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UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ
EQUATIONS WITH FRACTIONAL DISSIPATION∗

RUIHONG JI† , DAN LI‡ , AND JIAHONG WU§

Abstract. This paper examines the existence and uniqueness of weak solutions to the d-
dimensional Boussinesq equations with fractional dissipation (−∆)αu and fractional thermal diffu-
sion (−∆)βθ. The aim is at the uniqueness of weak solutions in the weakest possible inhomo-
geneous Besov spaces. We establish the local existence and uniqueness in the functional setting

u∈L∞(0,T ;B
d/2−2α+1
2,1 (Rd)) and θ∈L∞(0,T ;B

d/2
2,1 (Rd)) when α>1/4, β≥0 and α+2β≥1. By de-

composing the bilinear term into different frequencies, we are able to obtain a suitable upper bound on
the bilinear term, which allows us to close the estimates in the aforementioned Besov spaces.
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1. Introduction
This paper examines the existence and uniqueness of weak solutions to the d-

dimensional incompressible Boussinesq equations with fractional dissipation,
∂tu+ν(−∆)αu=−u ·∇u−∇p+θed, x∈Rd, t>0,
∂tθ+η(−∆)βθ=−u ·∇θ, x∈Rd, t>0,
∇·u=0, x∈Rd, t>0
u(x,0)=u0(x), θ(x,0)=θ0(x), x∈Rd,

(1.1)

where u, p and θ represent the velocity, the pressure and the temperature, respectively,
and ν >0, η>0, α≥0 and β≥0 are real parameters. The fractional Laplacian operator
(−∆)α is defined via the Fourier transform,

(̂−∆)αf(ξ)= |ξ|2αf̂(ξ),

and

f̂(ξ)=
1

(2π)
d
2

∫
Rd

e−ix·ξf(x)dx.

When α=β=1, (1.1) reduce to the standard 2D Boussinesq equations with Lapla-
cian dissipation. The standard Boussinesq equations model geophysical flows such as
atmospheric fronts and oceanic circulation, and also play an important role in the study
of Raleigh-Bénard convection (see, e.g., [9, 14,24,26,32,33]).

Although (1.1) with fractional dissipation appears to be a purely mathematical
generalization, (1.1) may be physically relevant. Firstly, closely related equations such
as the surface quasi-geostrophic equation model important geophysical phenomena (see,
e.g., [10,15,26]). Secondly, there are geophysical circumstances in which the Boussinesq
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equations with fractional Laplacian may arise. Flows in the middle atmosphere traveling
upward undergo changes due to the change of atmospheric properties, although the
incompressibility and Boussinesq approximations are applicable. The effect of kinematic
and thermal diffusion is attenuated by the thinning of atmosphere. This anomalous
attenuation can be modeled by using the space fractional Laplacian (see [6,14]). Thirdly,
it may be possible to derive the Boussinesq equations with fractional dissipation from
the Boltzmann-type equations using suitable rescalings.

The Boussinesq equations have always been of great interest in mathematics. The
Boussinesq equations have recently gained renewed interests and there have been sub-
stantial developments on the well-posedness problem, especially when the Boussinesq
equations involve only partial or fractional dissipation (see, e.g., [1–3,5, 7, 11,13,16–21,
29, 34, 35]), there are two different focuses on the well-posedness problem. One is the
global existence and regularity of classical solutions while the other is the uniqueness of
solutions in a weak functional setting.

Our main result can be stated as follows.

Theorem 1.1. Let d≥2. Consider (1.1) with α and β satisfying

α>
1

4
, β≥0, α+2β≥1.

Assuming (u0,θ0) obeys ∇·u0=∇·θ0=0, and

u0∈B
d
2+1−2α
2,1 (Rd), θ0∈B

d
2
2,1(R

d).

Then, there exist T >0 and a unique weak solution (u,θ) of (1.1) on [0,T] satisfying

u∈C([0,T ];B
d
2+1−2α
2,1 (Rd))∩L1(0,T ;B

d
2+1
2,1 (Rd)), (1.2)

and

θ∈C([0,T ];B
d
2
2,1(R

d))∩L1(0,T ;B
d
2+2β
2,1 (Rd)). (1.3)

The topics on the existence and uniqueness of solutions to fluid equations under
optimal regularity assumptions have recently attracted considerable interests. One can
find several related results on the Boussinesq and the magneto-hydrodynamic (MHD)
equations (see, e.g., [8, 12,22,23,31]). In particular we make a comparison between the
assumptions on the fractional indices and the initial regularity in this paper and those
in Jiu, Suo, Wu and Yu on the non-resistive MHD equations [22]. In the case when
α<1, the assumptions on α and the initial regularity in [22] are

0<α<1, u0, b0∈Bσ
2,∞(Rd) with σ>1+ d

2 −α.

In this paper the conditions are

α>
1

4
, β≥0, α+2β≥1, u0∈ B̊

1+ d
2−2α

2,1 (Rd), θ0∈ B̊
d
2
2,1(R

d).

Why do we need α> 1
4 here? Can we allow α>0? This is mainly due to our lower

regularity assumption on θ0. If we increase the assumption on θ0 to

θ0∈ B̊
d
2
2,1(R

d), (1.4)
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we can then drop the requirement α> 1
4 . The requirement α> 1

4 is needed only at one
spot, namely in the estimate of J4 on page 10. For the sake of clarity, we copy the
estimate of J4 here. The term of J4 is bounded by∑

j

2(1+
d
2−2α)j

∫ t

0

e−C02
2αj(t−τ)J4dτ

≤C
∫ t

0

∑
j

2(1+
d
2−2α)je−C02

2αj(t−τ)∥∆jθ
(n)∥L2 dτ

≤C
∫ t

0

∑
j

2
d
2 j∥∆jθ

(n)∥L2e−C02
2αj(t−τ)2(1−2α)j dτ

≤C
∑
j

2(1−4α)j(1−e−C1t2
2αj

)∥θ(n)∥
L∞(0,T ;B

d
2
2,1)

≤CM(1−e−C1T ).

We need α> 1
4 in order for the summation to be finite∑

j

2(1−4α)j<∞.

If we change the regularity setting to (1.4), then we do not need α> 1
4 . In fact,

then J4 can be alternatively bounded by∑
j

2(1+
d
2−2α)j

∫ t

0

e−C02
2αj(t−τ)J4dτ

≤C
∫ t

0

∑
j

2(1+
d
2−2α)je−C02

2αj(t−τ)∥∆jθ
(n)∥L2 dτ

≤C
∫ t

0

∑
j

2(
d
2+1−α)j∥∆jθ

(n)∥L2e−C02
2αj(t−τ)2(−α)j dτ

≤C
∑
j

2(−3α)j(1−e−C1t2
2αj

)∥θ(n)∥
L∞(0,T ;B

d
2
+1−α

2,1 )

≤CM(1−e−C1T ),

and α>0 would be sufficient. This explains why we need α> 1
4 when we make a

lower regularity assumption on θ0, and how we can actually remove it by making more
regularity assumption on θ0.

We explain why the assumptions on the combination of the indices α and β, and
the regularity setting of the initial data are optimal. The regularity assumption on u0,

namely u0∈B
1+ d

2−2α
2,1 (Rd) is the same as that for the Navier-Stokes with fractional dis-

sipation and is optimal. The assumptions that θ0∈ B̊
d
2
2,1(Rd) and α+2β≥1 are needed

in order to deal with the term
∫
ũ ·∇θ(1) · θ̃dx in the proof of the uniqueness result.

Therefore the conditions θ0∈ B̊
d
2
2,1(Rd) and α+2β≥1 are optimal. Due to many differ-

ences between the technical details for the MHD and the Boussinesq equations, we feel
that our existence and uniqueness result with optimal regularity assumptions may be
useful for further investigations on the MHD equations.
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We describe the framework in the proof of Theorem 1.1. The proof is naturally
divided into two parts: the existence part and the uniqueness part. The existence
of weak solutions is shown by the method of successive approximation. By choosing a
suitable functional setup, constructing a successive approximation sequence and proving
the uniform boundedness, one can prove that the limit of such sequence is indeed a weak
solution of (1.1). The Littlewood-Paley decomposition and Besov space techniques are
employed to facilitate the proof of the uniform bounds. The uniqueness of weak solution
in the regularity class (1.2) and (1.3) can be established by directly working with the
L2-norm of the difference between any two weak solutions.

The rest of this paper is divided into three sections. Section 2 provides the definition
of the Besov spaces and related tools. Section 3 proves the existence part of Theorem
1.1 while Section 4 establishes the uniqueness part of Theorem 1.1.

2. Preparation
This section serves as a preparation. We provide the definition of the Besov spaces

and related facts to be used in the subsequent sections. More details can be found
in several books and many papers ([4, 25, 27, 28, 30]). In addition, we prove bounds
on triple products involving Fourier localized functions to be used extensively in the
sections that follow. We start with the partition of unity. Let B(0,r) and C(0,r1,r2)
denote the standard ball and the annulus, respectively,

B(0,r)={ξ∈Rd : |ξ|≤ r}, C(0,r1,r2)={ξ∈Rd : r1≤|ξ|≤ r2}.

There are two compactly supported smooth radial functions ϕ and ψ satisfying

suppϕ⊂B(0,
4

3
), suppψ⊂C(0, 3

4
,
8

3
)

ϕ(ξ)+
∑
j≥0

ψ(2−jξ)=1 for all ξ∈Rd. (2.1)

We use h̃ and h to denote the inverse Fourier transforms of ϕ and ψ respectively,

h̃=F−1ϕ, h=F−1ψ.

In addition, for notational convenience, we write ψj(ξ)=ψ(2
−jξ). By a simple property

of the Fourier transform,

hj(x) :=F−1(ψj)(x)=2djh(2jx).

The inhomogeneous dyadic block operators ∆j are defined as follows

∆jf =0 for j≤−2,

∆−1f = h̃∗f =
∫
Rd

f(x−y)h̃(y)dy,

and

∆jf =hj ∗f =2dj
∫
Rd

f(x−y)h(2jy)dy for j≥0.

The corresponding inhomogeneous low frequency cut-off operator Sj is defined by

Sjf =
∑

k≤j−1

∆kf.
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For any function f in the usual Schwarz class S, (2.1) implies

f̂(ξ)=ϕ(ξ)f̂(ξ)+
∑
j≥0

ψ(2−jξ)f̂(ξ), (2.2)

or, in terms of the inhomogeneous dyadic block operators,

f =
∑
j≥−1

∆jf or Id=
∑
j≥−1

∆j ,

where Id denotes the identity operator. More generally, for any F in the space of
tempered distributions, denoted S ′

, (2.2) still holds but in the distributional sense.
That is, for F ∈S ′

,

F =
∑
j≥−1

∆jF or Id=
∑
j≥−1

∆j in S
′
. (2.3)

In fact, one can verify that

SjF :=
∑

k≤j−1

∆kF→F as j→∞ in S
′
.

(2.3) is referred to as the Littlewood-Paley decomposition for tempered distributions. In
terms of the inhomogeneous dyadic block operators, we can write the standard product
in terms of the paraproducts, namely

FG=
∑

|j−k|≤2

Sk−1F∆kG+
∑

|j−k|≤2

∆kFSk−1G+
∑

k≥j−1

∆kF ∆̃kG,

where ∆̃k=∆k−1+∆k+∆k+1. The above result holds due to ∇·F =0. This is the
so-called Bony decomposition. The inhomogeneous Besov space can be defined in terms
of ∆j specified as above.

Definition 2.1. The inhomogeneous Besov space Bs
p,q with 1≤p,q≤∞ and s∈R

consists of f ∈S ′
satisfying

∥f∥Bs
p,q

≡∥2js∥∆jf∥Lp∥lq <∞.

Bernstein’s inequality is a useful tool on Fourier localized functions and can trade
derivatives for integrability. The following lemma provides Bernstein-type inequalities
for fractional derivatives.

Lemma 2.1. Let α≥0. Let 1≤p,q≤∞.
(1) If f satisfies

supp f̂ ⊂{ξ∈Rd : |ξ|≤K2j},

for some integer j and a constant K>0, then

∥(−∆)αf∥Lq(Rd)≤C12
2αj+jd( 1

p−
1
q )∥f∥Lp(Rd).

(2) If f satisfies

supp f̂ ⊂{ξ∈Rd : K12
j ≤|ξ|≤K22

j}

for some integer j and constants 0<K1≤K2, then

C12
2αj∥f∥Lq(Rd)≤∥(−∆)αf∥Lq(Rd)≤C22

2αj+jd( 1
p−

1
q )∥f∥Lp(Rd),

where C1 and C2 are constants depending on α,p and q only.
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Next, we state and prove bounds for the triple products involving Fourier localized
functions. These bounds will be used quite frequently in the proof of Theorem 1.1 in
the subsequent section.

Lemma 2.2. Let j≥0 be an integer. Let ∆j be the inhomogeneous Littlewood-Paley
localization operator. Let F be a divergence-free vector field. Then there hold

|
∫
Rd

∆j(F ·∇G) ·∆jHdx|≤C∥∆jH∥L2(2j
∑

m≤j−1

2
d
2m∥∆mF∥L2

∑
|j−k|≤2

∥∆kG∥L2

+
∑

|j−k|≤2

∥∆kF∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mG∥L2

+
∑

k≥j−1

2j2
d
2 k∥∆kF∥L2∥∆̃kG∥L2) (2.4)

and

|
∫
Rd

∆j(F ·∇G) ·∆jGdx|≤C∥∆jG∥L2(
∑

m≤j−1

2(1+
d
2 )m∥∆mF∥L2

∑
|j−k|≤2

∥∆kG∥L2

+
∑

|j−k|≤2

∥∆kF∥L2

∑
m≤j

2(1+
d
2 )m∥∆mG∥L2

+
∑

k≥j−1

2j2
d
2 k∥∆kF∥L2∥∆̃kG∥L2). (2.5)

The proof can be found in [12].

3. The local existence part
This section proves the existence part of Theorem 1.1. The approach is to construct

a successive approximation sequence and show that the limit of a subsequence actually
solves (1.1) in the weak sense.

Proof. (Proof of existence part of Theorem 1.1.) We consider a successive
approximation sequence (u(n),θ(n)) satisfying

u(1)=S2u0, θ(1)=S2θ0,
∂tu

(n+1)+ν(−∆)αu(n+1)=P(−u(n) ·∇u(n+1))+θ(n)ed, x∈Rd, t>0
∂tθ

(n+1)+η(−∆)βθ(n+1)=−u(n) ·∇θ(n+1), x∈Rd, t>0
∇·u(n+1)=0, x∈Rd, t>0
u(n+1)(x,0)=Sn+1u0, θ(n+1)(x,0)=Sn+1θ0, x∈Rd,

(3.1)

where P is the standard Leray projection. For

M =2(∥u0∥
B

d
2
+1−2α

2,1

+∥θ0∥
B

d
2
2,1

),

T >0 being sufficiently small and 0<δ<1 (to be specified later), we set

Y ≡{(u,θ)|∥u∥
L∞(0,T ;B

d
2
+1−2α

2,1 )
≤M, ∥θ∥

L∞(0,T ;B
d
2
2,1)

≤M,

∥u∥
L1(0,T ;B

d
2
+1

2,1 )
≤ δ, ∥θ∥

L1(0,T ;B
d
2
+2β

2,1 )
≤ δ}. (3.2)

Our goal is to show that {(u(n),θ(n))} has a subsequence that converges to the weak
solution of (1.1). This process consists of three main steps. The first step is to show
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that (u(n),θ(n)) is uniformly bounded in Y . The second step is to extract a strongly
convergent subsequence via the Aubin-Lions Lemma while the last step is to show that
the limit is indeed a weak solution of (1.1) .

Our main effort is devoted to showing the uniform bound for (u(n),θ(n)) in Y . This
is proven by induction. Clearly,

∥u(1)∥
L∞(0,T ;B

d
2
+1−2α

2,1 )
≤M, ∥θ(1)∥

L∞(0,T ;B
d
2
2,1)

≤M.

If T >0 is sufficiently small, then

∥u(1)∥
L1(0,T ;B

d
2
+1

2,1 )
≤T∥S2u0∥

B
d
2
+1

2,1

≤CT∥u0∥
B

d
2
+1−2α

2,1

≤ δ,

and

∥θ(1)∥
L1(0,T ;B

d
2
+2β

2,1 )
≤T∥S2θ0∥

B
d
2
+2β

2,1

≤CT∥θ0∥
B

d
2
2,1

≤ δ.

Assuming that (u(n),θ(n)) obeys the bounds defined in Y , namely

∥u(n)∥
L∞(0,T ;B

d
2
+1−2α

2,1 )
≤M, ∥θ(n)∥

L∞(0,T ;B
d
2
2,1)

≤M,

and

∥u(n)∥
L1(0,T ;B

d
2
+1

2,1 )
≤ δ, ∥θ(n)∥

L1(0,T ;B
d
2
+2β

2,1 )
≤ δ.

We prove that (u(n+1),θ(n+1)) obeys the same bound for suitably selected T >0 and
δ>0. For the sake of clarity, the proof of the four bounds is achieved in the following
four subsections.

3.1. The estimate of u(n+1) in B
1−2α+ d

2
2,1 (Rd). Let j≥0 be an integer. Apply-

ing ∆j to the second equation in (3.1) and then dotting with ∆ju
(n+1), we obtain

1

2

d

dt
∥∆ju

(n+1)∥2L2 +ν∥Λα∆ju
(n+1)∥2L2 = I1+I2, (3.3)

where

I1=−
∫

∆j(u
(n) ·∇u(n+1)) ·∆ju

(n+1)dx,

and

I2=

∫
∆jθ

(n)ed ·∆ju
(n+1)dx.

The dissipative part admits a lower bound

ν
∥∥∥Λα∆ju

(n+1)
∥∥∥2
L2

≥C02
2αj

∥∥∥∆ju
(n+1)

∥∥∥2
L2
,

where C0>0 is a constant. According to Lemma 2.2, I1 can be bounded by

|I1|≤C∥∆ju
(n+1)∥2L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2
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+C∥∆ju
(n+1)∥L2∥∆ju

(n)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n+1)∥L2

+C∥∆ju
(n+1)∥L22j

∑
k≥j−1

2
d
2 k∥∆ku

(n)∥L2∥∆̃ku
(n+1)∥L2 .

I2 can be bounded by

|I2|=
∫

∆jθ
(n)ed ·∆ju

(n+1)dx

≤∥∆jθ
(n)ed∥L2∥∆ju

(n+1)∥L2 .

Inserting the estimates above in (3.3) and eliminating ∥∆ju
(n+1)∥L2 from both sides of

the inequality, we obtain

d

dt
∥∆ju

(n+1)∥L2 +C02
2αj∥∆ju

(n+1)∥L2 ≤J1+J2+J3+J4, (3.4)

where

J1=C∥∆ju
(n+1)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2 ,

J2=C∥∆ju
(n)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n+1)∥L2 ,

J3=C2
j

∑
k≥j−1

2
d
2 k∥∆̃ku

(n+1)∥L2∥∆ku
(n)∥L2 ,

and

J4=∥∆jθ
(n)ed∥L2 .

Integrating (3.4) in time yields

∥∆ju
(n+1)(t)∥L2 ≤e−C02

2αjt∥∆ju
(n+1)
0 ∥L2

+

∫ t

0

e−C02
2αj(t−τ)(J1+J2+J3+J4)dτ. (3.5)

Multiplying (3.5) by 2(1+
d
2−2α)j and summing over j, we obtain

∥u(n+1)(t)∥
B

1+ d
2
−2α

2,1

≤∥u(n+1)
0 ∥

B
1+ d

2
−2α

2,1

+
∑
j

2(1+
d
2
−2α)j

∫ t

0

e−C02
2αj(t−τ)(J1+ · ··+J4)dτ.

(3.6)

The terms on the right-hand side can be estimated as follows. For any t≤T , we
have ∑

j

2(1+
d
2−2α)j

∫ t

0

e−C02
2αj(t−τ)J1dτ

≤C
∫ t

0

∑
j

2(1+
d
2−2α)j∥∆ju

(n+1)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)(τ)∥L2 dτ

≤C∥u(n+1)∥
L∞(0,t;B

1+ d
2
−2α

2,1 )
∥u(n)∥

L1(0,t;B
1+ d

2
2,1 )
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≤C∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
∥u(n)∥

L1(0,T ;B
1+ d

2
2,1 )

≤Cδ∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
.

The term with J2 is bounded by∑
j

2(1+
d
2−2α)j

∫ t

0

e−C02
2αj(t−τ)J2dτ

≤C
∫ t

0

∑
j

2(1+
d
2 )j∥∆ju

(n)∥L2

∑
m≤j

22α(m−j)2(1+
d
2−2α)m∥∆mu

(n+1)(τ)∥L2 dτ

≤C
∫ t

0

∥u(n)(τ)∥
B

1+ d
2

2,1

∥u(n+1)(τ)∥
B

1+ d
2
−2α

2,1

dτ

≤Cδ∥u(n+1)∥
L∞(0,t;B

1+ d
2
−2α

2,1 )

≤Cδ∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
.

The term with J3 is bounded by∑
j

2(1+
d
2−2α)j

∫ t

0

e−C02
2αj(t−τ)J3dτ

=

∫ t

0

∑
j

2(1+
d
2−2α)j2j

∑
k≥j−1

2
d
2 k∥∆̃ku

(n+1)∥L2∥∆ku
(n)∥L2 dτ

=C

∫ t

0

∑
j

∑
k≥j−1

2(2+
d
2−2α)(j−k)2(1+

d
2 )k∥∆ku

(n)∥L22(1+
d
2−2α)k∥∆̃ku

(n+1)∥L2 dτ

≤C
∫ t

0

∥u(n)(τ)∥
B

1+ d
2

2,1

∥u(n+1)(τ)∥
B

1+ d
2
−2α

2,1

dτ

≤C∥u(n)∥
L1(0,T ;B

1+ d
2

2,1 )
∥u(n+1)∥

L∞(0,T ;B
1+ d

2
−2α

2,1 )

≤Cδ∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
.

The term of J4 is bounded by∑
j

2(1+
d
2
−2α)j

∫ t

0

e−C02
2αj(t−τ)J4dτ ≤C

∫ t

0

∑
j

2(1+
d
2
−2α)je−C02

2αj(t−τ)∥∆jθ
(n)∥L2 dτ

≤C

∫ t

0

∑
j

2
d
2
j∥∆jθ

(n)∥L2e−C02
2αj(t−τ)2(1−2α)j dτ

≤C
∑
j

2(1−4α)j(1−e−C1t2
2αj

)∥θ(n)∥
L∞(0,T ;B

d
2
2,1)

≤CM(1−e−C1T ),

where we have used the fact that there exists C1≥0 satisfying, for j≥0∫ t

0

e−C02
2αj(t−τ)dτ ≤C2(−2α)j(1−e−C1T ).
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Collecting the bounds above and inserting them in (3.6), we obtain, for any t≤T ,

∥u(n+1)(t)∥
B

1+ d
2
−2α

2,1

≤∥u(n+1)
0 ∥

B
1+ d

2
−2α

2,1

+Cδ∥u(n+1)∥
L∞(0,T ;B

d
2
+1−2α

2,1 )
+CM(1−eC1T ).

(3.7)

3.2. The estimate of θ(n+1) in B
d
2
2,1(Rd). We apply ∆j to the third equation

in (3.1) and then dotting with ∆jθ
(n+1), we have

1

2

d

dt
∥∆jθ

(n+1)∥2L2 +C12
2βj∥∆jθ

(n+1)∥2L2 ≤B1, (3.8)

with

B1=−
∫

∆j(u
(n) ·∇θ(n+1)) ·∆jθ

(n+1)dx.

By Lemma 2.2, we have

|B1|≤C∥∆jθ
(n+1)∥2L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2

+C∥∆jθ
(n+1)∥L2∥∆ju

(n)∥L2

∑
m≤j

2(1+
d
2 )m∥∆mθ

(n+1)∥L2

+C∥∆jθ
(n+1)∥L22j

∑
k≥j−1

2
d
2 k∥∆̃kθ

(n+1)∥L2∥∆ku
(n)∥L2 .

Inserting the estimate above in (3.8) and eliminating ∥∆jθ
(n+1)∥L2 from both sides

of the inequality, we obtain

d

dt
∥∆jθ

(n+1)∥L2 +C12
2βj∥∆jθ

(n+1)∥L2 ≤K1+K2+K3, (3.9)

K1=C∥∆jθ
(n+1)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2 ,

K2=C∥∆ju
(n)∥L2

∑
m≤j

2(1+
d
2 )m∥∆mθ

(n+1)∥L2 ,

and

K3=C2
j

∑
k≥j−1

2
d
2 k∥∆̃kθ

(n+1)∥L2∥∆ku
(n)∥L2 .

Integrating (3.9) in time yields, for any t<T ,

∥∆jθ
(n+1)(t)∥L2 ≤e−C12

2βt

∥∆jθ
(n+1)
0 ∥L2 +

∫ t

0

e−C12
2βj(t−τ)(K1+K2+K3)dτ. (3.10)

Multiplying (3.10) by 2
d
2 j and summing over j, we obtain

∥θ(n+1)∥
B

d
2
2,1

≤∥θ(n+1)
0 ∥

B
d
2
2,1

+
∑
j

2
d
2 j

∫ t

0

e−C12
2βj(t−τ)(K1+K2+K3)dτ. (3.11)
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By the simple bound

e−C12
2βj(t−τ)

≤1,

the term with K1 is bounded by∑
j

2
d
2 j

∫ t

0

K1dτ

≤
∑
j

2
d
2 j

∫ t

0

C∥∆jθ
(n+1)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2 dτ

≤C
∫ t

0

∑
j

2
d
2 j∥∆jθ

(n+1)∥L2

∑
m≤j−1

2(1+
d
2 )m∥∆mu

(n)∥L2 dτ

≤C∥θ(n+1)∥
L∞(0,T ;B

d
2
2,1)

∥u(n)∥
L1(0,T ;B

1+ d
2

2,1 )

≤Cδ∥θ(n+1)∥
L∞(0,T ;B

d
2
2,1)

.

The estimate for the term with K2 is similar,∑
j

2
d
2 j

∫ t

0

K2dτ ≤C∥u(n)∥
L1(0,T ;B

1+ d
2

2,1 )
∥θ(n+1)∥

L∞(0,T ;B
d
2
2,1)

≤Cδ∥θ(n+1)∥
L∞(0,T ;B

d
2
2,1)

.

The term with K3 is also similar,∑
j

2
d
2 j

∫ t

0

K3dτ

≤C
∫ t

0

∑
j

∑
k≥j−1

2
d
2 k∥∆̃kθ

(n+1)∥L22(1+
d
2 )(j−k)2(1+

d
2 )k∥∆ku

(n)∥L2 dτ

≤C∥u(n)∥
L1(0,T ;B

1+ d
2

2,1 )
∥θ(n+1)∥

L∞(0,T ;B
d
2
2,1)

≤Cδ∥θ(n+1)∥
L∞(0,T ;B

d
2
2,1)

.

Collecting the estimates and inserting them in (3.11), we have, for any t≤T ,

∥θ(n+1)(t)∥
B

d
2
2,1

≤∥θ(n+1)
0 ∥

B
d
2
2,1

+Cδ∥θ(n+1)∥
L∞(0,T ;B

d
2
2,1)

. (3.12)

3.3. The estimate of ∥u(n+1)∥
L1

(
0,T ;B

1+ d
2

2,1

). We multiply (3.5) by 2(1+
d
2 )j ,

sum over j and integrate in time to obtain

∥u(n+1)∥
L1(0,T ;B

1+ d
2

2,1 )
≤
∫ T

0

∑
j

2(1+
d
2 )je−C02

2αjt∥∆ju
(n+1)
0 ∥L2 dt

+

∫ T

0

∑
j

2(1+
d
2 )j

∫ s

0

e−C02
2αj(s−τ)(J1+J2+J3+J4)dτ ds.

(3.13)
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We estimate the terms on the right and start with the first term∫ T

0

∑
j

2(1+
d
2 )je−C02

2αjt∥∆ju
(n+1)
0 ∥L2 dt

=
1

C0

∑
j

2(1+
d
2−2α)j(1−e−C02

2αjT )∥∆ju
(n+1)
0 ∥L2 . (3.14)

Since u0∈B
1+ d

2−2α
2,1 , it follows from the Dominated Convergence Theorem that

lim
T→0

∑
j

2(1+
d
2−2α)j(1−e−C02

2αjT )∥∆ju
(n+1)
0 ∥L2 =0.

Therefore, we can choose T sufficiently small such that∫ T

0

∑
j

2(1+
d
2 )je−C02

2αjt∥∆ju
(n+1)
0 ∥L2 dt≤ δ

4
.

Applying Young’s inequality for the time convolution, we have∫ T

0

∑
j

2(1+
d
2
)j

∫ s

0

e−C02
2αj(s−τ)J1dτ ds

=C

∫ T

0

∑
j

2(1+
d
2
)j

∫ s

0

e−C02
2αj(s−τ)∥∆ju

(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ ds

≤C
∑
j

2(1+
d
2
)j

∫ T

0

∥∆ju
(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ

∫ T

0

e−C02
2αjsds

≤C(1−e−C2T )

∫ T

0

∑
j

2(1+
d
2
−2α)j∥∆ju

(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ

≤C(1−e−C2T )∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
∥u(n)∥

L1(0,T ;B
1+ d

2
2,1 )

≤Cδ(1−e−C2T )∥u(n+1)∥
L∞(0,T ;B

1+ d
2
−2α

2,1 )
,

where we have used the fact that there exists C2>0 satisfying, for j≥0∫ T

0

e−C02
2αjsds≤C2−2αj(1−e−C2T ). (3.15)

We remark that the functional settings here are the inhomogeneous Besov spaces and
index j is bounded below. This is the reason why there is C2>0 satisfying (3.15). This
can not be done for homogeneous Besov spaces. The terms of J2 and J3 can be similarly
estimated and obey the same bound,∫ T

0

∑
j

2(1+
d
2 )j

∫ s

0

e−C02
2αj(s−τ)J2dτ ds≤Cδ(1−e−C2T )∥u(n+1)∥

L∞(0,T ;B
1+ d

2
−2α

2,1 )

and∫ T

0

∑
j

2(1+
d
2 )j

∫ s

0

e−C02
2αj(s−τ)J3dτ ds≤Cδ(1−e−C2T )∥u(n+1)∥

L∞(0,T ;B
1+ d

2
−2α

2,1 )
.
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The term with J4 is bounded by∫ T

0

∑
j

2(1+
d
2 )j

∫ s

0

e−C02
2αj(s−τ)J4dτ ds

=

∫ T

0

∑
j

2(1+
d
2 )j

∫ s

0

e−C02
2αj(s−τ)∥∆jθ

(n)∥L2 dτ ds

≤C(1−e−C2T )

∫ T

0

∑
j

2(1+
d
2−2α)j∥∆jθ

(n)∥L2 dτ

≤C(1−e−C2T )∥θ(n)∥
L1(0,T ;B

d
2
+1−2α

2,1 )

≤C(1−e−C2T )∥θ(n)∥
L1(0,T ;B

d
2
+2β

2,1 )
.

Collecting the estimates above leads to

∥u(n+1)∥
L1(0,T ;B

d
2
+1

2,1 )
≤ δ

4
+Cδ(1−e−C2T )∥u(n+1)∥

L∞(0,T ;B
1+ d

2
−2α

2,1 )

+C(1−e−C2T )∥θ(n)∥
L1(0,T ;B

d
2
+2β

2,1 )
. (3.16)

3.4. The estimate of ∥θ(n+1)∥
L1

(
0,T ;B

d
2
+2β

2,1

). Multiplying (3.11) by 2(
d
2+2β)j ,

summing over j and integrating in time, we have

∥θ(n+1)(t)∥
L1

(
0,T ;B

d
2
+2β

2,1

)

≤
∫ T

0

∑
j

2(2β+
d
2 )je−C12

2βjt∥∆jθ
(n+1)
0 ∥L2 dt

+

∫ T

0

∑
j

2(2β+
d
2 )j

∫ s

0

e−C12
2βj(s−τ)

(K1+K2+K3)dτ ds.

The terms on the right can be bounded as follows,∫ T

0

∑
j

2(2β+
d
2 )je−C12

2βjt∥∆jθ
(n+1)
0 ∥L2 dt

=C−1
1

∑
j

2
d
2 j(1−e−C12

2βjT )∥∆jθ
(n+1)
0 ∥L2 .

Since θ0∈B
d
2
2,1, it follows from the Dominated Convergence Theorem that

lim
T→0

∑
j

2
d
2 j(1−e−C12

2βjT )∥∆jθ
(n+1)
0 ∥L2 =0.

Therefore, we can choose T sufficiently small such that∫ T

0

∑
j

2(
d
2+2β)je−C12

2βjt∥∆jθ
(n+1)
0 ∥L2 dt≤ δ

4
.
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The terms involving K1 through K3 can be bounded as follows∫ T

0

∑
j

2(
d
2
+2β)j

∫ s

0

e−C12
2βj(s−τ)K1dτ ds

≤C

∫ T

0

∑
j

2(
d
2
+2β)j

∫ s

0

e−C12
2βj(s−τ)∥∆jθ

(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ ds

≤C
∑
j

2(
d
2
+2β)j

∫ T

0

∥∆jθ
(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ

∫ T

0

e−C12
2βjsds

≤C(1−e−C3T )

∫ T

0

∑
j

2
d
2
j∥∆jθ

(n+1)(τ)∥L2

∑
m≤j−1

2(1+
d
2
)m∥∆mu(n)(τ)∥L2 dτ

≤C(1−e−C3T )∥θ(n+1)∥
L∞

(
0,T ;B

d
2
2,1

)∥u(n)∥
L1

(
0,T ;B

d
2
+1

2,1

)

≤Cδ(1−e−C3T )∥θ(n+1)∥
L∞

(
0,T ;B

d
2
2,1

),

where C3>0 is a constant. The term with K2 and K3 admit the same bounds,∫ T

0

∑
j

2(
d
2+2β)j

∫ s

0

e−C12
2βj(s−τ)K2dτ ds≤Cδ(1−e−C3T )∥θ(n+1)∥

L∞
(
0,T ;B

d
2
2,1

)
∫ T

0

∑
j

2(
d
2+2β)j

∫ s

0

e−C12
2βj(s−τ)K3dτ ds≤Cδ(1−e−C3T )∥θ(n+1)∥

L∞
(
0,T ;B

d
2
2,1

).
Collecting the estimates above, we conclude

∥θ(n+1)∥
L1

(
0,T ;B

d
2
+2β

2,1

)≤ δ

4
+Cδ(1−e−C3T )∥θ(n+1)∥

L∞
(
0,T ;B

d
2
2,1

). (3.17)

In fact, if we choose T and δ satisfying

Cδ≤ 1

4
and C(1−e−C1T )≤ 1

4
,

then (3.7) implies

∥u(n+1)(t)∥
B

1+ d
2
−2α

2,1

≤ 1

2
M+

1

4
∥u(n+1)(t)∥

B
1+ d

2
−2α

2,1

+
1

4
M.

So

∥u(n+1)(t)∥
B

1+ d
2
−2α

2,1

≤M.

Similary, if Cδ≤ 1
4 and ∥θ(n+1)

0 ∥
B

d
2
2,1

≤ 1
2M , then (3.12) states

∥θ(n+1)∥
B

d
2
2,1

≤M.

According to (3.16) and (3.17), if we choose T sufficiently small such that

C(1−e−C2T )M ≤ 1

4
, C(1−e−C3T )M ≤ 1

2
,
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then

∥u(n+1)∥
L1

(
0,T ;B

1+ d
2

2,1

)≤ δ, ∥θ(n+1)∥
L1

(
0,T ;B

2β+ d
2

2,1

)≤ δ.
These uniform bounds allow us to extract a weakly convergent subsequence. That is,
there is (u,θ)∈Y such that a subsequence of (u(n),θ(n)) satisfies

u(n)
∗→u in L∞

(
0,T ;B

d
2+1−2α
2,1

)
∩L1

(
0,T ;B

d
2+1
2,1

)
,

θ(n)
∗→θ in L∞

(
0,T ;B

d
2
2,1

)
∩L1

(
0,T ;B

d
2+2β
2,1

)
.

In order to show that (u,θ) is a weak solution of (1.1), we need to further extract
a subsequence which converges strongly to (u,θ). This is done via the Aubin-Lions
Lemma. We can show by making use of the equations in (3.1) that (∂tu

(n),∂tθ
(n)) is

uniformly bounded in

∂tu
(n)∈L1

(
0,T ;B

d
2+1−2α
2,1

)
∩L2

(
0,T ;B

d
2+1−3α
2,1

)
,

∂tθ
(n)∈L1

(
0,T ;B

d
2
2,1

)
∩L2

(
0,T ;B

d
2−β
2,1

)
.

Since we are in the case of the whole space Rd, we need to combine Cantor’s diagonal
process with the Aubin-Lions Lemma to show that a subsequence of the weakly con-
vergent subsequence, still denoted by (u(n),θ(n)), has the following strongly convergent
property,

(u(n),θ(n))→ (u,θ) in L2(0,T ;Bγ
2,1(Q)),

where d
2 −α≤γ≤

d
2 and Q⊂Rd is a compact subset. This strong convergence property

would allow us to show that (u,θ) is indeed a weak solution of (1.1). This process is
routine and we omit the details. This completes the proof for the existence part of
Theorem 1.1.

4. The uniqueness part
This section proves the uniqueness part of Theorem 1.1.

Proof. (Proof of the uniqueness part of Theorem 1.1.) Assuming that
(u(1),θ(1)) and (u(2),θ(2)) are two solutions of (1.1) in the regularity class in (1.2) and

(1.3). Their difference (ũ, θ̃) with

ũ=u(2)−u(1), θ̃=θ(2)−θ(1)

satisfies 
∂tũ+ν(−∆)αũ=−P(u(2) ·∇ũ+ ũ ·∇u(1))+ θ̃,
∂tθ̃+η(−∆)β θ̃=−u(2) ·∇θ̃− ũ ·∇θ(1),
∇· ũ=0,

ũ(x,0)=0, θ̃(x,0)=0.

(4.1)

We focus on the case when α>1/4, β≥0, α+2β≥1. We estimate the difference (ũ, θ̃)

in L2(Rd). Dotting (4.1) by (ũ, θ̃) and applying the divergence-free condition, we find

1

2

d

dt
(∥ũ(t)∥2L2 +∥θ̃(t))∥2L2)+ν∥Λαũ∥2L2 +η∥Λβ θ̃∥2L2 =L1+L2+L3,



1546 THE BOUSSINESQ EQUATION

where

L1=−
∫
ũ ·∇u(1) · ũdx, (4.2)

L2=−
∫
ũ ·∇θ(1) · θ̃dx, (4.3)

and

L3=

∫
ũ · θ̃dx. (4.4)

By Hölder’s inequality,

|L1|≤∥∇u(1)∥L∞∥ũ∥2L2 ≤C∥u(1)∥
B

d
2
+1

2,1

∥ũ∥2L2 .

To bound L2, we set

1

p
=

1

2
− α

d
,

1

q
=
α

d
.

Applying Hölder’s inequality,

|L2|≤∥θ̃∥L2∥∇θ(1)∥Lq∥ũ∥Lp

≤C∥θ̃∥L2∥θ(1)∥
B

d
2
+2β

2,1

∥Λαũ∥L2

≤ ν

2
∥Λαu∥L2 +C∥θ(1)∥2

B
d
2
+2β

2,1

∥θ̃∥2L2 ,

where we have used the inequalities, due to α
2 +β≥

1
2 ,

∥ũ∥Lp ≤C∥Λαũ∥L2 ,

and

∥∇θ(1)∥Lq ≤
∑
j≥−1

∥∆j∇θ(1)∥Lq

≤C
∑
j≥−1

2j+jd( 1
2−

1
q )∥∆jθ

(1)∥L2

≤C
∑
j≥−1

2
d
2 j+(1− d

q )j∥∆jθ
(1)∥L2

≤C
∑
j≥−1

2
d
2 j+2βj∥∆jθ

(1)∥L2

≤C∥θ(1)∥
B

d
2
+2β

2,1

.

Applying Hölder’s inequality

|L3|≤∥ũ∥L2∥θ̃∥L2 .

Combining these estimates lead to

d

dt
(∥ũ∥2L2 +∥θ̃∥2L2)+ν∥Λαũ∥2L2 +2η∥Λβ θ̃∥2L2
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≤C∥u(1)∥
B

1+ d
2

2,1

(∥ũ∥2L2 +∥θ̃∥2L2)+C∥θ(1)∥2
B

d
2
+2β

2,1

∥θ̃∥2L2 . (4.5)

Since (u(1),θ(1)) is in the regularity class (1.2) and (1.3), we obtain∫ T

0

∥u(1)(t)∥
B

1+ d
2

2,1

dt<∞,∫ T

0

∥θ(1)(t)∥
B

d
2
+2β

2,1

dt<∞.

Applying Gronwall’s inequality to (4.5), we have

∥ũ∥L2 =∥θ̃∥L2 =0,

which leads to the desired uniqueness.
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