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The global well-posedness on the 2D resistive MHD equations without kinematic
dissipation remains an outstanding open problem. This is a critical problem. Any
LP-norm of the vorticity @ with 1 < p < oo has been shown to be bounded globally
(in time), but whether the L°°-norm of w is globally bounded remains elusive. The global
boundedness of ||w|;~ yields the resolution of the aforementioned open problem. This
paper examines the L°*°-norm of w from a different perspective. We construct a sequence
of initial data near a special steady state to show that the L>°-norm of w is actually

mildly ill-posed.

1 Introduction

The magnetohydrodynamic (MHD) system governs the motion of electrically conducting
fluids in a magnetic field such as plasmas, liquid metals, and electrolytes and has
a wide range of applications in astrophysics, geophysics, cosmology, and engineering
(see, e.g., [4, 11, 25]). The MHD system is a combination of the Navier-Stokes equations
of fluid dynamics and Maxwell's equations of the electromagnetism. The coupling

and interaction between the magnetic field and the fluid enable the MHD system to
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model many more phenomena than the Navier-Stokes and the Euler equations. One
outstanding feature of the MHD systems is the various wave phenomena they describe.

This paper focuses on the 2D resistive MHD equations,

u,+u-Vu=-Vp+b-Vb, xecR? t>0,
bi+u-Vb=Ab+b-Vu,

V.-u=V-b=0,

u(x,0)=uyx), bx,0) =by(x),

(1.1)

where u = u(x,t) denotes the fluid velocity, b = b (x,t) the magnetic field, and p =
p (x,t) the pressure. Equation (1.1) is applicable when the fluid viscosity can be ignored
while the role of resistivity is important such as in magnetic reconnection and magnetic
turbulence (see [25]). Magnetic reconnection refers to the breaking and reconnecting
of oppositely directed magnetic field lines in a plasma and is at the heart of many
spectacular events in our solar system such as solar flares and northern lights.

Two fundamental issues on (1.1) have recently attracted considerable interest.
The 1st one is the global well-posedness problem. A lot of efforts have been devoted to
this difficult problem, even though it remains open (see, e.g., [1, 6, 8-10, 13, 15-18, 31—
34]). The 2nd one is the stability problem on perturbations near a background magnetic

field. A background magnetic field, say

u® = (0,0, b»9=q,0),

constitutes a special class of steady-state solutions. The perturbation near the back-
ground magnetic field, still denoted by (u, b), obeys a resistive MHD system with two

extra terms,

u;+u-Vu=-Vp+b-Vb+9,b,
by+u-Vb=Ab+b-Vu+ou, (1.2)
V-u=V-b=0.

The study of the stability problem on (1.2) has been motivated by the observed physical
phenomenon that the magnetic field can stabilize the electrically conducting fluids.
There have been substantial recent developments on the stability problem on the
MHD equations near a background magnetic field (see, e.g., [3, 5, 7, 14, 20-22, 27-

30, 35]). These two problems remain open. This paper examines these problems from
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Mild I1l-Posedness for MHD Equations 4841

the perspective of mild ill-posedness and intends to shed some light on these open
problems.

We describe some of the progress that has been made on these open problems
and explain the remaining main obstacles that have been preventing us from completely
solving these problems. The results presented in this paper may help gain a better
understanding of these difficulties. First of all, any solution (u,b) of (1.1) or (1.2)

emanating from an initial data (ug, by) € H! admits uniform global H!'-bound,
2
(@), @)l < 1wy, bo) g €0z,

As a consequence, (1.1) or (1.2) always possesses a global H!-weak solution (see, e.g.,
[9, 18]). However, the uniqueness of the H!'-weak solutions remains an open problem.
Strong or classical solutions are unique but are not known to be global (in time).
Extensive efforts have been devoted to the global well-posedness problem on (1.1).
Existing results revealed the criticality of this problem. If the Laplacian dissipation Ab
in (1.1) is replaced by the hyper-dissipation —(—A)#b with any g > 1, then the resulting
system is globally well-posedness [10, 17]. If we keep Ab in (1.1) but add fractional
dissipation —(—A)%u or even logarithmic dissipation —log(2 — A)u, then the slightly
dissipated MHD system always possesses a unique global classical solution [13, 32, 34].
These results illustrate the criticality of the dissipation Ab.

Another type of criticality is reflected on the L*°-norm of the vorticity w = V x u.
As established in [15] via the maximal regularity of the heat operator, any L?-norm of w

with 1 < g < oo is bounded,

lo@®lle = c(q, ),

where the upper bound c(q,t) depends on g, the initial data, and t. However, the
L*°-bound of w is missing. Whether or not ||o(t)|;~ is bounded for all time remains an
open problem. This is the main obstacle in solving the global well-posedness problem
on (1.1) as well as on (1.2). The mild ill-posedness result obtained in this paper suggests
that attempts to establish a global bound for |w|;~ may fail. A different approach of
avoiding the control of ||w||;«~ appears to be necessary in order to solve this open well-
posedness problem.

This paper focuses on the MHD system (1.2). The goal is to understand the

growth behavior of ||w(?)||; by exploiting the structure of the equation governing the
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vorticity. When (u, b) satisfies (1.2), the corresponding vorticity obeys
w;+u- Vo =b;Ab, —b,Ab; + Ab,. (1.3)
By regrouping the terms on the right-hand side, (1.3) can be rewritten as
wt+u~Va)=’Rfcu+H+L,
where R; = 9;A7! = 81(—A)_% denotes the Riesz transform, and H and L are given by

H = b](AbZ +b . VUZ + 81u2) - bZ(Abl +b . Vul + 31u1)
+ (Aby +Db-Vu, +9,uy),

As we shall show later, H and L represent regular terms. Since the Riesz transforms, a
class of standard singular integral operators, are not bounded on L*°, the boundedness
of |o|;~ remains unknown. This work is partially inspired by a recent work of Elgindi

and Masmoudi [12] on the 2D Euler-like equation

8ta)+u~Va)=R§a), xeR? t>0,

u=viale,

where V+ = (-d,,9;) and R, = d,A~! is the Riesz transform. We explore the growth
behavior of ||w(t)]|;~ associated with the MHD system (1.2) and are able to establish the
mild ill-posedness on the local solution of (1.2). We provide a rigorous definition of this

concept proposed by Elgindi and Masmoudi [12].
Definition 1.1. Let X and Y be two Banach spaces and Y < X. A Cauchy problem

v, =N(v),
v(0) = v,

is mildly ill-posed in a space X if there exists a constant ¢ > 0 such that for any ¢, > 0,
there exists vy € Y, with |vy|ly < ¢ for which there exists a unique solution v(t) €
L*°([0, T]; Y) for some T > O, but ||[v(t)||x > c for some 0 < t < 4.
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We remark that T in the definition above could depend on ¢. We are able to

establish the mild ill-posedness of (1.2), as stated in the following theorem.

Theorem 1.1. There exists a sequence of initial data {(uf ,bg’)}fvozl with divul =
divb) = 0 satisfying
3 1
uy €BZ,, by =byeH NBZ,,

< ¢ VN,

1

N N
lug Iz < <8, g IIB

C C
——, o)l < —=, lbgl 1
VN VN H'NBZ,

1
2
4,

where a)g’ =V x ué’, 8 > 0is a small constant and C; > 0 is a constant independent of IV.

Let (u¥,b") be the corresponding local solution of (1.2). Then (u?,b") and " = V x uV

satisfy
C 3 C C 5
N [’} 2 1 2 N 2 1 1 2 2
u' el ,— |;H NB , b e ,—= |;H |NL 0,— |;B ,
([ wv] 4'1) ([ m} ) ([ ﬁ] 4'1))
o™ @) Cy,

L ([O,T%],L )
where C, and C; are universal constants independent of .

Theorem 1.1 asserts that we can construct a sequence of initial data {(ug’ , bg’ )}
such that the initial H!-norm, the L*°-norm of u}) as well as the initial L>°-norm of o}
are all small and approach zero as N — oo, but the vorticity »¥ of the corresponding
solution (u,b") actually grows in the L>®°-norm and becomes bounded below by a
constant uniform in N. A special consequence of Theorem 1.1 is the following instability
result on the vorticity in the L*°-norm. We recall the equations of the vorticity  and the

current density j =V x b,

dw+u-Vo=>b-Vj+9,j, (L5)
dj+u-Vji—Aj=b-Vo+ Q(Vu, Vb) + d,0,

where
Q(Vu,Vb) =203;b,(d,uy + d;Uy) — 20, U, (35b; + 31Dy).

Corollary 1.2. The zero solution of (1.5) is unstable with respect to L>°-norm.
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We explain the main lines in the proof of Theorem 1.1. We start with the local

existence and uniqueness in a suitable functional setting.

Proposition 1.3.  Assume the initial data (ug, by) with divul) = divb] = 0 satisfy
3 1
uyg€H'NBZ,, wy=Vxuyel™, bycH NBZ,, V-uy=V-by=0.

3 1
Then (1.2) has a unique solution (u, b) € L*°(0, T; BZ,I) x L*°(0, T; Bil) for some T > 0. In

addition, the following estimate holds,

lwll : , (1.6)

%
B4,1

+ ¢+ 1) < 3. Alternatively,

with ct(||ull
B 1

3
2
4,

(lugll 3 + cpelcteo?
BZ,
: (1.7)

u 4
” ” + Co)(e(c+co)t _ 1)

ST =

8}, el

A ojw

3
B,

where ¢, is a constant depending only on ||ug g1, llogll and ||bgll 1
H'NB,
The next step is to prove several global a priori bounds. In particular, the terms

in H and L are shown to be bounded globally.

1
Proposition 1.4. Assume uj € H', wy = Vxug € L™ and V-uy = 0. Assume by, € H'NB}
and V- by = 0. Let (u, b) be the corresponding solution of (1.2). Then, for any g € (1,4/3)
and t > O,

lollpgeps < co(1+7(@)e @, Jufl 4 < el +r()e oD,
t P41

t
1AD]l s < cor(t)e@ror®, / IVB|| 1 dr < ¢y + cyr(t)el@tor®,
X 0 B

1
2
4,1
t
/ |Ab+b-Vu+d,ul 1 dr < cg+ cor(t)e@ror®,
0 B,

1
2
4,1

where r(t) depends only on g and t (in the fashion like ¥ with y > 0).
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In addition, to prepare for the construction of the sequence of the initial data,
we construct a sequence of functions with special properties. The precise construction

and the special properties are stated in the following proposition.

1
Proposition 1.5.  There exists a sequence of functions fy € B; | such that the following
holds:

1A fyllzz < ¢, (1.8)
Ifyllzz <ec, (1.9)
Ifylle <c, (1.10)

IRfyllz = C'N, (1.11)

IIfNHB%1 <cN, (1.12)

where A = (—A)%, R = Rf, or R; R, with Rj = E)jA_l (j = 1,2) being the standard Riesz

transform and ¢ and ¢’ are constants independent of N.

The rest of this paper is divided into five sections. Section 2 provides a list of
facts to be used in the proofs of the propositions and the theorem stated above. Section 3
presents a detailed construction of a sequence of functions with special properties. The
construction of the initial data in the proof of Theorem 1.1 makes use of this special
sequence. Section 4 proves Proposition 1.3, the local existence theory on the system in
(1.2). Section 5 is devoted to the proof of several global a priori bounds on solutions of
(1.2) stated in Proposition 1.4. Section 6 contains the proof of our main results stated in

Theorem 1.1.

2 Preparations

This section prepares several facts to be used in the proofs of the propositions and the
theorem. The 1st lemma recounts the maximal regularity of the heat operator (see, e.g.,
[19, p.64]).

Lemma 2.1. Let0 < T < oco. Assume f € LP((0, T), L4(R%)) with 1 < p, g < co. Define

t
Af(t) = / =92 Af(s) ds,
0
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then, for some constant ¢ > 0,

”Af”LP((O,T),L‘I(]Rd)) g c ”f”LP((O,T),LQ(]Rd)) .

The 2nd lemma states that the bi-Lipscitz map preserves the regularity in the
Besov space Bgo,l' The definition of Besov spaces By, , can be found in many books and

papers (see, e.g., [2, 19, 24]).

onto
—

Lemma 2.2 ([26, Theorem 4.2]). Let ¢ : R4 R be the volume-preserving bi-

Lipschitz homeomorphism. If h € BC_ ., then

oo,17
lho¢™ lige < e +log(lilLiple llLip)lihllz

where

|¢(x) — ¢ ()l
lollpip =sup —————

Lip X#y |x — Y|
and c is a constant depending only on d.

The next lemma provides an estimate in a Besov setting for a special commuta-

tor.

Lemma 2.3 (see [12]). Letd > 2,0 <a < 1,and 1 < p < oo. Let ® be the volume-

preserving bi-Lipschitz mapping from R? to R¢. Define the following commutator:
[R, ®Jw = R(w o ®) — R(w) o @,
where R is Riesz transform. Then [R, @] : Bg,l — BZ,I is bounded, and
IR, ®lollgs | < cmax{|® — Il |07 = Mllgip}olze

where Id is the identity matrix and c is a constant depending only upon |||z, |l o1 Izip:

the dimension d, and the transform R.

The following lemma bounds the flow map in terms of the Lipschitz norm of the

velocity field.
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Lemma 2.4 (see [2, 24]). Let v be a smooth time-dependent vector field with bounded

1st-order space derivatives. Let ® be the flow map induced by v,

d(x,1) = v(d(x, 1), 1),
o (x,0) = x.

Then
t
d(x,1) =X+/ v(®(x,1),7)dT
0

and ® is a C! diffeomorphism over R? for all t € R*. In addition, we have

t
19 1y < elo 1770 e,

Lemma 2.5 (see [2, Corollary 2.86]). Foranys > 0and (p, q) € [1, 00]?, the space L™ ﬂB;,q

is an algebra, and
s+1
luvilgs | <

u \%4 \4 u
— 1V, + 1Vlzoe Nl ),

where c is a constant.

To state the next lemma, we introduce a few notations. A; is the Fourier
localization operator in the inhomogeneous Littlewood-Paley decomposition, namely
Id = >} Ag. We use Sj, to denote the identity approximation operator,

Se= D Ay

—1<ki <k—1

In addition, we write

Lemma 2.6 (see [24]). Let u, v be two vector functions with V-v = 0. Assume 1 < p <

/— (1 — 1y-1 1 —_min(& &
Py <00,1<g<o00,p=(1 p) ,and s > —1 mln(pl,p,).Then,

2ks||Rk||Lp(Rd) < Chk” Vv a [l gs (Rd) if s<1+4 pi,
b1 d oo (TRd P4 1
Bpl,oo(]R YNL>® (R%)

da

k. : d
2 S||Rk||Lp(]Rd) < Chk”VV”BZI}q(Rd)”u”Bf,,q(Rd)' if s>1+ prr 0T S= 1+ pr 4= I,

Q=

where ¢ = c¢(d,p,p;,5.9), and Z(hz) =1.
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3 Construction of a Special Function Sequence

This section provides the construction of a special sequence of functions as a proof of
Proposition 1.5. The construction of the initial data in the proof of the main theorem

relies on the sequence constructed here.

Proof. Proof of Proposition 1.5 We first remark that it suffices to prove this proposi-

tion for R = R R,, since R? becomes 2R, R, — Id under a rotation of Z. We set

sing, sin&,

FExy) =xiip  FE.E) =4
£1&;

and define

fu® = X{§|%|§l|<‘52|<§|§1“ﬂ{5‘1<|fl‘<2N}f(§)’
where x is the characteristic function. Clearly, f;; belongs to HS for all s > —1. It is

easy to see that fj; satisfies (1.8) and (1.9). Now we prove that fj; satisfies (1.10). In the

process, we use the following fact repeatedly,

b .
/ siny dy
a Y

By the Fourier inversion formula, we have

sup
a,b

<cC.

/2” ( 24 sin(&)) sin(gy)
1

" i cos(x, &) COS(X,8,) dgz) dg, ‘

[fylre < csup }
X1.,X2

Since cos(x;&;) and cos(x,&,) are even functions,

N . .
fule <csup_| /2 sin(, +x,§)) —sin, —x,§))
NI x120,x2>20"'J1 2%-1

déz) dél)

y (/{Sfl sin(&, + x,&,) — sin(§, — x,&,)
1 2§
781 2

4
S szNk’
k=1

£20Z 1snBny $Z Uo Jasn |00ydS MeT - sweq 410N Jo ANISIaAun Aq Z2/261S9/6E81/9/€202/2191e/uiwil/woo dno olwapese//:sdiy Wol) papeojumod]



Mild Ill-Posedness for MHD Equations 4849

where

/ Sm(gl +X1§1) /251 sin(&, +Xz$2)

Q.
e
N
[N
e

Jw, = sup
x120,x2>20"'J1

)

Sy, = sup /12 Sln(El _Xlgl /1 2 sin(§, +X2$2_) {,-‘2) dé |,
d;)
)

x120,x220 ( 261 1)
sm(é1 —{-Xlé;'l

fny = sup
x120,x22>0 1

/ z P sm(é}2 Xzé;‘z)
1

2 &1 2

/2 sin(§; —x,6;) —Xléjl / 2o sin(&, — x,&,)
1

2

Sy, = sup
x120,x22>0

By integration by parts,

fy, = sup ‘/ Sm(él +X151) /251 sin(, +X2§2) dgz) dél‘
x120,x2>0
sm(§1+X1$1) cos(%2 B 1+ x,)E) cos(%(l+x2)§1)
- >s(}1p>0| ( V3 la
x120,x7> &1 B+ x5)8 2(1+3x7)§

V3
2 El
+/ 00555 + X35p) d§2) dfl)

1y (1+x,)&2
< e

Similarly, we have fy, < c. To estimate fy,, we exchange the order of integration and

divide fy, into three parts,

252 +
fu= swp_| / / SR NG SR 20 g, g,
x120,x2>0 1 2
28, sin(&) + x;&1) sin(&, — X,65)
o e f e L g
B sin(e +x,6)) sin — %,6)
x1;§£>0 ‘ / / 3 £, dé; d&z)
cot sup ’/ " singg, — ngz)(cos(2(1+x1)gz) cos( 2 (1 +x,)&p)
X1>OXZ>0 5 &2 2(1 4 x)&, 1 +x)5

N /2252 cos(&) + x;&;)

d¢; ) d

N
Q
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4850 J. Wu and J. Zhao

Here we have used the fact that

2§
sup )/ / 25111(51;‘?‘151) sin(&y — x5&,) dé, dfg’SC,
1

x120,x22>0 52
Va2t eV gin(e, +x sin(&, — x
sup ’/ / ¢ 161) (€33 265) dél dsz‘ <ec
x120,%2 >0 & &

It is much more difficult to bound fN4. We decompose the domain of {x; > 0,x, > 0} into

several pieces,

<2}

fN4 S ZfN4k’
k=1

where

[1—x1|> X2>0

sm(é} —x.&7) 2 2 sin(¢, — x,&,)
fu, =  sup / # / % ag,) d |,
x120,|1-x2/> 3 2
V3 .
sin(§; — x,&)) 28 sin(E, — x,6,)
fN43 = sup ‘/ A([ ;;:— dSZ) dg |,
[1—x1|<10-27V x5 >0 3 761 2
Y sin(g, —x,&) / [T o sin(&, — x,&,)
Fitne = sup ‘/ 1 151 / 2 252 dég) dg, |,
x120,/1-x/<10-2-N
" sing, - x,6) [ [ 79 sin, - x8)
Fuw = sup / # #d&) |,
K1(x1,X2) &3
oN . @&- .
sin(§; — x,&;) 2 51 sin(é, — X,4,)
s = SUD / ——L Tl TR T2 dgy) dg |-
e G &) ( 1g & ) !
Here
1 1
(%) = (1, %5)110- 270 <1 = x| < 2,10 27 <1 =3 < o,
1 —x| < |1 —x51},
. 1 w 1
Ko (Xq,Xp) = {(x1,%5)]10 - 2 <|1_X1|<§,10'2 <|1_X2|<§,

|1 _X1| > |1 _X2|}-
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Mild I1l-Posedness for MHD Equations 4851
Similar to the estimates for fy, and fy,, we have

fN41 ¢ and fN42\c.

Clearly,
2N .
|sin(§; — x,67)
Jas SC sup ’/ l—lld&)gc
[1-x;|<10.2-N 3
and
2% |sin(g, — x,£)|
S <€ sup ‘/ A'(l—xz)&dfl‘gc
x120,]1-x5|<10-2-N 3
It remains to estimate fy,. and fy, . Splitting the interval and then integrating by parts,
we have
= sm(é —xé) ! sin(&, — x,&,)
o s ([ [y [ s g
Kk1(X1,X2) Toxq] &
1 . N,
<c sup /\1_x1\ |sin(§; — x; )] dg, |+ sup /2 sin(§; — x;§;)
K1(x1,X2) & K1(X1,X2) ‘I,IXI‘ 31
V3
§ (cos(%l—xg)sl) cos(3(1 — X)) /23& 0%~ Xt g, ) g |
- T .2 U4s 1
B - x,)E 31— x)8 1o (1—xp)83
1 . 2N . B
<c sup / | sin§ | dél‘—i-C sup / | sin(§; — x,67)| dfl‘
aGax) J-x| & w1 (erx2) | (1 —x7)§]
1—x;
<Cc+c sup ‘ <c.
K1(x1,x2) | 1 — X
Similarly,
%82 sin(§; — x,§1) sin(, — x,5)
fuy < Sup / / 1 151 2 252 dg, déz)
k2 (xX1,X2) 3 &)
282 sin(§; — x;§1) sin(, — X,6,)
sup / /2 1 151 2 252 dé, déz‘
Kz(X1 /X2) 3 Ez £ £
VIR 2 sin(g) — x,8)) sin(E, — X,8)
+ sup / / 1 151 2 252 dg, dEz‘
Ko (x1,x0) ' J2N gl ";:2
1 2N71 252 . .
T-x3] sin(¢; — x,&,) sin(§¢, — x,&,)
<c+ sup (ﬁ2+/1)/2§ LS L} Z_"2°2° dg, dg,
K2(X1,X2) 5 x5 Tg & &

<c+c sup
f &

K2(X1,X2)

dt, ‘
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4852 J. Wu and J. Zhao

4 sup /2’“ sin(&, — x,&,) (cos(2(1 —x)Ey) 00851 —x)E)
K2(X1,X2) ﬁ & 2(1 — x7)&, %(l —x1)§,
252 cos(&; — x,£)
+/ — -~ d§, ) d&
o (1-x)E 1) 2|
<c.

Thus, we have obtained fy, < c¢. Combining the estimates for fy, through fy, , we have
established

||fN||Loo <c.

Next we show that fj; satisfies (1.11). By the Fourier inversion formula,

RiRofn(x,y)

sin(§;) sin(&,)
Kelie<iel<Rian nen<ialen g2 4 g2

sin(x§,) sin(y$,) d&; d&,.

In particular,

+02 102
_ sin“(&;) sin“(§,)
RlefN(l'l)_4/X{§|%|su<|&|<§|su}n{S|1<\sl|<2N} £2 4 &2 dsy dé

1

——— d&; d
§13161<IEI <P la ) NI <2Y) 2 4 g2 5145

1
> sinz(z) sinz(l)/x{
>cN
and (1.11) then follows. Finally, we show (1.12). For k < cN,
IVAfyle < c2F)Akfylp

ok k sing, sing, , )%
=c2 (/|(p(2 Db i< Frannensiaen gg, | 0

<c.
For k > cN,

IVAfyllzz = 0.

Therefore,

cN
Uil y < Wllsy, < 2 1VAfylz < V.
41 ' k=—1

This finishes the proof of Proposition 1.5. ]
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Mild Ill-Posedness for MHD Equations 4853
4 Proof of the Local Existence Result

This section proves Proposition 1.3, the local existence, and uniqueness result on (1.2).
To prove this result, we first provide several global bounds.

The 1st one is the L2-bound, which follows directly from the equations in (1.2).

Lemma 4.1. Assume uy, by € L?, and V- uy = V- by = 0. Let (u, b) be the corresponding

solution of (1.2). Then, for any ¢t > O,
2 2 ! 2 2 2
lu@®lzz + 1672 + 2/ Vb7, dT < lluglizz + Ibgllz2 < Co-
0

The H'-norm of (u,b) is also bounded globally and uniformly in time. For
simplicity, we resort to the equations of the vorticity @ = V x u and the current density
j=Vxb,

d,w+u-Vw=>b-Vj+09,J,
t J 1J @.1)
0j+u-Vi—Aj=b-Vo+Q(Vu,Vb) + 9,0,

where
Q(Vu, Vb) = 23,b, (9,u; + 0;uy) — 20U, (3,b; + 0,b,).

The proof of the uniform H'-bound in the following lemma is simple and can be found
in [9, 15, 18].

Lemma 4.2. Assume ug, by € H!, and V-uy = V-by = 0. Let (u, b) be the corresponding
solution of (1.2). Then, for any ¢t > O,

2 2
c(lluol, +1bol2

t
lo @12 + i @112 + / V)%, dr < (lwgliZ: + lgl22)e 2 < g
0

1
Lemma 4.3. Assume u, € H!, b, € H! NB;,,and V-ug = V-by = 0. Let (u,b) be the

corresponding solution of (1.2). Then, for any ¢ > 0,

1Bl 1 <o Wl < co
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Proof. Applying Ay to the equation of b in (1.2) yields
Arb, — AA b = —Ap(u- VD) + Ap(b-Vu) + 93, AL u.
We write (4.2) in the integral form
t
Axb(t) = e Aby — / eV A (u- VD) dr
0

t t
+/ eDAAL(b - Vu) dt—l—/ "%y, Aju dr.
0 0

Taking the L*-norm and using the fact that, for any integer k > 0 and 1 < q < oo,
1€ Afliza < ce 2| AF lga,
we have
1Al < ce U ALbglle + C/O e~ =D A (u- V)| e dr

—1—(;/0 —c2 k(t— r)”Ak(b Vu)||a d‘[—l—C/O —cz k(t— r)||81Aku||L4 dr.

(4.2)

(4.3)

Multiplying by Z%k, summing over any integer k > 0, applying Sobolev’s inequalities

and invoking Lemmas 4.1 and 4.2, we obtain

1ol

1

&
B

t
+c Z/ e 2027k K|y 4) dr
0
k

< Cotaliboll 1+ Clltlers 1Bl ez + Clul s

1
2
B4

< G
) 1
Due to the embedding B; ; — L*°, we have
||b||LgoL;o < Cp.

This completes the proof of Lemma 4.3.

t
2ky 1 02k 1
< c||b||L4+c§ e 2 t22k||Akb0||L4+c§ /0 e 27 =22k (2K yb)|,0) dr
k k
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We are now ready to prove Proposition 1.3.

Proof of Proposition 1.3. The key part of the proof is the local a priori bound on
(u, b). Once these bounds are established, a complete proof then follows from a standard
procedure (see, e.g., [23]). For the sake of conciseness, we shall only prove the local
bounds.

Applying A Vx and A, to equations (1.2) and (1.2), respectively, yields

+ALV x (b- VD) + 3, A,V x b,

(4.4)
Akbt + (Skflu . V)Akb — AAkb = (Skflu . V)Akb — Ak(u . Vb)
+AL(b-Vu) + 9, ALu.
Taking the L*-norm of the equation of w in (4.4), we have
t
[Agwlis < [[Agwqllzs +/ [(Sk_1u - V)Arw — Ap(u- V)| dt
0
t t
+/ 1ALV x (b-Vb)|;adr +/ 18, AV x bl|a dz.
0 0
By Lemmas 2.5, 2.6, 4.1, and 4.2,
lull 3 <clA_jullps +clloll 1 (4.5)
B, B,

t
2
< cllugll 3 +Co+C/ llwll

Bi1 0 B

t t
dr+c/ IBIl 3 DIl 5 dr+c/ Ibll 5 dr.
1 0 Bi1 Bi1 0 Bi1

P olw

Similarly, for k > 0, we have

—c2%k¢
IAkbliga < ce™ = Tl Agbollza

t
+ C/o e 2 DS, 1 V)AL — Ap(u- Vb)||a dr

t t
+c/0 e*czz"(t*f)nAk(b-Vu)IIL4 dr +c/0 e*‘f‘zz"(‘*f)nalAkullm dr
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and

_c2%ks 5
Ibll s < clblia+c > e 225 ALbyll e

k

¢ —c2%k(t—1) 5 2k 'y
+c E e 22%(c 27 2% ull
0
k

3
B4

bl y ) dr
B41

3
By

t
k 5 1
+cZ/ e~ o213k (¢, 272Ky 5 )dr,
% 70 BE,

where ¢;, = 2%k||Akb||L4/||b|| 1 and, by the definition of the norm in ||b||
B4

1
B2
1 4

—

ZCkZ 1.
k

By Lemma 4.3,

t
/ bl s dr < clibgll 1 / IIb||L4df+C/ lull 3 15l 1 dT+C/ lull s
o B By B, B f

< co+cot+(c+co)/ ||u||%
41

Combining (4.5) and (4.6), we have

dr + (c+ CO)/ lul

t
< cllugll 3 +cy+ct+c ||u||
B 0

3
B2
4,1 4

b‘>N\<.\=

< clugll g +co+c/ ||u||23 dr + (¢ + co)t
B

4,1 41

< clluol 3 +<c+co>+c/ ||u||23 dr.

4,1 4 1
By the above differential inequality, we get

C(”uOHB +cy+1)

3
lull 3 < 1
BZ, |

25 1= cllugl

+co+ Dt

3
B2
4

(4.6)
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Mild Ill-Posedness for MHD Equations 4857

which is (1.6). To prove (1.7), we set

t t
6(t) = ol 3 +co+ ot +0 [ Nul?y dr+ (c+cp) [ ul 4 dr.
B, 0 BZ, 0 BZ,
It is then clear that
d 2 2
—G=clul®; ++cllull 3 +cy<cG+ (c+cyG,
dt B2 B2
4,1 4,1
or
i(e*(C+Co)tG) < Ce(C+Co)t(ef(C+Co)tG)2'
dt
Noticing that Gy = ||yl 3 + ¢y, we have
4,1
(luoll g + core@ro
B
lul 3 <G@®) < 1 )
BZ, 1- rcc()(lluoll 3+ Co)(elcteo)t — 1)
B4,1
This completes the proof of Proposition 1.3. |

5 Global A Priori Estimates

This section presents the proof of the global a priori bounds stated in Proposition 1.4.

Proof of Proposition 1.4. We start by writing the equation of b in (1.1) in the integral

form,

¢ ¢
b(t) = b, + / e 9%b . Vu —u-Vb)(s)ds + / eT™9%3, u(s) ds. (5.1)
0 0
Let g € (1,4/3). Applying Lemma 2.1 to (5.1) yields
1_3 1
| Abll s < 2™ | AZbglla + clib - Vu — u- Vbllazs + ¢l Vullays. (5.2)

It follows from the vorticity equation in (4.1) that

d . _1 . -1
allwll@ < bl + C)I|VJI|L4||0)||Z4 < (¢ +C)||VJ||L4||w||Z4 .

£20Z 1snBny $Z Uo Jasn |00ydS MeT - sweq 410N Jo ANISIaAun Aq Z2/261S9/6E81/9/€202/2191e/uiwil/woo dno olwapese//:sdiy Wol) papeojumod]
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Thus,

t
. —1
lolll, < llwgll + (co+¢) | IVilpalold " dr
L L 0 L
t
<o+ (G + c)/o (IABIL, + ol de

t
_3
< e+ (G + 0t H bl +(co+c>/ (b Vu—u- Vb, + o)) dr
B 0

4,1

t
_3
< oo + ot 44+<c0+c)/ Bl & ol
0

+ (lugl s + @l Z)IVBIL, + el ) de

t
_3 .
< ¢y + ot 24 Jrco/0 (IVBIL, + 1Vil,) dr

t
+ (¢ +c)/ 1+ IVbIIZ) el fs dz
0

t
3 1 .
<o+ T2+t + 1729 + (¢p + c)/ A+ Vi)l dr
0

t
= co(1+ 1) + (o + c)/0 A + 119l dr,

where we have used Lemmas 4.1, 4.2, and 4.3. By Gronwall’s inequality and Lemma 4.2,

lolize < co(1 +1(t)

t 1 t md
+ ¢ (1 +r(®)(co + C)(/ (1+ [[Vj1%) dr)ae @t o HIVI) dr
0

< ¢o(1 +1(t))elror®,

Using Sobolev type embedding inequalities, we obtain

1 1 1

1 1 1 1
lull 1 <cllul? lol? <clul?4lol? < cy(l + r(t)e@ror®,
2 B4,oo B4’00 L L

Bis

It then follows from (5.2) that

1ADII ;8 < cor(t)e! ™.
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Mild Ill-Posedness for MHD Equations 4859

Taking the gradient of (4.3), then taking the L*-norm, multiplying by 22k and summing

over all integers k > 0, we have

t t t
/ IVb| ; dr<c / Ibllge dr +c / > e P23k A Vbl e do
0 BE, 0 0 %

t T
k
+c/ E / e—cz2 (T—S)z%k(HAkV(u-Vb)HLA;
0 0
k

+ 1A V(b - Vu)||;4) dsdt
¢ T 22k lk
+c/ Z/ e 27 =923K)19, Vu| ;4 dsdr
0 e 0
t
<c0t+c||b0||L4+c/ (It - Vbllza + b - Vulla + |Vl s) dr
0

t
< €y + Cpt + C/O (Il VDIl za + 11Dz I VUl za + VUl za) dT

< ¢y 4 cyr(t)elcotor®,

Applying b - V and 9, to the equation of u in (1.2), applying A to the equation of
b in (1.2), multiplying the equation of b by Vu and adding the resulting equations, we

obtain
(Ab+b-Vu+duw,—AAb+b-Vu+du) =g, (5.3)
where

g = —-b-Vu-Vu)+b-V(b-Vb)—(u-Vb)-Vu+ (b-Vu)-Vu
+Ab-Vu—b-V(Vp) — A(w-Vb) +b -V, b+ du-Vu

—3;(u-Vu) — Va;p+ d;(b - Vb) + d?b.
Applying A, to (5.3) gives

A(Ab+b-Vu+0d,u), — AA(Ab+D - Vu+d,u) = Arg. (5.4)
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Rewriting (5.4) into integral form and then taking the L*-norm yield

|AR(Ab +b - Vu+ 9w < ce*CZZktHAk(Ab +b-Vu+9du)gliza

! —c22k(t—1)
+c A e | Agglizs dz,
for k > 0. Therefore,

dr

1

t
/ |Ab+b-Vu + 0, ul
0 B

1
2
4,

t t
k
< C/ (I1bllza + llwllz8llbllze + lullze) dr + C/ E e=c?’ TZ%kHAk(Ab +b-Vu+9du)ladr
0 0
k

t T
+c/ > / e 2923k A, g4 ds dr
0 0
k

< C(”bo”B + ||b0uo||L4 + lluglize) + cot

1
2
4,1
t
+ C/O (16w - Vu)llga + 1b(b - VD) |lza + I(w - VD) - Vul| 2
+ luVuliza + IVPliza + 1 - Vb|lza + 1|91 bllz4) dt

t
+c/ lu-vb| ) dr
0 B?

4,1

t
< co+Cot+C / (1Bl e ull o 1982 + 1B [Vl + [l oo VBl [Vl o
0

+ bl IVUlZs + 1wl | AB s + 1Dl | VDI s

+ lullpIVullzs + 1VDI 1a) dr

t
+C/ lul 1 VD] 1 dr
0 BE, B2,

< ¢ + cor(t) e TOr®,

where we have used Lemmas 2.5, 4.1, and 4.2. This completes the proof of Proposition
1.4. |
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6 Proof of Theorem 1.1

This section proves Theorem 1.1. For the sake of clarity, we first prove a weaker version
of Theorem 1.1 and then continue to prove Theorem 1.1 itself. The weaker version is

stated in the following theorem.

Theorem 6.1. There exists a sequence of initial data {(ul,bf )}fvo=1 with divul =

divb] = 0 satisfying
3 1
u) €eBZ,, bY=byeH'NBZ,,

C
N N N
lug g < = llwg llge < =, libgll 1 <4, gl
0 = N 0 = N 0 HNB? = 0 B

4,1

% < Cll

4,1

where wg’ =V x ula’, 8 > 01is a small constant and C; > 0 is a constant independent of N.
Let (u¥,b") be the corresponding local solution of (1.2). Then (u”,b") and " =V x uV

satisfy
3 . s
uV e L2700, CL H NBF ), BV e L®([0, Gl H' N BE ) N L1 (10, C,; B 1)),
o™ @)l o,canz) = Car Ca < Ca

where C,, C4, and C, are universal constants independent of N.

Proof of Theorem 6.1. First, we reformulate the vorticity equation of (4.1). Recall that
o, +u-Vo=>b-Vj+93,j.

It is easy to see that
39,j = Ab,, 0] = —Ab,.

By making suitable combinations and regrouping the terms on the right-hand side, we

obtain
w;+u-Vo
=b,Ab, — by Ab; + AD,
=by(Aby+Db-Vuy, +9,uUy) —by(Ab; +b-Vu; +9,u;) + (Aby + b - Vuy + 3,uy)
—by(b-Vuy+0,uy) +by(b-Vu; +9,uy) —b-Vu, —0,uy

=H+L—81u2,
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where
H=b,(Aby+b-Vu, + 0,uy) — by(Ab, +b - Vu, + d,u,)
+ (Aby +Db-Vu, +9,uy),
L=-b;(b-Vuy,+0d,uy) +b,(b-Vu; +0,u;) —b-Vu,.
We further rewrite
— 0 uy = —0,0, A" w = R2w := Ro

where R, = 9;A71 := 81(—A)*% denotes the Riesz transform. Consider the flow map &

induced by the velocity u,

d(x,t) = u(®(x, 1), 1),
d(x,0) = x.

Then w satisfies

(wo®), = R(wodP+Hod+Lod

R(wo®)+[R,®lwo + Hod+ Lo ®,
where

[R, Plo = R(w) o ® — R(w o D).
By Duhamel’s principle,

t t
wo ® = e, +/ eRDIR, dlw(r) de +/ et (H o & + Lo ®)(7) dr.
0 0

1
Due to B ; < BY | <> L*, we have

t
ol = €™ wglize — € / [eREIR, dlo(r)| 1 de
0 342,1
t
- c/ 1eRE(H o @ + Lo ®)(1)l|g0  dr.
0 oo,
Noting that
X in—-2pn
eRt=I+tR+tzz R ,
n!
n=2
1
and R is bounded on Bi,p we have, for ¢t € [0, 1],
t t
/ 1eREDIR, Plw(r)| 1 dr < c/ IR, ®lw(r)]l 1 dr.
0 B, 0 B,
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Similarly, for ¢ € [0, 1], we have

t
/ 1eRE(H o & + L o ®)(1)llg0 (dr
0 R
t
C/ (IHo® +Lo®)(7)llza+ I(Ho®+ Lo ®)()g0 1) dr
0 oo
t t t
¢ [ I+ 110 dr 0+ [ 1Vuly ar) /0 (IHlgo -+ LIz )dr

scl+ /IIVUIILoodT)/(IIHII +||L|| )

»PN\»—-

where we use Lemmas 2.2 and 2.4. Thanks to Lemmas 2.5, 4.3 and Propostion 1.4, we

have
/ 1HI| 3 dr < /(1+||b|| 1)||Ab+b Vu+oul y d
41 41
<cp+ cor(t)e(c‘)*c)r(t),
t t
/ A sc/ 1Bl (1213 +Dlol 3 @
0 L4,1 0 B B 4
<o / ol , d
4
By further revoking
leR gl > 18R (wg) + wgll e — €t ||w0|| 1
41
we obtain
lolle > 1tR(@g) + wqllz — ct?[lwg] . —C/ IR, ®Plo ()] %
4 41
—Co(1 + 8| Vull o) (1 +r(t)e(C°+C)r(t)+/ ol y do).
4

Taking advantage of Lemmas 2.3 and 2.4, we obtain, for ¢ small enough,

2
@l = tIR(@)lIge — llwgllpe — ctllwgll 1
B2
4,1

ct|Vu
I ”L?OL?(O

— ct?|Vull e loll
L¥B,
— o1+t Vatl o) (1 + 7))t Lt ). 6.1)

L¥®Bs,
Now we consider the solutions of (1.2) corresponding to a special sequence of initial

data. We recall the special sequence fj; constructed in Proposition 1.5 and define the

£20Z 1snBny $Z Uo Jasn |00ydS MeT - sweq 410N Jo ANISIaAun Aq Z2/261S9/6E81/9/€202/2191e/uiwil/woo dno olwapese//:sdiy Wol) papeojumod]



4864 J. Wu and J. Zhao
initial data {(uy, by )}ZOVQ:1 by

o =Ty viatlg, b =,

1
where b, € H' N Bil and is sufficiently small. According to Proposition 1.5,

N ¢ N ¢
lug lgn < N lwg lpee < N ||uo I <cC.

B,

B ojw

1
The local well-posedness result in Proposition 1.3 asserts that the corresponding local

solution (uV, b") satisfies, for ¢ > 0 sufficiently small,

clugl 3 +co+1)

WM @)l s P ||f || +c +1.
B2, 1—c(||u0|| g +co+ D~ N ¥ 0

41

Invoking the embedding inequalities ||[Vu|;»~ < cllo|| < cllu]l 3 , we obtain

7
B4

3
1 By

,1

c Cc
IVullpe < Slfwll y +eo+10 o™l < Sl 3 +e+ 1.
B4 B4,1

1 By

It then follows from (6.1) that «” satisfies

1
o |0 > —IIR(fN)IILoo—NIIfNIILoo— ||le| .
4

ct(}vnfzvn 1 +Co+1> ]
—ct? (—IIfNII 1 +co+ l)e Bia (ﬁ”fN”B% +cy+ 1)
4 4,1

1
- ¢ (1 + t(lvllf]\,llﬂf1 +co+ 1))

1
x [ 1+ r@)etor® el —|ifyll 1 +co+1
N B42,1

1
>ct— o = ct? — ct*(cy + 1)e 0t ¢y + 1)

—co(1 + t(cy + 1)(A + r()e' T 4 t(c, + 1)),

where ¢, is a small constant depending on Iqu)VIIHh ||wf)v||Loo, ||b0|| 1 and c is a
H'NBZ,

constant independent of N. But ||u8’||H1 < 1%, ||a)0 lfoo < so ¢y can be chosen to depend

Nl

only on ||by || X . Therefore, for t sufficiently small and N sufficiently large,
H

%
NB;

ol > (¢ — c)t — ct? — .
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When t > 0 is sufficiently small, we have
oVl > a,

where « is a constant independent of N. This completes the proof of Theorem 6.1. |
By modifying the proof of Theorem 6.1, we can prove Theorem 1.1.
Proof of Theorem 1.1. We choose the initial data slightly differently. We take

wS’:f—N bY =b,, N=1,2,---,

i

1
where by € H' N B, is taken to be sufficiently small. Let (u", b") be the corresponding
local solution given by Proposition 1.3, and let " be the corresponding vorticity. Due

to the change in the choice of w}), the corresponding estimate of " also changes,

t 1 ct?
N
@ lzoe 2 —=IR(Fllfec — —= e — 1
o™ e = JNH Uz mIIfNIIL \/]—V||fN||le
(1 ct(jﬁanHB% +Co+1>
—ct EIIfNIIB% +cp+1)e 41
4,1

! Ifyll 1 +co+1
X — 1 C
VN v BZ, 0

1
=1+t —=Ifyll L +co+1
°( (ﬁvaBﬁl ’

1
x| 1+r@)e@r® p el —|fyll 1 +co+1
( VR T

1
> cvVNt — v ct?VN — ct?/NetVV N

— o1+ VNt)(1 + r(t)e@tr® 1 /),

where ¢, is a small constant depending on [[uf |z, o llz~, IIbOIIHl ! and c is a
n 4,1

constant independent of N. But ||u3’||H1 < \/LN, ||cof)"||L00 so ¢y can be chosen to

c_
< Nk
depend only on ||b|| 1 For small ¢ and large NV enough, we obtain

HlmB‘L1

lo¥ [l = (¢ — cg)VNt — ct?N — c,.
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Choosing t < NG (Cg is a fixed small constant), we have

oMl > «,

where « is a constant independent of N. This completes the proof of Theorem 1.1. |
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