝑛 > 0 and a unique solution (𝑣

(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) of (73) satisfying

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛)𝜌(𝑛)) ∈ 𝐶∞([0, 𝑇𝑛); 𝐿

2,𝜎
𝑛 ) × 𝐶∞([0, 𝑇𝑛); ×𝐿

2
𝑛). (78)

Since the solution is infinitely smooth in both 𝑥 and 𝑡, we can perform the same 𝐿2-estimate as in
(35) and obtain the same bound as in (40),

𝑑

𝑑𝑡
‖(𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))‖2

𝐿2
+ 2𝜈‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛), ∇ℎ𝜌
(𝑛))‖2

𝐿2

≤ 𝐶 (𝜈−1‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
+ 𝜈

−
1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
)‖(𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))‖2

𝐿2
. (79)

Gronwall’s inequality then implies the global upper bound

‖(𝑣(𝑛)
ℎ

, 𝑤(𝑛), 𝜌(𝑛))(𝑡)‖𝐿2 ≤ 𝐾0‖(𝑣(𝑛)ℎ
, 𝑤(𝑛), 𝜌(𝑛))(0)‖𝐿2

≤ 𝐾0‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖𝐿2 . (80)

By the extension theorem (see Theorem A.2), the solution (𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) is global in time and

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐶∞([0,∞); 𝐿

2,𝜎
𝑛 ) × 𝐶∞([0,∞); ×𝐿2𝑛). (81)

Next we show that there is 𝑇 > 0 independent of 𝑛 such that

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿∞(0, 𝑇;𝐻0,1) ∩ 𝐿2(0, 𝑇;𝐻1,1) (82)

with its norm bounded uniformly in this space. As in the proof of (55), we can show that

𝑑

𝑑𝑡
‖(𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))‖2

𝐻0,1 + 𝜈‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐻0,1 + 𝜅‖∇ℎ𝜌

(𝑛)‖2
𝐻0,1

≤ 𝐶

(
𝜈−1‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

+ 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)

)‖(𝑣(𝑛)
ℎ

, 𝑤(𝑛), 𝜌(𝑛))‖2
𝐻0,1

+ 𝐶
(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
× ‖(𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))‖4

𝐻0,1 . (83)

The proof of (83) is omitted due to the similarities with the proof of (55). Writing

𝑎(𝑡) ∶= 𝐶

(
𝜈−1‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

+ 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)

)
,
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1640 MA et al.

𝐴(𝑡) ∶= e− ∫ 𝑡

0
𝑎(𝜏) 𝑑𝜏 ‖(𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛))‖2

𝐻0,1 , (84)

we convert (83) into the inequality

𝑑

𝑑𝑡
𝐴(𝑡) ≤ 𝐶

(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
× e∫

𝑡

0
𝑎(𝜏) 𝑑𝜏 𝐴2(𝑡)

≤ 𝐶𝐾0 𝐴
2(𝑡)

(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
, (85)

where 𝐾0 is as defined in (30). Integrating in time yields

−
1

𝐴(𝑡)
+

1

𝐴(0)
= 𝐿(𝑡), (86)

where

𝐿(𝑡) = 𝐶 𝐾0 ∫
𝑡

0

(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
𝑑𝜏. (87)

Our next big step is to estimate 𝐿(𝑡). To do so, we choose a sufficiently large integer 𝑛0 and define

𝑣𝐹 = e𝜈Δℎ𝑡 𝔼𝑛0(𝑣0ℎ), 𝑤𝐹 = e𝜈Δℎ𝑡 𝔼𝑛0(𝑤0 − 𝑤
(0)
0

), 𝜌𝐹 = e𝜅Δℎ𝑡 𝔼𝑛0(𝜌0 − 𝜌
(0)
0
). (88)

We remark that 𝑛0 is fixed and independent of 𝑛. 𝑛0 is taken to be large to make sure that part of
the upper bound in (116), namely,

‖(𝐼 − 𝔼𝑛0)(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐿2
(89)

is small. 𝑛 is an arbitrary integer. Since our focus is mainly on large 𝑛, we can assumewithout loss
of generality that 𝑛 ≥ 𝑛0. In addition, it is easy to check that

∇ℎ ⋅ 𝑣𝐹 + 𝜕3𝑤𝐹 = 0. (90)

In fact, the divergence-free condition on the initial data ∇ℎ ⋅ 𝑣0ℎ + 𝜕3𝑤0 = 0 and the fact that
𝜕3𝑤

(0))
0

= 0 since 𝑤(0))
0

(𝑥ℎ) depends only on 𝑥ℎ,

∇ℎ ⋅ 𝑣𝐹 + 𝜕3𝑤𝐹 = ∇ℎ ⋅ 𝑒𝜈Δℎ𝑡 𝔼𝑛0(𝑣0ℎ) + 𝜕3𝑒
𝜈Δℎ𝑡 𝔼𝑛0(𝑤0 − 𝑤

(0)
0

)

= 𝑒𝜈Δℎ𝑡 𝔼𝑛0(∇ℎ ⋅ 𝑣0ℎ) + 𝑒𝜈Δℎ𝑡 𝔼𝑛0(𝜕3(𝑤0 − 𝑤
(0)
0

))

= 𝑒𝜈Δℎ𝑡 𝔼𝑛0(∇ℎ ⋅ 𝑣0ℎ + 𝜕3𝑤0) = 0. (91)

We now split each of 𝑣(𝑛)
ℎ

, 𝑤(𝑛), and 𝜌(𝑛) into two parts:

𝑣
(𝑛)

ℎ
= 𝑢

(𝑛)

ℎ
+ 𝑣𝐹, 𝑤(𝑛) = 𝑞(𝑛) + 𝑤𝐹, 𝜌(𝑛) = 𝜃(𝑛) + 𝜌𝐹. (92)
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MA et al. 1641

Then, (𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛)) with 𝑛 ≥ 𝑛0 satisfies

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢
(𝑛)

ℎ
+ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)

= −∇ℎ𝑝
(𝑛) + 𝜈Δℎ𝑢

(𝑛)

ℎ
,

𝜕𝑡𝑞
(𝑛) + 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(𝑛) + 𝑤(𝑛)𝜕3𝑤
(𝑛) + 𝑤(0)𝜕3𝑤

(𝑛)
)

= −𝜕3𝑝
(𝑛) − 𝜌(𝑛) + 𝜈Δℎ𝑞

(𝑛),

∇ℎ ⋅ 𝑣
(𝑛)

ℎ
+ 𝜕3𝑤

(𝑛) = 0,

𝜕𝑡𝜃
(𝑛) + 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(𝑛) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(0) + 𝑤(𝑛)𝜕3𝜌
(𝑛) + 𝑤(0)𝜕3𝜌

(𝑛)
)

−𝑤(𝑛) = 𝜅Δℎ𝜃
(𝑛),

(𝑢
(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))|𝑡=0 = (𝔼𝑛 − 𝔼𝑛0)(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
).

(93)

Testing the equations in (93) with (𝑢
(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛)) yields

1

2

𝑑

𝑑𝑡
‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))‖2

𝐿2
+ 𝜈‖(∇ℎ𝑢

(𝑛)

ℎ
, ∇ℎ𝑞

(𝑛))‖2
𝐿2

+ 𝜅‖∇ℎ𝜃
(𝑛)‖2

𝐿2

= −∫ 𝑢
(𝑛)

ℎ
⋅ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)
𝑑𝑥

− ∫ 𝑞(𝑛) ⋅ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(𝑛) + 𝑤(𝑛)𝜕3𝑤
(𝑛) + 𝑤(0)𝜕3𝑤

(𝑛)
)
𝑑𝑥

− ∫ 𝜃(𝑛) ⋅ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(𝑛) + 𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(0) + 𝑤(𝑛)𝜕3𝜌
(𝑛) + 𝑤(0)𝜕3𝜌

(𝑛)
)
𝑑𝑥

− ∫ (𝜌(𝑛) 𝑞(𝑛) − 𝑤(𝑛) 𝜃(𝑛)) 𝑑𝑥, (94)

where we have used the divergence-free condition∇ℎ ⋅ 𝑢
(𝑛)

ℎ
+ 𝜕3𝑞

(𝑛) = 0 to eliminate the pressure
term. In fact,

−∫ (𝑢
(𝑛)

ℎ
⋅ ∇ℎ𝑝

(𝑛) + 𝑞(𝑛)𝜕3𝑝
(𝑛)) 𝑑𝑥 = ∫ (∇ℎ ⋅ 𝑢

(𝑛)

ℎ
+ 𝜕3𝑞

(𝑛))𝑝(𝑛) 𝑑𝑥 = 0 (95)

due to ∇ℎ ⋅ 𝑢
(𝑛)

ℎ
+ 𝜕3𝑞

(𝑛) = 0. To estimate the terms on the right-hand side, we first notice that

‖𝑢(𝑛)

ℎ
‖𝐿2 ≤ ‖𝑣(𝑛)

ℎ
‖𝐿2 + ‖𝑣𝐹‖𝐿2

≤ 𝐾0‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖𝐿2 + ‖𝑣0ℎ‖𝐿2 ≤ 𝑀0, (96)

where

𝑀0 ∶= (𝐾0 + 1)‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖𝐿2 . (97)
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1642 MA et al.

Similarly,

‖𝑞(𝑛)‖𝐿2 ≤ 𝑀0, ‖𝜃(𝑛)‖𝐿2 ≤ 𝑀0. (98)

Without loss of generality, we assume 𝑛 ≥ 𝑛0. Clearly,

𝔼𝑛𝑢
(𝑛)

ℎ
= 𝑢

(𝑛)

ℎ
, 𝔼𝑛𝑞

(𝑛) = 𝑞(𝑛), 𝔼𝑛𝜃
(𝑛) = 𝜃(𝑛). (99)

Therefore, by the fact that 𝔼𝑛 is self-adjoint, we have

− ∫ 𝑢
(𝑛)

ℎ
⋅ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)
𝑑𝑥

= −∫ 𝑢
(𝑛)

ℎ
⋅
(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)
𝑑𝑥

= −∫ 𝑢
(𝑛)

ℎ
⋅
(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑢

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑢

(𝑛)

ℎ

)
+ 𝑢

(𝑛)

ℎ
⋅
(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣𝐹 + 𝑤(𝑛) 𝜕3𝑣𝐹

)
𝑑𝑥

− ∫ 𝑢
(𝑛)

ℎ
⋅
(
𝑤(0)𝜕3𝑢

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣𝐹 + 𝑓(𝑢

(𝑛)

ℎ
)⟂ + 𝑓𝑣⟂𝐹

)
𝑑𝑥

= −∫ 𝑢
(𝑛)

ℎ
⋅
(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣𝐹 + 𝑤(𝑛) 𝜕3𝑣𝐹

)
𝑑𝑥 − ∫ 𝑢

(𝑛)

ℎ
⋅
(
𝑤(0)𝜕3𝑣𝐹 + 𝑓𝑣⟂𝐹

)
𝑑𝑥

≤ ‖𝑢(𝑛)

ℎ
‖𝐿2‖𝑣(𝑛)ℎ

‖𝐿2‖∇ℎ𝑣𝐹‖𝐿∞ + ‖𝑢(𝑛)

ℎ
‖𝐿2‖𝑤(𝑛)‖𝐿2‖𝜕3𝑣𝐹‖𝐿∞

+ ‖𝑢(𝑛)

ℎ
‖𝐿2‖𝑤(0)‖𝐿2(ℝ2)‖𝜕3𝑣𝐹‖𝐿2𝑥3𝐿∞ℎ + 𝐶 ‖𝑢(𝑛)

ℎ
‖𝐿2‖𝑣𝐹‖𝐿2

≤ 𝐶 𝑛

5

2

0
𝑀3

0
+ 𝐶 𝑛2

0
𝑀2

0
‖𝑤(0)‖𝐿2(ℝ2) + 𝐶𝑀2

0
. (100)

Here, we have used the following facts, due to ∇ℎ ⋅ 𝑣
(𝑛)

ℎ
+ 𝜕3𝑤

(𝑛) = 0 and 𝑤(0) independent of 𝑥3,

∫ 𝑢
(𝑛)

ℎ
⋅
(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑢

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑢

(𝑛)

ℎ

)
𝑑𝑥 = 0, (101)

∫ 𝑢
(𝑛)

ℎ
⋅ 𝑤(0)𝜕3𝑢

(𝑛)

ℎ
𝑑𝑥 = 0, 𝑢

(𝑛)

ℎ
⋅ (𝑢

(𝑛)

ℎ
)⟂ = 0. (102)

In addition, we have used Lemma A.1 to obtain the bounds

‖∇ℎ𝑣𝐹‖𝐿∞ ≤ 𝐶 𝑛

5

2

0
‖𝑣0ℎ‖𝐿2 , ‖𝜕3𝑣𝐹‖𝐿2𝑥3𝐿∞ℎ ≤ 𝐶 𝑛2

0
‖𝑣0ℎ‖𝐿2 . (103)

The upper bound obtained here depends on 𝑛0 and the initial data only. It is independent of 𝑛.
This point is crucial to obtain a time interval independent of 𝑛. Many other terms in (94) can be
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MA et al. 1643

similarly estimated. There are two terms that need a slightly different treatment,

∫ 𝑞(𝑛) ⋅ 𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0)) 𝑑𝑥, ∫ 𝜃(𝑛) ⋅ 𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(0)) 𝑑𝑥. (104)

By (99), we have

∫ 𝑞(𝑛) ⋅ 𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0)) 𝑑𝑥

= ∫ 𝑞(𝑛) ⋅ (𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0)) 𝑑𝑥

= ∫ 𝑞(𝑛) ⋅ (𝑢
(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0) + 𝑣𝐹 ⋅ ∇ℎ𝑤
(0)) 𝑑𝑥

= ∫
(
𝑞(𝑛) ⋅ (𝑢

(𝑛)

ℎ
⋅ ∇ℎ𝑤

(0)) − 𝑣𝐹 ⋅ ∇ℎ𝑞
(𝑛) 𝑤(0) − 𝑞(𝑛)∇ℎ ⋅ 𝑣𝐹𝑤

(0)
)
𝑑𝑥

≤ ‖𝑞(𝑛)‖𝐿2𝑥3𝐿4ℎ ‖𝑢(𝑛)

ℎ
‖𝐿2𝑥3𝐿4ℎ‖∇ℎ𝑤

(0)‖𝐿2(ℝ2)

+ ‖∇ℎ𝑞
(𝑛)‖𝐿2 ‖𝑣𝐹‖𝐿2𝑥3𝐿∞ℎ ‖𝑤(0)‖𝐿2(ℝ2) + ‖𝑞(𝑛)‖𝐿2‖∇ℎ ⋅ 𝑣𝐹‖𝐿2𝑥3𝐿∞ℎ ‖𝑤(0)‖𝐿2(ℝ2)

≤ 𝐶 ‖𝑞(𝑛)‖ 1

2

𝐿2
‖∇ℎ𝑞

(𝑛)‖ 1

2

𝐿2
‖𝑢(𝑛)

ℎ
‖ 1

2

𝐿2
‖∇ℎ𝑢

(𝑛)

ℎ
‖ 1

2

𝐿2
‖∇ℎ𝑤

(0)‖𝐿2(ℝ2)

+ 𝐶 𝑛0𝑀0 ‖∇ℎ𝑞
(𝑛)‖𝐿2 ‖𝑤(0)‖𝐿2(ℝ2) + 𝐶 𝑛2

0
𝑀2

0
‖𝑤(0)‖𝐿2(ℝ2)

≤ 𝜈

4

(‖∇ℎ𝑞
(𝑛)‖2

𝐿2
+ ‖∇ℎ𝑢

(𝑛)

ℎ
‖2
𝐿2

)
+ 𝐶 𝜈−1‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

(‖𝑞(𝑛)‖2
𝐿2

+ ‖𝑢(𝑛)

ℎ
‖2
𝐿2
)

+ 𝐶 𝑛2
0
𝑀2

0
(‖𝑤(0)‖𝐿2(ℝ2) + 𝜈−1‖𝑤(0)‖2

𝐿2(ℝ2)
). (105)

The other term in (104) can be similarly bounded,

∫ 𝜃(𝑛) ⋅ 𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝜌

(0)) 𝑑𝑥

≤ 𝜈

4
‖∇ℎ𝑢

(𝑛)‖2
𝐿2

+
𝜅

4
‖∇ℎ𝜃

(𝑛)‖2
𝐿2

+ 𝐶 𝜈
−

1

2 𝜅
−

1

2 ‖∇ℎ𝜌
(0)‖2

𝐿2(ℝ2)
(‖𝑢(𝑛)

ℎ
‖2
𝐿2

+ ‖𝜃(𝑛)‖2
𝐿2
)

+ 𝐶 𝑛2
0
𝑀2

0
(‖𝜌(0)‖𝐿2(ℝ2) + 𝜅−1‖𝜌(0)‖2

𝐿2(ℝ2)
). (106)

Invoking these estimates leads to

𝑑

𝑑𝑡
‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))‖2

𝐿2
+ 𝜈‖(∇ℎ𝑢

(𝑛)

ℎ
, ∇ℎ𝑞

(𝑛))‖2
𝐿2

+ 𝜅‖∇ℎ𝜃
(𝑛)‖2

𝐿2

≤ 𝐶 (𝜈−1 + 𝜈
−

1

2 𝜅
−

1

2 )‖∇ℎ𝑤
(0)‖2

𝐿2(ℝ2)
‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))‖2

𝐿2
+ 𝑄0, (107)
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1644 MA et al.

where 𝑄0 is given by

𝑄0 ∶= 𝐶 𝑛

5

2

0
𝑀3

0
+ 𝐶 𝑛2

0
𝑀2

0
(‖𝑤(0)‖𝐿2(ℝ2) + (𝜈−1 + 𝜅−1)‖𝑤(0)‖2

𝐿2(ℝ2)
) + 𝐶𝑀2

0
. (108)

It then follows from Gronwall’s inequality that

‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))(𝑡)‖2

𝐿2
+ 𝜈 ∫

𝑡

0

‖(∇ℎ𝑢
(𝑛)

ℎ
, ∇ℎ𝑞

(𝑛))‖2
𝐿2

𝑑𝜏 + 𝜅 ∫
𝑡

0

‖∇ℎ𝜃
(𝑛)‖2

𝐿2
𝑑𝜏

≤ e
𝐶 (𝜈−1+𝜈

−
1
2 𝜅

−
1
2 ) ∫ 𝑡

0
‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

𝑑𝜏
(‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))(0)‖2

𝐿2
+ 𝑄0𝑡

)
≤ 𝐶 𝐾0‖(𝐼 − 𝔼𝑛0)(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐿2
+ 𝐶 𝐾0𝑄0𝑡, (109)

where we have used the following simple facts:

e
𝐶 (𝜈−1+𝜈

−
1
2 𝜅

−
1
2 ) ∫ 𝑡

0
‖∇ℎ𝑤

(0)‖2
𝐿2(ℝ2)

𝑑𝜏 ≤ 𝐶 𝐾0 (110)

and

‖(𝑢(𝑛)

ℎ
, 𝑞(𝑛), 𝜃(𝑛))(0)‖𝐿2

= ‖(𝑣(𝑛)
ℎ

(0) − 𝑣𝐹(0), 𝑤
(𝑛)(0) − 𝑤𝐹(0), 𝜌

(𝑛)(0) − 𝜌𝐹(0))‖𝐿2
≤ ‖(𝐼 − 𝔼𝑛0)(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖𝐿2 . (111)

We are now ready to estimate the term on the right-hand side of (86), namely,

𝐿(𝑡) ∶= 𝐶 𝐾0 ∫
𝑡

0

(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
𝑑𝜏. (112)

We have written

𝑣
(𝑛)

ℎ
= 𝑢

(𝑛)

ℎ
+ 𝑣𝐹, 𝑤(𝑛) = 𝑞(𝑛) + 𝑤𝐹, 𝜌(𝑛) = 𝜃(𝑛) + 𝜌𝐹. (113)

Clearly, by the definition of 𝑣𝐹 = 𝑒𝜈Δℎ𝑡 𝔼𝑛0(𝑣0ℎ),

∫
𝑡

0

‖∇ℎ𝑣𝐹‖2𝐿2 𝑑𝜏 ≤ 𝑛2
0 ∫

𝑡

0

‖𝔼𝑛0(𝑣0ℎ)‖2𝐿2 𝑑𝜏 ≤ 𝑛2
0
‖𝑣0ℎ‖2𝐿2 𝑡. (114)

Similarly,

∫
𝑡

0

‖∇ℎ𝑤𝐹‖2𝐿2 𝑑𝜏 ≤ 𝑛2
0
‖𝑤0 − 𝑤

(0)
0
‖2
𝐿2

𝑡, ∫
𝑡

0

‖∇ℎ𝜌𝐹‖2𝐿2 𝑑𝜏 ≤ 𝑛2
0
‖𝜌0 − 𝜌

(0)
0
‖2
𝐿2

𝑡. (115)
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MA et al. 1645

Therefore, by (109), we can bound 𝐿(𝑡) by

𝐿(𝑡) ∶= 𝐶 𝐾0 ∫
𝑡

0

(
𝜈−3 ‖(∇ℎ𝑣

(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐿2

+ 𝜈−1 𝜅−2 ‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝜌

(𝑛))‖2
𝐿2

)
𝑑𝜏

≤ 𝐶𝐾0(𝜈
−3 + 𝜈−1 𝜅−2)

(
∫

𝑡

0

‖(∇ℎ𝑢
(𝑛)

ℎ
, ∇ℎ𝑞

(𝑛), ∇ℎ𝜃
(𝑛))‖2

𝐿2
𝑑𝜏

+∫
𝑡

0

‖(∇ℎ𝑣𝐹,∇ℎ𝑤𝐹,∇ℎ𝜌𝐹)‖2𝐿2 𝑑𝜏
)

≤ 𝐶𝐾2
0
(𝜈−4 + 𝜈−1 𝜅−3) ‖(𝐼 − 𝔼𝑛0)(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐿2

+ 𝐶𝐾0(𝜈
−3 + 𝜈−1 𝜅−2)𝑛2

0

(‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐿2
+ 𝐾0𝑄0

)
𝑡. (116)

To obtain an upper bound for 𝐴(𝑡) in (86), we recall (84) to get

𝐴(0) = ‖𝔼𝑛(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐻0,1 . (117)

If we choose 𝑛0 sufficiently large and 𝑡 ≤ 𝑇 = 𝑇(𝑛0) for sufficiently small 𝑇 > 0, then the upper
bound for 𝐿(𝑡) in (116) can be made sufficiently small so that

1 − 𝐿(𝑡)𝐴(0) ≥ 1

2
, 0 < 𝑡 ≤ 𝑇. (118)

It then follows from (86) that, for any 0 < 𝑡 ≤ 𝑇,

1

𝐴(𝑡)
=

1 − 𝐿(𝑡)𝐴(0)

𝐴(0)
≥ 1

2𝐴(0)
(119)

or

𝐴(𝑡) ≤ 2𝐴(0) ≤ 2‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐻0,1 . (120)

By the definition of 𝐴(𝑡) in (84),

‖(𝑣(𝑛)
ℎ

, 𝑤(𝑛), 𝜌(𝑛))‖2
𝐻0,1 = 𝑒∫

𝑡

0
𝑎(𝜏) 𝑑𝜏 𝐴(𝑡) ≤ 2𝐾0‖(𝑣0ℎ, 𝑤0 − 𝑤

(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐻0,1 . (121)

Integrating (83) in time yields the upper bound, for any 𝑡 ∈ [0, 𝑇],

𝜈 ∫
𝑡

0

‖(∇ℎ𝑣
(𝑛)

ℎ
, ∇ℎ𝑤

(𝑛))‖2
𝐻0,1 𝑑𝜏 + 𝜅 ∫

𝑡

0

‖∇ℎ𝜌
(𝑛)‖2

𝐻0,1 𝑑𝜏

≤ 𝐶 ‖(𝑣0ℎ, 𝑤0 − 𝑤
(0)
0

, 𝜌0 − 𝜌
(0)
0
)‖2

𝐻0,1 . (122)
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1646 MA et al.

Thus, we have shown that there is 𝑇 > 0 independent of 𝑛 such that

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿∞(0, 𝑇;𝐻0,1) ∩ 𝐿2(0, 𝑇;𝐻1,1) (123)

with its norm in this space bounded uniformly in terms of 𝑛.
The next step is to show that (𝑣(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) has a convergent subsequence whose limit solves

(11). By Banach–Alaoglu theorem, there is a subsequence, still denoted by (𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)), and

(𝑣ℎ, 𝑤, 𝜌) ∈ 𝐿∞(0, 𝑇;𝐻0,1) ∩ 𝐿2(0, 𝑇;𝐻1,1) satisfying

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ⇀ (𝑣ℎ, 𝑤, 𝜌) in 𝐻0,1 for almost every 𝑡, (124)

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ⇀ (𝑣ℎ, 𝑤, 𝜌) in 𝐿2(0, 𝑇;𝐻1,1). (125)

These weak convergences here are not sufficient to show that (𝑣ℎ, 𝑤, 𝜌) solves the Boussinesq
system in (11). We need to obtain some strong convergence. We will show that

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) → (𝑣ℎ, 𝑤, 𝜌) in 𝐿2(0, 𝑇; 𝐿2). (126)

The tool is the Aubin–Lions–Simon lemma stated below.

Lemma 2 (Aubin–Lions–Simon). Let 𝑋0, 𝑋, and 𝑋1 be three Banach spaces with 𝑋0 ↪ 𝑋 ↪ 𝑋1.
Suppose 𝑋0 is compactly embedded in 𝑋 and 𝑋 is continuously embedded in 𝑋1. Let 1 ≤ 𝑝, 𝑞 ≤ ∞.
Set

𝑊 = {𝑓 ∈ 𝐿𝑝(0, 𝑇; 𝑋0)| 𝜕𝑡𝑓 ∈ 𝐿𝑞(0, 𝑇; 𝑋1)}. (127)

(1) If 𝑝 < ∞, then the embedding of𝑊 into 𝐿𝑝(0, 𝑇; 𝑋) is compact,
(2) if 𝑝 = +∞ and 𝑞 > 1, then the embedding of𝑊 into 𝐶([0, 𝑇]; 𝑋) is compact.

To apply this lemma, we need to show that

(𝜕𝑡𝑣
(𝑛)

ℎ
, 𝜕𝑡𝑤

(𝑛), 𝜕𝑡𝜌
(𝑛)) ∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (128)

As our first step, we show that

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿4(0, 𝑇; 𝐿4(ℝ3)). (129)

Due to the 2D interpolation inequality

‖𝑓‖
𝐿4(0,𝑇;𝐻̇

1
2 (ℝ2))

≤ 𝐶 ‖𝑓‖ 1

2

𝐿∞(0,𝑇;𝐿2(ℝ2))
‖𝑓‖ 1

2

𝐿2(0,𝑇;𝐻̇1(ℝ2))
, (130)
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MA et al. 1647

we have

𝐿∞(0, 𝑇; 𝐿2(ℝ2)) ∩ 𝐿2(0, 𝑇; 𝐻̇1(ℝ2)) ↪ 𝐿4(0, 𝑇; 𝐻̇
1

2 (ℝ2)). (131)

As a consequence,

𝐿∞(0, 𝑇;𝐻0,1(ℝ3)) ∩ 𝐿2(0, 𝑇;𝐻1,1(ℝ3)) ↪ 𝐿4(0, 𝑇;𝐻
1

2
,1
(ℝ3)). (132)

Therefore,

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿4(0, 𝑇;𝐻

1

2
,1
(ℝ3)). (133)

Furthermore, we have the embedding

𝐻
1

2
,1
(ℝ3) ↪ 𝐿2𝑥3𝐿

4
ℎ
(ℝ3) ∩ 𝐿∞𝑥3𝐿

4
ℎ
(ℝ3) (134)

because of the embedding inequalities

‖𝑓‖𝐿2𝑥3𝐿4ℎ ≤ 𝐶 ‖𝑓‖
𝐿2𝑥3𝐻

1
2
ℎ

≤ 𝐶 ‖𝑓‖
𝐻1

𝑥3
𝐻

1
2
ℎ

= 𝐶 ‖𝑓‖
𝐻

1
2
,1

(135)

and

‖𝑓‖𝐿∞𝑥3𝐿4ℎ ≤ 𝐶 ‖𝑓‖
𝐿∞𝑥3𝐻

1
2
ℎ

≤ 𝐶 ‖𝑓‖
𝐻1

𝑥3
𝐻

1
2
ℎ

= 𝐶 ‖𝑓‖
𝐻

1
2
,1
. (136)

Therefore,

𝐿4(0, 𝑇;𝐻
1

2
,1
) ↪ 𝐿4(0, 𝑇; 𝐿2𝑥3𝐿

4
ℎ
∩ 𝐿∞𝑥3𝐿

4
ℎ
) ↪ 𝐿4(0, 𝑇; 𝐿4) (137)

and

(𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿4(0, 𝑇; 𝐿4(ℝ3)). (138)

Now we are ready to show that

𝜕𝑡𝑣
(𝑛)

ℎ
∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (139)

We check the terms in the equation of 𝑣(𝑛)
ℎ
,

𝜕𝑡𝑣
(𝑛)

ℎ
+ 𝔼𝑛

(
𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(0)𝜕3𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
+ 𝑓(𝑣

(𝑛)

ℎ
)⟂
)

= −∇ℎ𝑝
(𝑛) + 𝜈Δℎ𝑣

(𝑛)

ℎ
. (140)
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1648 MA et al.

Since 𝑣(𝑛)
ℎ

∈ 𝐿2(0, 𝑇;𝐻1,1(ℝ3)), we have

Δℎ𝑣
(𝑛)

ℎ
∈ 𝐿2(0, 𝑇;𝐻−1,1(ℝ3)) ↪ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (141)

Due to ∇ℎ ⋅ 𝑣𝑛
ℎ
+ 𝜕3𝑤

(𝑛) = 0,

𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
) = ∇ℎ ⋅ 𝔼𝑛(𝑣

(𝑛)

ℎ
⊗ 𝑣

(𝑛)

ℎ
) + 𝜕3𝔼𝑛(𝑤

(𝑛) 𝑣
(𝑛)

ℎ
) (142)

and (𝑣
(𝑛)

ℎ
, 𝑤(𝑛), 𝜌(𝑛)) ∈ 𝐿4(0, 𝑇; 𝐿4(ℝ3)) and Hölder’s inequality imply

𝔼𝑛(𝑣
(𝑛)

ℎ
⊗ 𝑣

(𝑛)

ℎ
), 𝔼𝑛(𝑤

(𝑛) 𝑣
(𝑛)

ℎ
) ∈ 𝐿2(0, 𝑇; 𝐿2). (143)

Therefore,

𝔼𝑛(𝑣
(𝑛)

ℎ
⋅ ∇ℎ𝑣

(𝑛)

ℎ
+ 𝑤(𝑛) 𝜕3𝑣

(𝑛)

ℎ
) ∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (144)

Since 𝑤(0) is independent of 𝑥3,

𝔼𝑛(𝑤
(0)𝜕3𝑣

(𝑛)

ℎ
) = 𝜕3𝔼𝑛(𝑤

(0)𝑣
(𝑛)

ℎ
). (145)

It is easy to check that 𝔼𝑛(𝑤
(0)𝑣

(𝑛)

ℎ
) ∈ 𝐿2(0, 𝑇; 𝐿2(ℝ3)). In fact,

‖𝔼𝑛(𝑤
(0)𝑣

(𝑛)

ℎ
)||𝐿2(0,𝑇;𝐿2(ℝ3)) ≤ ‖‖𝑤(0)‖𝐿4(ℝ2) ‖𝑣(𝑛)ℎ

‖𝐿2𝑥3𝐿4ℎ‖𝐿2(0,𝑇)
≤ ‖𝑤(0)‖𝐿4(0,𝑇;𝐿4(ℝ2)) ‖𝑣(𝑛)ℎ

‖𝐿4(0,𝑇;𝐿2𝑥3𝐿4ℎ)
≤ 𝐶 ‖𝑤(0)‖

𝐿4(0,𝑇;𝐻
1
2 (ℝ2))

‖𝑣(𝑛)
ℎ

‖
𝐿4(0,𝑇;𝐻

1
2
,1
)

≤ 𝐶 ‖𝑤(0)‖𝐿∞(0,𝑇;𝐿2)∩𝐿2(0,𝑇;𝐻̇1) ‖𝑣(𝑛)ℎ
‖
𝐿4(0,𝑇;𝐻

1
2
,1
)
< ∞. (146)

Therefore,

𝔼𝑛(𝑤
(0)𝜕3𝑣

(𝑛)

ℎ
) ∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (147)

Since 𝑓 is a smooth function with compact support,

𝔼𝑛(𝑓(𝑣
(𝑛)

ℎ
)⟂) ∈ 𝐿2(0, 𝑇; 𝐿2) ↪ 𝐿2(0, 𝑇;𝐻−1). (148)

In addition, it is easy to check that

𝑝(𝑛) ∈ 𝐿2(0, 𝑇; 𝐿2(ℝ3)). (149)
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MA et al. 1649

Therefore, ∇𝑝 ∈ 𝐿2(0, 𝑇;𝐻−1). Thus, we have shown

𝜕𝑡𝑣
(𝑛)

ℎ
∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (150)

Similarly we can also show that

(𝜕𝑡𝑤
(𝑛), 𝜕𝑡𝜌

(𝑛)) ∈ 𝐿2(0, 𝑇;𝐻−1(ℝ3)). (151)

To apply the Aubin–Lions–Simon lemma, we take the following spaces:

𝐻−1(𝐵(0,𝑚)) ↪ 𝐿2(𝐵(0,𝑚)) ↪ 𝐻1(𝐵(0,𝑚)), (152)

where 𝐵(0,𝑚) is the ball of radius 𝑚 with 𝑚 > 0 being an integer. The first embedding in (152)
is compact and the second is certainly continuous. The Aubin–Lions–Simon lemma does not
directly apply to the spaces

𝐻−1(ℝ3) ↪ 𝐿2(ℝ3) ↪ 𝐻1(ℝ3) (153)

since then the embeddings are no longer compact. The Aubin–Lions–Simon lemma implies that,
for each fixed positive integer𝑚, there is a subsequence

(𝑣
(𝑛𝑚,𝑘)

ℎ
, 𝑤(𝑛𝑚,𝑘), 𝜌(𝑛𝑚,𝑘)) → (𝑣ℎ, 𝑤, 𝜌) ∈ 𝐿2(0, 𝑇; 𝐿2(𝐵(0,𝑚))) as 𝑘 → ∞. (154)

The Cantor diagonal process then allows us to obtain the desired subsequence

(𝑣
(𝑛𝑚,𝑚)

ℎ
, 𝑤(𝑛𝑚,𝑚), 𝜌(𝑛𝑚,𝑚)) → (𝑣ℎ, 𝑤, 𝜌) ∈ 𝐿2(0, 𝑇; 𝐿2(ℝ3)) as𝑚 → ∞. (155)

We can then show that (𝑣ℎ, 𝑤, 𝜌) solves the Boussinesq equation in (21) by taking the limit in (73).
Since this process is standard, we omit the details.
It is easy to show that (𝑣ℎ, 𝑤, 𝜌) ∈ 𝐶([0,∞); 𝐿2). We combine the facts that, for any 𝑇 > 0,

𝑢 ∈ 𝐿2(0, 𝑇;𝐻1,1) ↪ 𝐿2(0, 𝑇;𝐻1) (156)

and 𝜕𝑡𝑢 ∈ 𝐿2(0, 𝑇;𝐻−1)with LemmaA.2 (see Ref. [57, p. 303]) to obtain (𝑣ℎ, 𝑤, 𝜌) ∈ 𝐶([0,∞); 𝐿2).
We prove the uniqueness. Assume that

(𝑣ℎ, 𝑤, 𝜌), (𝑈ℎ, 𝑄,Θ) ∈ 𝐿∞(0, 𝑇;𝐻0,1) ∩ 𝐿2(0, 𝑇;𝐻1,1) (157)

are two solutions of (21). Consider the difference (𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌) with

𝛿𝑣ℎ = 𝑣ℎ − 𝑈ℎ, 𝛿𝑤 = 𝑤 − 𝑄, 𝛿𝜌 = 𝜌 − Θ. (158)
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1650 MA et al.

It is easy to check that (𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝛿𝑣ℎ + 𝛿𝑣ℎ ⋅ ∇ℎ𝑣ℎ + 𝑈ℎ ⋅ ∇ℎ𝛿𝑣ℎ + 𝑤(0)𝜕3𝛿𝑣ℎ + 𝛿𝑤 𝜕3𝑣ℎ

+𝑄𝜕3𝛿𝑣ℎ + 𝑓(𝛿𝑣ℎ)
⟂ = −∇ℎ𝛿𝑝 + 𝜈Δℎ𝛿𝑣ℎ,

𝜕𝑡𝛿𝑤 + 𝛿𝑣ℎ ⋅ ∇ℎ𝑤
(0) + 𝛿𝑣ℎ ⋅ ∇ℎ𝑤 + 𝑈ℎ ⋅ ∇ℎ𝛿𝑤 + 𝛿𝑤𝜕3𝑤

+𝑄𝜕3𝛿𝑤 + 𝑤(0)𝜕3𝛿𝑤 = −𝜕3𝛿𝑝 − 𝛿𝜌 + 𝜈Δℎ𝛿𝑤,

∇ℎ ⋅ 𝛿𝑣ℎ + 𝜕3𝛿𝑤 = 0,

𝜕𝑡𝛿𝜌 + 𝛿𝑣ℎ ⋅ ∇ℎ𝜌 + 𝑈ℎ ⋅ ∇ℎ𝛿𝜌 + 𝛿𝑤𝜕3𝜌 + 𝑄𝜕3𝛿𝜌 + 𝛿𝑣ℎ ⋅ ∇ℎ𝜌
(0)

+𝑤(0)𝜕3𝛿𝜌 − 𝛿𝑤 = 𝜅Δℎ𝛿𝜌,

(𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌)|𝑡=0 = 0,

(159)

where 𝛿𝑝 denotes the corresponding pressure difference. Dotting (159) with (𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌) yields

1

2

𝑑

𝑑𝑡
‖(𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌)‖2

𝐿2
+ 𝜈‖(∇ℎ𝛿𝑣ℎ, ∇ℎ𝛿𝑤)‖2

𝐿2
+ 𝜅‖∇ℎ𝛿𝜌‖2𝐿2 = 𝐾1 +⋯𝐾8, (160)

where

𝐾1 = −∫ 𝛿𝑣ℎ ⋅ ∇ℎ𝑣ℎ ⋅ 𝛿𝑣ℎ 𝑑𝑥, 𝐾2 = −∫ 𝛿𝑤 𝜕3𝑣ℎ ⋅ 𝛿𝑣ℎ 𝑑𝑥,

𝐾3 = −∫ 𝛿𝑣ℎ ⋅ ∇ℎ𝑤 𝛿𝑤 𝑑𝑥, 𝐾4 = −∫ 𝛿𝑤 𝜕3𝑤 𝛿𝑤 𝑑𝑥,

𝐾5 = −∫ 𝛿𝑣ℎ ⋅ ∇ℎ𝜌 𝛿𝜌 𝑑𝑥, 𝐾6 = −∫ 𝛿𝜌 𝜕3𝑤 𝛿𝜌 𝑑𝑥,

𝐾7 = −∫ 𝛿𝑣ℎ ⋅ ∇ℎ𝑤
(0) 𝛿𝑤 𝑑𝑥, 𝐾8 = −∫ 𝛿𝑣ℎ ⋅ ∇ℎ𝜌

(0) 𝛿𝜌 𝑑𝑥. (161)

Here, we have used the facts, due to ∇ ⋅ (𝑈ℎ, 𝑄) = ∇ℎ ⋅ 𝑈ℎ + 𝜕3𝑄 = 0, that

∫ (𝑈ℎ ⋅ ∇ℎ𝛿𝑣ℎ + 𝑄𝜕3𝛿𝑢ℎ) ⋅ 𝛿𝑣ℎ = 0,

∫ (𝑈ℎ ⋅ ∇ℎ𝛿𝑤 + 𝑄𝜕3𝛿𝑤) ⋅ 𝛿𝑤 = 0,

∫ (𝑈ℎ ⋅ ∇ℎ𝛿𝜌 + 𝑄𝜕3𝛿𝜌) ⋅ 𝛿𝜌 = 0. (162)

By Lemma 1,

|𝐾1| ≤𝐶 ‖𝛿𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝛿𝑣ℎ‖ 1

2

𝐿2
‖∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝜕3∇ℎ𝑣ℎ‖ 1

2

𝐿2
‖𝛿𝑣ℎ‖ 1

2

𝐿2
‖𝜕2𝛿𝑣ℎ‖ 1

2

𝐿2

≤𝜈

8
‖∇ℎ𝛿𝑣ℎ‖2𝐿2 + 𝐶 ‖∇ℎ𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2 ‖𝛿𝑣ℎ‖2𝐿2 . (163)
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MA et al. 1651

By Lemma 1 and 𝜕3𝛿𝑤 = −∇ℎ ⋅ 𝛿𝑣ℎ,

|𝐾2| ≤𝐶 ‖𝛿𝑤‖ 1

2

𝐿2
‖𝜕3𝛿𝑤‖ 1

2

𝐿2
‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝛿𝑣ℎ‖ 1

2

𝐿2
‖𝜕2𝛿𝑣ℎ‖ 1

2

𝐿2

≤𝐶 ‖𝛿𝑤‖ 1

2

𝐿2
‖∇ℎ𝛿𝑣ℎ‖𝐿2‖𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝜕1𝜕3𝑣ℎ‖ 1

2

𝐿2
‖𝛿𝑣ℎ‖ 1

2

𝐿2

≤𝜈

8
‖∇ℎ𝛿𝑣ℎ‖2𝐿2 + 𝐶 ‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2 ‖(𝛿𝑣ℎ, 𝛿𝑤)‖2

𝐿2
. (164)

The estimate of 𝐾3 is similar to that for 𝐾1,

|𝐾3| ≤ 𝜈

8
‖(∇ℎ𝛿𝑣ℎ, ∇ℎ𝛿𝑤)‖2

𝐿2
+ 𝐶 ‖∇ℎ𝑤‖𝐿2 ‖𝜕3∇ℎ𝑤‖𝐿2 ‖(𝛿𝑣ℎ, 𝛿𝑤)‖2

𝐿2
. (165)

𝐾4 can be bounded similarly as 𝐾2,

|𝐾4| ≤ 𝜈

8
‖(∇ℎ𝛿𝑣ℎ, ∇ℎ𝛿𝑤)‖2

𝐿2
+ 𝐶 ‖𝜕3𝑤‖𝐿2 ‖𝜕3∇ℎ𝑤‖𝐿2 ‖(𝛿𝑣ℎ, 𝛿𝑤)‖2

𝐿2
. (166)

The bound for 𝐾5 is similar to that for 𝐾1,

|𝐾5| ≤ 𝜈

8
‖∇ℎ𝛿𝑣ℎ‖2𝐿2 + 𝜅

8
‖∇ℎ𝛿𝜌‖2𝐿2 + 𝐶 ‖∇ℎ𝜌‖𝐿2 ‖𝜕3∇ℎ𝜌‖𝐿2 ‖(𝛿𝑣ℎ, 𝛿𝜌)‖2𝐿2 . (167)

𝐾6 can be bounded similarly as 𝐾2,

|𝐾6| ≤ 𝜅

8
‖∇ℎ𝛿𝜌‖2𝐿2 + 𝐶 ‖∇ℎ𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2 ‖𝛿𝜌‖2𝐿2 . (168)

To estimate the last two terms, we notice that∇ℎ𝑤
(0) and∇ℎ𝜌

(0) are independent of 𝑥3 and apply
Hölder’s inequality to obtain

|𝐾7| ≤ 𝜈

8
‖(∇ℎ𝛿𝑣ℎ, ∇ℎ𝛿𝑤)‖2

𝐿2
+ 𝐶 ‖∇ℎ𝑤

(0)‖2
𝐿2
‖(𝛿𝑣ℎ, 𝛿𝑤)‖2

𝐿2
, (169)

|𝐾8| ≤ 𝜈

8
‖∇ℎ𝛿𝑣ℎ‖2𝐿2 + 𝜅

8
‖∇ℎ𝛿𝜌‖2𝐿2 + 𝐶 ‖∇ℎ𝜌

(0)‖2
𝐿2
‖(𝛿𝑣ℎ, 𝛿𝜌)‖2𝐿2 . (170)

Invoking the estimates in (163), (164), (165), (166), (167), (168), (169) and (170), yields

𝑑

𝑑𝑡
‖(𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌)‖2

𝐿2
≤ 𝐵(𝑡) ‖(𝛿𝑣ℎ, 𝛿𝑤, 𝛿𝜌)‖2

𝐿2
, (171)

where

𝐵(𝑡) ∶=𝐶 ‖∇ℎ𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2 + 𝐶 ‖𝜕3𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2
+ 𝐶 ‖∇ℎ𝑤‖𝐿2 ‖𝜕3∇ℎ𝑤‖𝐿2 + 𝐶 ‖𝜕3𝑤‖𝐿2 ‖𝜕3∇ℎ𝑤‖𝐿2
+ 𝐶 ‖∇ℎ𝜌‖𝐿2 ‖𝜕3∇ℎ𝜌‖𝐿2 + 𝐶 ‖∇ℎ𝑣ℎ‖𝐿2 ‖𝜕3∇ℎ𝑣ℎ‖𝐿2
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1652 MA et al.

+ 𝐶 ‖∇ℎ𝑤
(0)‖2

𝐿2
+ 𝐶 ‖∇ℎ𝜌

(0)‖2
𝐿2
. (172)

Gronwall’s inequality then implies the desired uniqueness. This completes the proof of
Proposition 2. ■
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APPENDIX: BERNSTEIN INEQUALITY, AND ODE EXISTENCE THEORY
This appendix presents several facts that have been used in the previous sections: the Bernstein
inequality, existence and extension theory for ODEs on Banach spaces, and Aubin–Lions–Simon
lemma. Some of these facts can be found in Ref. 5.
LemmaA.1. Let 𝐵 be a ball and  be a annulus. A constant 𝐶 exists such that, for any nonnegative
integer 𝑘, any 𝑝, 𝑞 ∈ [1,∞] with 𝑞 ≥ 𝑝, and any function 𝑓 ∈ 𝐿𝑝, we have

supp𝑓 ⊂ 𝜆𝐵 ⇒ ‖𝐷𝑘𝑓‖𝐿𝑞 ∶= sup|𝛼|=𝑘 ‖𝜕𝛼𝑓‖𝐿𝑞 ≤ 𝐶𝑘+1 𝜆
𝑘+𝑑(

1

𝑝
−

1

𝑞
)||𝑓‖𝐿𝑝 ,

supp𝑓 ⊂ 𝜆 ⇒ 𝐶−𝑘−1𝜆𝑘‖𝑓‖𝐿𝑝 ≤ ‖𝐷𝑘𝑓‖𝐿𝑝 ≤ 𝐶𝑘+1𝜆𝑘‖𝑓‖𝐿𝑝 . (A.1)

Theorem A.1. Let 𝐸 be a Banach space, Ω be an open subset of 𝐸, 𝐼 an open interval of ℝ, and
(𝑡0, 𝑥0) ∈ 𝐼 × Ω. Let 𝐹 ∈ 𝐿1

𝑙𝑜𝑐
(𝐼, 𝐶𝜇(Ω, 𝐸)), where 𝜇 is an Osgood module of continuity and 𝐶𝜇(Ω, 𝐸)

is the set of bounded, continuous maps fromΩ to 𝐸 such that

‖𝐹(𝑡, 𝑥)‖𝐶𝜇
∶= sup

𝑥∈Ω
‖𝐹(𝑡, 𝑥)‖𝐸 + sup

0<‖𝑥−𝑦‖𝐸≤1
‖𝐹(𝑡, 𝑥) − 𝐹(𝑡, 𝑦)‖𝐸

𝜇(‖𝑥 − 𝑦‖𝐸) < ∞. (A.2)
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Then there exists an open interval 𝐽 ⊂ 𝐼 such that the ODE

𝑥(𝑡) = 𝑥0 + ∫
𝑡

𝑡0

𝐹(𝜏, 𝑥(𝜏)) 𝑑𝜏 (A.3)

has a unique continuous solution.

Theorem A.2. Let (𝑇∗, 𝑇
∗) be the maximal interval of existence, If 𝐹 satisfies

‖𝐹(𝑡, 𝑥)‖𝐸 ≤ 𝑀 ‖𝑥‖2𝐸 (A.4)

for some constant𝑀, then for any 𝑡0 ∈ (𝑇∗, 𝑇
∗), we have

∫
𝑡0

𝑇∗

‖𝑥(𝑡)‖𝐸 𝑑𝑡 − 𝑇∗ = 𝑇∗ + ∫
𝑇∗

𝑡0

‖𝑥(𝑡)‖𝐸 𝑑𝑡 = ∞. (A.5)

Lemma A.2. Let 𝑇 > 0. Suppose 𝑢 ∈ 𝐿2(0, 𝑇;𝐻1(ℝ𝑑)) with 𝜕𝑡𝑢 ∈ 𝐿2(0, 𝑇;𝐻−1(ℝ𝑑)). Then 𝑢 ∈

𝐶([0, 𝑇]; 𝐿2).
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