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Abstract
Wepropose an approximatemodel for the 2DKuramoto–Sivashinsky equations
(KSE) of flame fronts and crystal growth. We prove that this new ‘calmed’ ver-
sion of the KSE is globally well-posed, and moreover, its solutions converge
to solutions of the KSE on the time interval of existence and uniqueness of the
KSE at an algebraic rate. In addition, we provide simulations of the calmed
KSE, illuminating its dynamics. These simulations also indicate that our ana-
lytical predictions of the convergence rates are sharp. We also discuss analogies
with the 3D Navier–Stokes equations of fluid dynamics.
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1. Introduction

The Kuramoto–Sivashinsky equation (KSE) is a captivating model for flame fronts, crys-
tal growth, and many other phenomena. It is both satisfying and frustrating. In one space
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dimension, the model acts as a fantastic toy model: it has highly non-trivial chaotic dynamics
while still being amenable to a wide range of analytical tools. However, in higher dimensions,
it has so far resisted nearly every analytical attack due to its lack of any known conserved
quantity, and the basic question of global well-posedness of solutions remains open, even in
two dimensions. Moreover, the nonlinearity of the system has many similarities with the non-
linearity of the Navier–Stokes equations (NSE), making investigation of the KSE even more
intriguing.

How does one proceed in the face of such difficulty? In the case of the NSE, at least
one approach has been fruitful since at least the work of Smagorinsky in 1963 [58], where
a modification of the Navier–Stokes system was proposed, resulting in a system which is both
globally well-posed [36], and less computationally demanding to simulate. Since then, hun-
dreds of so-called ‘turbulence models’ have arisen (see, e.g. [15, 52] for a survey), which
typically modify the equations in some way. It is therefore natural to ask whether such an
approach might work for the 2D KSE3. However, one quickly realises that approaches which
work for the NSE are unlikely to work for the KSE. Indeed, for the NSE, the problem is the
growth of large gradients; more specifically, the problem is the development of large vorti-
city, ω :=∇× u (see, e.g. [3]). One possible reason may be the cubic nature of the vorticity
equation: d

dt∥ω∥2L2 ∼ (ω ·∇u,ω). Hence, in order to handle the NSE (say, in numerical simu-
lations or to obtain analytical approximations), one typically attempts to control the gradient
of the solution, for example, by strengthening the viscosity or weakening the nonlinear term,
since the nonlinear term cascades energy from large scales to small scales, intensifying the
gradient. That is, the vorticity growth seems to be associated with growth of small scales. On
the other hand, for the KSE, one problem seems to be the growth of large scales (another is
still the lack of any known maximum principle). One possible reason may be the cubic nature
of the energy equation: d

dt∥u∥
2
L2 ∼ (u ·∇u,u). In the 1D case (and in the NSE case), this latter

term vanishes, but not in the 2D KSE case. Moreover, controlling the small scales is not a
major problem, as the KSE has a fourth-order diffusion term, strongly curbing the growth of
gradients. Therefore, the problem for the KSE appears to be the exact opposite of the prob-
lem for the NSE. That is, the problems inherent in the KSE seem to be associated with the
growth of large scales. Hence, the standard approaches that work for the NSE might not work
for the KSE (see [32] for investigations of this notion in the 1D case), and searching for new
approaches to handling the KSE seems justified. The purpose of the present work is to propose
and investigate one such approach.

In [39] a modification of the 2D KSE, called the ‘reduced KSE’ (r-KSE), was proposed and
studied, which featured an adjustment made to the linear term in one component. This system
admits a maximum principle, allowing for a proof of globally well-posedness. Moreover, sim-
ulations in [39] indicate that the dynamics of the r-KSE are arguably qualitatively similar to
KSE. However, r-KSE suffers from the drawback that there is no clear way to see solutions of
the r-KSE converge to solutions of the KSE, as any introduction of a ‘turning’ parameter inter-
polating between the r-KSE and the KSE would immediately violate the maximum principle.
In contrast, the model introduced in this present paper allows for such a parameter ϵ> 0, which
we call the ‘calming parameter.’ In particular, by adjusting the nonlinear term in the (1.2), we
create a globally well-posed PDE that approximates solutions to the 2DKSE to arbitrary preci-
sion, at least on the time interval of existence and uniqueness of solutions to the KSE. Perhaps

3 Since the KSE governs the evolution of a surface, its natural space dimension is two. Moreover, it is not clear that
the 3D case for the KSE is fundamentally more difficult than the 2D case, due to the already strong dissipation. Hence,
we focus on the 2D case.
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surprisingly, our construction does not require the use of a maximum principle, nor does it add
artificial viscosity to the system.

The N-dimensional Kuramoto–Sivashinsky equation (KSE) is given in scalar form by

∂tϕ+
1
2 |∇ϕ|

2 +△ϕ +△2ϕ = 0. (1.1)

with periodic boundary conditions on a domain [0,L]N. By setting u=∇ϕ in (1.1), one form-
ally4 obtains the vector formulation of KSE:

∂tu+(u ·∇)u+△u+△2u= 0, (1.2)

These equations were originally proposed in the 1970’s by Kuramoto and Tsuzuki in
the studies of crystal growth [34, 35] as well as by Sivashinsky in the study of flame-front
instabilities [55] (see also [56]). It has since found many other applications in the sciences,
such as describing the flow of fluid down inclined planes [57], and has shown to be a generic
feature of many physical phenomena involving bifurcations [43].

Many results on the 1D equation have been obtained since its origination, and the equation
has been shown to be rich with interesting dynamics. It is globally well-posed [46, 59], solu-
tions continue to exhibit chaotic dynamics at large times (see, e.g. [9, 26, 42, 47, 49]), and a
large body of work has been published on quantitative results pertaining to the global attractor
(see, e.g. [9–12, 18–20, 22–24, 26, 27, 32, 48, 51, 59, 61]).

There are far fewer results on the KSE in the 2D case. Global well-posedness for sufficiently
small initial data was first shown in [54] on a domain [0,2π]× [0,2πϵ] with ϵ> 0 sufficiently
small. This result was improved upon in [45] by showing global existence on a domain [0,L1]×
[0,L2]with L2 ⩽ CLq1 for some particular q. Later works continued to improve on the sharpness
of this bound (see, e.g. [4, 33, 41, 44] and references therein). Other works employ control of
the domain size as a means to control the instability in Fourier modes. It was shown in [1]
that for small enough domains (on which no growing Fourier modes are present in the linear
terms), global existence holds when the initial data is sufficiently small in a certain Wiener
algebra. This result was then extended in [2] to domains in which there is one linearly growing
mode in each direction. Further studies have investigated modified equations [13, 17, 25, 39,
44, 63] or have looked at the equations with different boundary conditions [21, 38, 50]. For
other results on the case N> 1, see also [5, 6, 37].

The intent of the present work is to propose a modification of the 2D KSE in vector form
which is globally well-posed for any size of domain or initial data. To do this, we make use
of what we call an algebraic calming function or simply a calming function5 which constrains
the advective velocity of the solution.

We propose the following modification of system (1.2),

∂tu+(ζϵ (u) ·∇)u+△u+△2u= 0, (1.3a)

u(x,0) = u0 (x) , (1.3b)

4 We do not claim that ∇ϕ is a unique solution to (1.2) when ϕ is a solution to (1.1). We only observe that one can
formally obtain the set of equation (1.2) by taking the gradient of equation (1.1). In particular, it may be the case that
there exist solutions to (1.2) that are not gradients of solutions to (1.1), or of any other function.
5 Such a function is simply a bounded smooth truncation function, but we call it a ‘calming’ function due to the way it
is used in the nonlinearity to suppress the algebraic growth of the nonlinear term. We do not call it a ‘regularization,’
since we reserve this term for techniques which smooth the equations by modifying derivative operators.
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with L-periodic6 boundary conditions on the 2-dimensional periodic torus T2 := R2/(LZ)2 =
[0,L]2 for some L> 0. We call ϵ> 0 the calming parameter, and ζϵ the calming function. We
require that ζϵ satisfies the conditions described in definition 1.3. For the sake of concreteness,
we consider several example choices for ζϵ; namely

where the arctangent acts componentwise; that is, for a given vector z=
(z1
z2

)
, we denote

arctan(z) =
(arctan(z1)
arctan(z2)

)
.

Remark 1.1. For a given choice of ζϵ
i , i = 1,2, or 3, ϵ can be thought of as a parameter which

limits the velocity scale advecting the flow. However, it is not immediately clear that velocity
scales are limited in the same way between choices of ζϵ

i for a fixed ϵ. One could imagine
trying to find a more meaningful comparison by rescaling the ζϵ

i to have the same supremum.
However, in doing so, ζϵ

i (x) is no longer a good pointwise approximation for x. Therefore, it
may not be meaningful to compare different convergence rates (or errors) between different
types for fixed ϵ. Yet, for the sake of convenience, we plot all error curves, etc on the same
plot. Moreover, the goal of the present work is not to compare different types of ζϵ

i but rather
to exhibit the robustness of this approach to different choices of calming function ζϵ

i .

Remark 1.2. We see no major difficulty in extending our work to the case of physical bound-
ary conditions, i.e. u

∣∣
∂Ω

=△u
∣∣
∂Ω

= 0. However, for the sake of simplicity, we only consider
periodic boundary conditions in the present work.

Section 1.1 lists our main definitions and results, and section 2 lists some preliminaries.
Section 3 contains a proof of global well-posedness, which is mostly standard Galerkin meth-
ods, but with some subtle differences due to the non-polynomial form of the nonlinearity.
Section 4 contains a proof of higher-order (but not arbitrary order) regularity of solutions.
Section 5 contains a proof of convergence of solutions of the calmed equation to solutions to
the original KSE as the calming parameter ϵ→ 0. The proof here is not so straight-forward
due to issues with commutator terms involving the calming function. As we will see, these
issues are circumvented by taking advantage of structural properties of the calming function,
and then using a boot-strapping argument in time. In addition, our techniques yield an explicit
convergence rate. In section 6 we extend our ideas to the scalar form of the KSE. In particular,
we consider a modification to system (1.1),

∂tϕ+
1
2ζ

ϵ (∇ϕ) ·∇ϕ +△ϕ +△2ϕ = 0, (1.5a)

ϕ(x,0) = ϕ0 (x) . (1.5b)

6 Note: One could easily consider rectangular non-square periodic domains, say R2/((L1Z)× (L2Z)) as well with
slight modification of the techniques we use here. For the sake of keeping the discussion focused, we do not pursue
such matters here.
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Other formulations are of course possible. For example, one could consider a nonlinearity

of the form 1
2ζ

ϵ(|∇ϕ|2), or 1
2ζ

ϵ(|∇ϕ|δ)|∇ϕ|2−δ (0< δ < 2), or
1
2 |∇ϕ|2

1+ϵ2|ϕ|2 , or many other pos-
sibilities. However, in the present work, we choose to focus only on the form in (1.5), as the
advective nature of the nonlinearity seems perhaps closest in spirit to the nature of the original
equation.

Section 7 exhibits results from simulations and provides computational evidence that the
convergence rates we obtained in section 5 are sharp (at least, in terms of convergence order).
Concluding remarks are in section 8.

1.1. Main results

Definition 1.3. We say ζϵ : R2 → R2 is a calming function if the following conditions hold:

(i) ζϵ is Lipschitz continuous with Lipschitz constant 1,
(ii) For ϵ> 0 fixed, ζϵ is bounded.

These two conditions are sufficient to show that (1.3) is globally well-posed. In section 5,
we impose this third condition to obtain convergence:

(iii) There exists C> 0, α> 0 and β ⩾ 1 such that for any x ∈ R2,

|ζϵ (x)− x|⩽ Cϵα |x|β . (1.6)

Proposition 1.4. Consider ζϵ
i as described in (1.4). Then ζ

ϵ
i satisfies conditions (i), (ii), and

(iii) of definition 1.3 for each i = 1,2,3. In particular, the following explicit bounds hold for
ϵ> 0.

(i) For ζϵ
1,

∥ζϵ
1∥L∞ =

1
ϵ
and |ζϵ

1 (x)− x|⩽ ϵ |x|2 .

(ii) For ζϵ
2,

∥ζϵ
2∥L∞ =

1
2ϵ
and |ζϵ

2 (x)− x|⩽ ϵ2 |x|3 .

(iii) For ζϵ
3,

∥ζϵ
3∥L∞ =

√
2π
2ϵ

and |ζϵ
3 (x)− x|⩽ ϵ2 |x|3 .

Proof. Straightforward computations (using a Taylor series expansions in the case i= 3) yield
the result.

Definition 1.5. Let u0 ∈ L2(T2) and let T > 0. We say that u is a weak solution to
calmed KSE (1.3) on the interval [0,T] if u ∈ L2([0,T];H2(T2))∩C([0,T];L2(T2)), ∂tu ∈
L2(0,T;H−2(T2)), and u satisfies (1.3a) in the sense of L2(0,T;H−2(T2)) and satisfies (1.3b)
in the sense of C([0,T];L2(T2)).

5
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Theorem 1.6 (Global well-posedness). Let u0 ∈ L2(T2), let T> 0 and fix ϵ> 0. Suppose
ζϵ is a calming function which satisfies Conditions (i) and (ii) of definition 1.3. Then weak
solutions to (1.3) on [0,T] exist, are unique, and depend continuously on the initial data in
L∞(0,T;L2(T2))∩L2(0,T;H2(T2)).

Theorem 1.7 (Regularity). Suppose that ζϵ is calming function which satisfies Conditions (i),
and (ii) of definition 1.3. Let m ∈ {1,2}, and suppose that u is a weak solution to (1.3) on [0,T]
for some T> 0. If u0 ∈ Hm(T2), then u ∈ L∞(0,T;Hm(T2))∩L2(0,T;Hm+2(T2)).

Theorem 1.8 (Convergence). Given u0 ∈ L2(T2), let

u ∈ C
(
[0,T] ;L2

(
T2
))

∩L2
(
0,T;H2

(
T2
))
. (1.7)

be the corresponding weak solution of (1.2) with maximal time of existence and uniqueness
T∗ > 0 and with T ∈ (0,T∗). Suppose ζϵ satisfies conditions (i) and (ii) of definition 1.3.
Furthermore, suppose ζϵ satisfies condition (iii), so that (1.6) holds for some fixed C,α > 0
and any β ∈ [1,3]. Let uϵ be the corresponding weak solution of (1.3) with calming function
ζϵ and initial data u0. Then for any ϵ> 0, it holds that

∥uϵ −u∥L∞(0,T;L2) ⩽ K2ϵ
α,

∥uϵ −u∥L2(0,T;H2) ⩽ K4ϵ
α,

where K2 and K4 are positive constants which depend on T, β, and u, but not on ϵ or α.

Remark 1.9.

• The exact dependence of K2 and K4 on T, β, and u are explicitly shown in the proof of
theorem 1.8.

• This convergence result may not hold on the maximal interval [0,T∗]. Indeed. as T→ T∗ it
may be the case that K2,K4 →∞, but this remains an open question for KSE.

• The upper bound β ⩽ 3 is a technical limitation that appears in the proof of theorem 1.8, in
particular to ensure the integrability of terms derived in estimate (5.7). This limitation can be
removed by choosing smoother initial data u0 ∈ H2(T2). Additionally, we remark that any
bound on β only affects the choice of calming function that one uses. Since each example
of a calming function (1.4) satisfies β ∈ [1,3] (see proposition 1.4), we do not consider this
bound to be restrictive.

Definition 1.10. Let ϕ0 ∈ L2(T2) and let T > 0. We say that ϕ is a weak solution to (1.5)
on the interval [0,T] if ϕ ∈ L2([0,T];H2(T2))∩C([0,T];L2(T2)), ∂tϕ ∈ L2(0,T;H−2(T2)),
and ϕ satisfies (1.5a) in the sense of L2(0,T;H−2(T2)) and satisfies (1.5b) in the sense of
C([0,T];L2(T2)).

Theorem 1.11 (Global well-posedness in scalar form). Let initial dataϕ0 ∈ L2(T2) be given,
and let T> 0, ϵ> 0 be fixed. Suppose ζϵ is a calming function which satisfies Conditions (i)
and (ii) of definition 1.3. Then weak solutions to (1.5) on [0,T] exist, are unique, and depend
continuously on the initial data in L∞(0,T;L2(T2))∩L2(0,T;H2(T2)).

Theorem 1.12 (Convergence in scalar form). Choose ϕ0 ∈ L2(T2) and let ϕ be the corres-
ponding weak solution of the scalar KSE (1.1) with maximal time of existence T∗. We assume
that ϕ is in the natural energy space: for T< T∗,

ϕ ∈ C
(
[0,T] ;L2

(
T2
))

∩L2
(
0,T;H2

(
T2
))
. (1.8)

6
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Suppose ζϵ satisfies (i), (ii), and (iii) of definition 1.3, so that there exists C, α> 0, and β ∈[
1, 32
]
for which (1.6) holds. and let ϕϵ be the corresponding weak solution of the scalar calmed

KSE (1.5) with calming function ζϵ and with initial data ϕ0. Consider the convergence of ϕϵ

to ϕ on the interval [0,T]. The difference ϕϵ −ϕ satisfies

∥ϕϵ −ϕ∥L∞(0,T;L2) ⩽ Kϵα,

∥ϕϵ −ϕ∥L2(0,T;H2) ⩽ K ′ϵα,

where K,K ′ > 0 depend on T, β, and various norms of ϕ, but not on ϵ or α.

Remark 1.13. Similar to the comments made in remark 1.9, The upper bound β ⩽ 3
2 is needed

to establish the integrability of terms present in (6.16), and this bound can be removed by
selecting initial data in, say, H2(T).

2. Preliminaries

In this section, we lay out some notation and preliminary notions that will be used later in the
text. We denote the 2π-periodic box T2 := R2/(2πZ)2 = [0,2π)2. We denote the set of real
vector-valued L2 functions on T2 by

L2
(
T2
)
:=

{
u

∣∣∣∣u(x) = ∑
k∈Z2

ûkeik·x, ûk = û−k, and
∑
k∈Z2

|ûk|2 <∞

}

(with the usual convention of equivalence up to sets of measure zero). We also denote the (real)
L2 inner-product and Hs Sobolev norm, s ∈ R, by

(u,v) :=
2∑

i=1

ˆ
T2

ui (x)vi (x) dx, ∥u∥Hs :=

(∑
k∈Z2

(1+ |k|)2s |ûk|2
)1/2

,

and the corresponding spaceHs(T2) =
{
u ∈ L2(T2)

∣∣ ∥u∥Hs <∞
}
. The space L2(T2) has an

orthogonal basis of eigenfunctions of the Laplacian operator −△ given by{(
eik·x,0

)
,
(
0,eik·x

)
: k ∈ Z2

}
,

with corresponding eigenvalues
{
|k|2 : k ∈ Z2

}
.

For anym ∈ N, we denote byPm : L2(T2)→ L2(T2) the projection onto finitelymany eigen-
functions of the operator −△,

Pmu=
∑
k∈Z2

|k|⩽m

ûkeik·x.

Denote Qm := I−Pm. We recall the following projection estimates for any u ∈ Hs(T2), s> 0,∥∥(−△)
sPmu

∥∥
L2 ⩽ ms ∥Pmu∥L2 (2.1)

∥Qmu∥L2 ⩽ 1
ms

∥u∥Hs . (2.2)

7
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Using integration by parts, the Cauchy–Schwarz, and Young’s inequalities, we obtain, for
any δ > 0, the estimate

∥∇u∥2L2 ⩽
1
2δ

∥u∥2L2 +
δ

2
∥△u∥2L2 . (2.3)

We also recall Agmon’s inequality on T2, for s1 < 1< s2,

∥u∥L∞ ⩽ C∥u∥θHs1∥u∥1−θ
Hs2 , (2.4)

where θs1 +(1− θ)s2 = 1. We also frequently use a special case of the Gagliardo–Nirenberg–
Sobolev inequality,

∥u∥2L4 ⩽ C∥u∥L2 ∥u∥H1 . (2.5)

Notice that this is similar to but not the same as Ladyzhenskaya’s inequality, since it involves
the full H1 norm. This is necessary because neither KSE nor calmed KSE preserve mean-free
vector fields. However, using (2.5) and elliptic regularity, and due to our periodic boundary
conditions, we have the following Ladyzhenskaya-type inequality on higher-order derivatives,
since they are mean-free (denoting the average u := 1

|Ω|
´
Ω
u(x)dx):

∥∇u∥2L4 ⩽ C∥∇u∥L2 ∥∇u∥H1 = C∥∇u∥L2 ∥∇(u−u)∥H1

⩽ C∥∇u∥L2 ∥△(u−u)∥L2 = C∥∇u∥L2 ∥△u∥L2 . (2.6)

Applying integration by parts and the Cauchy–Schwarz inequality in conjunction with (2.5)
also yields the following useful estimate:

∥u∥2L4 ⩽ C∥u∥2L2 +C∥u∥
3
2
L2 ∥△u∥

1
2
L2 (2.7)

We also denote by C a positive constant which may change from line to line.

3. Global well-posedness for calmed KSE

In this section, we prove the results stated section 1, along with some auxilliary results. We
begin with some lemmata.

Lemma 3.1. Suppose that ζϵ satisfies conditions (i) and (ii) of definition 1.3. Then the follow-
ing statements hold.

(i) Given 1⩽ p⩽∞, if u ∈ Lp(T2) then ζϵ(u) ∈ Lp(T2) and ζϵ is Lipschitz in Lp(T2) with
Lipschitz constant 1.

(ii) Fix u,w ∈ L2(0,T;L2(T2)) and T> 0, let Iu,w : L2(0,T;H1(T2))→ R be the map

Iu,w (ϕ) =
ˆ T

0
((ζϵ (u) ·∇)ϕ,w)dt. (3.1)

Then Iu,w is continuous.

8
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Proof. (i). The result follows immediately from the definition of the Lp norm and from con-
dition (i) of definition 1.3.
(ii). Let ζϵj (u) denote the jth component of ζϵ(u).
For ϕ ∈ L2(0,T;H1(T2)), we estimate

|Iu,w (ϕ)|⩽
2∑

j=1

ˆ T

0

∣∣(ζϵj (u)∂jϕ,w)∣∣dt
⩽

2∑
j=1

ˆ T

0

∥∥ζϵj (u)∥∥L∞ ∥∂jϕ∥L2 ∥w∥L2 dt

⩽ ∥ζϵ∥L∞
ˆ T

0
∥ϕ∥H1 ∥w∥L2 dt

⩽ ∥ζϵ∥L∞ ∥w∥L2(0,T;L2) ∥ϕ∥L2(0,T;H1)

by the Cauchy–Schwarz inequality.

Using the projection operator Pm, define the finite-dimensional space Hm := Pm(L2(T2)).
Consider the following initial value problem obtained via Galerkin approximation: Given u0 ∈
L2(T2), find u ∈ Hm which satisfies

∂tu+Pm ((ζ
ϵ (u) ·∇)u)+△u+△2u= 0, (3.2a)

u(x,0) = Pmu0 (x) . (3.2b)

Lemma 3.2. If ζϵ satisfies (i) of definition 1.3, then the map F : Hm → Hm defined by

F(u) =−Pm ((ζϵ (u) ·∇)u)−△u−△2u

is locally Lipschitz on Hm. As a consequence, solutions to (3.2) exist and are unique in
C1([0,T],Hm) for some T> 0.

Proof. Fix u ∈ Hm and let v ∈ Hm be arbitrary. Rewrite the difference F(u)−F(v) as

F(u)−F(v) =−△(u− v)−△2 (u− v)−Pm (((ζ
ϵ (u)− ζϵ (v)) ·∇)u)

−Pm ((ζ
ϵ (v) ·∇)(u− v)) .

From Condition (i) of definition 1.3, Estimate (2.1), and Agmon’s inequality, it follows that

∥F(u)−F(v)∥L2

⩽ ∥△(u− v)∥L2 +
∥∥△2 (u− v)

∥∥
L2

+ ∥((ζϵ (u)− ζϵ (v)) ·∇)u∥L2 + ∥(ζϵ (v) ·∇)(u− v)∥L2

⩽
(
m+m2

)
∥u− v∥L2 + ∥∇u∥L∞ ∥ζϵ (u)− ζϵ (v)∥L2

+ ∥ζϵ (v)∥L∞ ∥∇(u− v)∥L2

⩽
(
m+m2

)
∥u− v∥L2 + ∥u∥H3 ∥u− v∥L2 +m

1
2 ∥ζϵ∥L∞ ∥u− v∥L2 .

Since u is a finite linear combination of eigenfunctions of −△, ∥u∥H3 <∞. Thus F is loc-
ally Lipschitz at u ∈ Hm. Existence and uniqueness of solutions to (3.2) in C1([0,T],Hm) now
follows as a consequence of the Picard-Lindelöf theorem

9
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Due to the presence of the calming function ζϵ, the Galerkin system here is not necessarily
quadratic such as in the case of the 2D NSEs or the 2D KSEs. Thus we give a fully rigorous
proof of well-posedness here.

Proof of theorem 1.6. We will show that a solution exists using Galerkin approximation.
Given u0 ∈ L2(T2), suppose um ∈ C([0,Tm];Hm) is a solution to (3.2) on the interval [0,Tm]
for some Tm > 0 with initial data um0 = Pmu0. We take the inner product of (3.2) with um to
obtain

1
2
d
dt

∥um∥2L2 + ∥△um∥2L2 =−(△um,um)− ((ζϵ (um) ·∇)um,um)

We estimate the first term by−(△um,um)⩽ 1
4 ∥△um∥2L2 + ∥um∥2L2 . For the nonlinear term, we

estimate

|(ζϵ (um) ·∇)um,um) |⩽ ∥ζϵ(um)∥L∞ ∥∇um∥L2 ∥um∥L2

⩽ ∥ζϵ∥L∞ ∥um∥
1
2
L2 ∥△um∥

1
2
L2 ∥um∥L2

⩽ 3
4
∥ζϵ∥

4
3
L∞ ∥um∥2L2 +

1
4
∥△um∥2L2

Combining the above estimates and denoting Kϵ :=
3
2 ∥ζ

ϵ∥
4
3
L∞ + 2, we obtain

d
dt

∥um∥2L2 + ∥△um∥2L2 ⩽ Kϵ ∥um∥2L2 . (3.3)

After dropping the second term of (3.3), Grönwall’s inequality yields for all t ∈ [0,Tm],

∥um (t)∥2L2 ⩽ eKϵt ∥um (0)∥2L2 ⩽ eKϵTm ∥u0∥2L2 . (3.4)

Since um ∈ C([0,Tm],T2), via a bootstrapping argument, it holds that for any T > 0 and any
t ∈ [0,T],

∥um (t)∥2L2 ⩽ eKϵt ∥u0∥2L2 ⩽ eKϵT ∥u0∥2L2 . (3.5)

Next, we integrate (3.3) on [0,T] and apply estimate (3.5):

∥um (T)∥2L2 +
1
2

ˆ T

0
∥△um (s)∥2L2 ds

⩽
ˆ T

0
Kϵ ∥um (s)∥2L2 ds+ ∥um (0)∥2L2

⩽
ˆ T

0
Kϵe

Kϵs ∥u0∥2L2 ds+ ∥u0∥2L2

= eKϵT ∥u0∥2L2 . (3.6)

10



Nonlinearity 37 (2024) 115019 M Enlow et al

Hence, for all T > 0,

{um}∞m=1 is bounded in L∞
(
[0,T] ;L2

)
∩L2

(
[0,T] ;H2

)
. (3.7)

To bound the time derivative, we estimate

∥∂tum∥H−2 ⩽
∥∥△2um

∥∥
H−2 + ∥△um∥H−2 + sup

ϕ∈H2

∥ϕ∥H2=1

|⟨Pm ((ζϵ(um) ·∇)um) ,ϕ⟩|

⩽ C1 ∥um∥H2 +C2 ∥um∥L2 + sup
ϕ∈H2

∥ϕ∥H2=1

|⟨ζϵ(um) ·∇)um,Pm (ϕ)⟩|

⩽ C∥um∥H2 +C∥um∥L2 + sup
ϕ∈H2

∥ϕ∥H2=1

∥ζϵ(um)∥L∞ ∥um∥H1 ∥ϕ∥L2

⩽ C∥um∥H2 +C∥um∥L2 + ∥ζϵ∥L∞ ∥um∥H1 .

Hence, {∂tum}∞m=1 is bounded in L2(0,T;H−2(T2)). By the Banach–Alaoglu theorem, there
exists u ∈ L2(0,T;H2(T2))∩L∞(0,T;L2(T2)) and a subsequence (which we will still label as
um) such that

um ⇀∗ u weak-∗ in L∞
(
0,T;L2

(
T2
))
, (3.8)

um ⇀ u weakly in L2
(
0,T;H2

(
T2
))
, (3.9)

∂tum ⇀∂tu weakly in L2
(
0,T;H−2

(
T2
))
. (3.10)

Moreover, by the Aubin–Lions lemma we may pass to another subsequence, relabelled to be
um, such that

um → u strongly in C
(
0,T;L2

(
T2
))
. (3.11)

Now we can show that u is a weak solution to (1.3). Given w ∈ L2(0,T;H2(T2)), we compute

(⟨∂tu,w⟩+((ζϵ(u) ·∇)u,w)+ (△u,w)+ (△u,△w))

− (⟨∂tum,w⟩+(Pm ((ζ
ϵ(um) ·∇)um) ,w)+ (△um,w)+ (△um,△w))

= ⟨∂t (u−um) ,w⟩+(△(u−um) ,w)+ (△(u−um) ,△w)

+ ((ζϵ(u) ·∇)u,w)− (Pm ((ζ
ϵ(um) ·∇)um) ,w)

= ⟨∂t (u−um) ,w⟩+(△(u−um) ,w)+ (△(u−um) ,△w)

+ ((ζϵ(u) ·∇)u,w)− ((ζϵ(um) ·∇)um,w)+ (Qm ((ζ
ϵ(um) ·∇)um) ,w)

= ⟨∂t (u−um) ,w⟩+(△(u−um) ,w)+ (△(u−um) ,△w)

+ (((ζϵ(u)− ζϵ(um)) ·∇)um,w)+ ((ζϵ(u) ·∇)(u−um) ,w)

+ (((ζϵ(um) ·∇)um) ,Qmw) .

:=
6∑

k=1

Ik.

11
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Integrate
∑6

k=1 Ik in time for t ∈ [0,T]. We observe that I1, I2, and I3 all vanish as m→∞
by (3.8)–(3.10). Using Condition (i) of definition 1.3, Agmon’s inequality, and Hölder’s
inequality, we obtain

ˆ T

0
I4dt⩽

ˆ T

0
∥ζϵ (u)− ζϵ (um)∥L2 ∥∇um∥L2 ∥w∥L∞ dt

⩽ C
ˆ T

0
∥u−um∥L2 ∥um∥

1
2
L2 ∥△um∥

1
2
L2 ∥w∥

1
2
L2 ∥w∥

1
2
H2 dt

⩽ C∥u−um∥
1
2
L∞(0,T;L2)

∥um∥
1
2
L∞(0,T;L2)

×
ˆ T

0
∥u−um∥

1
2
L2 ∥△um∥

1
2
L2 ∥w∥H2 dt

⩽ C∥u−um∥
1
2
L∞(0,T;L2)

∥um∥
1
2
L∞(0,T;L2)

×∥△um∥
1
2
L2(0,T;L2)

∥w∥L2(0,T;H2)∥u−um∥
1
2
L2(0,T;L2)

, (3.12)

which is bounded due to (3.5), (3.9), and (3.11).
For I5,

ˆ T

0
I5dt= Iu,w (u−um) (3.13)

for Iu,w as defined in (3.1), which convergences due to lemma 3.1. Finally, using Hölder’s
inequality, condition (ii) of definition 1.3 and (2.2),

ˆ T

0
I6dt⩽

ˆ T

0
∥ζϵ (um)∥L∞ ∥∇um∥L2 ∥Qmw∥L2 dt

⩽ ∥ζϵ∥L∞
(ˆ T

0
∥∇um∥2L2 dt

) 1
2
(ˆ T

0
∥Qmw∥2L2 dt

) 1
2

⩽ ∥ζϵ∥L∞
(ˆ T

0
∥∇um∥2L2 dt

) 1
2
(ˆ T

0

1
m4

∥w∥2H2 dt

) 1
2

⩽ ∥ζϵ∥L∞ ∥um∥L2(0,T;H2)∥w∥L2(0,T;H2)
1
m2
, (3.14)

which converges to zero by (3.7).
Invoking (3.9)–(3.14),

lim
m→∞

ˆ T

0

(
6∑

k=1

Ik

)
dt= 0.

Therefore solutions to the ODE system (3.2) converge to a solution of the PDE system (1.3).
Thus u is indeed a solution to (1.3).

12
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Now we show that the solution u satisfies u(0) = u0 in the sense of C([0,T],L2). Applying
lemma 1.1 from chapter 3 of [62, p 250], for all v ∈ H2(T2), it follows that

⟨∂tu,v⟩=
d
dt

(u,v) =−(△u,v)− (△u,△v)− (ζϵ (u) ·∇u,v) (3.15)

in the scalar distribution sense on [0,T]. Now, suppose that ψ ∈ C1([0,T]) and satisfies ψ(0) =
1, ψ(T) = 0. We then integrate (3.15) in time with ψ and apply integration by parts to obtain

ˆ T

0
(u,v)ψ ′ (t)dt=−

ˆ T

0
(△u,v)ψ (t)dt−

ˆ T

0
(△u,△v)ψ (t)dt

−
ˆ T

0
(ζϵ (u) ·∇u,v)ψ (t)dt+(u(0) ,v) . (3.16)

On the other hand, if we take the inner product of (3.2) with v then integrate in time with ψ
we obtain

ˆ T

0
(um,v)ψ ′ (t)dt=−

ˆ T

0
(△um,v)ψ (t)dt−

ˆ T

0
(△um,△v)ψ (t)dt

−
ˆ T

0
(Pm (ζ

ϵ (um) ·∇um) ,v)ψ (t)dt+(um0 ,v) .

Passing to the limit as m→∞ then yields

ˆ T

0
(u,v)ψ ′ (t)dt=−

ˆ T

0
(△u,v)ψ (t)dt−

ˆ T

0
(△u,△v)ψ (t)dt

−
ˆ T

0
(ζϵ (u) ·∇u,v)ψ (t)dt+(u0,v) . (3.17)

By then comparing (3.16) and (3.17), we obtain (u(0)−u0,v) = 0 for all v ∈ H2(T2). Since
H2(T2) is dense in L2(T2), it follows that (u(0)−u0,v) = 0 for all v ∈ L2(T2). Thus u satisfies
u(0) = u0. Next, we show that weak solutions are unique. Set w= u− v, where u and v are
both weak solutions of calmed KSE (1.3) on the interval [0,T] with u0 = v0. After taking the
difference of the two equations, we then take the action of the difference equation with w,
which yields

1
2
d
dt

∥w∥2L2 + ∥△w∥2L2 (3.18)

=−(△w,w)− ((ζϵ (u) ·∇)u,w)+ ((ζϵ (v) ·∇)v,w)

=−(△w,w)+ (((ζϵ (v)− ζϵ (u)) ·∇)u,w)− ((ζϵ (v) ·∇)w,w)

= J1 + J2 + J3,

where we have used the Lions–Magenes lemma to write ⟨∂tw,w⟩= 1
2

d
dt ∥w∥

2
L2 . Then,

J1 ⩽ C∥w∥2L2 +
1
6
∥△w∥2L2 .

13
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Also, using the Lipschitz condition (i) of ζϵ, (2.7), and Young’s inequality, we have

J2 := (((ζϵ (v)− ζϵ (u)) ·∇)u,w)

⩽ ∥ζϵ (v)− ζϵ (u)∥L4 ∥∇u∥L2 ∥w∥L4

⩽ ∥∇u∥L2 ∥w∥2L4

⩽ C∥∇u∥L2 ∥∇w∥2L2 +C∥∇u∥L2 ∥w∥
3
2
L2 ∥△w∥

1
2
L2

⩽ C
(
∥∇u∥L2 + ∥∇u∥

4
3

L2

)
∥w∥2L2 +

1
6
∥△w∥2L2

and, finally,

J3 :=−((ζϵ (v) ·∇)w,w)

⩽ ∥ζϵ (v)∥L∞ ∥∇w∥L2 ∥w∥L2

⩽
(
∥ζϵ∥L∞ ∥w∥

3
2
L2

)(
∥△w∥

1
2
L2

)
⩽ C∥ζϵ∥

4
3
L∞ ∥w∥2L2 +

1
6
∥△w∥2L2 .

From the above estimates, we obtain

d
dt

∥w(t)∥2L2 + ∥△w(t)∥2L2 ⩽ C
(
1+ ∥∇u∥L2 + ∥∇u∥

4
3

L2 + ∥ζϵ∥
4
3
L∞

)
∥w(t)∥2L2 .

We observe that K1(t) = C(1+ ∥∇u∥L2 + ∥∇u∥
4
3

L2 + ∥ζϵ∥
4
3
L∞) is integrable on [0,T]. Thus we

conclude, recalling that w= u− v,

∥w(t)∥2L2 ⩽ ∥w0∥2L2 exp

(ˆ T

0
K1 (t)dt

)
. (3.19)

Therefore solutions to (1.3) are unique. If we now integrate (3.18) on the interval [0,T] and
apply estimate (3.19), we obtain

ˆ T

0
∥△w(t)∥2L2 dt⩽

(ˆ T

0
K1 (t)exp

(ˆ t

0
K1 (s)ds

)
dt

)
∥w0∥2L2 (3.20)

From estimates (3.19) and (3.20) we conclude that solutions depend continuously on the initial
data in L∞(0,T;L2(T2))∩L2(0,T;H2(T2)).

4. Higher-order regularity of solutions

In this section, we only work formally, but the results can be made rigorous by using, e.g. the
Galerkin method. We will show that the regularity of a weak solution u to (1.3) is dependent
on the regularity of the calming function ζϵ and the initial data u0.

14



Nonlinearity 37 (2024) 115019 M Enlow et al

Remark 4.1. It seems likely that higher-order regularity (m> 2) also holds, but we do not
pursue such matters here.

Proof of theorem 1.7. We first show the case m= 1. We take the (formal) inner product
of (1.3) with −△u and integrate by parts to obtain

(∂tu,−△u)− ((ζϵ (u) ·∇)u,△u)− (△u,△u)−
(
△2u,△u

)
= 0

which we will rewrite as

1
2
d
dt

∥∇u∥2L2 + ∥∇△u∥2L2 = (((ζϵ (u) ·∇)u) ,△u)− (∇u,∇△u)

= ((ζϵ (u) ·∇)u,△u)− (∇u,∇△u) .

Thus, we obtain

1
2
d
dt

∥∇u∥2L2 + ∥∇△u∥2L2

⩽ ∥ζϵ (u)∥L∞ ∥∇u∥L2 ∥△u∥L2 + ∥∇u∥L2 ∥∇△u∥L2

⩽ ∥ζϵ∥L∞ ∥∇u∥
3
2
L2 ∥∇△u∥

1
2
L2 + ∥∇u∥L2 ∥∇△u∥L2

⩽
(
3
4
∥ζϵ∥

4
3
L∞ +

1
2

)
∥∇u∥2L2 +

3
4
∥∇△u∥2L2 .

This estimate can then be rewritten as

d
dt

∥∇u∥2L2 +
1
2
∥∇△u∥2L2 ⩽

(
3
2
∥ζϵ∥

4
3
L∞ + 1

)
∥∇u∥2L2 . (4.1)

Then, by Grönwall’s inequality,

∥∇u(t)∥2L2 ⩽ ∥∇u0∥2L2 exp

(
3
2
t∥ζϵ∥

4
3
L∞ + t

)
⩽ ∥∇u0∥2L2 exp

(
3
2
T∥ζϵ∥

4
3
L∞ +T

)
(4.2)

Now, after integrating (4.1) on the interval [0,T] and applying estimate (4.2), it follows that

ˆ T

0
∥∇△u(τ)∥2L2 dτ ⩽ 2∥∇u0∥2L2 exp

(
3
2
T∥ζϵ∥

4
3
L∞ +T

)
. (4.3)

Thus, u ∈ L2(0,T;H3(T2))∩L∞(0,T;H1(T2)) whenever u0 ∈ H1(T2).

15
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The casem= 2 proceeds in a similar way.We take the inner product with△2u, then use (2.5)
to obtain

1
2
d
dt

∥△u∥2L2 +
∥∥△2u

∥∥2
L2

⩽
∣∣(△u,△2u

)∣∣+ ∣∣((ζϵ (u) ·∇)u,△2u
)∣∣

⩽ 1
2
∥△u∥2L2 +

1
2

∥∥△2u
∥∥2
L2 + ∥ζϵ (u)∥L4 ∥∇u∥L4

∥∥△2u
∥∥
L2

⩽ 1
2
∥△u∥2L2 +

1
2

∥∥△2u
∥∥2
L2 +C∥u∥2L4 ∥∇u∥2L4 +

1
4

∥∥△2u
∥∥2
L2

⩽ 1
2
∥△u∥2L2 +

1
2

∥∥△2u
∥∥2
L2 +C(∥u∥L2 ∥u∥H1)∥∇u∥L2 ∥∇u∥H1 +

1
4

∥∥△2u
∥∥2
L2

⩽ 1
2
∥△u∥2L2 +

1
2

∥∥△2u
∥∥2
L2 +C

(
∥u∥2L2 + ∥u∥2H1

)
∥△u∥2L2 +

1
4

∥∥△2u
∥∥2
L2 , (4.4)

in which we have used elliptic regularity and the mean-free condition of∇u to write ∥∇u∥2L4 ⩽
C∥△u∥2L2 . Similar to the case m= 1, this estimate reveals that u ∈ L∞(0,T;H2(T2))∩
L2(0,T;H4(T2)) whenever u0 ∈ H2(T2).

5. Convergence to Kuramoto–Sivashinsky Solutions

It is known that, for any initial data u0 ∈ L2(T2), solutions to 2D KSE exist and are unique in
C([0,T];L2(T2))∩L2(0,T;H2(T2)) for some (possibly only small) T > 0 (see, e.g. [5, 17]). In
this section we show that as ϵ→ 0, solutions uϵ of the calmed KSE (1.3) converge to solutions
u of KSE (1.2) prior to its potential blowup time. For this result, it seems necessary that our
calming function ζϵ satisfies Condition (iii) of definition 1.3. Indeed, if one wants to show that
(ζϵ(uϵ) ·∇)uϵ → (u ·∇)u in some sense as ϵ→ 0, then one expects that at least ζϵ(x)→ x
as ϵ→ 0. We do not find this imposition to be restrictive, as our example choices for ζϵ satisfy
this condition, as seen in proposition 1.4.

In order to prove theorem 1.8, we need the following abstract bootstrapping/continuity argu-
ment (see, e.g. [60, p 20]).

Remark 5.1. It was pointed out by one of the anonymous referees that to prove theorem 1.8,
one can avoid the abstractness of lemma 5.2 by employing more elementary means based on
nonlinear Grönwall-type arguments. However, for the sake of brevity, we use lemma 5.2.

Lemma 5.2. Let T> 0. Assume that two statements C(t) and H(t) with t ∈ [0,T] satisfy the
following conditions:

(a) If H(t) holds for some t ∈ [0,T], then C(t) holds for the same t;
(b) If C(t) holds for some t0 ∈ [0,T], then H(t) holds for t in a neighbourhood of t0;
(c) If C(t) holds for tm ∈ [0,T] and tm → t, then C(t) holds;
(d) H(t) holds for at least one t1 ∈ [0,T].

Then C(t) holds for all t ∈ [0,T].
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Proof of theorem 1.8. Set

wϵ := uϵ −u

and take the difference between (1.3) and (1.2) to obtain

∂twϵ +∆wϵ +∆2wϵ =−(ζϵ (uϵ) ·∇)uϵ +(u ·∇)u.

Testing each side by wϵ we obtain, after integration by parts,

1
2
d
dt
∥wϵ∥2L2 + ∥∆wϵ∥2L2 = ∥∇wϵ∥2L2 +N, (5.1)

where N is given by

N :=−
ˆ
T2

((ζϵ (uϵ) ·∇)uϵ − (u ·∇)u) ·wϵ dx.

By inequality (2.3),

∥∇wϵ∥2L2 ⩽
1
2
∥∆wϵ∥2L2 +

1
2
∥wϵ∥2L2 . (5.2)

Inserting (5.2) in (5.1) yields

d
dt
∥wϵ∥2L2 + ∥∆wϵ∥2L2 ⩽ ∥wϵ∥2L2 + 2N. (5.3)

N can be written as

N=−
ˆ
T2

((ζϵ (uϵ)− ζϵ (u)) ·∇)wϵ ·wϵ dx−
ˆ
T2

(ζϵ (u) ·∇)wϵ ·wϵ dx

−
ˆ
T2

((ζϵ (uϵ)− ζϵ (u)) ·∇)u ·wϵ dx−
ˆ
T2

((ζϵ (u)−u) ·∇)u ·wϵ dx.

Using the Lipschitz property of ζϵ and (1.6), we see that N is bounded by

|N|⩽
ˆ
T2

|ζϵ (uϵ)− ζϵ (u)| |∇wϵ| |wϵ| dx+
ˆ
T2

|ζϵ (u)| |∇wϵ| |wϵ| dx

+

ˆ
T2

|ζϵ (uϵ)− ζϵ (u)| |∇u| |wϵ| dx+
ˆ
T2

|ζϵ (u)−u| |∇u| |wϵ| dx.

⩽
ˆ
T2

|wϵ|2 |∇wϵ| dx+
ˆ
T2

|u| |∇wϵ| |wϵ| dx

+

ˆ
T2

|wϵ|2 |∇u| dx+Cϵα
ˆ
T2

|u|β |∇u| |wϵ| dx.

= N1 +N2 +N3 +N4.
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These terms can be bounded as follows. By Hölder’s inequality and (2.7), we obtain

N1 ⩽ ∥wϵ∥2L4∥∇wϵ∥L2 ⩽ C
(
∥wϵ∥2L2 + ∥wϵ∥

3
2
L2 ∥△wϵ∥

1
2
L2

)
∥wϵ∥

1
2
L2 ∥△wϵ∥

1
2
L2

= C∥wϵ∥
5
2
L2 ∥△wϵ∥

1
2
L2 +C∥wϵ∥2L2 ∥△wϵ∥L2

⩽ C∥wϵ∥
10
3
L2 +C∥wϵ∥4L2 +

1
16

∥△wϵ∥L2 (5.4)

and, using similar estimates along with (2.6),

N2 ⩽ ∥u∥L2 ∥wϵ∥L4∥∇wϵ∥L4

⩽ C∥u∥L2

(
∥wϵ∥L2 + ∥wϵ∥

3
4
L2 ∥△wϵ∥

1
4
L2

)
∥wϵ∥

1
4
L2 ∥△wϵ∥

3
4
L2

= C∥u∥L2 ∥wϵ∥
5
4
L2 ∥△wϵ∥

3
4
L2 +C∥u∥L2 ∥wϵ∥L2 ∥△wϵ∥L2

⩽ C

(
∥u∥

8
5
L2 + ∥u∥2L2

)
∥wϵ∥2L2 +

1
16

∥△wϵ∥2L2 (5.5)

and also, by (2.7),

N3 ⩽ ∥∇u∥L2 ∥wϵ∥2L4 ⩽ C∥∇u∥L2 ∥wϵ∥2L2 +C∥∇u∥L2 ∥wϵ∥
3
2
L2 ∥△wϵ∥

1
2
L2

⩽ C
(
∥∇u∥L2 + ∥∇u∥

4
3

L2

)
∥wϵ∥2L2 +

1
16

∥△wϵ∥2L2 . (5.6)

Finally, by Agmon’s inequality,

N4 ⩽ Cϵα ∥wϵ∥L2 ∥u∥βL∞ ∥∇u∥L2

⩽ Cϵα ∥wϵ∥L2 ∥u∥
β
2
L2 ∥u∥

β
2
H2 ∥u∥

1
2
L2 ∥△u∥

1
2
L2

⩽ Cϵα ∥wϵ∥L2 ∥u∥
β
2
L2

(
∥u∥

β
2
L2 + ∥△u∥

β
2
L2

)
∥u∥

1
2
L2 ∥△u∥

1
2
L2

=

(
Cϵα ∥u∥β+

1
2

L2 ∥△u∥
1
2
L2 +Cϵα ∥u∥

β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2

)
∥wϵ∥L2 . (5.7)

We now insert the bounds for N in (5.1) to obtain the following,

d
dt

∥wϵ∥2L2 + ∥△wϵ∥2L2

⩽ 6
16

∥△wϵ∥2L2 +C∥wϵ∥4L2 +C∥wϵ∥
10
3

L2

+C
(
1+ ∥u∥

8
5

L2 + ∥u∥2L2 + ∥∇u∥L2 + ∥∇u∥
4
3

L2

)
∥wϵ∥2L2

+C

(
ϵα ∥u∥β+

1
2

L2 ∥△u∥
1
2
L2 + ϵα ∥u∥

β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2

)
∥wϵ∥L2 . (5.8)

Due to the presence of the terms ∥wϵ∥4L2 and ∥wϵ∥
10
3
L2 , we cannot apply Grönwall’s inequality

directly. However, since ∥wϵ∥L2 is supposed to be small, these terms are not ‘bad’ and are even
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smaller than ∥wϵ∥2L2 . We just need to apply a bootstrapping argument, as stated in lemma 5.2.
Denote by H(t) with t ∈ [0,T] the statement that

∥wϵ (t)∥L2 ⩽ 1

and by C(t) the statement that

∥wϵ (t)∥L2 ⩽ eA(T)B(T) ϵα ⩽ 1
2 ,

where A(t) and B(t) are defined as in (5.11) and (5.12) below and ϵ is taken to be sufficiently
small such that

eA(T)B(T) ϵα ⩽ 1
2 .

Clearly, C(t) is a stronger statement than H(t), and thus (b) of lemma 5.2 holds. When the
solutions are regular enough, then ∥wϵ(t)∥L2 is continuous in time. Indeed, this regularity is
given by condition 1.7 and definition 1.5 and thus (c) of lemma 5.2 holds. For t= 0, ∥wϵ(t)∥L2

is zero and thus (d) of lemma 5.2 holds. In order to apply lemma 5.2, it remains to verify (a).
That is, if H(t) holds for some t ∈ [0,T], namely

∥wϵ (t)∥L2 ⩽ 1,

then C(t) holds at the same t, namely

∥wϵ (t)∥L2 ⩽ eA(T)B(T) ϵα < 1
2 .

We assume that, for some t ∈ [0,T],

∥wϵ (t)∥L2 ⩽ 1 (5.9)

and then show that (5.9) leads to a desired smaller bound at this same t. Nowwe replace ∥wϵ∥4L2

and ∥wϵ∥
10
3
L2 by ∥wϵ∥2L2 in (5.8), remove the higher-order diffusive terms, and eliminate ∥wϵ∥L2

from each term to obtain

d
dt

∥wϵ∥L2 ⩽ C
(
1+ ∥u∥

8
5

L2 + ∥u∥2L2 + ∥∇u∥L2 + ∥∇u∥
4
3

L2

)
∥wϵ∥L2

+Cϵα
(
∥u∥β+

1
2

L2 ∥△u∥
1
2
L2 + ∥u∥

β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2

)
,

in which we also use the fact that d
dt ∥w

ϵ∥2L2 = 2∥wϵ∥L2
d
dt ∥w

ϵ∥L2 .

Due to the regularity assumption on u in 1.7, the terms C(1+ ∥u∥
8
5

L2 + ∥u∥2L2 + ∥∇u∥L2 +

∥∇u∥
4
3

L2) and ∥u∥
β+ 1

2
L2 ∥△u∥

1
2
L2 are integrable for β ⩾ 0. Furthermore, for β ⩽ 3, β

2 + 1
2 ⩽ 2 and

thus ∥u∥
β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2 is integrable. It then follows from Grönwall’s inequality that

∥wϵ (t)∥L2 ⩽ eA(t)∥wϵ (0)∥L2 + eA(t)B(t) ϵα ⩽ eA(T)B(T) ϵα, (5.10)
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where we have used the fact that the initial difference wϵ(0) = 0 and have written

A(t) := C
ˆ t

0

(
1+ ∥u∥

8
5

L2 + ∥u∥2L2 + ∥∇u∥L2 + ∥∇u∥
4
3

L2

)
ds, (5.11)

B(t) := C
ˆ t

0

(
∥u∥β+

1
2

L2 ∥△u∥
1
2
L2 + ∥u∥

β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2

)
ds. (5.12)

By taking ϵ sufficiently small, from (5.10) we deduce that any
t ∈ [0,T] which satisfies

∥wϵ (t)∥L2 < 1.

must also satisfy

∥wϵ (t)∥L2 ⩽ eA(T)B(T) ϵα < 1
2 .

Thus the bootstrapping argument holds, and we conclude as claimed that for all t⩽ T,

∥wϵ (t)∥L2 ⩽ K2ϵ
α (5.13)

where K2 = eA(T)B(T) depends on T, u, and β. In particular, uϵ → u in L∞(0,T;L2(T2)) as
ϵ→ 0+. Next, integrate (5.8) for all t ∈ [0,T] (again replacing ∥wϵ∥4L2 by ∥wϵ∥2L2) to obtain

10
16

ˆ T

0
∥△wϵ∥2L2 dt

⩽ C
ˆ T

0

(
1+ ∥u∥

8
5

L2 + ∥u∥2L2 + ∥∇u∥L2 + ∥∇u∥
4
3

L2

)
∥wϵ∥2L2 dt

+Cϵα
ˆ T

0

(
∥u∥β+

1
2

L2 ∥△u∥
1
2
L2 + ∥u∥

β
2 +

1
2

L2 ∥△u∥
β
2 +

1
2

L2

)
∥wϵ∥L2 dt

In which we are again using the fact that wϵ(0) = 0. Applying (5.11)–(5.13) then yields

ˆ T

0
∥△wϵ∥2L2 dt⩽

16
10
A(T)K2

2ϵ
2α +

16
10
B(T)K2ϵ

2α. (5.14)

For K3 =
16
10A(T)K

2
2 +

16
10B(T)K2 (again only depending on T, ∥u∥L∞(0,T;L2), ∥u∥L2(0,T;H2), and

β), we obtain

∥△wϵ∥L2(0,T;L2) ⩽ K
1
2
3 ϵ

α. (5.15)

Finally, we use an interpolation inequality:

∥wϵ∥L2(0,T;H2) ⩽ C∥wϵ∥L2(0,T;L2) +C∥△wϵ∥L2(0,T;L2)

⩽ CT
1
2 ∥wϵ∥L∞(0,T;L2) +C∥△wϵ∥L2(0,T;L2)

⩽ C
(
T

1
2K2 +K

1
2
3

)
ϵα

⩽ K4ϵ
α, (5.16)

where K4 = C(T
1
2K2 +K

1
2
3 ). Thus we see that uϵ → u in L2(0,T;H2(T2)) as ϵ→ 0+.
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Corollary 5.3. Consider the calming functions ζϵ as described in (1.4). Let u,uϵ be as in the
statement of theorem 1.8 with the same initial data, where uϵ is determined by ζϵ

i , i = 1,2, or
3. Then for T< T∗, there exists K ′

i > 0 independent of ϵ such that

(1) For ζϵ = ζϵ
1,

∥uϵ −u∥L∞(0,T;L2) ⩽ K ′
1ϵ, (5.17)

(2) For ζϵ = ζϵ
2,

∥uϵ −u∥L∞(0,T;L2) ⩽ K ′
2ϵ

2, (5.18)

(3) For ζϵ = ζϵ
3,

∥uϵ −u∥L∞(0,T;L2) ⩽ K ′
3ϵ

2. (5.19)

Proof. The proof follows immediately from theorem 1.8 and proposition 1.4.

6. The scalar form

Here we investigate the scalar formulation (1.5). The analysis is similar to the analysis of (1.3),
so we only briefly present formal energy estimates.

For the sake of brevity, we work formally rather than rigorously. However, the proof below
can be made rigorous, e.g. via the use of Galerkin methods as in the proof of theorem 1.6.

Proof of theorem 1.11. Take a (formal) inner product of (1.5a) with ϕ and integrate by parts
to obtain

1
2
d
dt

∥ϕ∥2L2 + ∥△ϕ∥2L2 =−(△ϕ,ϕ)−
(
1
2ζ

ϵ (∇ϕ) ·∇ϕ,ϕ
)
. (6.1)

Using (2.3), Hölder’s, and Young’s inequality,

∣∣( 1
2ζ

ϵ (∇ϕ) ·∇ϕ,ϕ
)∣∣⩽ 1

2
∥ζϵ∥L∞ ∥∇ϕ∥L2 ∥ϕ∥L2

⩽ C∥ζϵ∥
4
3
L∞ ∥ϕ∥2L2 +

1
4
∥△ϕ∥2L2 .

thus we obtain from (6.1) the estimate

d
dt

∥ϕ∥2L2 + ∥△ϕ∥2L2 ⩽
(
2+C∥ζϵ∥

4
3
L∞

)
∥ϕ∥2L2 . (6.2)

Hence from Grönwall’s inequality, dropping the second term in (6.2), we obtain

∥ϕ(t)∥2L2 ⩽ eKϵT ∥ϕ0∥2L2 , (6.3)
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where Kϵ = (2+C∥ζϵ∥
4
3
L∞). Hence ϕ ∈ L∞(0,T;L2(T2)). Next, we integrate (6.2) in time on

the interval [0,T] and drop any unnecessary terms:

ˆ T

0

1
2
∥△ϕ∥2L2 ⩽

ˆ T

0
Kϵ ∥ϕ(t)∥2L2 dt+ ∥ϕ0∥2L2

⩽
ˆ T

0
Kϵe

KϵT ∥ϕ0∥2L2 dt+ ∥ϕ0∥2L2

=
(
KϵTe

KϵT+ 1
)
∥ϕ0∥2L2 . (6.4)

Therefore ϕ ∈ L∞(0,T;L2(T2))∩L2(0,T;H2(T2)). Now we obtain estimates on ∂tϕ: For any
ψ ∈ L2(0,T;H2(T2)),

|⟨∂tϕ,ψ ⟩|=
∣∣∣∣ˆ T

0
∂tϕψdt

∣∣∣∣
=

∣∣∣∣ˆ T

0

(
1
2
ζϵ (∇ϕ) ·∇ϕ

)
ψdt+

ˆ T

0
(△ϕ)ψdt+

ˆ T

0
(△ϕ)△ψdt

∣∣∣∣
⩽ 1

2

ˆ T

0
|ζϵ (∇ϕ)| |∇ϕ| |ψ|dt+

ˆ T

0
|△ϕ | |ψ|dt+

ˆ T

0
|△ϕ | |△ψ|dt

⩽ 1
2
∥ζϵ∥L∞ ∥∇ϕ∥L2(0,T;L2)∥ψ∥L2(0,T;L2)

+ ∥△ϕ∥L2(0,T;L2)∥ψ∥L2(0,T;L2) + ∥△ϕ∥L2(0,T;L2)∥△ψ∥L2(0,T;L2)

⩽
(
1
2
∥ζϵ∥L∞ ∥ϕ∥L2(0,T;H2) + 2∥ϕ∥L2(0,T;H2)

)
∥ψ∥L2(0,T;H2). (6.5)

It follows from Estimate (6.4) that ∥∂tϕ∥L2(0,T;H−2) <∞, hence ∂tϕ ∈ L2(0,T;H−2(T2)).
From this we deduce that a solution ϕ to (1.5) exists, with

ϕ ∈ C
(
0,T;L2

(
T2
))

∩L2
(
0,T;H2

(
T2
))
.

Now, let ϕ and ψ be two solutions to (1.5) with ϕ(0) = ψ(0) = ϕ0. Let δ = ϕ −ψ. Then δ
satisfies the equation

∂tδ+△2δ =−△δ+ ζϵ (∇ψ) ·∇ψ − ζϵ (∇ϕ) ·∇ϕ (6.6)

with δ(0) = 0. We can then rewrite the nonlinear term as

ζϵ (∇ψ) ·∇ψ − ζϵ (∇ϕ) ·∇ϕ = (ζϵ (∇ψ)− ζϵ (∇ϕ)) ·∇ψ − ζϵ (∇ϕ) ·∇δ. (6.7)

We now insert (6.7) into (6.6) and apply integration by parts to obtain

1
2
d
dt

∥δ∥2L2 + ∥△δ∥2L2

⩽ |(△δ,δ)|+ |((ζϵ (∇ψ)− ζϵ (∇ϕ)) ·∇ψ,δ)|+ |(ζϵ (∇ϕ) ·∇δ,δ)| . (6.8)
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Handling the first term is straightforward. For the second term, we use Condition (i) of defin-
ition 1.3, Hölder’s, (2.5), and Young’s inequality to obtain

|((ζϵ (∇ψ)− ζϵ (∇ϕ)) ·∇ψ,δ)|
⩽ ∥ζϵ (∇ψ)− ζϵ (∇ϕ)∥L4 ∥∇ψ∥L2 ∥δ∥L4

⩽ ∥∇ψ∥L2 ∥δ∥L4 ∥∇δ∥L4

⩽ C∥∇ψ∥L2 ∥δ∥
1
2
L2 ∥δ∥

1
2
H1 ∥∇δ∥

1
2
L2 ∥∇δ∥

1
2
H1

⩽ C∥∇ψ∥L2 ∥δ∥
1
2
L2

(
∥δ∥

1
2
L2 + ∥∇δ∥

1
2
L2

)
∥∇δ∥

1
2
L2 ∥△δ∥

1
2
L2

⩽ C∥∇ψ∥L2 ∥δ∥L2 ∥∇δ∥
1
2
L2 ∥△δ∥

1
2
L2

+C∥∇ψ∥L2 ∥δ∥
1
2
L2 ∥∇δ∥L2 ∥△δ∥

1
2
L2

⩽ C∥∇ψ∥L2 ∥δ∥
5
4
L2 ∥△δ∥

3
4
L2

+C∥∇ψ∥L2 ∥δ∥L2 ∥△δ∥L2

⩽ C
(
∥∇ψ∥

8
5

L2 + ∥∇ψ∥2L2

)
∥δ∥2L2 +

1
6
∥△δ∥2L2 . (6.9)

In the third term, we apply condition (ii) of definition 1.3, use Young’s inequality, and use
interpolation inequalities to obtain

|(ζϵ (∇ϕ) ·∇δ,δ)|⩽ ∥ζϵ∥L∞ ∥∇δ∥L2 ∥δ∥L2

⩽ ∥ζϵ∥L∞ ∥δ∥
3
2
L2 ∥△δ∥

1
2
L2

⩽ C∥ζϵ∥
4
3
L∞ ∥δ∥2L2 +

1
6
∥△δ∥2L2 . (6.10)

After inserting (6.9) and (6.10) into (6.8) and rearranging the terms, the inequality becomes

d
dt

∥δ∥2L2 + ∥△δ∥2L2 ⩽ C
(
1+ ∥∇ψ∥

8
5

L2 + ∥∇ψ∥2L2 + ∥ζϵ∥
4
3
L∞

)
∥δ∥2L2 . (6.11)

Then applying Grönwall’s inequality, we obtain

∥ϕ(t)−ψ (t)∥2L2 ⩽ eK̃1(T) ∥ϕ0 −ψ0∥2L2 , (6.12)

where K̃1(T) =
´ T
0 1+ ∥∇ψ(t)∥2L2 + ∥ζϵ∥

4
3
L∞ dt. Since ψ ∈ L2(0,T;H2(T2)), and ζϵ is

bounded, K̃1(T)<∞. So ϕ(t) = ψ(t) for all t ∈ [0,T], hence solutions to (1.5) are unique.
Now, we integrate (6.11) on the interval [0,T] and apply (6.12), which yields

ˆ T

0
∥△ϕ(t)−△ψ (t)∥2L2 dt⩽ K̃2 ∥ϕ0 −ψ0∥2L2 (6.13)

for some K̃2 which depends on T, ∥∇ψ(t)∥L2 , and ∥ζϵ∥L∞ . From estimates (6.12) and (6.13)
we conclude that solutions depend continuously on the initial data in L∞(0,T;L2(T2))∩
L2(0,T;H2(T2)).

Here, we will show the convergences of solutions to (1.5) to that of (1.1) as ϵ→ 0+. This
proof has only minor variations from the proof of theorem 1.8.
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Proof of theorem 1.12. We set δϵ = ϕ −ϕϵ take the difference between (1.1) and (1.5a), and
take the inner product with δϵ. to obtain

d
dt

∥δϵ∥2L2 + ∥△δϵ∥2L2 ⩽ ∥δϵ∥2L2 +N1 +N2 +N3 +N4, (6.14)

where

N1 = |((ζϵ (∇ϕϵ)− ζϵ (∇ϕ)) ·∇δϵ, δϵ)|⩽ C∥δϵ∥6L2 +
3
4
∥△δϵ∥2L2 ,

N2 = |((ζϵ (∇ϕϵ)− ζϵ (∇ϕ)) ·∇ϕ,δϵ)|⩽ C∥ϕ∥
2
5

L2 ∥△ϕ∥
6
5

L2 ∥δϵ∥2L2 +
1
8
∥△δϵ∥2L2 ,

N3 = |(ζϵ (∇ϕ) ·∇δϵ, δϵ)|⩽ C∥ϕ∥
1
4
L2 ∥△ϕ∥

3
4
L2 ∥δϵ∥2L2 +

1
16

∥△δϵ∥2L2 ,

and

N4 = |((ζϵ (∇ϕ)−∇ϕ) ·∇ϕ,δϵ)|

⩽ Cϵα
ˆ
T2

|∇ϕ|β+1 |δϵ|dx

⩽ Cϵα ∥∇ϕ∥β+1
L2β+2 ∥δϵ∥L2 .

Applying the Sobolev inequality, we deduce that

∥∇ϕ∥β+1
L2β+2 ⩽ C∥∇ϕ∥L2 ∥∇ϕ∥βH1 ⩽ C∥ϕ∥

1
2
L2 ∥ϕ∥

β+ 1
2

H2 .

Inserting our bounds for each Ni into (6.14) and rearranging then yields

d
dt

∥δϵ∥2L2 +
1
16

∥△δϵ∥2L2 ⩽ C∥δϵ∥6L2 + ∥δϵ∥2L2 +Cϵα ∥ϕ∥
1
2
L2 ∥ϕ∥

β+ 1
2

H2 ∥δϵ∥L2

+C
(
∥ϕ∥

2
5

L2 ∥△ϕ∥
6
5

L2 + ∥ϕ∥
1
4
L2 ∥△ϕ∥

3
4
L2

)
∥δϵ∥2L2 . (6.15)

Now we apply the ansatz

∥δϵ∥L2 < 1

to obtain the bound

∥δϵ∥6L2 ⩽ ∥δϵ∥2L2 .

We apply this estimate to (6.15) and eliminate ∥δϵ∥L2 from each term to obtain

d
dt

∥δϵ∥L2 ⩽ C∥ϕ∥
1
2
L2 ∥ϕ∥

β+ 1
2

H2 ϵα

+C
(
1+ ∥ϕ∥

2
5

L2 ∥△ϕ∥
6
5

L2 + ∥ϕ∥
1
4
L2 ∥△ϕ∥

3
4
L2

)
∥δϵ∥L2 . (6.16)

The term

1+ ∥ϕ∥
2
5

L2 ∥△ϕ∥
6
5

L2 + ∥ϕ∥
1
4
L2 ∥△ϕ∥

3
4
L2
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is always integrable and the term ∥ϕ∥
1
2
L2 ∥ϕ∥

β+ 1
2

H2 is integrable for β ∈ [1, 32 ]. It now follows
from Grönwall’s inequality that

∥δϵ (t)∥L2 ⩽ eA(t) ∥δϵ (0)∥L2 + eA(t)B(t)ϵα ⩽ eA(T)B(T)ϵα, (6.17)

using the fact that δϵ(0) = 0, and with

A(t) = C
ˆ t

0
1+ ∥ϕ∥

2
5

L2 ∥△ϕ∥
6
5

L2 + ∥ϕ∥
1
4
L2 ∥△ϕ∥

3
4
L2 ds,

B(t) = C
ˆ t

0
∥ϕ∥

1
2
L2 ∥ϕ∥

β+ 1
2

H2 ds.

By taking ϵ sufficiently small, we have for all 0⩽ t⩽ T

∥δϵ (t)∥L2 < 1.

It follows from a bootstrapping argument that

∥δϵ (t)∥L∞(0,T;L2) ⩽ eA(T)B(T)ϵα. (6.18)

Now we integrate (6.15) on [0,T], again using that ∥δϵ∥6L2 ⩽ ∥δϵ∥2L2 , and apply to obtain

ˆ T

0
∥△δϵ∥2L2 dt⩽ CϵαB(T)eA(T)B(T)ϵα +A(T)

(
eA(T)B(T)ϵα

)2

⩽ K(T)2 ϵ2α, (6.19)

where

K(T)2 = CB(T)2 eA(T) +A(T)B(T)eA(T).

Therefore we obtain

∥δϵ∥L2(0,T;H2) ⩽
(
TeA(T)B(T)+K(T)

)
ϵα. (6.20)

7. Computational results

In this section, we examine the calmed KSEs computationally via several simulations, where
the calming function ζϵ = ζϵ

i is described in (1.4). We include snapshots of the evolution of
solutions for the different choices of ζϵ in figure 1, and for different choices of ϵ in figure 2(we
show results for ζϵ

3 only for the sake of brevity; ζϵ
1 and ζ

ϵ
2 yielded qualitatively similar results).

The former illustrates the different effects of the choice of ζϵ on the dynamics, while the latter
indicates the uniform convergence of uϵ to u.

In addition, we examine convergence rates in L∞(0,T;L2), L∞(0,T;L∞), and L2(0,T;H2)
for ζϵ

1 (figure 3), ζ
ϵ
2 (figure 4), and ζ

ϵ
3 (figure 5) with initial data (7.2) as ϵ→ 0+ (for simplicity,

we set T = 1, since with all our initial data, solutions to KSE appear to be quite stable on [0,1]).
We find that the powers on the L∞(0,T;L2) and L2(0,T;H2) convergence rates in corollary 5.3
appear to be sharp.
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Figure 1. Solutions to calmed KSE of each type compared with a solution to KSE at
time t= 2, with ϵ= 0.1, λ= 4.1, and u0 given by (7.2).

Finally, in figures 6–8 we check the robustness of the convergence with respect to larger
initial data (7.3) for ζϵ

1, ζ
ϵ
2, and ζϵ

3. In comparing initial data (7.2) with (7.3), we find very
little qualitative variation in the error rates, indicating that changes in initial data will only
marginally change the error between solutions to KSE and solutions to calmed KSE for ϵ> 0
sufficiently small.

7.1. Numerical methods

All computations were done in Matlab (R2021a) using pseudo-spectral methods with the
standard 2/3 ′s dealiasing for the nonlinear term. To evolve the system, we used a well-known
modification of the Runge-Kutta-4 time-stepping scheme adapted to handle the linear terms
implicitly via an integrating factor to handle the nonlinear terms implicitly (see, e.g. [29])
with time step ∆t≈ 4.2943× 10−4 chosen to respect the maximum advective CFL condition
in figures 1–5, with later figures having a rescaled time step ∆t= 1.0736× 10−4. Our simu-
lations for KSE and cKSE were resolved7 with a spatial mesh of 1282. All computations were
done using the nondimensionalised calmed KSEs,

∂tu+(ζϵ (u) ·∇)u+λ△u+△2u= 0, (7.1a)

u(x,0) = u0 (x) , (7.1b)

over the periodic domain Ω= [−π,π)2 for λ> 0.
Throughout this section, a type 1, type 2, or type 3 solution is a solution to calmed KSE

with calming function ζϵ
1, ζ

ϵ
2, or ζ

ϵ
3 respectively.

7.2. Simulations

Here, we take initial conditions to be

u0 (x,y) =

(
cos(x+ y)+ cos(x)
cos(x+ y)+ cos(y)

)
(7.2)

7 Note: For the KSEs (calmed or otherwise), even in fairly chaotic regimes, one often does not need especially high
resolution, due to the strong hyperdiffusion term. Moreover, so long as the solution is well-resolved, which we take to
mean that the energy spectrum at the modes higher than the 2/3’s dealiasing cut-off is at or below machine precision
(roughly 2.22× 10−16), increasing the resolution only increases round-off error, due to the additional computations
being performed. Hence, to minimise roundoff error, we purposely chose the fairly low resolution of 1282, although
our higher-resolution tests, not reported here, produced qualitatively similar results.
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Figure 2. Column (d) is a solution to KSE (1.2) for t= 1, . . . ,5, whereas columns
(a)–(c) are type 3 solutions to calmed KSE (1.3) on the same time interval with ϵ ∈
{0.1,0.01,0.001}. In this figure, λ= 4.1 is fixed and initial data u0 is given in (7.2).
Viewing the pictures from left to right, we can see that uϵ → u as ϵ→ 0.

and all colour plots seen below are plots of the magnitude |u|= |(u,v)|=
√
u2 + v2. In all plots

of solutions, the horizontal axis corresponds to the y-axis and the vertical axis corresponds to
the x-axis.

Our choice for initial data u0 was motivated by the choice of scalar initial data found in [28,
39], and [37]; namely,

ϕ0 (x,y) = sin(x+ y)+ sin(x)+ sin(y) .

Hence, we set u0 =∇ϕ0.
Though some differences can be seen among the images above, one can see that each type

of calmed KSE solution approximates the overall behaviour of a KSE solution. One can also
observe that the accuracy of the approximation varies by type.

In figure 2 we focus only on type 3 approximations to better illustrate how well calmed
KSE solutions can approximate KSE solutions over time for various choices of ϵ. Indeed,
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Figure 3. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 1 solution and with initial data given by (7.2).
These estimates show a linear convergence rate.

Figure 4. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 2 solution and with initial data given by (7.2).
These estimates show a quadratic convergence rate. Note: for ϵ≲ 10−9, the error in our
simulations was exactly 0, hence it does not appear in this log-log plot.

when viewed from left to right we can observe the convergence of our calmed KSE solutions
to the original KSE solution.

In accordance with corollary 5.3 we see that solutions to calmed KSE corresponding to
calming function ζϵ

1 yield a linear convergence rate whereas solutions to calmed KSE corres-
ponding to calming functions ζϵ

2 or ζϵ
3 yield quadratic convergence rates.
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Figure 5. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 3 solution and with initial data given by (7.2).
These estimates show a quadratic convergence rate.

For additional testing, we choose initial data with higher oscillation and higher magnitude,

u0 (x,y) =

(
4(cos(x+ y)+ sin(3x))
4(cos(x+ y)+ cos(4y))

)
, (7.3)

and examine the convergence rates for each solution type. For each convergence test, we have
the fixed parameters N= 128, T = 1, and λ= 4.1.

We observe that even with larger choice of initial data, figures 6–8 remain qualitatively
similar to figures 3–5. This computational result is again in accordance with corollary 5.3.

8. Conclusions

We introduced new modifications of the 2D KSE, in both scalar and vector forms, with a
‘calming-parameter’ ϵ> 0 that we call the ‘calmed KSE,’ and proved that associated PDEs
are globally well-posed in the sense of Hadamard. Moreover, we proved that, under suitable
conditions on the calming function ζϵ, that (on the time interval of existence and uniqueness
of solutions to the KSE) the solutions of the calmed equation converge to solutions of the KSE
as ϵ→ 0+ at a certain algebraic rate. Moreover, our computational simulations indicate that
this rate is sharp. To the best of our knowledge, this is the first globally well-posed PDE model
whose solutions approximate solutions to the 2D KSE with arbitrary precision, at least before
the potential blow-up time of the latter.

In addition, we note that this ‘calming’ technique can be applied to a wide variety of other
equations, which we will investigate in several forthcoming works. In particular, in [16], we
consider applications of calming to the 3D NSEs.
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Figure 6. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 1 solution and with initial data given by (7.3).
These estimates show a linear convergence rate.

Figure 7. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 2 solution and with initial data given by (7.3).
These estimates show a quadratic convergence rate. Note: for ϵ≲ 10−9, the error in our
simulations was exactly 0, hence it does not appear in this log-log plot.
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Figure 8. Estimates of u− uϵ vs. ϵ in norms ∥ · ∥L∞(0,T;L2), ∥ · ∥L∞(0,T;L∞), and ∥ ·
∥L2(0,T;H2), at time T = 1 with uϵ a type 3 solution and with initial data given by (7.3).
These estimates show a quadratic convergence.
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