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Abstract
We propose a modification to the nonlinear term of the three-dimensional incom-
pressible Navier–Stokes equations (NSE) in either advective or rotational form which
“calms” the system in the sense that the algebraic degree of the nonlinearity is effec-
tively reduced. This system, the calmed Navier–Stokes Equations (calmed NSE),
utilizes a “calming function” in the nonlinear term to locally constrain large advective
velocities.Notably, this approach avoids the direct smoothing or filtering of derivatives,
thus we make no modifications to the boundary conditions. Under suitable conditions
on the calming function, we are able to prove global well-posedness of calmed NSE
and show the convergence of calmed NSE solutions to NSE solutions on the time
interval of existence for the latter. In addition, we prove that the dynamical system
generated by the calmed NSE in the rotational form possesses both an energy identity
and a global attractor.Moreover, we show that strong solutions to the calmed equations
converge to strong solutions of the NSE without assuming their existence, providing
a new proof of the existence of strong solutions to the 3D Navier–Stokes equations.
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1 Introduction

Is smoothing the only method to control the Navier–Stokes equations? A major obsta-
cle in proving global well-posedness for the 3D Navier–Stokes equations in fluid
dynamics is the rapid intensification of small length scales. Consequently, many
approaches have focused on mitigating this growth by introducing stronger diffusion,
or by mollifying or filtering the nonlinear term. These strategies essentially involve
some form of smoothing. However, derivatives can also grow via another mecha-
nism: multiplication, which can lead to the generation of smaller length scales1. In
this work, we introduce a novel modification to the incompressible Navier–Stokes
equations (NSE) that tempers the effect of the algebraic multiplication without intro-
ducing a smoothing operator. Specifically, we limit the advective velocity by smoothly
truncating it, a process we call “algebraic calming” or simply “calming,” since it effec-
tively reduces the algebraic degree of the nonlinearity. Calming was introduced by the
authors of the present work in Enlow et al. (2023) in the context of the 2D Kuramoto–
Sivashinsky equations (KSE). In the present work, we propose and study two calmed
versions of the 3DNavier–Stokes equations, whichwe call the “calmedNavier–Stokes
equations,” (calmed NSE).

Calming has several advantages over smoothing; namely:

• There is no need to modify the boundary conditions, the system is globally well-
posed, in both 2D and 3D, with standard homogeneous Dirichlet (i.e., “no-slip”)
boundary conditions.

• The system is of the same derivative order as the Navier–Stokes equations, as there
are no modifications to the derivatives introduced.

• The “calming” modification is an entirely local operation, which may be more
efficient than, e.g., mollification or filtering in computational settings, especially
in the setting of parallel processing. (There is also no auxiliary equation to handle,
such as in the case of the k − ε or k − ω models.)

• Solutions of a rotational version of the calmed model satisfy exactly the same
energy identity as that of strong solutions to the Navier–Stokes equations.

Specifically, in the present work, we prove that the calmed NSE are globally well-
posed in 3D with no-slip (i.e., physical) boundary conditions, and that their solutions
converge, as the calming parameter ε → 0+, to strong solutions of the Navier–Stokes
equations on the time interval of existence and uniqueness of the latter. Moreover,
we propose a version of this calming modification in the context of the so-called
rotational form of the NSE, where the calming is applied only to the rotational form
of the nonlinearity. For this system, which we call the “calmed rotational Navier–
Stokes equations” (calmed rNSE), we prove that under an additional assumption on
the calming function, the resulting system satisfies exactly the same energy equality as
for strong solutions to the NSE, in addition to enjoying the aforementioned properties
of the calmed NSE. We then use this energy equality to prove that the calmed rNSE
has a compact global attractor. We also prove that solutions of the calmed system

1 For example, consider g(x) = sin(x) + cos(x). It is straightforward to show that ‖ dn
dxn g‖L∞ = √

2 for

all n ∈ N, but ‖ d
dx g

n‖L∞ ≥ n, and hence d
dx g

n grows without bound as n → ∞.
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converge to strong solutions of the original Navier–Stokes system (at least, before the
potential blow-up time of the later). In addition to this, we show that there is no need
to assume the existence of strong solutions to the Navier–Stokes equations a priori. In
particular, via calming, we provide a new independent proof of the existence of strong
solutions to the 3D Navier–Stokes equations.

The three-dimensional (3D) incompressible constant-density Navier–Stokes equa-
tions (NSE) are given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + (u · ∇)u + ∇ p = ν	u + f in � × (0, T ),

∇ · u = 0 in � × (0, T ),

u
∣
∣
∂�

= 0 on ∂� × (0, T )

u(x, 0) = u0(x) in �.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

Here, u : �×[0, T ] → R
3 is the fluid velocity, p : �×[0, T ] → R is the (kinematic)

pressure, and f : �×[0, T ] → R
3 is a body force. The domain � ⊂ R

3 is a bounded,
open, connected set with smooth boundary.

Note that, using the vector identity

(u · ∇)u = (∇ × u) × u + 1
2∇|u|2, (1.2)

one may formally rewrite (1.1) in the following equivalent rotational form (rNSE),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + ω × u + ∇π = ν	u + f in � × (0, T ),

∇ · u = 0, in � × (0, T ),

u
∣
∣
∂�

= 0 on ∂� × (0, T ),

u(x, 0) = u0(x) in �,

(1.3a)

(1.3b)

(1.3c)

(1.3d)

where we have denoted the vorticity by ω := ∇ × u and the Bernoulli pressure (or
“dynamic pressure”) as π := p+ 1

2 |u|2. The termω×u is sometimes called the Lamb
vector.

Using the techniques introduced in the recent paper (Enlow et al. 2023), we use a
bounded smooth truncation function—that we call a “calming function” when used
in this context—that approximates the identity as the “calming parameter” ε → 0+.
We propose a calming-function approach to the 3D NSE. To make things concrete,
we consider several forms of calming functions (the first three of which were also
considered in Enlow et al. 2023); namely,

ζ ε(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ ε
1(x) := x

1+ε|x| , or

ζ ε
2(x) := x

1+ε2|x|2 , or

ζ ε
3(x) := 1

ε
arctan(εx), or

ζ ε
4(x) := qε(|x|) x

|x| ,

(1.4)
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where the arctangent in ζ ε
3 acts component-wise;

arctan
(
(z1, z2, z3)

T
)

= (arctan(z1), arctan(z2), arctan(z3))
T ,

and for ζ ε
4, we define ζ ε

4(0) = 0, and

qε(r) =

⎧
⎪⎨

⎪⎩

r , 0 ≤ r < 1
ε
,

− ε
2

(
r − 2

ε

)2 + 3
2ε , 1

ε
≤ r < 2

ε
,

3
2ε , r ≥ 2

ε
.

(1.5)

Note that ζ ε(x) → x for all x ∈ � (i.e., pointwise) as ε → 0+, and ζ ε
i ∈ C1 for

i = 1, . . . , 4. We also require that, for example, ζ ε be bounded for ε > 0 fixed. We
describe in detail the conditions we assume for ζ ε in Definition 1.2.

The idea is that, when used in the nonlinear term, a calming function allows for
control over the L∞ norm that is otherwise unavailable. This permits a proof of global
well-posedness of themodified systemwithout the need tomodify boundary conditions
or add higher-order derivatives (as in, e.g., modifications based on adding higher-order
viscosity (Layton and Rebholz 2013)). Moreover, we can prove that, at least before the
potential blow-up time of the original PDE, solutions to the modified PDE converge to
solutions to the original PDE as ε → 0. At least, this is the program that was carried
out in Enlow et al. (2023) in the context of the 2D Kuramoto–Sivashinsky equation.
In the present work, we extend this program to the 3D Navier–Stokes equations.

In particular, we propose two modifications of the Navier–Stokes system. The first
is based on the form (1.1). Continuing the same approach we employed in Enlow et al.
(2023), we introduce the following system that we call the calmed Navier–Stokes
equations (calmed NSE).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + (ζ ε(u) · ∇)u + ∇ p = ν	u + f in � × (0, T ),

∇ · u = 0 in � × (0, T ),

u
∣
∣
∂�

= 0 on ∂� × (0, T )

u(x, 0) = u0(x) in �.

(1.6a)

(1.6b)

(1.6c)

(1.6d)

One can see (1.6) as a modification of (1.1) in the spirit of Leray (see, e.g., Leray
1934; Yamazaki 2012; Farhat et al. 2019; Cheskidov et al. 2005; Cao and Titi 2009;
Ilyin et al. 2006; Hecht et al. 2008; Cao et al. 2005; Chen et al. 1999 and many others),
except that our modification does not mollify the nonlinearity but is instead a local
truncation of the advective velocity.

While we show in the present work that the calming modification of (1.6) allows
for a proof of global well-posedness and other desirable properties, it is clear that such
a modification would have a different energy balance than that of Navier–Stokes, as
the nonlinear term does not vanish in standard energy calculations. Therefore, we also
consider a related modification of the rotational form (1.3) which locally limits the
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strength of the rotational term. Namely, we propose the following system, which we
call the calmed rotational Navier–Stokes equations (calmed rNSE).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + (∇ × u) × ζ ε(u) + ∇π = ν	u + f in � × (0, T ),

∇ · u = 0 in � × (0, T ),

u
∣
∣
∂�

= 0 on ∂� × (0, T )

u(x, 0) = u0(x) in �.

(1.7a)

(1.7b)

(1.7c)

(1.7d)

Due to the presence of the calming function, one cannot rewrite calmedNSE as calmed
rNSE using (1.2) as we do for NSE and rNSE. Thus, while they are both modifications
of the Navier–Stokes equations which are similar, we treat them as different systems.
However, system (1.7) is an interesting object to study in its own right. Thanks to the
well-known geometric identity for the cross product,

(A × B) · B = 0, (1.8)

one discovers exceptional features of System (1.7)when ζ ε is suitably chosen.Namely,
when ζ ε(x) can be expressed as a scalar multiple of x pointwise we deduce that (1.7)
possesses both an energy identity (Theorem 1.13) and its dynamical system has a
global attractor (Theorem 1.14).

Remark 1.1 Applying a bounded truncation operator to the nonlinear term in 3D
Navier–Stokes was also considered by Yoshida and Giga (1984) and by the authors of
Caraballo et al. (2006) in the study of the globally modified Navier–Stokes Equations
(GMNSE) (see also, Caraballo et al. 2008; Chai and Duan 2019; Deugoué and Tachim
Medjo 2018; Kloeden et al. 2007, 2009; Romito 2009;Marín-Rubio et al. 2011; Zhang
2009; Zhao and Yang 2017). In those works, the following system was studied.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu + min
{
1, N‖∇u‖−1

L2

}
(u · ∇)u + ∇ p = ν	u + f in � × (0, T ),

∇ · u = 0 in � × (0, T ),

u
∣
∣
∂�

= 0 on ∂� × (0, T )

u(x, 0) = u0(x) in �.

For GMNSE, solutions converge to a solution of 3D Navier–Stokes as parameter N
tends to infinity. This system is similar to calmed NSE (1.6) in that it bounds the non-
linear term as the velocityu gets large in a certain sense. However, ourmodification has
several advantages over GMNSE. Namely, that the calming functions in the present
work are defined pointwise and only bound the solution u in regions where |u(x, t)|
is greater than approximately ε−1, whereas the modification in GMNSE affects the
solution globally. Also, whenever ‖∇u‖L2 → ∞, the nonlinearity in GMNSE van-
ishes entirely, but for calmed NSE this would only cause the large values of |u(x, t)|
to be truncated locally. Moreover, our calming parameter depends on u while the GM
function depends on ∇u, hence the manner in which we control the nonlinearity is
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different. In a future work, we will examine differences between these two systems
computationally.

1.1 Main Results

The proofs of existence, uniqueness, convergence, etc., are essentially identical for
both equations (1.6) and (1.7). (The only phenomenological difference examined in
this paper is the rotational form (1.7) has an energy identity, but for (1.6), this is
unknown.) Therefore, we adopt a unified abstract notation which allows us to handle
both equations simultaneously. For either (1.6) or (1.7), the weak formulation can
be written as follows: Given u0 ∈ L2(0, T ; H) and f ∈ L2(0, T ; V ′), find u ∈
L2(0, T ; V ) which satisfies

〈∂tu, v〉 + 〈νAu, v〉 + 〈
B(ζ ε(u),u), v

〉 = 〈f, v〉 for all v ∈ V , (1.10a)

u(x, 0) = u0(x), (1.10b)

where the Stokes operator A is defined by (2.2) and the nonlinear term B(·, ·) is defined
in (2.24) in either advective or rotational form. We note that the uniqueness of weak
solutions is an open problem, similar to the situation regarding 3D Navier–Stokes.
Recently,Albritton et al. (2022, 2023) demonstrated the nonuniqueness of Leray–Hopf
weak solutions to the 3D Navier–Stokes equations with very special force. However,
their results do not apply to our case with a general given force.

First, we give precise conditions on the types of calming functions we allow.

Definition 1.2 We say ζ ε : R
3 → R

3 is a calming function if the following three
conditions hold:

(1) ζ ε is Lipschitz continuous with Lipschitz constant 1.
(2) For ε > 0 fixed, ζ ε is bounded.
(3) There exists C > 0, α > 0 and β ≥ 1 such that for any x ∈ R

3,

∣
∣ζ ε(x) − x

∣
∣ ≤ Cεα |x|β . (1.11)

For the energy equality, we also require:

(4) For any ε > 0 and for each x ∈ R
3, there exists λε(x) ∈ R such that ζ ε(x) =

λε(x)x. That is, ζ ε(x) is parallel to x.

Remark 1.3 The lower bound on β is necessary to satisfy condition 2 and inequality
(1.11) of ζ ε . Using the triangle inequality and (1.11), we may write

|x| ≤ Cεα |x|β + ∥
∥ζ ε

∥
∥
L∞ ,

which, when |x| is sufficiently large, fails to be valid for β < 1.

We indicate in the next proposition the extent to which our examples of a calming
function (stated in 1.4) satisfy the conditions of Definition 1.2.
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Proposition 1.4 Consider ζ ε
i as described in (1.4).

For i = 1, 2, 4, ζ ε
i satisfies Conditions 1–4 of Definition 1.2. For i = 3, ζ ε

i satisfies
Conditions 1, 2, and 3 of Definition 1.2. In particular, the following explicit bounds
hold for ε > 0.

(1) For ζ ε
1,

∥
∥ζ ε

1

∥
∥
L∞ = 1

ε
and

∣
∣ζ ε

1(x) − x
∣
∣ ≤ ε |x|2 .

(2) For ζ ε
2,

∥
∥ζ ε

2

∥
∥
L∞ = 1

2ε
and

∣
∣ζ ε

2(x) − x
∣
∣ ≤ ε2 |x|3 .

(3) For ζ ε
3,

∥
∥ζ ε

3

∥
∥
L∞ =

√
3π

2ε
and

∣
∣ζ ε

3(x) − x
∣
∣ ≤ ε2 |x|3 .

(4) For ζ ε
4,

∥
∥ζ ε

4

∥
∥
L∞ = 3

2ε
and

∣
∣ζ ε

4(x) − x
∣
∣ ≤ ε |x|2 .

Next, we begin by defining what we mean by weak and strong solutions.

Definition 1.5 (Weak solution) Let T > 0, u0 ∈ H and let f ∈ L2(0, T ; V ′). We say
that u is a weak solution to calmed NSE (1.6) or calmed rNSE (1.7) on the interval
[0, T ] if u satisfies equation (1.10a) for all v ∈ V in the sense of L2((0, T )) with
u ∈ C([0, T ]; H) and ∂tu ∈ L2(0, T ; V ′). Furthermore, we require (1.10b) to be
satisfied in the sense of C([0, T ]; H).

Definition 1.6 (Strong solution) Let T > 0, u0 ∈ V , and let f ∈ L2(0, T ; H). We say
that u is a strong solution to calmed NSE (1.6) or calmed rNSE (1.7) on the interval
[0, T ] if u is a weak solution and also u ∈ C([0, T ]; V )∩ L2(0, T ; H2∩V )with time
derivative ∂tu ∈ L2(0, T ; H) and initial data satisfied in the sense of C([0, T ]; V ).

We now state our results on the global well-posedness of solutions to calmed
Navier–Stokes and calmed rotational Navier–Stokes.

Theorem 1.7 (Global existence of weak solutions to calmed systems) Assume that
� ⊂ R

3 is bounded, open, connected, and convex with smooth boundary. Let u0 ∈ H,
T > 0, and let f ∈ L2(0, T ; V ′) be given. Suppose, for ε > 0, ζ ε is a calming function
which satisfies conditions 1, 2, and 3 of Definition 1.2. Then, weak solutions to calmed
NSE or calmed rNSE (1.10) exist on [0, T ].

123
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Theorem 1.8 (First-order regularity of calmed systems) Assume that � ⊂ R
3 is

bounded, open, connected, and convex with smooth boundary. Let T > 0. Suppose
that u0 ∈ V and that f ∈ L2(0, T ; H). Consider a weak solution u to calmed NSE or
calmed rNSE (1.10) on the interval [0, T ]. Then, u ∈ C([0, T ]; V )∩L2(0, T ; H2∩V )

and ∂tu ∈ L2(0, T ; H).

Theorem 1.9 (Global well-posedness of strong solutions to calmed systems) Assume
that � ⊂ R

3 is bounded, open, connected, and convex with smooth boundary. Let
T > 0, u0,∈ V , and let f ∈ L2(0, T ; H). Suppose ζ ε is a calming function which
satisfies conditions 1, 2, and 3 of Definition 1.2. Then, there exists a strong solution
u ∈ C([0, T ]; V ) ∩ L2(0, T ; H2 ∩ V ) to calmed NSE (1.6) and calmed rNSE (1.7)
which depends continuously on its initial data and is unique in the class of weak
solutions.

For our calmed systems, we also have the convergence of (1.6) (resp. 1.7) to (1.1)
(resp. 1.3) on short time intervals.

Theorem 1.10 (Convergence) Assume that � ⊂ R
3 is bounded, open, connected, and

convex with smooth boundary. Let T > 0, and let ζ ε be a calming function satisfying
conditions 1, 2, and 3 of Definition 1.2, where β ≥ 1 is the minimal value for which 3
holds. Suppose

u ∈ C([0, T ]; V ) ∩ L2β(0, T ; H2 ∩ V ) (1.12)

is a strong solution to the 3D Navier–Stokes equation written either in its velocity
form (1.1) or rotational form (1.3) with initial data u0 ∈ V and forcing term f ∈
L2(0, T ; H). Suppose uε ∈ C([0, T ]; V ) ∩ L2(0, T ; H2 ∩ V ) is a solution to the
3D calmed NSE (1.6) (resp. 3D calmed rNSE (1.7)) with the same initial data u0 and
forcing term f . Then,

‖u − uε‖L∞V ≤ K εα,

where K > 0 is a constant depending only on�, ν, β, ‖u‖L∞V , ‖	u‖L2 , T , and α, β

are determined by the choice of ζ ε and are as given by condition 3 of Definition 1.2.

In Sect. 6, we show that strong solutions to the calmed systems are Cauchy with
respect to the calming parameter ε > 0 and that the limit point obtained from this
sequence is itself a strong solution to 3D Navier–Stokes.

Theorem 1.11 (Existence of Strong Solutions toNavier–Stokes) Assume that� ⊂ R
3

is bounded, open, connected, and convex with smooth boundary. For each ε > 0, let ζ ε

be a calming function satisfying conditions 1, 2, and 3 of Definition 1.2. Suppose that
β ∈ [1, 3], where β is the minimal value for which 3 holds. Let uε be a strong solution
to calmed NSE (1.6) or calmed rNSE (1.7) with initial data u0 ∈ V and forcing term
f ∈ L∞(0,∞; L2). Suppose T > 0 is the maximal time for which

sup
ε>0

sup
0≤t≤T

∥
∥∇uε(t)

∥
∥
L2 ≤ √

2 ‖∇u0‖L2

123
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is valid. Then,

(1) The sequence {uε}ε>0 is Cauchy in L∞H ∩ L2V .
(2) The limit point of the sequence, u, is a strong solution to the 3D Navier–Stokes

equations (1.1) or (1.3) on the interval [0, T ].
While calmed NSE and calmed rNSE share the same properties of global well-

posedness, we can see a key distinction between the two in the next theorem when ζ ε

is assumed to be pointwise parallel.

Theorem 1.12 (Energy identity for weak solutions of calmed rNSE (1.7)) Assume that
� ⊂ R

3 is bounded, open, connected, and convex with smooth boundary. Let ν > 0,
ε > 0, u0 ∈ H, and f ∈ L2(0, T ; V ′) be given. Suppose ζ ε satisfies conditions 1, 2, 3,
and 4 of Definition 1.2. Let uε be a weak solution to calmed rNSE (1.7). Then, uε

satisfies the energy equalities

1

2

d

dt

∥
∥uε

∥
∥2
L2 + ν

∥
∥∇uε

∥
∥2
L2 = 〈

f,uε
〉
. (1.13)

and

∥
∥uε(t)

∥
∥2
L2 + 2ν

∫ t

0

∥
∥∇uε(s)

∥
∥2
L2 ds = ‖u0‖2L2 + 2

∫ t

0

〈
f(s),uε(s)

〉
ds. (1.14)

Remark 1.13 Combining Theorems 1.10 and 1.12, one can easily show that strong
solutions to the Navier–Stokes equations enjoy an energy equality, by passing to a
limit as ε → 0 in (1.14). Hence, our approach can be seen as an alternate proof of this
well-known fact.

From these energy identities, we deduce the existence of a global attractor, under
the assumption that f is time-independent.

Theorem 1.14 (Existence of a global attractor) Assume that � ⊂ R
3 is bounded,

open, connected, and convex with smooth boundary. Let ζ ε be a calming function
which satisfies conditions 1, 2, 3, and 4 of Definition 1.2. If u0 ∈ H and f ∈ H then
the dynamical system on H generated by calmed rNSE (1.7) has a global attractorA
on H.

Remark 1.15 All of the above results hold, mutatis mutandis, in the case of periodic
boundary conditions, after suitable modification imposing a mean-free condition.

2 Preliminaries

In this section, we lay out some notation and preliminary notions that will be used later
in the text.We use standard notation and results which can be found in, e.g., Constantin
and Foias (1988), Temam (2001), Robinson (2001). We assume that � ⊂ R

3 is a
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bounded, open, connected set with smooth boundary. Furthermore, we assume � is
convex, so that there exists c1, c2 > 0 for which

c1 ‖Au‖L2 ≤ ‖u‖H2 ≤ c2 ‖Au‖L2 , (2.1)

where A is defined in (2.2) (see, e.g., Dauge 1989; Guermond and Salgado 2011). Let
C∞
c (�) denote the space of smooth, compactly supported test functions from � to

R
3, and let H1

0 (�) ≡ H1
0 denote the closure of C∞

c (�) in H1(�).
We set

V = {
φ ∈ C∞

c (�) : ∇ · φ = 0
}
,

and let H and V be the closure of V in L2(�) and H1(�), respectively.
We also denote the (real) L2 inner-product and Hm Sobolev norm by

(u, v) :=
3∑

i=1

∫

�

ui (x)vi (x) dx, ‖u‖Hm :=
⎛

⎝
∑

|α|≤m

∥
∥Dαu

∥
∥2
L2

⎞

⎠

1
2

,

where α = (α1, α2, α3) and Dαu = ∂
α1
1 ∂

α2
2 ∂

α3
3 u. For brevity, we will use the notation

L2(�) ≡ L2 and Hm(�) ≡ Hm throughout the paper.
We denote by L p(0, T ; X) to space of Bochner integrable functions from [0, T ] to

X with norm given by

‖u‖L p(0,T ;X) ≡ ‖u‖L p X :=
(∫ T

0
‖u‖p

X

)1/p

.

We recall Agmon’s inequality for s1 < n
2 < s2,

‖u‖L∞ ≤ C‖u‖θ
Hs1 ‖u‖1−θ

Hs2 ,

where n
2 = θs1 + (1 − θ)s2, θ ∈ [0, 1]. We also recall the Gagliardo–Nirenberg–

Sobolev interpolation inequality (see, e.g., (Tao 2006, p. 11)) for bounded domains
� ⊆ R

n with 1 ≤ p, q < ∞,

‖u‖L p ≤ C ‖u‖θ
Lq

∥
∥Dαu

∥
∥1−θ

L2 ,
1

p
= θ

q
+ (1 − θ)

(
1

2
− |α|

n

)

.

Let Pσ : L2(�) → H be the Leray-Helmholtz orthogonal projection of L2(�)

onto H . Define the Stokes operator A : D(A) ⊂ H → H as

A := −Pσ 	 (2.2)

with domain D(A) := H2(�) ∩ V . The operator A is known to be positive-definite,
self-adjoint, and with compact inverse A−1 in H . From the Hilbert–Schmidt theorem,

123



Journal of Nonlinear Science           (2024) 34:112 Page 11 of 33   112 

we obtain a sequence of eigenfunctions {w j }∞j=1 of A
−1, which are also eigenfunctions

of A, with corresponding eigenvalues {λ j }∞j=1 such that {w j }∞j=1 is an orthonormal
basis of H and the sequence {λ j }∞j=1 is positive, monotone increasing, and tend toward
infinity, so that Aw j = λ jw j with 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and lim j→∞ λ j = +∞.
For further discussion see, e.g., Constantin and Foias (1988), Robinson (2001), Temam
(2001). Due to the divergence-free condition, we can define a norm on V by

〈Au,u〉 = ‖A1/2u‖L2 = ‖∇u‖2L2 .

We also recall the following Poincaré inequalities,

‖u‖2L2 ≤ λ−1
1 ‖∇u‖2L2 for all u ∈ V ,

‖∇u‖2L2 ≤ λ−1
1 ‖Au‖2L2 for all u ∈ D(A).

Denote by Pm the projection onto the first m eigenfunctions of A,

Pmu =
m∑

j=1

u jw j .

This yields the following estimate: for u ∈ Hs(�), s > 0,

‖(I − Pm)u‖2L2 ≤ λ−s
m ‖u‖2Hs . (2.3)

For u ∈ C∞
c (�) and v ∈ V , we define the nonlinear term B(u, v) by

B(u, v) := Pσ ((u · ∇) v) in system (1.1), or

B(u, v) := Pσ ((∇ × v) × u) in system (1.3).

(2.24a)

(2.24b)

For either case, the term B(·, ·) can be extended continuously to a bounded bilinear
operator B : H1

0 × V → V ′. Similarly, we can define a trilinear operator b : H1
0 ×

V × V → R by

b(u, v,w) := 〈B(u, v),w〉

for all u ∈ H1
0 and v,w ∈ V .

To recover the pressure term found in Systems (1.6) and (1.7), we will use a result
of de Rham, which states for f ∈ C∞

c (�),

f = ∇ p for some p ∈ C∞
c (�) if and only if 〈f, v〉 = 0 for all v ∈ V. (2.25)

See, e.g., Temam (2001), Wang (1993).

Lemma 2.1 Suppose that ζ ε is a calming function which satisfies condition 1 of Defi-
nition 1.2.
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(1) If u ∈ L p(�), p ∈ [1,∞], then ζ ε(u) ∈ L p(�) and ζ ε is Lipschitz in L p(�)

with Lipschitz constant CL .
(2) The mapping I : L2(0, T ; H) × L2(0, T ; V ) × L2(0, T ; H) → R defined by

I (u, v,w) =
∫ T

0
b(ζ ε(u), v,w)dt

is linear and continuous in its second and third components.

Proof The proof is straightforward and can be found in Enlow et al. (2023) in the case

b(ζ ε(u), v,w) = (
Pσ (

(
ζ ε(u) · ∇)

v),w
)
.

The proof for the case

b(ζ ε(u), v,w) = (
Pσ

(
(∇ × v) × ζ ε(u)

)
,w

)

is nearly identical. ��

3 Existence of Weak Solutions for Calmed NSE

We will prove the existence of solutions to (1.10) via Galerkin approximation. For
u0 ∈ H , the system

{
∂tum = −νAum − PmB(ζ ε(um),um) + Pmf,

um(0, x) = Pmu0(x)

(3.1a)

(3.1b)

is locally Lipschitz in Pm(H), provided that ζ ε is Lipschitz (see Enlow et al. (2023,
Lemma 3.2)). So for each m ∈ N, there is some Tm > 0 for which a unique solution
to (3.1) exists.

3.1 Proof of Theorem 1.7

Let um be a solution to (3.1) on some maximum interval of existence [0, Tm] with
Tm > 0. Taking the inner-product of (3.1) with um , we obtain

1

2

d

dt
‖um‖2L2 + ν ‖∇um‖2L2 = − (

PmB(ζ ε(um),um),um
) + 〈Pmf,um〉

= − (
B(ζ ε(um),um),um

) + (f,um) .
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Now, using Hölder’s inequality and Young’s inequality,

1

2

d

dt
‖um‖2L2 + ν ‖∇um‖2L2

≤ ∥
∥ζ ε

∥
∥
L∞ ‖∇um‖L2 ‖um‖L2 + ‖f‖V ′ ‖∇um‖L2

≤ ν

2
‖∇um‖2L2 + Cν

∥
∥ζ ε

∥
∥2
L∞ ‖um‖2L2 + Cν ‖f‖2V ′ .

Rearranging terms yields the inequality

d

dt
‖um‖2L2 + ν ‖∇um‖2L2 ≤ Cν

∥
∥ζ ε

∥
∥2
L∞ ‖um‖2L2 + Cν ‖f‖2V ′ . (3.2)

Dropping the term ν ‖∇um‖2
L2 from the left-hand side of the inequality and applying

Grönwall’s inequality yields

‖um(t)‖2L2 ≤ eCν‖ζ ε‖2L∞ t ‖um(0)‖2L2 +
∫ t

0
e−Cν‖ζ ε‖2L∞ (s−t) ‖f‖2V ′ ds

≤ eCν‖ζ ε‖2L∞Tm
(
‖u0‖2L2 + ‖f‖2L2V ′

)
. (3.3)

In fact, we can apply a standard bootstrapping argument to obtain that given any T > 0,
(3.3) remains valid if Tm ≡ T for allm ∈ N. Thus,um is bounded in L∞(0, T ; L2(T2))

independently of m. Integrating (3.2) in time t on the interval [0, T ], one obtains

‖um(T )‖2L2 − ‖um(0)‖2L2 + ν

∫ T

0
‖∇um‖2L2 dt

≤ Cν‖f‖2L2V ′ + Cν

∥
∥ζ ε

∥
∥2
L∞

∫ T

0
‖um‖2L2 dt

≤ Cν‖f‖2L2V ′ + Cν

∥
∥ζ ε

∥
∥2
L∞ T eCν‖ζ ε‖2L∞T

(
‖u0‖2L2 + ‖f‖2L2V ′

)
.

Rearranging this inequality and applying (3.3) then yields, for a.e. t ∈ [0, T ],

‖um‖2L2V ≤ Cν

(
1 + ∥

∥ζ ε
∥
∥2
L∞ T eCν‖ζ ε‖2L∞T

) (
‖u0‖2L2 + ‖f‖2L2V ′

)
.

Therefore, um is bounded in L2(0, T ; V ) independently of m.
Nowwe check that ∂tum is bounded in L2(0, T ; V ′) independently ofm. Letw ∈ V

with ‖∇w‖L2 = 1. Taking the action of ∂tu on w yields

|〈∂tum,w〉| ≤ ν |〈Aum,w〉| + ∣
∣
(
PmB(ζ ε(um),um),w

)∣
∣ + |(Pmf,w)|

= ν |(∇um,∇w)| + ∣
∣
(
B(ζ ε(um),um), Pmw

)∣
∣ + |(f, Pmw)| .

Note that

ν |(∇um,∇w)| ≤ ν ‖∇um‖L2 ‖∇w‖L2 = ν ‖∇um‖L2 ,
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and

∣
∣
(
B(ζ ε(um),um), Pmw

)∣
∣ ≤ C

∥
∥ζ ε

∥
∥
L∞ ‖∇um‖L2 ‖∇w‖L2 = C

∥
∥ζ ε

∥
∥
L∞ ‖∇um‖L2 ,

and also

|(f, Pmw)| ≤ ‖f‖V ′ ‖w‖V ≤ ‖f‖V ′ .

From this we deduce that

‖∂tum‖L2V ′ ≤ Cν,ε

(‖um‖L2V + ‖f‖L2V ′
)
,

hence ∂tum is bounded in L2(0, T ; V ′) independently of m.
By the Banach–Alaoglu theorem and the above bounds, there exists u ∈

L∞(0, T ; H) ∩ L2(0, T ; V ) and a subsequence (which we will relabel as um) such
that

um
∗
⇀u weak-∗ in L∞(0, T ; H), (3.4)

um⇀u weakly in L2(0, T ; V ), (3.5)

∂tum⇀∂tu weakly in L2(0, T ; V ′). (3.6)

Moreover, using the Aubin–Lions lemma one obtains another subsequence (still
labeled as um) such that

um → u strongly in L2(0, T ; H). (3.7)

Now we wish to show that passing to the limit in (3.1) yields (1.10a). Let w ∈ V ,
and set vm = u − um . We will show that u is a solution to (1.10a) by showing that

〈∂tu,w〉 + ν (∇u,∇w) + b(ζ ε(u),u,w) + 〈f,w〉
− (∂tum,w) − ν (∇um,w) − b

(
ζ ε(um),um, Pmw

) − (Pmf,w)

tends to 0 as m → ∞. This expression can be rewritten as follows.

〈∂tvm,w〉 + ν (∇vm,∇w) + b(ζ ε(u), vm,w)

+ (
b(ζ ε(u),um,w) − b(ζ ε(um),um,w)

)

+ b(ζ ε(um),um, (I − Pm)w) + 〈(I − Pm)f,w〉 .

Note that from (3.5) and (3.6),

lim
m→∞

∫ T

0
〈∂tvm,w〉 + ν (∇vm,∇w) dt = 0
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and

lim
m→∞

∫ T

0
b(ζ ε(u), vm,w)dt = 0

by Lemma 2.1 and (3.5). Now, using the Lipschitz property of ζ ε , Hölder’s inequality,
and the Gagliardo–Nirenberg–Sobolev inequality, we bound the fourth and fifth terms
as follows:

∫ T

0
b(ζ ε(u),um,w) − b(ζ ε(um),um,w)dt

≤
∫ T

0
‖vm‖L3 ‖∇um‖L2 ‖w‖L6 dt

≤ C
∫ T

0
‖vm‖

1
2
L2 ‖∇vm‖

1
2
L2 ‖∇um‖L2 ‖∇w‖L2 dt

≤ C ‖∇w‖L2 ‖vm‖
1
2
L2L2‖∇vm‖

1
2
L2L2‖∇um‖L2L2 .

Therefore, since ‖∇um‖L2 L2 and ‖∇vm‖L2 L2 are bounded and vm → 0 strongly in
L2 H ,

lim
m→∞

∫ T

0

(
b(ζ ε(u),um,w) − b(ζ ε(um),um,w)

)
dt = 0

as a consequence of (3.7). Finally, by (2.3) we obtain

lim
m→∞

∣
∣
∣
∣

∫ T

0
b(ζ ε(um),um, (I − Pm)w)dt

∣
∣
∣
∣

≤ lim
m→∞

∥
∥ζ ε

∥
∥
L∞ sup

m∈N
‖um‖L2V

(
λ

−1/2
m ‖w‖H1

)

= 0

and

lim
m→∞

∫ T

0
〈(I − Pm)f,w〉 dt = 0.

Thus, we deduce that a subsequence of solutions um of (3.1) converges to a solution
u of (1.6). It remains to be shown that u is continuous in time and satisfies the initial
data. It is an immediate consequence of the Aubin–Lions Compactness Theorem (see,
e.g., Robinson (2001, Corollary 7.3)) that u ∈ C([0, T ]; L2). To show that the initial
data is satisfied, one carries out the procedure performed in, e.g., Enlow et al. (2023),
Temam (2001). ��
Remark 3.1 It is not known if weak solutions are unique for calmed NSE or calmed
rNSE. Indeed, if u1 and u2 are weak solutions with same initial data u0, one can write
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the difference equation (4.4) and obtain the energy equation (4.5) as we do in the case
of strong solutions. However, for weak solutions it does not seem possible to attain an
upper bound for the term

b(ζ ε(u2) − ζ ε(u1),u2, ũ) using the techniques seen in this paper.

4 Strong Solutions

In this section, we prove the first - and second - order regularity of weak solutions to
the calmed NSE (1.10) for the purpose of showing that strong solutions are unique.
To this end, we will apply the Aubin–Lions Compactness Theorem (Robinson 2001,
Corollary 7.3).

4.1 Proof of Theorem 1.8

Here, wework formally, but the results can bemade rigorous using the Galerkin proce-
dure as in the proofs of the previous theorem. Supposeu0 ∈ V and f ∈ L2(0, T ; H) for
some T > 0. Taking the action of (1.10) with Au and then using the Lions–Magenes
Lemma, Young’s inequality, and Hölder’s inequality yields

1

2

d

dt
‖∇u‖2L2 + ν ‖Au‖2L2 = b(ζ ε(u),u, Au) − (f, Au)

≤ ∥
∥ζ ε

∥
∥
L∞ ‖∇u‖L2 ‖Au‖L2 + ‖f‖L2 ‖Au‖L2

≤ Cν

∥
∥ζ ε

∥
∥2
L∞ ‖∇u‖2L2 + Cν ‖f‖2L2 + ν

2
‖Au‖2L2 .

Rearranging these terms yields the inequality

d

dt
‖∇u‖2L2 + ν ‖Au‖2L2 ≤ Cν

∥
∥ζ ε

∥
∥2
L∞ ‖∇u‖2L2 + Cν ‖f‖2L2 . (4.1)

We now remove the viscosity term and apply Grönwall’s inequality to obtain for a.e.
t ∈ [0, T ],

‖∇u(t)‖2L2 ≤ eCν‖ζ ε‖2L∞ t ‖∇u0‖2L2 + Cν

∫ t

0
e−Cν‖ζ ε‖2L∞ (s−t) ‖f(s)‖2L2 ds. (4.2)

Thus, u ∈ L∞(0, T ; V ) whenever u0 ∈ V and f ∈ L2(0, T ; H). Returning to (4.1),
we integrate in time to obtain

ν

∫ T

0
‖Au‖2L2 dt ≤ ‖∇u0‖2L2 + Cν

∫ T

0

∥
∥ζ ε

∥
∥2
L∞ ‖∇u‖2L2 + ‖f‖2L2 dt . (4.3)
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From estimates (4.2) and (4.3), we deduce that u ∈ L2(0, T ; H2∩V ). It remains to be
shown that ∂tu ∈ L2(0, T ; H). This follows immediately from the calculation below:

∫ T

0
‖∂tu‖2L2 dt =

∫ T

0

∥
∥νAu + B(ζ ε(u),u) + f

∥
∥2
L2 dt

≤ C
∫ T

0
ν ‖Au‖2L2 + ∥

∥ζ ε
∥
∥2
L∞ ‖∇u‖2L2 + ‖f‖2L2 dt

< ∞.

Therefore, ∂tu ∈ L2(0, T ; H). By the Aubin–Lions compactness theorem, we con-
clude that u ∈ C([0, T ]; V ). ��

Wenowproceed in showing the global existence and uniqueness of strong solutions.
With the existence of such solutions already known from prior results, this theorem
focuses on uniqueness and continuous dependence on initial data.

4.2 Proof of Theorem 1.9

From Theorems 1.7, 1.8, and from (2.25), we deduce the existence of strong solutions
to calmedNSE (1.6) and calmed rNSE (1.7) satisfying the hypotheses ofDefinition 1.6.
Suppose u1 and u2 are strong solutions with respective initial data u10,u

2
0 ∈ V and

forcing term f ∈ L2(0, T ; H). Let ũ = u1 − u2 and ũ0 = u10 − u20. When we take the
difference of the two equations, we obtain

∂t ũ − ν	ũ = B(ζ ε(u2) − ζ ε(u1),u2) − B(ζ ε(u1), ũ). (4.4)

We now take the inner-product with ũ, which yields

1

2

d

dt
‖ũ‖2L2 + ν ‖∇ũ‖2L2

= b(ζ ε(u2) − ζ ε(u1),u2, ũ) − b(ζ ε(u1), ũ, ũ). (4.5)

For the first term, using Hölder’s inequality, the Gagliardo–Nirenberg–Sobolev
inequality, condition 1 of Definition 1.2, and Poincarè’s inequality, one obtains

∣
∣b(ζ ε(u2) − ζ ε(u1),u2, ũ)

∣
∣

≤ ‖ũ‖L3 ‖∇u2‖L6 ‖ũ‖L2

≤ C ‖ũ‖
3
2
L2 ‖∇ũ‖

1
2
L2 ‖	u2‖L2

≤ Cν ‖	u2‖
4
3
L2 ‖ũ‖2L2 + ν

4
‖∇ũ‖2L2 .

While for the second term, one obtains

∣
∣b(ζ ε(u1), ũ, ũ)

∣
∣ ≤ Cν

∥
∥ζ ε

∥
∥2
L∞ ‖ũ‖2L2 + ν

4
‖∇ũ‖2L2 .
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Inserting these bounds into estimate (4.5) then yields

d

dt
‖ũ‖2L2 + ν ‖∇ũ‖2L2 ≤ Cν

(
∥
∥ζ ε

∥
∥2
L∞ + ‖	u2‖

4
3
L2

)

‖ũ‖2L2 .

Since u2 is a strong solution to calmed NSE (1.6), we have the containment u2 ∈
L2(0, T ; H2 ∩ V ), hence

A1(T ) := Cν

∫ T

0

(
∥
∥ζ ε

∥
∥2
L∞ + ‖	u2‖

4
3
L2

)

dt < ∞.

Using Grönwall’s inequality, it follows that,

‖ũ(t)‖2L2 ≤ eA1(T ) ‖ũ0‖2L2 .

We conclude that strong solutions to (1.6) are unique and depend continuously on
initial data. ��

5 Convergence to Strong Solutions of the Navier–Stokes Equations

In this section, we prove that strong solutions uε to calmed NSE will converge to a
strong solution u to NSE on sufficiently small time intervals when ζ ε is known to
satisfy condition 3 for some minimal value β ≥ 1.

5.1 Proof of Theorem 1.10

Set wε = u − uε . We then take the action of the difference of (1.1) and (1.6) with
Awε and use the Lions–Magenes Lemma to obtain

1

2

d

dt

∥
∥∇wε

∥
∥2
L2 + ν

∥
∥Awε

∥
∥2
L2 = N , (5.1)

where the nonlinearity N is rewritten as

N = b(ζ ε(u) − u,u, Awε) − b(ζ ε(u),wε, Awε)

− b(ζ ε(u) − ζ ε(uε),u, Awε) + b(ζ ε(u) − ζ ε(uε),wε, Awε)

= N1 + N2 + N3 + N4.

For N1, to bound |ζ ε(u) − u| we first apply Inequality (1.11) from Condition 3
of Definition 1.2, Agmon’s inequality, and Inequality (2.1) to write |ζ ε(u) − u| ≤
Cεα ‖u‖β

L∞ ≤ Cεα ‖u‖β

H2 ≤ Cεα ‖Au‖β

L2 . Then, using Cauchy–Schwarz and
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Young’s inequality,

|N1| ≤
∫

�

∣
∣ζ ε(u) − u

∣
∣ |∇u| ∣∣Awε

∣
∣ dx

≤ Cεα ‖Au‖β

L2

∫

�

|∇u| ∣∣Awε
∣
∣ dx

≤ Cεα ‖Au‖β

L2 ‖∇u‖L2

∥
∥Awε

∥
∥
L2

≤ Cν ‖Au‖2β
L2 ‖u‖2L∞V ε2α + ν

8

∥
∥Awε

∥
∥2
L2 . (5.2)

For the remaining Ni , we use a combination ofAgmon’s inequality, Inequality (2.1),
and Poincarè’s inequality, as well as Hölder’s inequality, the Gagliardo–Nirenberg–
Sobolev inequality, and Young’s inequality, to derive bounds which are integrable in
time. For N2, we obtain

|N2| ≤
∫

�

∣
∣ζ ε(u)

∣
∣
∣
∣∇wε

∣
∣
∣
∣Awε

∣
∣ dx

≤ ‖u‖L∞
∥
∥∇wε

∥
∥
L2

∥
∥Awε

∥
∥
L2

≤ C ‖Au‖L2

∥
∥∇wε

∥
∥
L2

∥
∥Awε

∥
∥
L2

≤ Cν ‖Au‖2L2

∥
∥∇wε

∥
∥2
L2 + ν

8

∥
∥Awε

∥
∥2
L2 , (5.3)

where we use the additional fact that |ζ ε(u)| ≤ ‖u‖L∞ , which follows from Condi-
tions 1 and 3 of Definition 1.2. For N3,

|N3| ≤
∫

�

∣
∣wε

∣
∣ |∇u| ∣∣Awε

∣
∣ dx

≤ ‖∇u‖L3

∥
∥wε

∥
∥
L6

∥
∥Awε

∥
∥
L2

≤ C ‖∇u‖
1
2
L2 ‖Au‖

1
2
L2

∥
∥∇wε

∥
∥
L2

∥
∥Awε

∥
∥
L2

≤ Cν‖u‖L∞V ‖Au‖L2

∥
∥∇wε

∥
∥2
L2 + ν

8

∥
∥Awε

∥
∥2
L2 (5.4)

and similarly, for N4, we deduce

|N4| ≤
∫

�

∣
∣wε

∣
∣
∣
∣∇wε

∣
∣
∣
∣Awε

∣
∣ dx

≤ ∥
∥wε

∥
∥
L6

∥
∥∇wε

∥
∥
L3

∥
∥Awε

∥
∥
L2

≤ ∥
∥∇wε

∥
∥

3
2
L2

∥
∥wε

∥
∥

1
2
H2

∥
∥Awε

∥
∥
L2

≤ C
∥
∥∇wε

∥
∥

3
2
L2

∥
∥Awε

∥
∥

3
2
L2

≤ Cν

∥
∥∇wε

∥
∥6
L2 + ν

8

∥
∥Awε

∥
∥2
L2 . (5.5)
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Here, we note the presence of the higher-powered term Cν ‖∇wε‖6L2 in the bound

of N4. We want to bound this term above byCν ‖∇wε‖2L2 . To this end, we will assume
that for sufficiently small ε,

∥
∥∇wε(t)

∥
∥
L2 < 1. (5.6)

This ansatz is made rigorous in Sect. 10.2 of the appendix by the use of a bootstrapping
argument (Lemma 10.1).

Now, we apply (5.6) to estimate (5.5), then insert the bounds (5.2), (5.3), (5.4), and
(5.5) into estimate (5.1) which yields

d

dt

∥
∥∇wε

∥
∥2
L2 + ν

∥
∥Awε

∥
∥2
L2

≤ Cν ‖Au‖2β
L2 ‖u‖2L∞V ε2α + Cν

(
‖Au‖2L2 + ‖u‖L∞V ‖Au‖L2 + 1

) ∥
∥∇wε

∥
∥2
L2 .

Since we assumed sufficient regularity of u in Assumption (1.12) of Theorem 1.10 we
infer that each term on the right-hand side is integrable on [0, T ]. Now we set

K0(t) = Cνe
Cν

∫ t
0

(
‖Au‖2

L2
+‖u‖L∞V ‖Au‖L2+1

)
ds

∫ t

0
‖Au‖2β

L2 ‖u‖L∞V ds (5.7)

Since ‖∇wε(0)‖L2 = 0, we can use Grönwall’s inequality to obtain, for all t ∈ [0, T ],
∥
∥∇wε(t)

∥
∥2
L2 ≤ K0(t)ε

2α. (5.8)

From estimate (5.8), we can verify that the bootstrapping argument is valid (see 10.2 in
the Appendix for further details). Therefore, we conclude that uε → u inC([0, T ]; V )

as ε → 0+. ��

6 Existence of Strong Solutions to 3D Navier–Stokes

To prove Theorem 1.11, we begin with a lemma establishing higher-order bounds that
are independent of the calming parameter. We assume a uniform-in-time bound on
f , namely f ∈ L∞((0,∞); L2). This hypothesis could likely be weakened, but for
simplicity of presentation, we do not pursue this here.

Lemma 6.1 Let ν > 0. Suppose, for each ε > 0, uε is a strong solution to calmed
NSE (1.6) or calmed rNSE (1.7) with initial data u0 ∈ V and f ∈ L∞((0,∞); L2).
On the interval [0, T0], where

T0 :=
(‖∇u0‖2L2 + M2

)−2 − 1
4 ‖∇u0‖−4

L2

Cν

(6.1)
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and M := ‖f‖
1
3
L∞((0,∞);L2)

, the following inequalities are valid:

sup
ε>0

sup
t∈[0,T0]

∥
∥∇uε(t)

∥
∥2
L2 ≤ 2 ‖∇u0‖2L2 (6.2)

and

sup
ε>0

{

ν

∫ T0

0

∥
∥Auε

∥
∥2
L2

}

≤ ‖∇u0‖2L2 + CνT0
(
2 ‖∇u0‖2L2 + M2

)3
, (6.3)

where Cν is a positive constant that depends on the domain � and ν and may change
from line to line.

Proof Following similar steps as before in showing higher-order regularity, we take
the action of (1.7) on Auε , integrate by parts, and apply the Lions–Magenes Lemma,
to obtain

1

2

d

dt

∥
∥∇uε

∥
∥2
L2 + ν

∥
∥Auε

∥
∥2
L2 = b(uε,uε, Auε) + (

f, Auε
)

Now we use the Gagliardo–Nirenberg–Sobolev inequality, the Cauchy–Schwarz
inequality, (2.1), and Young’s inequality, which yields

1

2

d

dt

∥
∥∇uε

∥
∥2
L2 + ν

∥
∥Auε

∥
∥2
L2

≤ ∥
∥∇uε

∥
∥
L3

∥
∥uε

∥
∥
L6 ‖Au‖L2 + ‖f‖L2

∥
∥Auε

∥
∥
L2

≤ C
∥
∥∇uε

∥
∥

3
2
L2

∥
∥uε

∥
∥

1
2
H2

∥
∥Auε

∥
∥
L2 + ‖f‖L2

∥
∥Auε

∥
∥
L2

≤ C
∥
∥∇uε

∥
∥

3
2
L2

∥
∥Auε

∥
∥

3
2
L2 + ‖f‖L2

∥
∥Auε

∥
∥
L2

≤ Cν

∥
∥∇uε

∥
∥6
L2 + Cν ‖f‖2L2 + ν

2

∥
∥Auε

∥
∥2
L2

≤ Cν

∥
∥∇uε

∥
∥6
L2 + CνM

6 + ν

2

∥
∥Auε

∥
∥2
L2

≤ Cν

(∥
∥∇uε

∥
∥2
L2 + M2

)3 + ν

2

∥
∥Auε

∥
∥2
L2 .

We now rewrite this inequality as

d

dt

∥
∥∇uε

∥
∥2
L2 + ν

∥
∥Auε

∥
∥2
L2 ≤ Cν

(∥
∥∇uε

∥
∥2
L2 + M2

)3
(6.4)

which, after making the substitution η = ‖∇uε‖2L2 + M2 and removing the diffusive
term, becomes

d

dt
η ≤ Cνη

3.
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From this inequality we derive, for all t ∈ [0, T0],

η(t) ≤
(
η(0)−2 − CνT0

)− 1
2

or

∥
∥∇uε

∥
∥2
L2 + M2 ≤

((
‖∇u0‖2L2 + M2

)−2 − CνT0

)− 1
2 = 2 ‖∇u0‖2L2 (6.5)

for T0 as in (6.1), thus proving (6.2).
We now return to estimate (6.4), integrate in time on the interval [0, T0], and apply

estimate (6.5) to obtain

ν

∫ T0

0

∥
∥Auε

∥
∥2
L2 dt

≤ ‖∇u0‖2L2 + Cν

∫ T0

0

(∥
∥∇uε

∥
∥2
L2 + M2

)3
dt

≤ ‖∇u0‖2L2 + CνT0
(
2 ‖∇u0‖2L2 + M2

)3
. (6.6)

This proves (6.3). ��

Our lemma guarantees that for nonzero initial data u0 ∈ V and forcing term f ∈
L∞(0,∞; L2), there exists a positive time T0 for which, given any ε > 0, uε is
bounded in L∞(0, T0; V ) ∩ L2(0, T0; H2 ∩ V ). We now proceed to show that, on the
time interval [0, T0], {uε}ε>0 is Cauchy.

6.1 Proof of Theorem 1.11

Let uε and uδ be strong solutions to calmed NSE (1.6) or calmed rNSE (1.7) with
initial data u0 ∈ V and with respective calming parameters ε > 0 and δ > 0. From
the results of Lemma 6.1, we ascertain the existence of a maximal time T > 0 for
which

sup
ε>0

sup
t∈[0,T ]

∥
∥∇uε(t)

∥
∥2
L2 ≤ 2 ‖∇u0‖2L2 . (6.7)

From Lemma 6.1, we ascertain that T ≥ 1
4 ‖∇u0‖−4

L2 > 0. Set ũ = uε − uδ . The
system for ũ can be written as

∂t ũ + νAũ

= −B(ζ δ(uδ), ũ) − B(ũ,uε) + B(ζ δ(uδ) − uδ,uε) + B(uε − ζ ε(uε),uε).
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We then take the inner-product with ũ to obtain

1

2

d

dt
‖ũ‖2L2 + ν ‖∇ũ‖2L2 ≤

∫

�

|∇ũ| ∣∣ζ δ(uδ)
∣
∣ |ũ| dx

+
∫

�

|ũ|2 ∣
∣∇uε

∣
∣ dx

+
∫

�

∣
∣∇uε

∣
∣
∣
∣ζ δ(uδ) − uδ

∣
∣ |ũ| dx

+
∫

�

∣
∣∇uε

∣
∣
∣
∣ζ ε(uε) − uε

∣
∣ |ũ| dx.

Now, applying condition 3 of ζ ε yields

1

2

d

dt
‖ũ‖2L2 + ν ‖∇ũ‖2L2 ≤

∫

�

|∇ũ| ∣∣uδ
∣
∣ |ũ| dx +

∫

�

|ũ|2 ∣
∣∇uε

∣
∣ dx

+Cδα

∫

�

∣
∣∇uε

∣
∣
∣
∣uδ

∣
∣β |ũ| dx + Cεα

∫

�

∣
∣∇uε

∣
∣
∣
∣uε

∣
∣β |ũ| dx.

Using Hölder’s inequality, Agmon’s inequality, Poincaré’s inequality, (2.1), and
Young’s inequality, for the first term we obtain

∫

�

|∇ũ| ∣∣ζ δ(uδ)
∣
∣ |ũ| dx ≤ ‖∇ũ‖L2

∥
∥uδ

∥
∥
L∞ ‖ũ‖L2

≤ C ‖∇ũ‖L2

∥
∥uδ

∥
∥
H2 ‖ũ‖L2

≤ C ‖∇ũ‖L2

∥
∥Auδ

∥
∥
L2 ‖ũ‖L2

≤ Cν

∥
∥Auδ

∥
∥2
L2 ‖ũ‖2L2 + ν

8
‖∇ũ‖2L2 , (6.8)

and similarly for the second term, using also (6.2),

∫

�

|ũ|2 ∣
∣∇uε

∣
∣ dx ≤ ‖ũ‖L3

∥
∥∇uε

∥
∥
L2 ‖ũ‖L6

≤ C ‖ũ‖
1
2
L2 ‖∇u0‖L2 ‖∇ũ‖

3
2
L2

≤ Cν ‖∇u0‖4L2 ‖ũ‖2L2 + ν

8
‖∇ũ‖2L2 . (6.9)

Using the same inequalities for the third term, we deduce that

Cδα

∫

�

∣
∣∇uε

∣
∣
∣
∣uδ

∣
∣β |ũ| dx ≤ Cδα

∥
∥∇uε

∥
∥
L6

∥
∥uδ

∥
∥β

L2β ‖ũ‖L3

≤ Cδα
∥
∥uε

∥
∥
H2

∥
∥uδ

∥
∥β

L2β ‖ũ‖
1
2
L2 ‖∇ũ‖

1
2
L2

≤ Cδα
∥
∥Auε

∥
∥
L2

∥
∥uδ

∥
∥β

L2β ‖ũ‖
1
2
L2 ‖∇ũ‖

1
2
L2 .
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For β ∈ [1, 3], from the Gagliardo–Nirenberg–Sobolev inequality and (6.7) we have

∥
∥uδ

∥
∥β

L2β ≤ Cβ ‖∇u0‖β

L2 .

We insert this bound into estimate (6.8) and apply Young’s inequality to obtain

Cδα

∫

�

∣
∣∇uε

∣
∣
∣
∣uδ

∣
∣β |ũ| dx

≤ Cβ,νδ
2α ‖∇u0‖2βL2

∥
∥Auε

∥
∥2
L2 + Cν ‖ũ‖2L2 + ν

8
‖∇ũ‖2L2 . (6.10)

We follow the same procedure for the final term:

Cεα

∫

�

∣
∣∇uε

∣
∣
∣
∣uε

∣
∣β |ũ| dx

≤ Cβ,νε
2α ‖∇u0‖2βL2

∥
∥Auε

∥
∥2
L2 + Cν ‖ũ‖2L2 + ν

8
‖∇ũ‖2L2 . (6.11)

Invoking (6.8), (6.9), (6.10), and (6.11) yields the upper bound

d

dt
‖ũ‖2L2 + ‖∇ũ‖2L2

≤ Cν

(∥
∥Auδ

∥
∥2
L2 + ‖∇u0‖4L2 + 1

)
‖ũ‖2L2 + Cβ,ν ‖∇u0‖2βL2

∥
∥Auε

∥
∥2
L2

(
δ2α + ε2α

)

≤ K1 ‖ũ‖2L2 + K2

(
δ2α + ε2α

)
, (6.12)

where K1 and K2 depend on ν, β, T and ‖∇u0‖L2 , but not ε or δ, and are determined
by Lemma 6.1. Now, we apply Grönwall’s inequality to obtain, for all t ∈ [0, T ],

‖ũ(t)‖L2 ≤ K3

(
δ2α + ε2α

)
,

where

K3 = K2

K1

(
eK1T − 1

) (
δ2α + ε2α

)
.

Therefore, we see that lim
δ,ε→0

∥
∥uε − uδ

∥
∥
L2 = 0, hence {uε}ε>0 is Cauchy in L∞H

with respect to the calming parameter. If instead we integrate (6.12) on [0, T ], we can
derive the upper bound

ν

∫ T

0
‖∇ũ‖2L2 dt ≤ K1

∫ T

0
‖ũ‖2L2 dt + K2T

(
δ2α + ε2α

)

≤ K1T ‖ũ‖L∞L2 + K2T
(
δ2α + ε2α

)
,
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hence {uε}ε>0 is also Cauchy in L2V . Therefore, there exists u ∈ L∞H ∩ L2V for
which

uε → u strongly in u ∈ L∞H ∩ L2V (6.13)

as ε → 0. We now show that this limit point u is in fact a solution to 3D rNSE
(1.3). First note that, owing to Lemma 6.1, the equivalence (2.1), the Banach–Alaoglu
Theorem, and the usual uniqueness of limits, it follows that

u ∈ L∞V ∩ L2(H2 ∩ V ). (6.14)

Set u∗ = uε − u, and take the action of (1.3) against an arbitrary test function w ∈
C1
c ([0, T ); V ) and integrate by parts in time (noting that w

∣
∣
t=T = 0),

−
∫ T

0

〈
uε, ∂tw

〉
dt + ν

∫ T

0

(∇uε,∇w
)
dt +

∫ T

0
b(ζ ε(uε),uε,w) dt

= 〈u0,w(0)〉 +
∫ T

0
〈f,w〉 dt .

By (6.13), the first two terms converge to their Navier–Stokes analogues. For the
nonlinear term, we estimate

∣
∣
∣
∣

∫ T

0
b(ζ ε(uε),uε,w) dt −

∫ T

0
b(u,u,w) dt

∣
∣
∣
∣

≤
∫ T

0
|b(ζ ε(uε) − uε,uε,w)| dt +

∫ T

0
|b(u∗,uε,w)| dt +

∫ T

0
|b(u,u∗,w)| dt

≤
∫ T

0

(

Cεα
∥
∥uε

∥
∥β

L2β

∥
∥∇uε

∥
∥
L3 ‖w‖L6

+ ∥
∥u∗∥∥

L3

∥
∥∇uε

∥
∥
L2 ‖w‖L6 + ‖u‖L3

∥
∥∇u∗∥∥

L2 ‖w‖L6

)

dt

≤
∫ T

0

(

Cβεα ‖∇u0‖β

L2

∥
∥∇uε

∥
∥

1
2
L2

∥
∥Auε

∥
∥

1
2
L2 ‖∇w‖L2

+ ∥
∥u∗∥∥ 1

2
L2

∥
∥∇u∗∥∥ 1

2
L2

∥
∥∇uε

∥
∥
L2 ‖∇w‖L2

+
∫ T

0
‖u‖

1
2
L2 ‖∇u‖

1
2
L2

∥
∥∇u∗∥∥

L2 ‖∇w‖L2

)

dt

≤ Cβεα ‖∇u0‖β

L2 ‖Auε‖L2L2‖w‖L2V

+ C‖u∗‖
1
2
L∞L2‖u∗‖

1
2
L∞V ‖∇u0‖L2

∫ T

0
‖∇w‖L2 dt

+ ‖u‖
1
2
L∞L2‖u‖

1
2
L∞V ‖u∗‖L∞L2

∫ T

0
‖∇w‖L2 dt,
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where the three terms are bounded as a result of (6.6) and (6.14) and vanish as ε →
0+ as a consequence of (6.3) and (6.13). Hence, sending ε → 0+ and choosing
w ∈ C∞

c ((0, T ), V ), we obtain

∂tu + νAu + B(u,u) = f, (6.15)

holding in the distributional sense in time with values in V , i.e., in the sense of
D′((0, T ), V ′). But then, as in, e.g., Temam (2001), Chapter 3, Lemma 1.1, since
the other terms in (6.15) are in L2H , it holds that ∂tu ∈ L2H , and moreover, (6.15)
holds in the sense of ∂tu ∈ L2H . A standard argument (see, e.g., Constantin and Foias
1988; Temam 2001) shows that the initial data is satisfied in the sense ofC([0, T ]; V ).
That is, u is a strong solution to the Navier–Stokes equations. ��

7 An Energy Equality for Weak Solutions

In this section, we focus only on the calmed rotational Navier–Stokes equations
(1.7). We also assume that ζ ε satisfies condition (4) of Definition 1.2, so that
((∇ × u) × ζ ε(u)) · u = 0 in the L2-sense thanks to (1.8).

7.1 Proof of Theorem 1.12

Suppose f ∈ L2(0, T ; V ′). Let u be a weak solution to calmed rNSE as in Defini-
tion 1.10, with the nonlinearity given by B(u, v) = Pσ ((∇ × v) × u). Taking the
action of the equation in V ′ with u and using the Lions–Magenes Lemma2 and the
fact that ∂tu ∈ L2(0, T ; V ′), we obtain

1

2

d

dt
‖u‖2L2 + ν ‖∇u‖2L2 = 〈f,u〉 .

Integrating in time and using the fact that u ∈ C([0, T ]; H), we find that, for any
t > 0,

‖u(t)‖2L2 + 2ν
∫ t

0
‖∇u(s)‖2L2 ds = ‖u0‖2L2 + 2

∫ t

0
〈f(s),u(s)〉 ds.

Therefore, Eqs. (1.13) and (1.14) are valid, proving Theorem 1.12. ��
Remark 7.1 Let us briefly compare system (1.7) with the 3D NSE. For the 3D NSE, it
was shown in Buckmaster and Vicol (2019), Luo and Titi (2020) that weak solutions
are nonunique, but it is currently amajor open problem to showwhetherweak solutions
that satisfy the energy inequality (called Leray–Hopf solutions) are unique. Recently,

2 As is well-known, the Lions–Magenes Lemma is not known to apply in the setting of weak solutions to
the 3D NSE, since for those solutions, it is only known that ∂tu ∈ L4/3(0, T ; V ′), preventing a proof of
an energy equality for weak solutions of the 3D NSE. This seems to be an important distinction of system
(1.7) from the 3D NSE.

123



Journal of Nonlinear Science           (2024) 34:112 Page 27 of 33   112 

Albritton et al. (2022, 2023) demonstrated the nonuniqueness of Leray–Hopf weak
solutions to the 3D Navier–Stokes equations with very special force. However, their
results do not apply to our case with a general given force. In contrast, weak solutions
of (1.7) are not known to be unique, but we have just shown that they satisfy not
only an energy inequality, but an energy equality. Hence, (1.7) is an example of a
system which is very similar to the 3D NSE (especially given the convergence in
Theorem 1.10), where an energy equality is known for weak solutions but for which
a proof of uniqueness of weak solutions remains elusive.

Remark 7.2 It may be worth studying analogues of so-called “suitable weak solu-
tions,” proposed for the 3D NSE in Duchon and Robert (2000), for which a local
energy inequality holds. This would be especially interesting for system (1.7) under
assumption (4) in Definition 1.2 due to the pointwise vanishing of the nonlinear term.
However, we postpone this study to a future work.

8 A Global Attractor

From the existence of the energy identity (1.13), we are able to prove the existence
of a global attractor for the dynamical system generated by solutions of calmed rNSE
(1.7).

8.1 Proof of Theorem 1.14

Consider again the calmed rotational Navier–Stokes equations (1.7), under condi-
tions 1, 2, 3, and 4 of Definition 1.2. Take f ∈ H to be time-independent, and for
a given R > 0, let BR = {u ∈ H : ‖u‖L2 ≤ R}. Now choose u0 ∈ BR . On the
right-hand side of (1.13), we use Hölder’s, Poincaré’s, and Young’s inequalities to
obtain

|(f,u)| ≤ 1

2νλ1
‖f‖2L2 + ν

2
‖∇u‖2L2 .

We insert the second estimate into the first and rearrange the terms, which yield

d

dt
‖u‖2L2 + ν ‖∇u‖2L2 ≤ 1

νλ1
‖f‖2L2 . (8.1)

We apply Poincaré’s inequality once more,

d

dt
‖u‖2L2 + νλ1 ‖u‖2L2 ≤ 1

νλ1
‖f‖2L2 ,
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then we apply Grönwall’s inequality:

‖u(t)‖2L2 ≤ e−νλ1t ‖u0‖2L2 + 1

νλ1

(
1 − e−νλ1t

) ‖f‖2L2

≤ e−νλ1t R2 + 1

νλ1

(
1 − e−νλ1t

) ‖f‖2L2 .

We now set

t0 = 1

νλ1
ln(1 + R2),

so that

max
{
e−νλ1t , e−νλ1t R2

}
< 1

for all t ≥ t0. Then, we obtain

‖u(t)‖2L2 < ρ0 (8.2)

for all t ≥ t0, where ρ0 = 1 + 1
νλ1

‖f‖2L2 .

If instead we integrate (8.1) on the interval3 [t−1, t] for some t ≥ t0+1, we obtain

‖u(t)‖2L2 + ν

∫ t

t−1
‖∇u‖2L2 ≤ ‖u(t − 1)‖2L2 + 1

νλ1
‖f‖2L2 ,

from which we deduce, by (8.2),

∫ t

t−1
‖∇u‖2L2 ds ≤ ρ1, (8.3)

where ρ1 = 1
ν
ρ0 + 1

ν2λ1
‖f‖2L2 . Now, we take the action of (1.7a) with −	u, and use

the Lions–Magenes Lemma to obtain

1

2

d

dt
‖∇u‖2L2 + ν ‖	u‖2L2

= (
(∇ × u) × ζ ε(u),	u

) − (f,	u)

≤ Cν

∥
∥ζ ε

∥
∥
L∞ ‖∇u‖2L2 + Cν ‖f‖2L2 + ν

2
‖	u‖2L2

We then rearrange the inequality above which yields

d

dt
‖∇u‖2L2 + ν ‖	u‖2L2 ≤ Cν

∥
∥ζ ε

∥
∥
L∞ ‖∇u‖2L2 + Cν ‖f‖2L2 . (8.4)

3 Here, the “1” in “t − 1” has dimensions of time. Instead, one could consider the interval [t − τ, t], where
τ = 1

νλ1
, but we use a unit interval to simplify the presentation.
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Now, select s and t such that t > t0 + 1 and t − 1 < s < t . We remove the viscous
term from the left-hand side, then integrate (8.4) on the interval [s, t] and apply (8.3)
to obtain

‖∇u(t)‖2L2 ≤ ‖∇u(s)‖2L2 + Cν ‖f‖2L2 + Cν

∥
∥ζ ε

∥
∥
L∞ ρ1. (8.5)

Integrating once more in s on the interval [t − 1, t] and again using (8.3), it follows
that, for t > t0 + 1,

‖∇u(t)‖2L2 ≤ ρ2, (8.6)

where ρ2 = ρ1 + Cν ‖f‖2L2 + Cν ‖ζ ε‖L∞ ρ1. From this inequality we deduce that
Bρ2 = {

u ∈ H : ‖u‖L2 ≤ ρ2
}
is bounded in V . Since V is compactly embedded in

H , we deduce that Bρ2 is a compact absorbing set in H . Applying Theorem 10.5 of
Robinson (2001), we conclude that there exists a global attractor in H . ��
Remark 8.1 Observe that the upper bounds in (8.4), (8.5), (8.6) each depend on
‖ζ ε‖L∞ . Therefore, these upper bounds do not remain valid as ε → 0+, since
lim

ε→0+
∥
∥ζ ε

∥
∥
L∞ = ∞.

9 Conclusions

We proposed two modifications of the 3D Navier–Stokes equations: one involved
a modification to the advective velocity term of Navier–Stokes (with kinematic
pressure), which we refer to as “calmed Navier–Stokes,” and the other involves a
modification to the Lamb vector of Navier–Stokes (with Bernoulli pressure), which
we term “calmed rotational Navier–Stokes.” We have successfully demonstrated the
existence of weak solutions for both of these calmed systems, although the question of
whether these solutions are unique remains open. Furthermore,we have established the
global well-posedness for strong solutions in both cases. Moreover, we demonstrate
that calmed strong solutions do converge to strong solutions of the Navier–Stokes
equations on sufficiently small time intervals, provided suitable conditions on the
calming function and suitable regularity of the solution to Navier–Stokes.

In the context of the calmed rotational Navier–Stokes Equations (for suitable calm-
ing functions), we also establish the existence of an energy identity and the presence
of a compact global attractor within the function space H .

10 Appendix

10.1 Proof of Proposition 1.4

For ζ ε
1 and ζ ε

2, the proof follows from direct computation. For ζ ε
3, we first note

that ζ ε
3(x) is increasing toward

(
π
2ε , π

2ε , π
2ε

)T as x1, x2, x3 get large. It follows that
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∥
∥ζ ε

3

∥
∥
L∞ =

√
3π
2ε . For the estimate on pointwise convergence, we begin by noting that,

for x = (x1, x2, x3)T ,

∣
∣
∣
∣
d

dxi

(
1

ε
arctan(εxi ) − xi

)∣
∣
∣
∣ ≤ ε2x2i

for i = 1, 2, 3. Thus,
∣
∣
∣
∣
1

ε
arctan(εxi ) − xi

∣
∣
∣
∣ ≤ 1

3
ε2x3i ,

and since
∣
∣
∣
(
x31 , x

3
2 , x

3
3

)T
∣
∣
∣ ≤ 3 |x|3, we have

∣
∣ζ ε

3(x) − x
∣
∣ ≤ ε2x3.

For ζ ε
4, determining the upper bound is trivial. Following a similar procedure as above

for obtaining our pointwise convergence estimate, one checks that for all r ≥ 0,

∣
∣
∣
∣
d

dr

(
qε(r) − r

)
∣
∣
∣
∣ ≤ 2εr

for qε(r) defined in (1.5). It follows that |qε(r) − r | ≤ εr2, hence

∣
∣ζ ε

4(x) − x
∣
∣ ≤ ε |x|2 .

��

10.2 Convergence Bootstrapping Argument

Here, we include the details of the bootstrapping argument used to conclude the proof
of Theorem 1.10. We first state the bootstrapping lemma that is being applied. More
information about this lemma can be found in, (e.g., (Tao 2006, p. 20)).

Lemma 10.1 Let T > 0. Assume that two statements C(t) and H(t) with t ∈ [0, T ]
satisfy the following conditions:

(a) If H(t) holds for some t ∈ [0, T ], then C(t) holds for the same t;
(b) If C(t0) holds for some t0 ∈ [0, T ], then H(t0) holds for t in a neighborhood of

t0;
(c) If C(tm) holds for tm ∈ [0, T ] and tm → t , then C(t) holds;
(d) H(t) holds for at least one t ∈ [0, T ].
Then, C(t) holds for all t ∈ [0, T ].
To justify the use of Ansatz (5.6) in Proof 5.1, it will suffice to apply Lemma 10.1
where the hypothesis H(t) is given by

∥
∥∇wε(t)

∥
∥
L2 < 1
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and the conclusion C(t) is given by

∥
∥∇wε(t)

∥
∥
L2 <

1

2
.

Under the assumptions listed in Theorem 1.10 and using the estimates derived in
Proof 5.1, we will now show that C(t) holds on [0, T ].

Condition (a)

Assume that H(t) is valid. From this (and from the assumptions listed in Theo-
rem 1.10), it follows that (5.8) is true. Now, we set

ε0 = (4K0(T ))−
1
2α

and observe that for all 0 < ε < ε0, C(t) is true as a consequence of (5.8).

Condition (b)

Assume that C(t0) holds. Then, clearly H(t0) is also true. It follows from the contain-
ment of wε in C([0, T ]; V ) that H(t) is valid in a neighborhood of t0.

Condition (c)

Assume thatC(tm) holds for eachm. Then, (5.8) is true at each time tm . By the triangle
inequality and Inequality (5.8), we may write

∥
∥∇wε(t)

∥
∥
L2 ≤ ∥

∥∇wε(t) − ∇wε(tm)
∥
∥
L2 +

(√
K0(tm) − √

K0(T )
)

εα + √
K0(T )εα.

Note that the second term is bounded above by 0 due to the monotonicity of K0(t).
Taking the limit as m → ∞, we obtain

∥
∥∇wε(t)

∥
∥
L2 ≤

(√
K0(t) − √

K0(T )
)

εα + √
K0(T )εα ≤ √

K0(T )εα
0 <

1

2
.

Thus, we have shown that C(t) is true.

Condition (d)

Since ‖∇wε(0)‖L2 = 0 by assumption, this condition is immediately verified.
It then follows from invoking Lemma 10.1 that C(t) holds on [0, T ]. Moreover,

this implies that (5.6) is true. Thus, we are done. ��
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