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Abstract
How to construct global solutions of the compressible viscous magnetohydro-
dynamic (MHD) equations without magnetic diffusion even with small initial
data in R3 or T3 is still an extremely challenging open problem. The difficulty
comes from the lack of magnetic diffusion and the fact that solutions to inviscid
equations generally grow in time. Motivated by this open problem, the present
paper focuses on a special case of this MHD system in T3 when the magnetic
field is vertical. We establish the global existence and uniqueness of smooth
solutions to this system near a steady-state solution. In addition, the solution is
shown to be stable and decay exponentially in time. The proof discovers and
makes use of the smoothing and stabilizing effect of the steady magnetic field
on the perturbations.
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1. Introduction and the main result

1.1. Model and synopsis of result

In this paper, we are concerned with the large time regularity of the compressible viscous non-
resistive magnetohydrodynamic (MHD) equations, which model the motion of electrically
conducting fluids in the presence of a magnetic field. It can be written as the following system,


∂tρ+ div (ρv) = 0,

ρ(∂tv+ v ·∇v)−µ∆v− (λ+µ)∇divv+∇P= (∇×B)×B,

∂tB−∇× (v×B) = 0,

divB= 0.

(1.1)

Here the unknowns ρ, v,B, are the density of the fluid, the velocity field, and themagnetic field,
respectively. The thermal pressure P(ρ) is assumed to follow a polytropic γ−law, P(ρ) = Aργ

for some A> 0 and γ ⩾ 1. The parameters µ and λ are shear viscosity and volume viscosity
coefficients, respectively, which satisfy the standard strong parabolicity assumption,

µ > 0 and ν
def
= λ+ 2µ > 0.

The compressible MHD equations can be derived from the isentropic Navier–Stokes-Maxwell
system by taking the zero dielectric constant limit [14]. Although the small data global well-
posedness on the 2D compressible MHD equations without magnetic diffusion has been suc-
cessfully settled, this same problem on the 3D counterpart appears to be inaccessible at this
moment.

This paper focuses on a very special 2 1
2 -D compressible MHD system. The motion of fluids

takes place in the plane while the magnetic field acts on fluids only in the vertical direction,
namely

v=
(
v1 (t,x1,x2) ,v2 (t,x1,x2) ,0

) def
= (u,0) ,

ρ
def
= ρ(t,x1,x2) , B def

= (0,0,m(t,x1,x2)) .

Then (1.1) is reduced to
∂tρ+ div (ρu) = 0,

ρ(∂tu+u ·∇u)−µ∆u− (λ+µ)∇divu+∇P+ 1
2
∇m2 = 0,

∂tm+ div (mu) = 0.

(1.2)

We are interested in the initial boundary value problem for the system (1.2) in torus T2 =
(0,d1)× (0,d2) with the initial condition

(ρ,u,m)(x,0) = (ρ0,u0,m0)(x) , x ∈ T2,
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and the periodic boundary condition

(ρ,u,m)(x+ d, t) = (ρ,u,m)(x, t) , t⩾ 0, d= (d1,d2) .

To overcome the difficulties arising from the non-dissipation on ρ and m, we will rewrite
system (1.2). On the basis of the state equations, we reformulate the system (1.2) in terms of
variables P, u and m as

∂tP+ div (Pu)+ (γ− 1)Pdivu= 0,

ρ(∂tu+u ·∇u)−µ∆u− (λ+µ)∇divu+∇P+ 1
2
∇m2 = 0,

∂tm+ div (mu) = 0,

(P,u,m) |t=0 = (P0,u0,m0)
def
= (Aργ0 ,u0,m0) .

(1.3)

For notational convenience, we write

ˆ
T2

Aργ0 dx
def
= P̄ and

ˆ
T2

m0 dx
def
= m̄.

Clearly P̄ is a positive constant. m̄ is non-zero but not required to be positive.

1.2. Main result

Now we can state our main result in the following theorem.

Theorem 1.1. Assume that the initial data satisfy (P0 − P̄,m0 − m̄) ∈ H3(T2) and u0 ∈
H3(T2), with

c0 ⩽ ρ0 ⩽ c−1
0 and

ˆ
T2

ρ0u0 dx= 0 (1.4)

for some constant c0 > 0. Then, there exists a small constant ε> 0 such that, if

∥(P0 − P̄,m0 − m̄)∥H3 + ∥u0∥H3 ⩽ ε,

the system (1.3) admits a unique global solution (P− P̄,u,m− m̄) such that

(P− P̄,m− m̄) ∈ C([0,∞);H3), u ∈ C([0,∞);H3)∩L2(R+;H4).

Moreover, for any t⩾ 0, there holds

∥u(t)∥H3 ⩽ C1e
−C1t, (1.5)

for some pure constant C1 > 0.

Remark 1.1. Theorem 1.1 appears to be the first such stability and decay result on this partic-
ular MHD system in bounded domains. Our method exploits the hidden wave structure, which
provides the desired smoothing and stabilizing effect.
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Remark 1.2. Our result does not need any assumption that the vertical magnetic field m is
non-negative. What is really crucial here is that the average m̄ is not zero. When the average m̄
is not zero, the equations of the velocity u and the perturbation of m, namely b= m− m̄ form
a wave structure. As we shall see later,{

∂tu+ m̄∇b= · · · ,
∂tb+ m̄divu= · · · ,

(1.6)

where, for simplicity, we have used dots to denote other terms. By taking one more time deriv-
ative in (1.6) and making substitutions, we easily see the wave structure in divu and b,{

∂ttdivu− m̄2∆divu= · · · ,
∂ttb− m̄2∆b= · · · .

(1.7)

(1.7) also reveals that the sign of m̄makes no difference. This wave structure allows to extract
the designed dissipative effect on b.

When the average m̄ is zero, the wave structure disappears and the zero-averaged magnetic
field no longer stabilizes the perturbation b. Then the Sobolev norms of b could grow in time
and it becomes impossible to establish the desired stability and decay.

1.3. Difficulties and scheme of the proof

Now, let us explain the difficulty and our idea. Due to the lack of the dissipations on both the
density and the magnetic field, the stability and large-time behavior problem concerned here
is very difficult.

We first remark that stability problem concerned here can not be converted to the compress-
ible Navier–Stokes stability problem. Although adding the equations of ρ and m may lead to
a density-like equation for ρ+m, but the pressure term can not be rewritten as a power law.
Furthermore, ρ+mmay not necessarily be positive sincem does not have a sign. Therefore the
classical compressible Navier–Stokes approach can not be used to solve our stability problem.

To make up for the missing regularization, we consider a small perturbation of the equilib-
rium P̄, m̄ for the density and the magnetic field, respectively. In the framework of the per-
turbation, the local well-posedness of (1.3) can be shown via a procedure that is now standard
(see, e.g. [12]). The focus of the proof is on the global bound of (P− P̄,u,m− m̄) in H3(T2).
We use the bootstrapping argument and start by making the ansatz that

sup
t∈[0,T]

(∥P− P̄∥H3 + ∥u∥H3 + ∥m− m̄∥H3)⩽ δ,

for suitably chosen 0< δ < 1. The main efforts are devoted to proving that, if the initial norm
is taken to be sufficiently small, namely

∥P0 − P̄∥H3 + ∥u0∥H3 + ∥m0 − m̄∥H3 ⩽ ε

with sufficiently small ε> 0, then

sup
t∈[0,T]

(∥P− P̄∥H3 + ∥u∥H3 + ∥m− m̄∥H3)⩽
δ

2
. (1.8)
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It is not trivial to prove (1.8). Now, let us explain our main idea. Without loss of generality,
we take P̄= m̄= 1 in the paper. The starting point is to write the term 1

2∇(m− 1)2 as a new
variable rather than the nonlinear term and define

p
def
= P− 1, b

def
= m− 1.

Then, we can rewrite (1.3) into the following form

∂tp+ γdivu+u ·∇p+ γpdivu= 0,

∂tu−µ∆u− (λ+µ)∇divu+∇p+ 1
2
∇m2 = Nonlinear terms,

∂tb+ divu+u ·∇b+ bdivu= 0,

(p,u,b) |t=0 = (p0,u0,b0) .

(1.9)

By the standard energy method, we can show that

1
2
d
dt

∥(p,u,b)∥2H3 +µ∥∇u∥2H3 +(λ+µ)∥divu∥2H3

⩽ C
(
∥(p,u,b)∥H3 + ∥(∇p,∇u,∇b)∥2H3

)
∥(p,u,b)∥2H3 , (1.10)

from which we can see that (1.10) does not close under small initial data unless some norms
of p, b such as ∥p∥2H3 and ∥b∥2H3 occurs on the left. In order to capture the dissipation
arising from the complicated coupling between p and b , our idea is to introduce the new
pressure ϕ as

ϕ
def
= P− 1+

1
2
m2 − 1

2
. (1.11)

After an elementary calculation, we find that the new variable (ϕ,u) satisfies the following
equations {

∂tϕ+(γ+ 1)divu= Nonlinear terms,

∂tu−µ∆u− (λ+µ)∇divu+∇ϕ= Nonlinear terms.
(1.12)

Especially, the linearized system of (1.12) has the same structure as the compressible Navier–
Stokes equations. Hence, by exploiting delicate energy analysis, we can capture the damping
effect of ϕ and smoothing effect of u in (1.12).

Although we have obtained the damping effect of ϕ, another difficulty to prove (1.8) is
that we still cannot get any damping effect of p, or b, respectively. So, the energy estimate
like (1.10) is invalid to our bootstrap argument. We need to make a more dedicated energy
estimate as follows

1
2
d
dt

∥(p,u,b)∥2H3 −
1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇3p

)2
dx+µ∥∇u∥2H3 +(λ+µ)∥divu∥2H3

⩽ C
((

1+ ∥p∥2H3

)
∥u∥H3 + ∥u∥2H3 + ∥ϕ∥2H3

)
∥(p,u,b)∥2H3 . (1.13)

Compared to (1.10), the advantage of the refined energy estimates (1.13) is that the time
integral of (1+ ∥p(t)∥2H3)∥u(t)∥H3 + ∥u(t)∥2H3 + ∥ϕ(t)∥2H3 in front of ∥(p,u,b)∥2H3 is time
integrable. This is because the damping effect and smoothing effect on ϕ,u in (1.12).

In the following, we explain some difficulty about deriving the refined energy estim-
ate (1.13). Due to the lack of damping effect or smoothing effect of p,b, we can only use
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L∞t (Hs) norm of p,b in taking energy estimates. Thus, we have to be very careful to deal with
nonlinear terms involved in p,b

ˆ
T2

∇s(u ·∇p)) ·∇spdx,
ˆ
T2

∇s(u ·∇b) ·∇sbdx,
ˆ
T2

∇s(pdivu) ·∇spdx,
ˆ
T2

∇s(bdivu) ·∇spdx,
1
2

ˆ
T2

∇s∇b2 ·∇sudx. (1.14)

For the first two terms
ˆ
T2

∇s(u ·∇p)) ·∇spdx, and
ˆ
T2

∇s(u ·∇b) ·∇sbdx,

we mainly use the commutator argument to transform the derivative from ∇p or ∇b to u,
see (3.16)–(3.19) for more details. For the last two terms

ˆ
T2

∇s (bdivu) ·∇spdx, and
1
2

ˆ
T2

∇s∇b2 ·∇sudx,

we combine them together and also use the commutator argument, see (3.20) for more detail.
However, we cannot use the same strategy as

´
T2 ∇s(bdivu) ·∇sbdx to deal with the term´

T2 ∇s(pdivu) ·∇spdx other than the pressure P(ρ) = 1
2ρ

2. For more general γ−law, i.e.
P(ρ) = Aργ for some A> 0 and γ ⩾ 1, we need to make some new idea to overcome this
difficulty. In fact, we first use the commutator argument to divide this term into two terms

ˆ
T2

∇s (pdivu) ·∇spdx=
ˆ
T2

[∇s,p]divu ·∇spdx+
ˆ
T2

p∇sdivu ·∇spdx. (1.15)

The term involved in the commutator is easy to control. For the last term in (1.15), the trouble
only arise when we deal with the highest order derivative, i.e.

´
T2 p∇3divu ·∇3pdx. With the

help of the Hölder inequality, this term will be bounded by∣∣∣∣ˆ
T2

p∇3divu ·∇3pdx

∣∣∣∣⩽ C∥p∥L∞
∥∥∇3divu

∥∥
L2

∥∥∇3p
∥∥
L2

⩽ C∥p∥H2 ∥divu∥H3 ∥p∥H3

⩽ C∥p∥2H3 ∥divu∥H3 . (1.16)

To control the term ∥divu∥H3 , we have to use the smoothing effect coming from the velocity
equation to absorb this term to the left which will lead to the following inequality

∥p∥2H3 ∥divu∥H3 ⩽ ε∥divu∥2H3 +C∥p∥4H3 . (1.17)

When we use the continuity argument to close the energy estimates, (1.17) implies that we
have to ensure that the time integral of ∥p∥2H3 is time integrable, this is a disaster due to the
lack of the dissipation of the equation of p. To overcome the difficulty, we shall make full use
of the density equation of (3.3) to write

divu=−∂tp+u ·∇p
γ (p+ 1)

,

6
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from which we can get

−
ˆ
T2

p∇3divu ·∇3pdx=
1
γ

ˆ
T2

p∇3

(
∂tp+u ·∇p

1+ p

)
·∇3pdx

=
1
γ

ˆ
T2

p∇3

(
∂tp
1+ p

)
·∇3pdx+

ˆ
T2

p∇3

(
u ·∇p
1+ p

)
·∇3pdx.

(1.18)

Now, the degree of nonlinearity on the right hand side of (1.18) is higher than the left, which
implies that it is much easier to close the energy estimates in the framework of small initial
data. Combining with the previous steps, we then obtain a self-contained energy estimates.

The last step is to establish (1.8) and close the bootstrapping argument. The energy inequal-
ity obtained in the previous step, together with interpolation inequalities, allow us to show that

∥(ϕ,u)(t)∥H3 ⩽ Ce−ct

when δ > 0 is taken to be sufficiently small. In particular, the time integral of(
1+ ∥p(t)∥2H3

)
∥u(t)∥H3 + ∥u(t)∥2H3 + ∥ϕ(t)∥2H3

in (3.82) is finite,
ˆ ∞

0

((
1+ ∥p(τ)∥2H3

)
∥u(τ)∥H3 + ∥u(τ)∥2H3 + ∥ϕ(τ)∥2H3

)
dτ ⩽ C<∞.

Grönwall’s inequality then yields

∥(p,u, τ)(t)∥H3 ⩽ C∥(p0,u0, τ0)∥H3 .

Taking the initial norm to be sufficiently small, we achieve (1.8).

1.4. Organization of the paper

The rest of this paper is structured as follows. In section 2, we recall several functional
inequalities to be used in the proof of theorem 1.1. Section 3 proves theorem 1.1. The long
proof is accomplished in five subsections. Section 3.1 explains how to prove the local well-
posedness and initiates the bootstrapping argument. Section 3.2 provides the energy estim-
ates for (P− P̄,u,m− m̄). Section 3.3 establishes the energy estimates for (ϕ,u). Section 3.4
explores the dissipation (ϕ,u). Section 3.5 proves the decay estimate and then closes the boot-
strapping argument.

Finally, we briefly recall some known related results about the compressible MHD
equations.

1.5. Recall some known results

When the effect of the magnetic field is omitted, i.e. B= 0, (1.1) reduces to the isentropic
compressible Navier–Stokes system, which has been extensively studied by many researchers,
we refer to [1, 9, 30] and the references therein.

Due to its physical importance and mathematical challenge, the mathematical study of the
compressible MHD equations has attracted considerable attention. When adding Laplacian

7
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term −∆B to the magnetic equation, (1.1) becomes the compressible viscous resistive MHD
system. There has been a profuse literature devoted to the compressible viscous resistiveMHD
system concerning the global existence of weak solutions [4, 7, 8], local and global well-
posedness of strong solutions with vacuum [6, 15, 34] and large time behaviour [14, 26]. Next
we review some previous results on the case of our consideration, namely the compressible
viscous non-resistive MHD system (1.1). Owing to the lack of dissipation mechanism for the
magnetic field, the mathematical analysis of (1.1) becomes more delicate and relatively fewer
results are available. For weak solutions, Li and Sun [17] obtained the existence and large-time
behavior of global weak solutions in 1D case. In 2D case, they [18, 19] also proved the global
existence of weak solutions for both isentropic and non-isentropic cases. Later on, the global
result of [18] was extended by Liu and Zhang [22] to the density-dependent viscosity coeffi-
cient and non-monotone pressure law. For strong solutions, Jiang and Zhang [10] proved the
global well-posedness of strong solutions for large data and studied the non-resistive limit in
1D case. Wu and Wu [27] established the global well-posedness of small strong solutions in
R2 by using the systematic approach. Similar results onT2 were obtained byWu and Zhu [29].
Zhong [33] constructed the local strong solutions with possible initial vacuum but without any
Cho–Choe–Kim type compatibility conditions inR2. The global existence of smooth solutions
on the horizontally infinite flat layerΩ= R2 × (0,1) for the isentropic and non-isentropic cases
was proved by Tan-Wang [24] and Li [16], respectively. Recently, Wu and Zhai [28] proved
the global well-posedness of strong solutions on T3 under the assumptions that the initial data
is close enough to an equilibrium state, see [20] for an improvement of [28] for the compress-
ible viscous non-isentropic MHD flows without magnetic diffusion. When ρ= constant, (1.1)
becomes the incompressible viscous non-resistive MHD system, we refer to [21, 23, 31, 32]
and the references therein for related results.

However, as far as we known, the global well-posedness problem on the compressible vis-
cous non-resistiveMHD system inR3 remains an challenging open problem, even for the small
data. As an attempt to solve this problem, by exploiting the Fourier theory and delicate energy
method, the authors in this paper [3] considered a special 2 1

2 -D compressible non-resistive
MHD equations and proved the global existence of strong solutions with small initial data in
the critical Besov spaces. Furthermore, we obtained the solution’s optimal decay rate when
the initial data is further assumed to be in a Besov space of negative index.

2. Preliminaries

First, we describe the notations we shall use in this paper.
Notations : letA,B be two operators, we denote [A,B] = AB−BA, the commutator between

A and B. Throughout the paper, C> 0 stands for a generic ‘constant’. For X a Banach space

and I an interval of R, for any f,g,h ∈ X, we agree that ∥( f,g,h)∥X
def
= ∥f∥X+ ∥g∥X+ ∥h∥X and

denote by C(I;X) the set of continuous functions on I with values in X.
Next, we present several functional inequalities in the proof of our main result. We first

recall a weighted Poincaré inequality first established by Desvillettes and Villani in [2].

Lemma 2.1. Let Ω be a bounded connected Lipschitz domain and %̄ be a positive constant.
There exists a positive constant C, depending on Ω and %̄, such that for any nonnegative func-
tion % satisfying

ˆ
Ω

%dx= 1, %⩽ %̄,

8
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and any u ∈ H1(Ω), there holds

ˆ
Ω

%

(
u−
ˆ
Ω

ρudx
)2

dx⩽ C∥∇u∥2L2 . (2.1)

In order to remove the weight function % in (2.1) without resorting to the lower bound of %,
we need another variant of Poincaré inequality (see lemma 3.2 in [5]).

Lemma 2.2. Let Ω be a bounded connected Lipschitz domain in R3 and p> 1 be a constant.
Given positive constants M0 and E0, there is a constant C= C(E0,M0) such that for any non-
negative function % satisfying

M0 ⩽
ˆ
Ω

%dx and
ˆ
Ω

%pdx⩽ E0,

and for any u ∈ H1(Ω), there holds

∥u∥2L2 ⩽ C

[
∥∇u∥2L2 +

(ˆ
Ω

%|u|dx
)2
]
.

Lemma 2.3 ([11]). Let s⩾ 0 and f,g ∈ Hs(T2)∩L∞(T2). Then

∥fg∥Hs ⩽ C(∥f∥L∞∥g∥Hs + ∥g∥L∞∥f∥Hs) . (2.2)

Lemma 2.4 ([11]). Let s> 0. Then there exists a constant C such that, for any f ∈ Hs(T2)∩
W1,∞(T2), g ∈ Hs−1(T2)∩L∞(T2), there holds

∥[∇s, f ·∇]g∥L2 ⩽ C(∥∇f∥L∞ ∥∇sg∥L2 + ∥∇sf∥L2 ∥∇g∥L∞) .

Lemma 2.5 ([25]). Let s> 0 and f ∈ Hs(T2)∩L∞(T2). Assume that F is a smooth function on
R with F(0) = 0. Then we have

∥F( f)∥Hs ⩽ C(1+ ∥f∥L∞)
[s]+1 ∥f∥Hs ,

where the constant C depends on supk⩽[s]+2,t⩽∥f∥L∞ ∥F(k)(t)∥L∞ .

3. The proof of theorem 1.1

This section is devoted to proving theorem 1.1. The proof is long and is thus divided into
several subsections for the sake of clarity.

3.1. Local well-posedness

Given the initial data (P0 − P̄,u0,m0 − m̄) ∈ H3(T2), the local well-posedness of (1.3) could
be proven by using the standard energymethod (see, e.g. [12]). Thus, wemay assume that there
exists T > 0 such that the system (1.3) has a unique solution (P− P̄,u,m− m̄) ∈ C([0,T];H3).
Moreover,

1
2
c0 ⩽ ρ(t,x)⩽ 2c−1

0 , for anyt ∈ [0,T] . (3.1)

9
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We use the bootstrapping argument to show that this local solution can be extended into a
global one. The goal is to derive a global a priori upper bound. To initiate the bootstrapping
argument, we make the ansatz that

sup
t∈[0,T]

(∥P− P̄∥H3 + ∥u∥H3 + ∥m− m̄∥H3)⩽ δ, (3.2)

where 0< δ < 1 obeys requirements to be specified later. In the following subsections we
prove that, if the initial norm is taken to be sufficiently small, namely

∥P0 − P̄∥H3 + ∥u0∥H3 + ∥m0 − m̄∥H3 ⩽ ε,

with sufficiently small ε> 0, then

sup
t∈[0,T]

(∥P− P̄∥H3 + ∥u∥H3 + ∥m− m̄∥H3)⩽
δ

2
.

The bootstrapping argument then leads to the desired global bound.

3.2. Energy estimates for (P− P̄,u,m− m̄)

We first show the energy estimate which contains the bound for u only. Without loss of gen-
erality, we let P̄= m̄= 1, and define

p
def
= P− 1, a

def
= ρ− 1, b

def
= m− 1.

Then, system (1.3) is equivalent to the following system:
∂tp+ γdivu+u ·∇p+ γpdivu= 0,

∂tu− div (µ̄(ρ)∇u)−∇
(
λ̄(ρ)divu

)
+∇ϕ= f1,

∂tb+ divu+u ·∇b+ bdivu= 0,

(p,u,b) |t=0 = (p0,u0,b0) ,

(3.3)

with

ϕ
def
= P− 1+

1
2
m2 − 1

2
, µ̄(ρ)

def
=

µ

ρ
, λ̄(ρ)

def
=

λ+µ

ρ
, I(a)

def
=

a
1+ a

,

and

f1
def
=−u ·∇u+ I(a)∇ϕ+µ(∇I(a))∇u+(λ+µ)(∇I(a))divu.

We comment that the velocity equation written in (3.3) is slightly different from (1.3)2. This
avoids the appearance of the bad term −I(a)(µ∆u+(λ+µ)∇divu).

In this subsection, we shall prove the following crucial lemma.

Lemma 3.1. Let (p,u,b) ∈ C([0,T];H3) be a solution to the system (3.3). There holds

1
2
d
dt

∥(p,u,b)∥2H3 −
1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇3p

)2
dx+µ∥∇u∥2H3 +(λ+µ)∥divu∥2H3

⩽ C
(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 +C

(
∥u∥H3 + ∥u∥2H3 + ∥ϕ∥2H3

)
∥(p,u,b)∥2H3 . (3.4)

10
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Proof. Let s= 0,1,2,3. Applying operator ∇s to the equations of (3.3) and then taking L2

inner product with ( 1
γ∇

sp,∇su,∇sb) yield

1
2
d
dt

∥∥∥∥( 1
γ
∇sp,∇su,∇sb

)∥∥∥∥2
L2
−
ˆ
T2

∇sdiv (µ̄(ρ)∇u) ·∇sudx−
ˆ
T2

∇s∇
(
λ̄(ρ)divu

)
·∇sudx

=− 1
γ

ˆ
T2

∇s (u ·∇p+ γpdivu) ·∇spdx−
ˆ
T2

∇sdivu ·∇spdx−
ˆ
T2

∇s∇φ ·∇sudx

+

ˆ
T2

∇sf1 ·∇sudx−
ˆ
T2

∇s (u ·∇b+ bdivu) ·∇sbdx−
ˆ
T2

∇sdivu ·∇sbdx. (3.5)

Due to

∇ϕ =∇p+∇b+ b∇b

and the cancellations
ˆ
T2

∇sdivu ·∇spdx+
ˆ
T2

∇s∇p ·∇sudx= 0,
ˆ
T2

∇sdivu ·∇sbdx+
ˆ
T2

∇s∇b ·∇sudx= 0,

we can further rewrite (3.5) into

1
2
d
dt

∥∥∥∥( 1
γ
∇sp,∇su,∇sb

)∥∥∥∥2
L2
−
ˆ
T2

∇sdiv (µ̄(ρ)∇u) ·∇sudx−
ˆ
T2

∇s∇
(
λ̄(ρ)divu

)
·∇sudx

=− 1
γ

ˆ
T2

∇s (u ·∇p+ γpdivu) ·∇spdx−
ˆ
T2

∇s (b∇b) ·∇sudx

−
ˆ
T2

∇s (u ·∇b+ bdivu) ·∇sbdx+
ˆ
T2

∇sf1 ·∇sudx. (3.6)

By using the commutator argument, the second term on the left-hand side can be written as

−
ˆ
T2

∇sdiv (µ̄(ρ)∇u) ·∇sudx=
ˆ
T2

∇s (µ̄(ρ)∇u) ·∇∇sudx

=

ˆ
T2

µ̄(ρ)∇∇su ·∇∇sudx+
ˆ
T2

[∇s, µ̄(ρ)]∇u ·∇∇sudx.

(3.7)

It follows from (3.1), for any t ∈ [0,T], that

ˆ
T2

µ̄(ρ)∇∇su ·∇∇sudx⩾ c−1
0 µ

∥∥∇s+1u
∥∥2
L2
. (3.8)

For the last term in (3.7), we can further rewrite this term into
ˆ
T2

[∇s, µ̄(ρ)]∇u ·∇∇sudx=
ˆ
T2

[∇s, µ̄(ρ)−µ+µ]∇u ·∇∇sudx

=−
ˆ
T2

[∇s,µI(a)]∇u ·∇∇sudx. (3.9)

11
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Bounding nonlinear terms involving composition functions in (3.9) is more elaborate.
Throughout we make the assumption that

sup
t∈R+,x∈T2

|a(t,x) |⩽ 1
2

(3.10)

which will enable us to use freely the composition estimate stated in lemma 2.5. Note that
as H3(T2) ↪→ L∞(T2), condition (3.10) will be ensured by the fact that the constructed solu-
tion about a has small norm. It them follows from lemma 2.5 that the following composition
estimate holds,

∥I(a)∥Hs ⩽ C∥a∥Hs , for anys> 0. (3.11)

Moreover, in view of a= (p+ 1)
1
γ − 1, we can use lemma 2.5 again to deduce that

∥a∥2H3 ⩽ C∥p∥2H3 . (3.12)

Then, with the aid of lemmas 2.4, 2.5 and (3.11), we have∣∣∣ˆ
T2

[∇s,µI(a)]∇u ·∇∇sudx
∣∣∣

⩽ C∥∇∇su∥L2 (∥∇I(a)∥L∞ ∥∇su∥L2 + ∥∇u∥L∞ ∥∇sI(a)∥L2)

⩽ c−1
0

2
µ
∥∥∇s+1u

∥∥2
L2
+C

(
∥∇a∥2L∞ ∥∇su∥2L2 + ∥a∥2H3 ∥u∥2H3

)
⩽ c−1

0

2
µ
∥∥∇s+1u

∥∥2
L2
+C∥p∥2H3 ∥u∥2H3 . (3.13)

Inserting (3.9) and (3.13) in (3.7) leads to

−
ˆ
T2

∇sdiv (µ̄(ρ)∇u) ·∇sudx⩾c−1
0

2
µ
∥∥∇s+1u

∥∥2
L2
−C∥p∥2H3 ∥u∥2H3 . (3.14)

The third term on the left-hand side of (3.6) can be dealt with similarly. Hence, we obtain

1
2
d
dt

∥∥∥∥( 1
γ
∇sp,∇su,∇sb

)∥∥∥∥2
L2
+ c−1

0 µ
∥∥∇s+1u

∥∥2
L2
+ c−1

0 (λ+µ)∥∇sdivu∥2L2

⩽ C∥p∥2H3 ∥u∥2H3 −
1
γ

ˆ
T2

∇s (u ·∇p) ·∇spdx−
ˆ
T2

∇s (pdivu) ·∇spdx

−
ˆ
T2

∇s (b∇b) ·∇sudx−
ˆ
T2

∇s (u ·∇b+ bdivu) ·∇sbdx+
ˆ
T2

∇sf1 ·∇sudx.

(3.15)

To bound the nonlinear terms in (3.15), we first use commutator’s estimates to write

ˆ
T2

∇s (u ·∇p) ·∇spdx=
ˆ
T2

(∇s (u ·∇p)−u ·∇∇sp) ·∇spdx+
ˆ
T2

u ·∇∇sp ·∇spdx.

(3.16)

12
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It follows from lemma 2.4 that∣∣∣∣ˆ
T2

(∇s (u ·∇p)−u ·∇∇sp) ·∇spdx

∣∣∣∣⩽ C∥[∇s,u ·∇]p∥L2 ∥∇
sp∥L2

⩽ C(∥∇u∥L∞ ∥∇sp∥L2 + ∥∇su∥L2 ∥∇p∥L∞)∥∇sp∥L2
⩽ C∥u∥H3 ∥p∥2H3 . (3.17)

By integration by parts, we have∣∣∣∣ˆ
T2

u ·∇∇sp ·∇spdx

∣∣∣∣⩽ C∥∇u∥L∞ ∥∇sp∥2L2 ⩽ C∥u∥H3 ∥p∥2H3

from which and (3.17), we get

ˆ
T2

∇s (u ·∇p) ·∇spdx⩽ C∥u∥H3 ∥p∥2H3 . (3.18)

Similarly, there hold

ˆ
T2

∇s (u ·∇b) ·∇sbdx⩽ C∥u∥H3 ∥b∥2H3 , (3.19)

and
ˆ
T2

∇s (bdivu) ·∇sbdx+
ˆ
T2

∇s (b∇b) ·∇sudx

=

ˆ
T2

[∇s,b]divu ·∇sbdx+
ˆ
T2

[∇s,b]∇b ·∇sudx

+

ˆ
T2

b∇sdivu ·∇sbdx+
ˆ
T2

b∇s∇b ·∇sudx

=

ˆ
T2

[∇s,b]divu ·∇sbdx+
ˆ
T2

[∇s,b]∇b ·∇sudx+
ˆ
T2

bdiv (∇sb∇su) dx

=

ˆ
T2

[∇s,b]divu ·∇sbdx+
ˆ
T2

[∇s,b]∇b ·∇sudx−
ˆ
T2

∇sb∇su ·∇bdx. (3.20)

In view of lemma 2.4, we have
ˆ
T2

[∇s,b]divu ·∇sbdx⩽ C∥[∇s,b]divu∥L2 ∥∇
sb∥L2

⩽ C(∥∇u∥L∞ ∥∇sb∥L2 + ∥∇su∥L2 ∥∇b∥L∞)∥∇sb∥L2
⩽ C∥u∥H3 ∥b∥2H3 (3.21)

and
ˆ
T2

[∇s,b]∇b ·∇sudx⩽ C∥[∇s,b]∇b∥L2 ∥∇
su∥L2

⩽ C∥∇b∥L∞ ∥∇sb∥L2 ∥∇
su∥L2

⩽ C∥u∥H3 ∥b∥2H3 . (3.22)

13
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For the last term in (3.20), it is direct to see that∣∣∣∣−ˆ
T2

∇sb∇su ·∇bdx
∣∣∣∣⩽ C∥∇sb∥L2 ∥∇

su∥L2 ∥∇b∥L∞

⩽ C∥u∥H3 ∥b∥2H3 . (3.23)

Hence, combining with (3.19)–(3.23), we obtain∣∣∣∣ˆ
T2

∇s (u ·∇b+ bdivu) ·∇sbdx+
ˆ
T2

∇s (b∇b) ·∇sudx

∣∣∣∣⩽ C∥u∥H3 ∥b∥2H3 . (3.24)

Next, we have to bound the most difficult term

−
ˆ
T2

∇s (pdivu) ·∇spdx.

We first use the commutator to rewrite this term into

−
ˆ
T2

∇s (pdivu) ·∇spdx=−
ˆ
T2

[∇s,p]divu ·∇spdx−
ˆ
T2

p∇sdivu ·∇spdx. (3.25)

The first term on the right hand side of (3.25) is easily controlled from lemma 2.4 that∣∣∣∣−ˆ
T2

[∇s,p]divu ·∇spdx

∣∣∣∣⩽ C∥[∇s,p]divu∥L2 ∥∇
sp∥L2

⩽ C(∥∇u∥L∞ ∥∇sp∥L2 + ∥∇su∥L2 ∥∇p∥L∞)∥∇sp∥L2
⩽ C∥u∥H3 ∥p∥2H3 . (3.26)

Then, we deal with the last term on the right hand side of (3.25). In fact, for s= 0,1,2, we can
bound this term directly as follows∣∣∣∣−ˆ

T2

p∇sdivu ·∇spdx

∣∣∣∣⩽ C∥p∥L∞ ∥∇sdivu∥L2 ∥∇
sp∥L2

⩽ C∥p∥H2 ∥divu∥H2 ∥p∥H2

⩽ C∥u∥H3 ∥p∥H3 . (3.27)

However, for the highest regularity s= 3, the same strategy as (3.27) is invalid. Otherwise, we
get by a similar derivation of (3.27) that∣∣∣∣−ˆ

T2

p∇3divu ·∇3pdx

∣∣∣∣⩽ C∥p∥L∞
∥∥∇3divu

∥∥
L2

∥∥∇3p
∥∥
L2
⩽ C∥p∥2H3 ∥divu∥H3 . (3.28)

Moreover, to control the term ∥divu∥H3 , we have to use the smoothing effect coming from the
velocity equation to absorb this term to the left which will lead to the following inequality

∥p∥2H3 ∥divu∥H3 ⩽ ε∥divu∥2H3 +C∥p∥4H3 . (3.29)

When we use the continuity argument to close the energy estimates, (3.29) implies that we
have to ensure that the time integral of ∥p∥2H3 is time integrable, this appears to be impossible

14
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due to the lack of the dissipation of the equation of p. To overcome the difficulty, we deduce
from the first equation of (3.3) that

divu=−∂tp+u ·∇p
γ (p+ 1)

,

from which we have

−
ˆ
T2

p∇3divu ·∇3pdx=
1
γ

ˆ
T2

p∇3

(
∂tp+u ·∇p

1+ p

)
·∇3pdx

=
1
γ

ˆ
T2

p∇3

(
∂tp
1+ p

)
·∇3pdx+

ˆ
T2

p∇3

(
u ·∇p
1+ p

)
·∇3pdx

= D1 +D2. (3.30)

For the first term D1 we have

D1 =
1
γ

ˆ
T2

p∇3

(
∂tp
1+ p

)
·∇3pdx

=
1
γ

ˆ
T2

p
1+ p

∇3 (∂tp) ·∇3pdx+
1
γ

ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ∂tp∇3−ℓ

(
1

1+ p

)
·∇3pdx

=
1
2γ

ˆ
T2

p
1+ p

∂t
(
∇3p

)2
dx+

1
γ

ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ∂tp∇3−ℓ

(
1

1+ p

)
·∇3pdx

=
1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇3p

)2
dx− 1

2γ

ˆ
T2

1

(1+ p)2
∂tp
(
∇3p

)2
dx

+
1
γ

ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ∂tp∇3−ℓ

(
1

1+ p

)
·∇3pdx. (3.31)

Using the first equation of (3.3), we can bound the second term on the right hand side of (3.31)
as

− 1
2γ

ˆ
T2

1

(1+ p)2
∂tp
(
∇3p

)2
dx=

1
2γ

ˆ
T2

1

(1+ p)2
(u ·∇p+ γpdivu+ γdivu)

(
∇3p

)2
dx

⩽ C((1+ ∥p∥L∞)∥∇u∥L∞ + ∥∇p∥L∞ ∥u∥L∞)
∥∥∇3p

∥∥2
L2

⩽ C(1+ ∥p∥H3)∥u∥H3 ∥p∥2H3 . (3.32)

By the Hölder inequality, the last term in (3.31) can be controlled as

1
γ

ˆ
T2
p

2∑
ℓ=0

Cℓ
3∇

ℓ∂tp∇3−ℓ

(
1

1+ p

)
·∇3pdx⩽ C

∥∥∥∥∥p
2∑

ℓ=0

∇3−ℓ

(
1

1+ p

)∥∥∥∥∥
L∞

∥∂tp∥H2

∥∥∥∇3p
∥∥∥
L2
.

(3.33)

Recall that ∥∥∥∥∥p
2∑

ℓ=0

∇3−ℓ

(
1

1+ p

)∥∥∥∥∥
L∞

⩽ C∥p∥2H3 (3.34)
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and

∥∂tp∥H2 ⩽ C∥u ·∇p+ γpdivu+ γdivu∥H2 ⩽ C(∥u∥H3 + ∥u∥H3 ∥p∥H3) . (3.35)

Hence, we have

1
γ

ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ∂tp∇3−ℓ

(
1

1+ p

)
·∇3pdx⩽ C(1+ ∥p∥H3)∥u∥H3 ∥p∥3H3 . (3.36)

Combining (3.32) with (3.36), we get

D1 ⩽
1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇3p

)2
dx+C

(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 . (3.37)

For the term D2, we infer that

D2 =

ˆ
T2

p∇3

(
u ·∇p
1+ p

)
·∇3pdx

=

ˆ
T2

p
1+ p

∇3 (u ·∇p) ·∇3pdx+
ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ (u ·∇p)∇3−ℓ

(
1

1+ p

)
·∇3pdx

= D2,1 +D2,2.

We can use the commutator to rewrite D2,1 into

D2,1 =

ˆ
T2

p
1+ p

(
∇3 (u ·∇p)−u ·∇∇3p

)
·∇3pdx+

ˆ
T2

p
1+ p

u ·∇∇3p ·∇3pdx. (3.38)

Thanks to lemma 2.4, we get∣∣∣∣ˆ
T2

p
1+ p

(
∇3 (u ·∇p)−u ·∇∇3p

)
·∇3pdx

∣∣∣∣
⩽ C

∥∥∥∥ p
1+ p

∥∥∥∥
L∞

∥∥[∇3,u ·∇
]
p
∥∥
L2

∥∥∇3p
∥∥
L2

⩽ C
(
∥∇u∥L∞

∥∥∇3p
∥∥
L2
+
∥∥∇3u

∥∥
L2
∥∇p∥L∞

)∥∥∇3p
∥∥
L2

⩽ C∥u∥H3 ∥p∥2H3 . (3.39)

By using the integration by parts, we have∣∣∣∣ˆ
T2

p
1+ p

u ·∇∇3p ·∇3pdx

∣∣∣∣⩽ C

∥∥∥∥div ( pu
1+ p

)∥∥∥∥
L∞

∥∥∇3p
∥∥2
L2

⩽ C(∥∇u∥L∞ + ∥u∥L∞ ∥∇p∥L∞)
∥∥∇3p

∥∥2
L2

⩽ C(1+ ∥p∥H3)∥u∥H3 ∥p∥2H3

from which and (3.39) we get

D2,1 ⩽ C(1+ ∥p∥H3)∥u∥H3 ∥p∥2H3 . (3.40)
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Thanks to the Hölder inequality and (3.34), we can get

D2,2 =

ˆ
T2

p
2∑

ℓ=0

Cℓ
3∇ℓ (u ·∇p)∇3−ℓ

(
1

1+ p

)
·∇3pdx

⩽ C

∥∥∥∥∥p
2∑

ℓ=0

∇3−ℓ

(
1

1+ p

)∥∥∥∥∥
L∞

∥u ·∇p∥H2

∥∥∇3p
∥∥
L2

⩽ C∥u∥H3 ∥p∥4H3

which combines with (3.40) implies that

D2 ⩽ C
(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 . (3.41)

Inserting (3.37) and (3.41) into (3.30) leads to

−
ˆ
T2

p∇3divu ·∇3pdx⩽ 1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇3p

)2
dx+C

(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 . (3.42)

Consequently, taking the estimates (3.26), (3.27) and (3.42) into (3.25), we get

−
ˆ
T2

∇s (pdivu) ·∇spdx⩽ 1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇ℓp

)2
dx+C

(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 .

(3.43)

In the following, we have to bound the terms in f 1 of (3.15). To do this, we write
ˆ
T2

∇sf1 ·∇sudx= A1 +A2 +A3 +A4 (3.44)

with

A1
def
= −
ˆ
T2

∇s (u ·∇u) ·∇sudx, A2
def
=

ˆ
T2

∇s (I(a)∇ϕ) ·∇sudx,

A3
def
=

ˆ
T2

∇s (µ(∇I(a))∇u) ·∇sudx, A4
def
=

ˆ
T2

∇s ((λ+µ)(∇I(a))divu) ·∇sudx.

We now estimate A1, A2, A3, A4 one by one. The term A1 can be bounded the same as (3.17)∣∣A1

∣∣⩽ C∥∇u∥L∞ ∥∇su∥2L2 .

For s= 0, we can bound the rest terms A2,A3,A4 directly as∣∣A2

∣∣+ ∣∣A3

∣∣+ ∣∣A4

∣∣⩽ C∥I(a)∥L∞ (∥∇ϕ∥L2 + ∥∇u∥L2)∥u∥L2
⩽ C∥a∥H3 (∥ϕ∥H3 + ∥u∥H3)∥u∥H3

⩽ c−1
0 µ

16
∥u∥2H3 +C∥p∥2H3

(
∥ϕ∥2H3 + ∥u∥2H3

)
. (3.45)

Due to
´
T2 ρudx= 0, one can deduce from lemma 2.1 that

∥(√ρu)(t)∥2L2 ⩽ C∥∇u(t)∥2L2 ,
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which combines with lemma 2.2 further implies that

∥u(t)∥2L2 ⩽ C∥∇u(t)∥2L2 . (3.46)

Hence, we can infer from (3.45) that

∣∣A2

∣∣+ ∣∣A3

∣∣+ ∣∣A4

∣∣⩽ c−1
0 µ

16
∥∇u∥2H3 +C∥p∥2H3

(
∥ϕ∥2H3 + ∥u∥2H3

)
.

For s= 1,2,3, by lemma 2.3 and (3.11), we have∣∣A2

∣∣⩽ C(∥∇ϕ∥L∞∥I(a)∥Hs−1 + ∥∇ϕ∥Hs−1∥I(a)∥L∞)
∥∥∇s+1u

∥∥
L2

⩽ c−1
0 µ

16

∥∥∇s+1u
∥∥2
L2
+C∥a∥2L∞ ∥ϕ∥2Hs +C∥a∥2Hs ∥ϕ∥2H3

⩽ c−1
0 µ

16
∥∇u∥2H3 +C∥p∥2H3 ∥ϕ∥2H3 .

Similarly, ∣∣A3

∣∣+ ∣∣A4

∣∣⩽ C(∥∇I(a)∥L∞ ∥∇su∥L2 + ∥∇I(a)∥Hs−1∥∇u∥L∞)
∥∥∇s+1u

∥∥
L2

⩽ c−1
0 µ

16

∥∥∇s+1u
∥∥2
L2
+C

(
∥∇a∥2L∞ ∥∇su∥2L2 + ∥a∥2Hs ∥u∥2H3

)
⩽ c−1

0 µ

16
∥∇u∥2H3 +C∥p∥2H3 ∥u∥2H3

Inserting the bounds for A1 through A4 into (3.44), we get

ˆ
T2

∇sf1 ·∇sudx⩽ c−1
0 µ

16
∥∇u∥2H3 +C∥u∥H3 ∥u∥2H3 +C

(
∥ϕ∥2H3 + ∥u∥2H3

)
∥p∥2H3 . (3.47)

Finally, inserting (3.18), (3.24) and (3.47) into (3.15) gives

1
2
d
dt

∥(p,u,b)∥2H3 −
1
2γ

d
dt

ˆ
T2

p
1+ p

(
∇ℓp

)2
dx+µ∥∇u∥2H3 +(λ+µ)∥divu∥2H3

⩽ C
(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 +C

(
∥u∥H3 + ∥u∥2H3 + ∥ϕ∥2H3

)
∥(p,u,b)∥2H3 .

This finishes the proof of lemma 3.1.

3.3. Energy estimates for (φ,u)

Lemma 3.2. Let (p,u,b) ∈ C([0,T];H3) be a solution to the system (3.3). Then

1
2
d
dt

∥(ϕ,u)∥2H3 +
c−1
0 µ

2
∥∇u∥2H3 +(λ+µ)∥divu∥2H3

⩽ C
(
∥u∥H3 + ∥(p,ϕ)∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 . (3.48)
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Proof. We start with the L2 estimate. To break some technical barrier, it is convenient to rewrite
system (3.3) in terms of variables ϕ and u. Precisely, one has


∂tu− div (µ̄(ρ)∇u)−∇

(
λ̄(ρ)divu

)
+∇ϕ= f1,

∂tϕ+(γ+ 1)divu= f2,

(u,ϕ) |t=0 = (u0,ϕ0) ,

(3.49)

with

f1
def
=−u ·∇u+ I(a)∇ϕ+µ(∇I(a))∇u+(λ+µ)(∇I(a))divu,

f2
def
=−u ·∇ϕ− γϕdivu+

2− γ

2

(
b2 + 2b

)
divu.

Taking inner product with u for the first equation of (3.49), φ
γ+1 for the second equation

of (3.49), respectively, then adding up the result together, we then obtain

1
2
d
dt

(
∥u∥2L2 +

1
γ+ 1

∥ϕ∥2L2
)
−
ˆ
T2

div (µ̄(ρ)∇u) ·udx−
ˆ
T2

∇
(
λ̄(ρ)divu

)
·udx

=

ˆ
T2

f1 ·udx+
1

γ+ 1

ˆ
T2

f2 ·ϕdx, (3.50)

where we have used the following cancellations

ˆ
T2

∇ϕ ·udx+
ˆ
T2

divu ·ϕdx= 0.

For the last two terms on the left hand side of (3.50), we get by integration by parts and (1.4)
that

−
ˆ
T2

div (µ̄(ρ)∇u) ·udx=
ˆ
T2

µ̄(ρ)∇u ·∇udx⩾ c−1
0 µ∥∇u∥2L2 , (3.51)

−
ˆ
T2

∇
(
λ̄(ρ)divu

)
·udx=

ˆ
T2

λ̄(ρ)divu · divudx⩾ c−1
0 (λ+µ)∥divu∥2L2 . (3.52)

Next, we shall estimate each term on the right hand side of (3.50). First, it follows from integ-
ration by parts and the Hölder inequality that

∣∣∣ˆ
T2

f2 ·ϕdx
∣∣∣⩽ 3c−1

0 µ

16
∥∇u∥2L2 +C

(
∥∇u∥L∞ + ∥b∥L∞ + ∥b∥2L∞

)
∥ϕ∥2L2

⩽ 3c−1
0 µ

16
∥∇u∥2L2 +C

(
∥(u,b)∥H3 + ∥b∥2H3

)
∥ϕ∥2H3 . (3.53)
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Thanks to lemma 2.5, the Hölder inequality and the Young inequality, we have∣∣∣ˆ
T2

u ·∇u ·udx
∣∣∣⩽ C∥∇u∥L∞ ∥u∥2L2 ,

∣∣∣ˆ
T2

I(a)∇ϕ ·udx
∣∣∣⩽ C∥I(a)∥L∞ ∥∇ϕ∥L2 ∥u∥L2

⩽ c−1
0 µ

8
∥u∥2L2 +C∥a∥2L∞ ∥ϕ∥2H1 ,

⩽ c−1
0 µ

8
∥∇u∥2L2 +C∥a∥2L∞ ∥ϕ∥2H1 ,∣∣∣ˆ

T2

((∇I(a))∇u+(∇I(a))divu) ·udx
∣∣∣⩽ c−1

0 µ

8
∥∇u∥2L2 + ∥∇a∥2L∞ ∥u∥2L2

from which we get

∣∣∣ˆ
T2

f1 ·udx
∣∣∣⩽ 3c−1

0 µ

8
∥∇u∥2L2 +C∥a∥2H3 ∥(u,ϕ)∥2H3 . (3.54)

Inserting (3.53), (3.54) into (3.50) and using (3.51), (3.52), we arrive at a basic energy
inequality

1
2
d
dt

∥(ϕ,u)∥2L2 +
5c−1

0 µ

8
∥∇u∥2L2 +(λ+µ)∥divu∥2L2

⩽ C
(
∥(u,b)∥H3 + ∥(p,b)∥2H3

)
∥(ϕ,u)∥2H3 . (3.55)

Next, we are concernedwith the higher energy estimates. Applying∇s with s= 1,2,3 to (3.49)
and then taking L2 inner product with (∇su, 1

γ+1∇
sϕ) yield

1
2
d
dt

∥∥∥∥(∇su,
1

γ+ 1
∇sφ

)∥∥∥∥2
L2
−
ˆ
T2

∇sdiv (µ̄(ρ)∇u) ·∇sudx−
ˆ
T2

∇s∇
(
λ̄(ρ)divu

)
·∇sudx

=

ˆ
T2

∇sf1 ·∇sudx+
1

γ+ 1

ˆ
T2

∇sf2 ·∇sφdx. (3.56)

The last two terms on the left hand side of (3.56) can be dealt from (3.14) that

1
2
d
dt

∥∥∥∥(∇su,
1

γ+ 1
∇sϕ

)∥∥∥∥2
L2
+ c−1

0 µ
∥∥∇s+1u

∥∥2
L2
+ c−1

0 (λ+µ)∥∇sdivu∥2L2

⩽ C∥p∥2H3 ∥u∥2H3 +C
ˆ
T2

∇sf1 ·∇sudx+C
ˆ
T2

∇sf2 ·∇sϕdx. (3.57)

We now estimate successively terms on the right hand side of (3.57). We first get by a similar
derivation of (3.47) that

ˆ
T2

∇sf1 ·∇sudx⩽ c−1
0 µ

16
∥∇u∥2H3 +C∥u∥H3 ∥u∥2H3 +C

(
∥ϕ∥2H3 + ∥u∥2H3

)
∥p∥2H3 . (3.58)
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For the first term in f 2, we get by a similar derivation of (3.18) that

ˆ
T2

∇s (u ·∇ϕ) ·∇sϕdx⩽ ∥u∥H3 ∥ϕ∥2H3 . (3.59)

For the second term in f 2, it follows from lemma 2.3 that

ˆ
T2

∇s (ϕdivu) ·∇sϕdx⩽ C(∥divu∥L∞∥ϕ∥Hs + ∥divu∥Hs∥ϕ∥L∞)∥∇sϕ∥L2

⩽ c−1
0 µ

16
∥∇u∥2H3 +C

(
∥u∥H3 + ∥ϕ∥2H3

)
∥ϕ∥2H3 . (3.60)

Similarly,

ˆ
T2

∇s (bdivu) ·∇sϕdx⩽ C(∥divu∥L∞∥b∥Hs + ∥divu∥Hs∥b∥L∞)∥∇sϕ∥L2

⩽ c−1
0 µ

16
∥∇u∥2H3 +C∥b∥2H3 ∥ϕ∥2H3 , (3.61)

ˆ
T2

∇s
(
b2divu

)
·∇sϕdx⩽ C

(
∥divu∥L∞∥b2∥Hs + ∥divu∥Hs∥b2∥L∞

)
∥∇sϕ∥L2

⩽ c−1
0 µ

16
∥∇u∥2H3 +C

(
1+ ∥b∥2H3

)
∥b∥2H3 ∥ϕ∥2H3 . (3.62)

Collecting (3.59)–(3.62), we can get

ˆ
T2

∇sf2 ·∇sϕdx⩽ 3c−1
0 µ

16
∥∇u∥2H3 +C

(
∥u∥H3 + ∥ϕ∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 .

(3.63)

Plugging (3.58) and (3.63) into (3.57) and combining with (3.55), we arrive at the desired
estimate (3.48). This completes the proof of lemma 3.2.

3.4. Dissipation estimates for (φ,u)

Next, we find the hidden dissipation of the unknown good function ϕ.

Lemma 3.3. Let (p,u,b) ∈ C([0,T];H3) be a solution to the system (3.3), there holds

1
2
d
dt

∥(ϕ,u,G)∥2H3 +
γ+ 1
4ν

∥ϕ∥2H3 +µ∥∇u∥2H3 +
ν

4
∥∇G∥2H3

⩽ C
(
∥(p,u)∥2H3 + ∥u∥H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)(
∥ϕ∥2H3 + ∥∇u∥2H3

)
. (3.64)

Proof. Define

f3
def
= −u ·∇u+ I(a)∇ϕ− I(a)(µ∆u+(λ+µ)∇divu) ,
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we can transform (3.49) into the following form{
∂tϕ+(γ+ 1)divu= f2,

∂tu−µ∆u− (λ+µ)∇divu+∇ϕ= f3.
(3.65)

Denote

G def
= Qu− 1

ν
∆−1∇ϕ. (3.66)

Then, we find out that G satisfies

∂tG− ν∆G=
γ+ 1
ν

Qu+Qf3 +
1
ν
∆−1∇f2.

For s= 0,1,2,3, applying∇s to the above equation, and taking the L2-inner product with∇sG
give

1
2
d
dt

∥∇sG∥2L2 + ν
∥∥∇s+1G

∥∥2
L2

⩽ C
ˆ
T2

∇sQu ·∇sGdx+C
ˆ
T2

∇s−1f2 ·∇sGdx+C
ˆ
T2

∇sQf3 ·∇sGdx. (3.67)

For s= 0, we get by the Young inequality and the Poincaré inequality that

1
2
d
dt

∥G∥2L2 + ν ∥∇G∥2L2

⩽ C
ˆ
T2

Qu ·Gdx+C
ˆ
T2

∆−1∇f2 ·Gdx+C
ˆ
T2

Qf3 ·Gdx

⩽ ν

2
∥G∥2L2 +C∥u∥2L2 +C

∥∥∆−1∇f2
∥∥2
L2
+C∥f3∥2L2

⩽ ν

2
∥∇G∥2L2 +C∥u∥2H2 +C∥f2∥2H1 +C∥f3∥2H2 ,

which implies that

1
2
d
dt

∥G∥2L2 +
ν

2
∥∇G∥2L2 ⩽ C∥u∥2H2 +C∥f2∥2H1 +C∥f3∥2H2 . (3.68)

For s= 1,2,3, with the aid of the Young inequality, we deduce from (3.67) that

1
2
d
dt

∥∇sG∥2L2 +
ν

2

∥∥∇s+1G
∥∥2
L2
⩽ C

(∥∥∇s−1Qu
∥∥2
L2
+
∥∥∇s−2f2

∥∥2
L2
+
∥∥∇s−1f3

∥∥2
L2

)
⩽ C∥u∥2H2 +C∥f2∥2H1 +C∥f3∥2H2 . (3.69)

Combining (3.68) with (3.69) and using (3.46), we get for s= 0,1,2,3 that

1
2
d
dt

∥∇sG∥2L2 +
ν

2

∥∥∇s+1G
∥∥2
L2
⩽ C

(∥∥∇s−1Qu
∥∥2
L2
+
∥∥∇s−2f2

∥∥2
L2
+
∥∥∇s−1f3

∥∥2
L2

)
⩽ C∥∇u∥2H3 +C∥f2∥2H1 +C∥f3∥2H2 . (3.70)

By using the fact

divQu= divu,
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we infer from (3.66) and the first equation in (3.49) thatϕ satisfies a damped transport equation

∂tϕ+
γ+ 1
ν

ϕ=−(γ+ 1)divG+ f2.

For the above equation, we get by a similar derivation of (3.70) that

1
2
d
dt

∥∇sϕ∥2L2 +
γ+ 1
ν

∥∇sϕ∥2L2 =−(γ+ 1)
ˆ
T2

∇sdivG ·∇sϕdx+
ˆ
T2

∇sf2 ·∇sϕdx.

By the Young inequality, there holds∣∣∣∣−(γ+ 1)
ˆ
T2

∇sdivG ·∇sϕdx

∣∣∣∣⩽ C∥∇sdivG∥L2 (γ+ 1)∥∇sϕ∥L2

⩽ γ+ 1
2ν

∥∇sϕ∥2L2 +Cν
∥∥∇s+1G

∥∥2
L2
. (3.71)

The second term on the right hand side of the above equality can be bounded the same as (3.63)

ˆ
T2

∇sf2 ·∇sϕdx⩽ 3c−1
0 µ

16
∥∇u∥2H3 +C

(
∥u∥H3 + ∥ϕ∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 .

which combines (3.71) implies that

1
2
d
dt

∥∇sϕ∥2L2 +
γ+ 1
2ν

∥∇sϕ∥2L2 ⩽
3c−1

0 µ

16
∥∇u∥2H3 +Cν

∥∥∇s+1G
∥∥2
L2

+C
(
∥u∥H3 + ∥ϕ∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 .

(3.72)

Multiplying (3.70) by a suitable large constant and then adding to (3.72) lead to

1
2
d
dt

∥(ϕ,G)∥2H3 +
γ+ 1
4ν

∥ϕ∥2H3 +
ν

4
∥∇G∥2H3

⩽ 3c−1
0 µ

16
∥∇u∥2H3 +C∥∇u∥2H3 +C∥f2∥2H1 +C∥f3∥2H2

+C
(
∥u∥H3 + ∥ϕ∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 . (3.73)

Using the fact that H2(T2) is an Banach algebra, the nonlinear terms in f2, f3 can be estimated
as follows

∥f2∥2H1 ⩽ C∥u ·∇ϕ∥2H1 + ∥ϕdivu∥2H1 +C∥bdivu∥2H1 +
∥∥b2divu∥∥2

H1

⩽ C∥u∥2H3 ∥ϕ∥2H3 +C∥ϕ∥2H3 ∥∇u∥2H3 +C∥b∥2H3 ∥∇u∥2H3 + ∥b∥4H3 ∥∇u∥2H3

⩽ C∥u∥2H3 ∥ϕ∥2H3 +C
((

1+ ∥b∥2H3

)
∥b∥2H3 + ∥ϕ∥2H3

)
∥∇u∥2H3 , (3.74)
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∥f3∥2H2 ⩽ C∥u∥2H2 ∥∇u∥2H2 +C∥a∥2H2 ∥∇ϕ∥2H2 +C∥a∥2H2 ∥∇u∥2H3

⩽ C∥(p,u)∥2H3 ∥∇u∥2H3 +C∥p∥2H3 ∥ϕ∥2H3 . (3.75)

Inserting (3.74) and (3.75) into (3.73) leads to

1
2
d
dt

∥(ϕ,G)∥2H3 +
γ+ 1
4ν

∥ϕ∥2H3 +
ν

4
∥∇G∥2H3

⩽
(
3c−1

0 µ

8
+C

)
∥∇u∥2H3 +C

(
∥(p,u,ϕ)∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥∇u∥2H3

+C
(
∥u∥H3 + ∥(p,u,ϕ)∥2H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)
∥(ϕ,u)∥2H3 . (3.76)

Thus, multiplying (3.48) by a suitable large constant and then adding to (3.76), we can
finally get that

1
2
d
dt

∥(ϕ,u,G)∥2H3 +
γ+ 1
4ν

∥ϕ∥2H3 +µ∥∇u∥2H3 +
ν

4
∥∇G∥2H3

⩽ C
(
∥(p,u,ϕ)∥2H3 + ∥u∥H3 +

(
1+ ∥b∥2H3

)
∥b∥2H3

)(
∥ϕ∥2H3 + ∥∇u∥2H3

)
, (3.77)

where we have used (3.46) once again. In view of

ϕ = p+
1
2

(
b2 + 2b

)
,

one has

∥ϕ∥2H3 ⩽ C∥p∥2H3 +C
(
1+ ∥b∥2H3

)
∥b∥2H3

fromwhich we can arrive at the desired estimate (3.64). Consequently, this completes the proof
of lemma 3.3.

3.5. Bootstrap argument

In this section, we complete the proof of theorem 1.1. Under the assumption of (3.2), we infer
from (3.64) that

1
2
d
dt

∥(ϕ,u,G)∥2H3 +
γ+ 1
4ν

∥ϕ∥2H3 +µ∥∇u∥2H3 +
ν

4
∥∇G∥2H3

⩽ Cδ
(
δ3 + δ+ 1

)
∥ϕ∥2H3 +Cδ

(
δ3 + δ+ 1

)
∥∇u∥2H3 . (3.78)

Denote

E (t) = ∥(ϕ,u,G)∥2H3

and

D (t) =
γ+ 1
4ν

∥ϕ∥2H3 +µ∥∇u∥2H3 +
ν

4
∥∇G∥2H3 .
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Then, choosing δ small enough in (3.78) implies that

d
dt

E (t)+
1
2
D (t)⩽ 0. (3.79)

It’s straightforward to check that

E (t)⩽ CD (t)

from which we get

d
dt

E (t)+ cE (t)⩽ 0.

Solving this inequality yields

E (t)⩽ Ce−ct. (3.80)

Hence, we get

ˆ t

0

(
∥ϕ(τ)∥H3 + ∥u(τ)∥H3 + ∥u(τ)∥2H3

)
dτ ⩽ C. (3.81)

Due to c0 ⩽ ρ⩽ c−1
0 , we have

c̃0 ⩽
1

1+ p
⩽ (c̃0)

−1
.

Hence, there holds

1
2
∥p∥2H3 −

1
2γ

ˆ
T2

p
1+ p

(
∇3p

)2
dx⩾ C∥p∥2H3

from which and the lemma 3.1, we have

∥(p,u,b)∥2H3 ⩽ ∥(p0,u0,b0)∥2H3 +C
ˆ t

0

(
1+ ∥p∥2H3

)
∥u∥H3 ∥p∥2H3 dτ

+C
ˆ t

0

(
∥u∥H3 + ∥u∥2H3 + ∥ϕ∥2H3

)
∥(p,u,b)∥2H3 dτ. (3.82)

Thus, exploiting the Grönwall inequality to (3.82) and using (3.81) imply that

∥(p,u,b)∥2H3 ⩽ C∥(p0,u0,b0)∥2H3 exp

{
C
ˆ t

0

((
1+ ∥p∥2H3

)
∥u∥H3 + ∥u∥2H3 + ∥ϕ∥2H3

)
dτ

}
⩽ Cε2.

Taking ε small enough so that Cε⩽ δ/2, we deduce from a continuity argument that the local
solution can be extended as a global one in time. This completes the proof of our main theorem.
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