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Abstract. Several fundamental problems on the 2D magnetohydrodynamic (MHD) equations with only magnetic diffusion
(no velocity dissipation) remain open, especialy in the case when the spatial domain is the whole space R2. This paper
establishes that, near a background magnetic field, any fractional dissipation in one direction in the velocity equation would
allow us to establish the global existence and stability for perturbations near the background. The magnetic diffusion here
is not required to be given by the standard Laplacian operator but any general fractional Laplacian with positive power.
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1. Introduction

We start with the background information. The magnetohydrodynamic (MHD) system governs the motion
of electrically conducting fluids in a magnetic field such as plasmas, liquid metals and electrolytes, and has
a wide range of applications in astrophysics, geophysics, cosmology and engineering (see, e.g., [6,14,45]).
The MHD system is a combination of the Navier—Stokes equations of fluid dynamics and Maxwell’s
equations of the electromagnetism. The coupling and interaction between the magnetic field and the
fluid enables the MHD system to model many more phenomena than the Navier-Stokes and the Euler
equations.

Mathematically the coupling makes it much more challenging to fully understand the MHD systems,
even in the 2D case. One significant example is the 2D resistive MHD equations without the velocity
dissipation

Ou+u-Vu=—-Vp+b-Vb, xR t>0,

Ob+u-Vb=Ab+b-Vu, (1.1)
Vou=V-b=0, :
u(z,0) =ug (z), b(z,0)=bo (),

where u = u (z,t) denotes the fluid velocity, b = b (z,t) the magnetic field, and p = p (x,t) the pressure.
(1.1) arises in the study of magnetic reconnection and magnetic turbulence, in which the fluid viscosity
can be ignored while the role of resistivity is important (see [45]).

The fluid velocity u in (1.1) obeys the 2D Euler equation with the Lorentz forcing term b - Vb.
Even though the regularity problem on the 2D Euler is well understood, many fundamental problems
on the MHD system (1.1) remain open. Among them is the global well-posedness problem for general
large initial data. There are substantial developments on this problem (see, e.g., [9-12,16-18,22,29—
31,37,38,40,55,59,60,62,64,65]). We now know that the global regularity problem on (1.1) is actually
critical. This can be understood from two aspects. If the Laplacian dissipation Ab in (1.1) is replaced by
the hyper-dissipation —(—A)”b with any 3 > 1, then the resulting system is globally well-posed [12,31]. If
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we keep Ab in (1.1) but add fractional dissipation —(—A)%u or even logarithmic dissipation — log(2—A)u,
then the slightly dissipated MHD system always possesses a unique global classical solution [22,60,64].
These results illustrate the criticality of the dissipation Ab. The global regularity problem on (1.1) has
also been attempted from the uniqueness of weak solutions. (1.1) always possesses a global H!-weak
solution (see, e.g., [11,37]). However, the uniqueness of the H'-weak solutions remains an open problem.

When the initial datum (ug, by) is assumed to be small, the only global existence and regularity result
on (1.1) is for the periodic domain T?. Assuming the mean of by is zero on T2, Wei and Zhang [53] were
able to obtain the global solution in the Sobolev setting H*(T?). Later Ye and Yin [63] reduced the
regularity assumption to the Sobolev space H*®(T?) with s > 2. We remark that the Sobolev norms of the
solutions obtained in [53] and [63] do not admit uniform upper bounds. Therefore, the stability problem
(1.1) near the trivial solution remains open even in the periodic setting.

When the spatial domain is the whole space R?, (1.1) with even small initial data is not known to be
globally well-posed, let alone the stability. The Poincare type inequalities in the periodic setting are no
longer valid in R2. Therefore the small data global well-posedness problem on (1.1) in R? is widely open.

Motivated by the observed physical phenomenon that the magnetic field can stabilize the electri-
cally conducting fluids (see, e.g., [1-3,14,23,24,34]), substantial investigations have been developed on
the global well-posedness and stability problems on the MHD equations near a background magnetic
field (see, e.g., [4,5,7,8,13,15,19-21,25-28,32,33,35,36,39,41,43,44,46-48,50,52-54,56-58,66—68]). For
the periodic setting T? and under suitable symmetry assumptions, Zhou and Zhu [68] obtained the sta-
bility of (1.1) near a background magnetic field. Very recently Lin, Suo and Wu solved the stability
problem when the spatial domain is T x R [49].

When the spatial domain is R?, the stability problem on (1.1) near a background magnetic field
remains open. This work is partially motivated by the intention to understand this difficult problem. We
will show that, near any background magnetic field, adding fractional dissipation in only one direction, say
v03°u with a > 0 to the velocity equation in (1.1), would allow us to obtain the global well-posedness and
stability. Furthermore, we can replace the magnetic diffusion Ab by any fractional Laplacian dissipation
—(=A)Pb with 3 > 0. This result suggests that the stability problem on (1.1) near a background magnetic
field is critical. Therefore, this paper examines the following 2D incompressible fractional MHD system,

Ou+u-Vu+VP=vd3*u+ B-VB, z€R? t>0,
OB +u-VB+n(—A)PB=B-Vu, (1.2)
V-u=V-B=0,

where 0 < o < 1,0 < 3<1,v >0 and > 0 are real parameters. The fractional partial operator 93¢
and the fractional Laplacian operator (—A)? are defined by their Fourier transforms,

DOfE) = F(©),  (CAPFE =€ F(©).

Clearly, (1.2) admits a special class of steady-state solutions represented by the background magnetic
field. Attention is focused on the steady-state solution

u®(z) = (0,0), BO(x)=e; =(1,0).
The perturbation (u,b) around this steady solution with b = B — e; obeys
Ou+u-Vu+ VP =v03%u+b-Vb+01b, z€R? t>0,
b +u-Vb+n(—=A)’b=0b-Vu+ du,
V.u=V-b=0,
u(z,0) = up(x), b(x,0) = bo(x).

(1.3)

We establish that any small initial perturbation (ug,bo) in H?(R?) leads to a unique global solution
(u,b) to (1.3), which remains small and comparable to the size of the initial perturbation for all time.
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Theorem 1.1. Letn, v >0 and 0 < o, 8 < 1. Consider (1.3) with the initial data (ug,bo) € H3(R?), and
V -ug =V by =0. Then there exists a constant € = £(v,n) > 0 such that, if
luollzzs + llboll s < e,

then (1.3) has a unique global classical solution (u,b) satisfying, for any t > 0,
t
[u(®)l[7s + [16(2) 1172 +/O (Iorull e + (185wl Fa + |A7B][7s) dr < C€?

for some universal constant C' > 0.

We outline the key points in the proofs of Theorem 1.1. The main difficulty in the proof of Theorem 1.1
is due to the lack of the horizontal dissipation in the velocity equation. In fact, the 2D Navier—Stokes
equations with dissipation in just one direction

Ou+u-Vu+VP =vds%, rcR?*t>0
is not known to be stable near the trivial solution even when a = 1. Certainly we need to fully exploit
the stabilizing effect of the magnetic field. The coupling of u and b in (1.3) leads to the wave structure.
This can be explained as follows. Applying the Helmholtz-Leray projection operator
P:=1-VA~'V.

to the velocity equation in (1.3), we eliminate the pressure to obtain

Ou = vd2u+ b+ N1, Ny =P(—u-Vu+b-Vb). (1.4)
By separating the linear terms from the nonlinear ones in (1.3), the equation of b can be written as

b = —n(=A)Pb + dyu + Ny, Ny =—u-Vb+b-Vu. (1.5)
Thus, (1.3) can be written as

Opu = v03%u + O1b + Ny,

Ob = —n(=A)°b + dyu+ Ny,
V-u=V-b=0,

u(z,0) = ug(x), b(x,0) = by(x).

Differentiating (1.4)and (1.5) in time and making several substitutions, we find

{aﬁu — (D2 — (—A)P)dyu — (Dryu + qrdRe (—A)Pu) = N,
Db — (V053 —n(=A)?)0b — (D11b + nrd3*(—A)Pb) = Ny,
where N3 and Ny are given by

N3 = (8; + n(—A)P)N, + 01 No, Ny = (0y — vO2*)Ny + 01 Ny.

Both u and b are found to satisfy nonhomogeneous wave type equations with exactly the same linear parts.
Moreover, (1.6) exhibits much more regularization than its original counterpart in (1.3). In particular,
the term 011w in (1.6) provides the desired stabilizing effect on the velocity field. The appearance of this
term is originated from the background magnetic field in the x;-direction.

However, this smoothing and stabilizing effect in z; direction is not as strong as what the standard
dissipation term provides. An explicit computation reveals that this smoothing effect is actually one-
derivative-order lower. This is a weak type regularization. One way to take advantage of this weak
stabilizing effect is to design a suitable energy functional, which consists of two pieces. Since we are
seeking solutions in H3, the first piece is defined in terms of the H3-norm of (u,b) together with the
time-integral part from the dissipation terms. More precisely, F(t) is defined to be

t t
Ey(t) = sup ([u(®)]lZs + [B(0)12) + 20 / |68 u(r)||2sdr + 21 / IAPB(r) 20

0<r<t
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The second piece takes into account of the weak dissipation, namely

Balt) = [ 100t e

We combine these two pieces to define the energy functional

E(t) = E1(t) + Ex(t).
Our main efforts are devoted to proving that, for any ¢ > 0,

E(t) < E(0) + CE(t)*. (1.7)
Once we have (1.7), the bootstrapping argument (see, e.g., [51]) implies that if
luollzzs + lbollms <& or  E(0) <&,

then there exists a constant C' > 0 such that

E(t) < Ce*, Vt>0.

In order to prove (1.7), we need to estimate Ey(t) and E2(t). These are achieved in the following two
propositions.

Proposition 1.2. For a positive constant C > 0 (depending on v and 1), we have
3 3
Ey(t) < E(0) + CEZ(t) + CEZ (t).

Proposition 1.3. For a positive constant C > 0 (depending on v and 1), we have

N oo

Es(t) < CEL(0) + CEL(t) + CEZ (t) + CE; (t).

The smoothing and stabilizing effect reflected in the wave structure (1.6) is used in the proof of
Proposition 1.3. The term —d;1u in the wave equation allows us to gain the time integrability of |01 u||..
A quick way to extract from the wave equation this desired dissipative effect is through energy estimates
and a mixed L?-inner product. When we take the time derivative of the inner product (b, 9 u), we have

d
%(b, 6111,) = (8tb, 61’(1,) + (b, &ﬁlu)
= (O1u, O1u) + (b, 011b) + other terms
= ||01u|%2 + (b, D11b) + other terms.
Since (O1u, O1u) = —(u, d11u), the process above is pretty much like energy estimates with the term 011u
in the wave equation. There are more elaborated ways to use the wave structure. When we want to obtain

decay rates, we would need to solve the linear wave equation and represent the nonlinear equation in an
integral form.

By the equation for the magnetic field
Ou =0 +u-Vb+n(—A)°b—b-Vu,
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t
we can convert the estimate of Fy := / |01u]|32 into bounding the terms on the right-hand side,
0

t t t
/ lO1ul|32 dr = / /81u - O¢b dadr + / /81u ~u - Vb dedr
0 0 0
t t
+n/ /alu-(—A)ﬁb d:ch—/ /81u~b-Vu dxdr
0 0

t t
+ / /Valu - 0:Vb dxdr + / /31Vu -V(u-Vb) dedr
0 0
t t
+n/ /alvu-V(—A)ﬁb dxdT—/ /81Vu-V(b-Vu) drdr
0 0
t t
+ / /Aalu - Oy Ab dxdT + / /81Au - A(u - Vb) dedr
0 0

t i
+n/ /81Au~A(—A)5b dxdT—/ /81Au~A(b-Vu) dxdr.
0 0

More details are presented in Sect. 4.

We remark that, if we replace 92%u by 0?u, we won’t be able to establish the stability. The back-
ground magnetic field (1,0) can only create a stabilizing and smoothing effect in the x-direction. As a
consequence, the velocity equation would only have dissipation in the 21 direction. It is a well-known open
problem whether the 2D Navier-Stokes with dissipation in one direction in R? is stable in the Sobolev
setting.

The rest of the paper is organized as follows. Assuming (1.7), we prove Theorem 1.1 in Sect. 2. Propo-
sition 1.2 and Proposition 1.3 are proven in Sects. 3 and 4, respectively.

2. Proof of Theorem 1.1

Assume Propositions 1.2 and 1.3. This section proves Theorem 1.1. This is a consequence of applying the
bootstrapping argument.

Proof of Theorem 1.1. First of all, the local-in-time existence and uniqueness result can be established
following a similar procedure as the one for the Navier—Stokes and the Euler equations (see Pages 96-112
of the book by Majda and Bertozzi [42]). This procedure includes several standard steps such as the
existence of solutions to regularized equations, uniform bounds, application of the Aubin—Lions Lemma,
convergence to the original equation and regularity estimates. Even in the case of no dissipation, the
solution can be shown to be continuous in time. A detailed implementation of this procedure on the
Navier—Stokes and the Euler equations can be found in [42]. Therefore, for some T' > 0, we have a local
solution (u, b) to (1.3) with

(u,) € C([0,T); H*(R?)).

It then suffices to obtain a global uniform bound on (u,b).
By Propositions 1.2 and 1.3, we have

E) < E(0) + CLE2 (1) + CoE3 (1), (2.1)
By < C3E(0) + CoEL(t) + Cs Ef (t) + Co B3 (1), (2.2)

T Birkhauser
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where C; through Cg are positive constants depending on v and 7. Adding (2.1) to a suitable multiple
of (2.2) yields

1 3 3
4
03 1 05 3 06 3
S B(0)+-E 5 g2 S p:
+ 204 (0) + 2 1(t) 204 1 (t) + 204 2 (t)7
or
1 1 Cg C5 3 06 3
— - < 2 v 2 Y 2 .
2E1 + 204E2 < <1 + 204) E(0) + <01 + 204) Ez(t)+ <Cg + 204) E; (1)
Therefore, E(t) := E1(t) + Eo(t) satisfies

E(t) < CLE(0) + CLE> () (2.3)

for two constants 51 and 52. An application of the bootstrapping argument to (2.3) leads to the desired
upper bound in Theorem 1.1. Indeed, let (ug, by) to be sufficiently small such that E(0) satisfies

1
E(0) = ||(ug, bo)||%s < —=——= :=£2. 2.4
(0) = (o, bo)ll = 165, 02 (2.4)
We make the ansatz that, for ¢ > 0,
1
E(t) < —. (2.5)
4C3

It then follows from (2.3) that

~ ~ 1 ~
E(t) < C1E(0) + CQE E({) or E(t) <2C1E(0).
2
By (2.4), for all t > 0,

~ 1
E(t) < 20,2 = —,
=20 = 5

2
which is just half of the bound in the ansatz (2.5). The bootstrapping argument then asserts that this
bound actually holds for all ¢ > 0. Thus, we obtain the desired global uniform on ||(u(t),b(t))||gs. This
completes the proof of Theorem 1.1. O

3. Proof of Propostion 1.2

This section is devoted to the proof of Propostion 1.2. We need several basic tool lemmas. The first lemma
presents an 1D Sobolev inequality involving fractional derivatives. This 1D inequality is at the core of
many higher dimensional anisotropic Sobolev inequalities. The proof of this lemma can be found in [61].
Lemma 3.1. Assume that f is in L41(R),

1011 1011
1—;(5—;)| s(3—3)

[flla@) < Cllfllp2iy” 1A Fll o)
) < 1.

where 2 < g < oo and %(

1_1
2 q

The second lemma is an anisotropic upper bound for a triple product. This inequality is a useful tool

in dealing with partial differential equations with anisotropic dissipation and allows us to selectively put
directional derivatives on the components of a triple product. It is stated and proven in [11].

Lemma 3.2. There exists a constant C > 0 such that, if f, g, Oog, h and O1h are all in L?(R?), then

1 1 1 1
/sz [fghl dz < C|Ifll2 |9l 2211029 Z2 ([Pl 2|01 Al -

) Birkhauser
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The next two lemmas recalls two standard Sobolev type inequalities in the 2D case.
Lemma 3.3. The following estimates hold when the right-hand sides are all bounded.

1 1 1 1
||fHL°°(R2) < OHfoz(Rz)||31f||22(R2)||32f|‘22(R2)||612f||22(]g2)~
Consequently,
5 1o ek 5 1o e
[fllzee < ClFN g IO 1 fras I fllLee < ClFIE 10211 7o
Lemma 3.4. Assume that f € LY(R?) with 2 < q < co. Then
2 1—2
||f||Lq(R2) < C”fHEZ(Rz)va”LZ((]IRz)-

We are ready to prove Proposition 1.2.

Proof of Proposition 1.2. Due to the equivalence of the norm ||(u,b)||gs with the norm |[|(u,b)|z2 +

| (w,b)|| gys, it suffices to bound the L? and the homogeneous H® norms of (u,b). The L*-bound follows
directly from a simple energy estimate and the divergence free condition on u and b,

t t
lu(®)ll72 + 1617 + 21//0 105 ull7> dr + 277/0 IA7b] 72 dr = [[uol72 + [Iboll7=.

To estimate the homogeneous norm ||(u, )| 55, we use the fact that the two norms ||uHH3 (B?) and

|03 u||L2(R2 + ||3§’uHL2(R2) are equivalent in the sense that

103l re + 105l Fagre) < lullys oy < 4 (103ulage) + 10Fulage) ) -

The inequalities above can be easily shown. Let @(£) denote the Fourier transform of w, namely, for any
EER?,

u(€) = / e 8y (z)d.
R2
By Plancherel’s theorem and the basic inequality

(& +6)° <4 +¢9),

we have
laliyeeey = [ PP dE = [ (6 + DPlate)ag
s [ (@ emoPdc=1 (||a%u||%2(Rz> +03ul e,

We apply 93(i = 1,2) to (1.3) and then dot with (9?u, d3b) to obtain

2 2 2
Z (107 ullZ2 +1070]72) + Y vl0fo5ulfe + Y nllof A%b|Z.

i=1 i=1

Q.‘g‘

1
2dt (3.1)

J+K+L+M+N

T Birkhauser



57 Page 8 of 20 W. Feng et al. JMFM

where

2
J = 2/5‘?816 - Pu+ 9P0u - 9}b d,
1=1
2
KZ—Z/8?<U'Vu>~6§u dz,
1=1
2
L= Z/(a?(b -Vb) — b- VD) - u dr,
1=1
2
M = —Z/a?(u-w)-afb dz,
1=1

2
N = Z/(@?(b Vu) —b-Vaiu) - 93b da.
i=1
By integration by parts, J = 0. For the term K, we split K into two terms,

K = —/3?(U-Vu) - O}u dm—/ag’(u~Vu)-8§u dx,
= K; + Ks.
We first estimate K.

K = —/8{’(u-Vu)~8fu dx

3
:—ZC:?/@fu-@f*kVu~8fu dw—/u-@fVu~8:fu dx
k=1
=K1+ K9,

where C’éc = ﬁlk), is the binomial coefficient. By Hélder’s inequality, Lemmas 3.3 and 3.4,

Kia :—3/81u-8%Vu~6?u dx—3/8%u-81Vu-8fu dw—/@f’u~Vu-6fu dx

< Ol|ovul L= [|107 Vul| 2|07 u] 2 + C| 0wl £ |01 Vul| 4|0 ]| 2
+ O Vul |0 ul 7

1/2 1/2 1/2 1/2
< Olfull s |01l 22 + Cl|O%ul| 152 102Vl o7 101 Tl 15118y V 2l 162 |0 | 2

L2
< Cllull gz 101wl

By integration by parts and the divergence free condition,

1
K1,2=—/u~8fVu-8fu dx:—i/u-V(afu)Q dz = 0.

We can rewrite Ko,

Kg:f/ﬁ'g(u~Vu)~3§u dx

3
:—ZCé“/@gu-ag’_kVu~8§u dac—/u~8§Vu-8§’u dz
k=1

=Ko1+ K.

) Birkhauser
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By integration by parts and the divergence-free condition, K3 o = 0. By Holder’s inequality, Lemmas 3.3
and 3.4,

Ky = —3/82u-8§Vu~8§u da:—S/@%u-équ-aSu da:—/agu-Vu-agu dx
< C|0yul| = |03 Vul| 2| 03wl 12 + C||O3ul| 14|02V 1 || O3 12
+ C|| V|| oo || 830 2.
< Olful| s [[0au]| 22 + Cl|03ul| 12 1025 |27 10 Vul| 1o 11825 2ul| 122 |03 | .2
< Olfull s 02|32 < Ol s | 05wl 3.
Therefore,
K < Ofull s ([|01ul|?2 + |05 ] %) (3.2)

To bound L, we decompose it into two parts,

2
L:Z(/6f(b-Vb)-8f’udm—/b-vafb~6§udx>
2
:2203/8’“b kb - &P dr

3
2203/811) IFFVb - 8udm+ZC3/82b 37*Vb - d3u dx

k=1 k=1
=L + Lo.

By Holder’s inequality, Young’s inequality, Lemmas 3.3 and refE:Sobolev,

Ly :3/alb-afvz;.a§u dx+3/afb.alvz;-a§u dx+/a§b~vz)-a§u da
< C01b]| 1< 07 Vb]| 2|03 ull 12 + C|03b] 14|01 Vb 1 | D 2
+ OV 1< 93] 2 9| 2
< C01b] g2 6] s |9l 2 + OB 07 VI 0 Vb 101 V20 105 2
+ O|[b] s || A%b| 12101 ] 12
< O]l s [ A%D] s | Ol 2 < ClUb| s (A BIIs + |Dru]372).

Similarly,

Lo :3/a2b-a§vz)-a§u dx+3/a§b-62Vb-a§u dx+/8§b~Vb-8§u da
< O)02b]| < 03Vb]| 2|83 ull 12 + C|020] 4]l 02 V]| 4 | D3| 2
+ C||VBl| = 930l 2 93wl 2
< C02b] 2 [b]| s |02 2 + Cll O3B 2293 VBII 22 02V b | 12102720 2 93 2
+ C|bl| zr= | APB]| 115 || O 122
< b 25 1A ]| s |05l s < C0l| srs (| A°D] 32 + |05 0372
Hence

L < Clbllsz= (1A"l[3s + 1105 ulFgs + |0rulF2). (3-3)

T Birkhauser
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Then we consider M,
2
M= fZ/Qf’(u'Vb) - 9% d,
i=1

z—/af(u~Vb)-8fb da:—/ag(u-Vb)~8§’b dz,
= My + Ms.

We can rewrite
3
M, = —ch/afu-af’*kvz).afb dx — /u-afvz)-afb da
k=1

=M1+ M.
By Holder’s inequality, Lemmas 3.3 and 3.4,
My = —3/alu-afvz;-a§b dx — 3/a§u-alvz)-a§b dx — /ai”u-vz)-afb dx
< O0vull =02V 12(|070]| 2 + C||0Ful| L[| 01 Vbl 14 [|07b] 2
+ C|07ul| 12 070l 22 || Vb o<
1/2 1/2 1/2 1/2
< Cl0uble lull s + ClOFull 2197 Vull 12* 101 VI 2101V 2] 12* 970 .2
+ C1010]| g2 Vbl 2 || ul 5
< Cll0ud|I e lull ms + C1010] a2 | V0| 2 ull s < ClIAZD|| sl 5.
By integration by parts and the divergence-free condition,
1
Mo = —/u-ai’w-af’b dx = —§/u-V(8fb)2 dx = 0.
To estimate My, we split it into four terms,

My = —/ag(u -Vb) - 93b dz,

3
= —ZC§/8§U-8§’ka'8§b dx — /u-a§Vb.a§b da
k=1
= My 1 + M.

Mj o = 0, due to the divergence free condition V - u = 0. By Holder’s inequality, Lemmas 3.3, 3.4 and
Young’s inequality,

My = —3/82u - 03Vb - 03b dx — 3/8§u - 0yVb - 93b dx — /Ggu Vb - 03b dx
< Cl02ull L (|05 V0| 2]|05b]| L2 + C|03ul| 4[| 02 V]| £4[|D30]| 2
+ C103ul £2(|1030]| L2 [ V0| L
< C)102l13p2l[ull 2= + Cl1O3ull 2105 Vull 271102 Vb 21929 b 12* 053 2
+ CI1bl| 113 [| APl s |05 ul| s
< C|92b|32 |ull s + +C|[b]| g3 | AP prs || 05| s
< C|l(u, b) | s (| A7D] s + 105 ul|2)-
Combining the estimates for M; and Ms, we obtain

M < Cl(u, b)ll = (IA7D] s + 105 ull3s)- (3-4)

) Birkhauser
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Now we estimate the term N,

NZ(/@f(b-Vu)ﬁfbdm/b~V8§u-8§bdm>

2
i=1

=y > c /ak O V- 07 d

i=1 k=1

V)
w

3
:Z /al b-8FVu - albdx+203/82 b- 83 *Vu - 03b du
k= k=1
= N1 + Ns.
By Holder’s inequality, Lemmas 3.3 and 3.4,
Ny :3/81b~8fVu~8fb dx+3/afb.alvu.a§b dx+/a§b~vu.afb da
< C|0nb]| = |07V ul| 12 [|07b]| 12 + C|OFD]| L4 ]|01 Vul| L1 |07D]| 2
+ OVl o= [|07b]] 7.2
< Cll0nblf3paull s + ClOTHI L2 197 Vb 291 Vel 27100V Pl |07 2
< Cl|nbl 3z lull gs < CIA"D| sl lull s
Similarly,
No < C||0sb]|Fpal|ull s < CIAD|[ps || s
Combining the estimates of N7 and N», we have
N < Cllullus [ A7B] . (3.5)
Combining the bounds in (3.2),(3.3), (3.4) and (3.5) above leads to
J+ K+ L+ M+N < Cll(u,b)] (1Al + 105 ullZs + [101ul2)-
Inserting the uppder bound for J+ K + L + M + N in (3.1) and integrating in time, we get

t t
s B2 + 20 / |08 u(r)|Zredr + 20 / IAPB(r)|2sdr
t
< (o, bo)|[2ps + C / 1 B) a5 (I A%B] 25 + 105020 + Dyl 3e)
t
< lun bl + € sup (D) / (IAPH]2 + 105 ul%e) dr

+C sup H u,b) HHJ/ |O1u|3 dr
1 3 3 3
E(O) + C’Ef (t)Ea(t) + CEf (t) < E(0)+CEZ(t)+ CE$(t).

This completes the proof of Proposition 1.2. O
4. Proof of Proposition 1.3

This section proves Proposition 1.3. As explained in the introduction, the velocity equation does not
involve dissipation in the horizontal direction. The time integral upper bound defined in Fs(t) doesn’t
follow from the velocity equation. The proof makes use of the coupling and interaction of u and b, as can

be seen from the approach of the proof.
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Proof of Proposition 1.3. To bound FEs(t), we make use of the relationship between u and b via the
equation of the magnetic field

= 0b+u-Vb+n(—=A)°b—b-Vu. (4.1)
Multiplying (4.1) with d;u in L? and integrating over R?, we have

|01ul|2 = /Blu'atb d:c+/5‘1u~u~Vb dx

+77/81u- (=A)Pb dm—/alu'b-Vu dx
Z:Ol+02+03+04.
By replacing d;u by the velocity equation in (1.3), we obtain
= %/(%u-bda:—/b-81(1/8§au+b-Vb—i—@lb—u-Vu—VP) dx

=011+0124+013+014+ 015+ O16.

O1,6 = 0 due to the divergence-free condition V - b = 0. By Hélder’s inequality, Young’s inequality and
integration by parts,

O12= —I//b . 318§“u dx = 1//316 . 8220‘u dx
< Cllo1bll 2|05 ull e < CIAD| s |05 ull s < CUIATBI s + 1105 | Fa)-
Similarly, we can bound O; 3 and O 4.
O13 = 7/b~81(b~Vb) dx:/é}‘lb-(b~Vb) dx
< O|[bl| = 1010]| .2 [IVbl| 2 < CIIb]|prs ]| A7l s,
and
0174 = —/b@fb dz:/albalb dzx
< Oorb)|72 < C’||A5bHiI3.
By integration by parts, Young’s inequality and Lemma 3.2,
O15 z/b-al(u~Vu) de = —/81b~(u~Vu) dx
1 1 1
< Cl1Obl| 2l 22 92| 2 [Vl 2 [0 Vul 2,
1 1
< ClIA%D|| s |05 ull Fys 101l e [l s
< Cllull s (A0 Fs + 105 ullFs + 101ull2)-
In a similar manner, by Lemma 3.2 and Young’s inequality,

ng/alu-u-Vbdx

1 1 1 1
< Cll01ullL2 [Vl 721102V 22 |ull 72 (|01l 72
1 3 1 1
< ClIA%D| frs l|Ovull 7z el s 101 2o
< Cll(u, b) |3 (17D Fps + 1 Ovua]|Fy2)-
By Holder’s inequality and Young’s inequality,

1
O3 = n/81u- (=A)7b dz < C|dvull 2| A”bl| 2 < 3llorullze + C||A%D]| 775

) Birkhauser
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By Lemma 3.2 and Young’s inequality,

O4=—/Blu~b-Vudx

1 1 1 1
< Cl|Orul|2][bll 2219201 £2 [Vl £ 101 V| 2
3 1 1 1
< Cll0vull 72 A"l 5o 101 s el s
< Cll(u, b)llzs (IA7D]1 s + 101l )-

This completes the L2-estimate of d;u.
We turn to the H'-norm. Applying V to (4.1) and multiplying it by Vdu in L2, we have

VOLul|?: = /valu-atvz) dm+/va1u-V(u-Vb) dx

—I—n/V@lu-V(—A)ﬂb dx—/Valu-V(eru) dx
=P +P+P+ Py

To bound Pj, we use the integration by parts and the velocity equation in (1.3) to obtain
d
P = %/vaw-w dm—/Vb~V81(l/8§o‘u+b-Vb+81b—u-Vu—VP) dx
=P 1+Po+Pis+Pia+Ps+ Pig.

Py g = 0 due to the divergence free condition V - b = 0. To bound P; 2, we use integration by parts,
Holder’s inequality and Young’s inequality,

Pio= 71//Vb . V@lﬁgau dx = 1//81Vb . agaVu dx

< Cll01bl| 105wl 2 < ClIAD]| 13|05 wl s
< C(IA%b]Fs + 105 ull3s)-

Based on Lemma 3.2 and integration by parts, we have
Pi3= —/Vb -1V (b-Vb) dx = /81Vb -V(b-Vb) dx
:/31Vb~Vb-Vbdz+/alw~b.v2bdx

1 1 1 1

< CllOuVOl| L2 [V 221101 VOl 221V 72102 V0] 72

1 1 1 1

+ Cll01Vb] 2| VZ0 22 102V b 2a 1B 22 |91l
< C|lb] s [|A7b s,

and by integration by parts and Holder’s inequality,

Pyy= f/Vb~Vafb dr = /alvz).alw dx

< Cl|onb||7n < C|IA"D]|Fs.
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By integration by parts, Young’s inequality and Lemma 3.2,

P1,5=/Vb-81V(u-Vu) dxz—/(?lVb-V(u-Vu) dx
:7/31Vb~Vu~Vudx7/61Vb~u~V2udx

1 1 1
< Cl|0r Vbl [Vl 22 102Vl 2 [Vl 221101 Vul | 2,
1 1 1 1
+ ClOV Vbl 2 [[ul 22 102l 2 IV 2ul 22 101 V2l 7
1 1
< C|IA%D]| s |05 ull3ys [|0vul 72 lful s
< Cllull as (1A7D] s + 105 ullFs + 101ull2).
For P, by Lemma 3.2 and Young’s inequality,
P, = /V@lu -V(u-Vb) dz
:/V81u~Vu-Vbdm+/V81u~u-V2bdx
1 1 1 1
< ClorVul 2 [Vl 22102 V0 72 [ Vull 22 101 Vul| 2.
+ C|0yVul| 2l 22 | 9rull [ V]| 2. 02920 22
1 3 1 1
< C|IAPbl| Fps 1Orul 7z lull 25 11611 7o
< Cl(w, b) | = (|A7D] Fa + 101 Fpe).-
Similarly, P3 and P, can be estimated by Holder’s inequality and Young’s inequality,
1
Py = n/51Vu - V(=2)%b da < C||01Vul| 12| A%b] g2 < gH@MIfqz +C|AD s
By Lemma 3.2, integration by parts and Young’s inequality,

P4:*/81VU~V(Z7~VU) dx:/almb.vfudx

1 1 1 1
< CllovAul| 2 [1bl| 22 19201 72 [[Vul 72 01 Vil 7.
3 1 1 1
< Cllovull 2 A7l 3rs 10] s el s
< Ol (u, b)ll = (101 Fs + |01l F2 )

This completes the H'-estimate of 0.
Next we proceed to bound the H2-norm. Applying A to (4.1) and multiplying it by Adyu in L%, we
have

|Ad 3 = /A@lu-atAb dx+/A81u-A(u-Vb) dx

+U/A81U'A(—A)ﬁb dx—/A81u~A(b-Vu) dx

=Q1+ Q2+ Q3+ Qu
By integration by parts and the velocity equation in (1.3),

Q1:%/Aalu-Abdw—/Ab-A@l(uagau—&—b-Vb—&-@ﬂ)—u-Vu—VP) dx

=Q1+ Qi+ Qi3+ Q14+ Q15+ Qe
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Q1,6 = 0 because of the divergence-free condition V - b = 0. We use integration by parts, Holder’s

inequality and Young’s inequality,
Q12 = —I//Ab . A@lagau dr = V/(?lAb . 8%“Au dx
< Cll01bll 21|05 ul s < ClIAD|| g3 ]|05 wll s
< C(IA%b]1Fs + 105 ulls)-
By integration by parts and Lemma 3.2,
Qi3 = —/Ab-alA(b-Vb) dx = /81Ab-A(b-Vb) dx

:/81Ab~Ab-Vbdx+2/61Ab-Vb-V2bdx+/81Ab-b-VAbdx
:/81Ab~Ab~Vbda:+2/81Ab-Vb-V2bdx

1 1 1 1
< C[|O1Ab] 2 [|Ab]| 22 (|01 Ab|| 2211 V]| 221102V 2
1 1 1 1
+ Cl01Ab] 12 V20| 72102 V2bl| 721 VDI 721101 Vb 7.2
+ C|b[| o 01 A0][72 + Clb2]| o< |01 Abl| 12 [| 920 2
< Clb] s | A7 Fys-
By integration by parts and Holder’s inequality,
Q4= —/Ab-A@fb dr = /81Ab-81Ab dx
< C||01b)|F2 < C’||A5b\|§{3.
We use Young’s inequality, integration by parts, Lemma 3.2 and Lemma 3.3 to obtain,

Q15 = /Ab~81A(u~Vu) dx = —/81Ab~A(u~Vu) dx
:—/alAb-Aqud:c—2/81Ab-Vu-V2udx—/(‘?lAbm-VAudx
:—/81Ab-Au~Vudx—Q/alAb-Vu-Vzudx

—/81Ab-u181Au dm—/alAb-ugazAu dz

< Cl|01Ab] 2| Aul 72|02 Al [|Vul £2 101 Vul| .

+ C||01 Ab|| 2| V| 2, |0 V| 2|V 2| 21|01 V] 2,
+ Cllus|| Lo [|01Ab| p2[|01 Aul[ L2 + Clluz|| L= [[01 Ab|| L2 || 02 Aul| L2

< ClIAPD| s |95 ull s 0l 2l 5 + CIAPD s 1O g2 [ [
+ CIIAPHI s 15112 9l g2l £ 101 |y D2z | 2 101Dz |

< CIIAPbl s 108l 2 18l 2 lull 25 + ClIAPD] grs |9y g [l s
+ CIAPD o 6] 7 105l 1zl o

< Cll(u, b)llzr= (IA7D] s + 105 ullps + [[Orull32)-
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For )5, by Holder’s inequality, Lemmas 3.2, 3.3 and Young’s inequality,

Q2= /Aaw-A(u-Vb) dx
:/Aalu-Au-Vbdm+2/A31u-Vu~V2bdx—|—/A61u-u~VAbdx
:/Aalu-Au-Vbda:+2/A81u-Vu~V2bdx

+ /Aalu ~u1O1Ab dx + /A@lu < U0 Ab dx

< Cllo1Aul|2[| VB £2 102 V|| Lo [ Aul| 22 [|01 A £

1 1 1 1
+ CllorAul 2|Vl 72101 Vul 2 [ V0] 2. 1822 7.
+ Cllupe< |01 Aul| L2 |01 Ab[| L2 + Cllusl| Lo |01 Aul| 2|02 Ab]| 12

1 3 1 1
< ClIA%D| fsll0vull gzl s 101 Frs + Cllell rsl| Ol = | A”b s
< Cll(w, b)llzr= (IA"BlIZs + [[OrullZ2)-

Similarly, @3 can be estimated by Holder’s inequality and Young’s inequality,
Qa=n [ Oxdu- A-8)% do < ClosAul A% s < §10vuls + CIA
By Lemmas 3.2, 3.3, integration by parts and Young’s inequality,
Q4= —/81Au -A(b-Vu) dz
:/81Au-Ab-Vu da:+2/A81u-Vb~V2u dx+/A81u-b~VAu dx
= /alAu - Ab-Vu dr + 2/A31u -Vb-V3u dx —|—/A81u -b101Au dx

+ /Aalu by Au dx

< 101 Aull 2 | Ab] 2, 0280112, [ V] 2, 101 Va2
+ Cl0r Aul| 2 [ V]| 24 10 V] 24 [V 2 £, 16y V20
+ Clbll 19y Aul2a + Cllba | = 19y Aul| 2 Do At 2
< CJ0vull I A%B] D] el o + CD 2 D11
+ ol s Dyl 2 195 s
< () 15 (%D + vl + 95 %0).

Now we combine all the estimates for Oy to Oy4, P; to P, and Q1 to Q4 to get

%H@luﬂfqz < %/81u~bdx+%/valu-Vb dm+%/A81u~Ab dx

+ C(IAPBIZs + [Ovu]%e + 105 %s) (4.2)
+ O, B 15 (| A% %5 + [[9rullra + 1105 w1 30)-
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We integrate (4.2) over [0,t] to obtain
t
/ 01wz dr < 2/81u b dr — 2/31u(x,0) -b(x,0) dx + 2/V81u - Vb dx
0
- Q/Valu(x, 0) - Vb(z,0) dz + 2 / Adju - Ab dx
t
~2 [ D0wue.0) - b(w,0) do +C [ (AT + [Orulfye + 105 ul) dr
0
t
+ C/O (s 0) s (N APBII s + 1 OvullFye + 105wl 3gs) dr
t
< Cl(w, b) 135 + Cll (uo, bo)lls + C/O (IA%0]1Fs + l101ullzpa + 105 ullys) dr

t
+ sup ||(u,b)||H3/0 (1A70l 3 + ll0vulF + 105 ul Fs) dr

0<r<t
< CE1(0) + CEy(t) + CEL(t)? + CEy(t)?.
Thus it implies that

Ey(t) < CEL(0) 4+ CE\(t) + CEy(t)? + CEy(t)?.
This completes the proof of Proposition 1.3. O
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