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Abstract

This paper presents some of the sharpest global existence and regularity results on
the two-dimensional incompressible Boussinesq equations with fractional dissipation,
A%u and AP0, where A = /—A is the Zygmund operator. For the subcritical regime
o+ B > 1witha > %, any initial data in the Sobolev space H* (R?) with s > 2
leads to a unique global solution. For any (o, B) in the critical regime o + 8 = 1 with
o > %, an extra smallness condition on the L°°-norm of the initial temperature would
also guarantee the global regularity. This paper introduces an iterative procedure to
minimize the dissipation requirement.
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1 Introduction

This paper focuses on the following two-dimensional (2D) Boussinesq equations with
fractional dissipation

du—+ w-Vu+Au+Vp==0e, xeR?2 >0,
0 + (u- V)0 + AP =0,

V-u=0,

u(x,0) =up(x), 6(x,0)=6(x),

(1.1)

where u(x, t) = (ui(x, t), ua(x, t)) denotes the fluid velocity, 8 = 6(x, t) the
temperature in the content of thermal convection and p the scalar pressure. e; = (0, 1)
is the unit vector in the vertical direction. The numbers « and 8 are nonnegative real

. . s . . .
parameters. The fractional Laplacian operator A® £ (—A)?2 is defined via the Fourier
transform, namely

NFE) = |6 f &)

The 2D Boussinesq equations model geophysical flows such as atmospheric fronts
and oceanic circulation, and play an important role in the study of Rayleigh-Bénard
convection (see [29, 31]). Mathematically the 2D Boussinesq equations serve as a
lower-dimensional model of the 3D hydrodynamics equations (see [29]). We adopt
the convention that « = 0 means no dissipation term in the velocity equation, and
B = 0 means no diffusion in the temperature equation.

It should be mentioned that although (1.1) with fractional dissipation appears to be
a merely mathematical generalization, there are geophysical circumstances in which
the Boussinesq equations with fractional Laplacian may arise. The typical example
is that flows in the middle atmosphere traveling upward undergo changes due to the
changes of atmospheric properties, although the incompressibility and Boussinesq
approximations are applicable. The effect of kinematic and thermal diffusion is atten-
uated by the thinning of atmosphere. This anomalous attenuation can be modeled by
using the space fractional Laplacian (see [4, 18] for details).

Due to their prominent roles in modeling many phenomena in astrophysics and
geophysics, the classical Boussinesq equations and their fractional dissipation coun-
terparts have been studied extensively. The global regularity of the 2D Boussinesq
equations with both Au and A# can be established following a similar process as that
for the 2D Navier—Stokes (see, e.g., [3]). In contrast, the fundamental issue of whether
classical solutions to the inviscid Boussinesq equations can develop finite-time singu-
larities is extremely challenging. Some significant progress on the inviscid Boussinseq
equations (¢ = f = 0) finite-time blowup problem has been made recently (see, e.g.,
[8, 16, 17]).

The issue that arises naturally is how much dissipation is really needed to ensure the
global regularity. There are substantial recent developments on the global regularity
problem on the Boussinesq equations with partial or fractional dissipation. Chae [7]
and Hou-Li [24] successfully established the global regularity to (1.1) with @ = 2,
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B =0ora =0, B =2 (see [37] for the general case o« + B = 2). For the case
o = 0, B = 2 with the rough initial data, we refer to [15, 20]. Fora =0, 8 € (1, 2],
Hmidi and Zerguine [23] established the global well-posedness of (1.1) with rough
initial data. By making use of the combined quantities, Hmidi, Keraani and Rousset
[21, 22] were able to establish the global well-posedness for the cases when either
a=1, B8=0o0ora =0, B = 1. An alternative proof for the case« = 0, B = 1 is
given in [41], where the above mentioned combined quantity is no longer required.

[25] studied the global regularity of the 2D Boussinesq with general fractional
dissipation A%u and AP, namely (1.1). [25] was able to convert the Boussinesq
regularity problem to a corresponding regularity problem on the generalized surface
quasi-geostrophic (SQG) equation. This key observation in [25] leads to the fact that
the size of o + S plays a crucial role in the global regularity problem on the fractional
Boussinesq system. As a consequence, o + = 1 is classified as the critical case
while o 4+ 8 > 1 as the subcritical case and o + 8 < 1 as the supercritical case.

We explain why this classification is important and summarize some of the main
results for each case. Applying curl to (1.1); yields the vorticity equation

o+ - Vio+ A% = 9,,0. (1.2)
To deal with the "vortex stretching" term dy, &, we consider the combined quantity
G=0-Ry0, Rg=dA"

It is easy to check that G obeys

3G+ w-V)G+ A*G =Ry, u- V10 + AP7%9,,6. (1.3)
As explained in [25], G actually enjoys better regularity than w. This motivates [25]
to decompose the velocity field u into two pieces, one associated with G and the other
with 6. In fact, by the Biot-Savart law,

u=VrATlo = VIATHG + Ru) = VIATIG + VEATIRLO 2 ug + uyp.
For « and B in suitable range, G can be shown to have enough regularity such that
ug =V+taTlG
becomes Lipschitz. Then the equation of 6 becomes
30+ (ug - V)0 + (ug - V)0 + AP0 =0, ug = VEATIR,0.

Since u¢ is Lipschitz, the regularity problem on the Boussinesq system is then reduced
to the problem on the corresponding generalized SQG equation

8,0 + (ug - V)0 + APO =0,

(1.4)
ug = VEATIR,0.
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The generalized SQG equation has been studied extensively and significant results
have been obtained (see, e.g., [2, 9-14, 26]). For o and B in the subcritical regime
o+ B > 1 orin the critical regime o + = 1, (1.4) always possesses a unique global
classical solution. The global regularity problem for the supercritical case @ + 8 < 1
appears to be out of reach at this moment.

Correspondingly, no large data global regularity result for the supercritical Boussi-
nesq system is currently available. Existing global regularity results are for the
subcritical or critical cases « + 8 > 1. A few results have been established for the
general critical case. [25] obtained the global regulatory for any o and B satisfying

23 — /145
a+pB=1 o> ——r——=09132.
12

Subsequent efforts are devoted to enlarge the range of «. The work of Stefanov and
Wu [34] extended the global regularity to « and 8 satisfying

1777 =23
O(—G—ﬁ:l, (¥>T%07981

Wu, Xu, Xue and Ye [36] further improved the global regularity to the range
10
a+B=1, o> 3%0.7692.

Subsequent investigations appear to indicate that the largest possible range can be
reached by the approach of [25] is

2
a+p=1, Ol>§. (1.5)

One goal of this paper is to prove the global regularity for the critical regime in (1.5),
although we need to impose a minor condition on 6.

There are quite a number of global regularity results for the subcritical case @ + 8 >
1. It is worth emphasizing that the global regularity of (1.1) in the subcritical ranges
is not a trivial problem. In fact, many subcritical cases haven’t been resolved. In
particular, we do not know the global regularity for the case when « and § are close to
one half and @ 4+ B8 > 1. Actually, direct energy estimates are not sufficient to obtain
the desired global a priori bounds due to o, 8 < 1. To give an accurate account of
current results, we further divide the subcritical ranges into two cases, « > f (the
velocity dissipation dominated regime) and « < 8 (the thermal diffusion dominated
regime). In the thermal diffusion dominated case, Constantin and Vicol [13] verified
the global regularity of (1.1) with

2
0 I, 0 I, —.
<o < <pB < ,3>2+a
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Yang, Jiu and Wu [39] proved the global regularity of (1.1) for

24+« 10 — S«
, B> .
3 10 — 4«

O<a<l, 0<B<l, ,3>1—%, B>

The ranges in [13, 39] were further enlarged by [42] to

2 4—a2}
37 44 3a )
p> 2—«o
2 9

For the velocity dominated case, Miao and Xue [30] obtained the global regularity for
system (1.1) with

08876~ Y8 oo 1, 1—a<ﬁ<min[7+2ﬁa—z, al-a) 2—20(].
4 5 V6 — 2
This result was further refined by [40] to the range
10 — 24/10 302 4+ 4o — 4
0.7351 —— <a < 1, l—oz<,3<min{3—3oz, g, &}.
5 2 8(1 — @)

Zhou, Li, Shang, Wu, Yuan and Zhao [43], making use of [40] and the nonlinear
maximum principle for fractional Laplacian operators developed by Constantin and
Vicol [13], were able to establish the global regularity for

l—«

§<a<1, 0<B<l1, B>
The main goal of this paper is to prove the global regularity for the subcritical regime

§<a<1, o+ B> 1.

More precisely, we obtain the following result.

Theorem 1.1 Let (ug,0p) € H*(R%) x H'(R?) withs > 2. Ifa + B > 1 and
% < a < 1, then there exists a unique global solution to (1.1) such that for any given
T >0

u e C([0, T1; H* (R?) N L*([0, TT; H*% (R?)),

6 € C([0, T1; H*(R*) N L*([0, T1; HS*g(RZ)).

Due to the obvious fact 177“ > 1 —« for ¢ € (0, 1), Theorem 1.1 improves the

result in [43]. Since [40] has previously obtained the global regularity for o + 8 > 1
with @ > 10=2/10 ~ 7351, it suffices to deal with the case & + 8 > 1 with
2 10-24/10

§ <a < == in the proof.
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The proof for Theorem 1.1 can actually be adapted to prove the global regularity
for the critical case o + 8 = 1 with % <o < % provided that the L°°-norm of
initial data 6 is small enough. More precisely, we have the following result. Its proof
is given in Appendix A.

Theorem 1.2 Consider the 2D Boussinesq equations

u+ (w-Viu+ A%u + Vp =vley,
360 + (u- V)0 + APo =0,
V.u=0,

u(x,0) =upx), 0(x,0) =~6)(x).

(1.6)

Assume a + § = 1with% <a < % Let (ug, 0p) € H*(R%) x H*(R2) withs > 2.

Iif
v l6ollzee < Co (1.7

for an absolute constant Cy (independent of the initial data), then there exists a unique
global solution to (1.6) such that, for any given T > 0,

u € C([0, T1; H*(R®) N L2([0, T1; H*T2 (R?)),

g
6 € C(0. T1: H*®*) N L*(0, T H*2 (RY)).

The global regularity for the case « + 8 = | with o > % has already been
established by [36] with general initial data. Therefore, the proof focuses on % <a <
10
E.

Finally, we investigate the case when the thermal diffusion dominates. We prove
the following global regularity result.

Theorem 1.3 Let (ug, 6p) € H*(R?) x H*(R?) withs > 2. Ifa, B € (0, 1) satisfy

4—a?
44 3a

2
ﬂ>max{a, }, 0<Oé§§, (1.8)

then there exists a unique global solution to (1.1) such that, for any T > 0
u e C((0, TT; H* (R?) N L*([0, TT; H**3 (R?)),

6 € C([0, T1; H*(R®) N L*([0, T1; HS+§(R2)).

It is easy to see that this result improves the previous work [42]. Furthermore,
Theorem 1.3 is still valid for the case 8 = o > % The details are provided in the end
of Sect. 4.

The rest of this paper is divided into three sections and an appendix. Section 2 recalls
the Littlewood-Paley decomposition, the definition of Besov spaces and some other
useful facts. Section 3 is devoted to the proof of Theorem 1.1. The proof of Theorem
1.3 is given in Sect. 4. In Appendix A, we sketch the proof of Theorem 1.2.
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2 Preliminaries

This section provides the definition of the Littlewood-Paley decomposition and the
definition of Besov spaces. Some useful facts are also included.

We first recall the definition of the Littlewood—Paley decomposition. More details
can be found in [1, 35]. Let x € C§° (R?*)(0 < x < 1) be a radial non-increasing
function supported in the ball B £ {¢ € R?, |§| < %‘} and with values 1 on {§ €
R2, 6| < 3). Let 9(§) 2 x(5) — x(&). Itis clear that ¢ € C§°(R?) is supported in
the annulus C £ {¢ € R2, 43'1 <& < %} and satisfies

XE+Y Qe =1, VeeR: Y @& =1, V& #£0.

j=0 jez

Leth = F~1(¢)and h=F"! (x)- The homogeneous dyadic blocks A‘/ are defined
by

Aju=<p<2—fo>u=22ff W@ yyux — y)dy, VjeZ,
R2

while the low-frequency cut-off by

Sju=xQ D= Y Awu= 221'f R/ y)u(x — y)dy, Vj e Z.
- R2
k<j—1

The inhomogeneous dyadic blocks A ; are set by

Aju=0, j<-2; A_ju=xDu= / ft(y)u(x —y)dy;
R2

Aju =27 Dyu =2% / hQ2/y)u(x — y)dy, Vj e NU{0}.
RZ

We denote the function spaces of rapidly decreasing functions by S(R?), tempered
distributions by S’(R?), and polynomials by P(IR?). The homogeneous Besov spaces
are defined via the Littlewood-Paley decomposition as follows.

Definition 2.1 Lets € R, (p,r) € [1, +00]?. The homogeneous Besov space B;?r is
defined as a space of f € §'(R?)/P(R?) such that

By, = (f € S®)/PER): [ fl, <oo),

where

1
(X204 f15) s 1=r<oo,

JEZL

(1>

171145, |
sup2”* A fllLr, 1= o0.
JEZL
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The inhomogeneous Besov spaces are defined as follows.
Definition 2.2 Lets € R, (p,r) € [1, +oo]2. The inhomogeneous Besov space B;',’r
is defined as a space of f € S’'(R?) such that
Bj,, ={f € S®); | fll, < oo},

where

1
(X2 1af15) s r <o,
I/ 1y, £1 j=-1

sup 2js||Ajf||Lp, r = o0.
j=—1

We will use the following Bernstein inequalities (see [1, Lemma 2.1]), which are
very useful in dealing with Fourier localized functions.

Lemma21 Leto > 0,1 <a < b < oo, C be an annulus and B a ball ofRz. Then
the following estimates are true

_~ 1_1
Suppf C AB = [A° fllpmey < CrAT2E 0| £l oy

—~ 1_1
Suppf C AC = CoA%||fllomey < 1A fllp@ey < C3A°T2@ 0| £l Lo gey,
where C1, Co and C3 are constants depending on o, a and b only.
We next recall the following commutator estimates (see [34]).

Lemma 2.2 Let% <a<landl < py <o00,1 < p1, p3 < oowith%+%+% =1.
Then for0 < s; <1 —a ands; + s2 > 1 — «, it holds true )

\f FIRq, ug - V10 dx| < CIA"6n [ Flly= | Gllzn. @)
R
Similarly, for 0 <s1 < 1 —«a and s; + 5o > 2 — 2«, it holds true
‘/2 F[Ry. us - V1H dx‘ < CIIA O o | Fllwez oo |1 H |l 13- 2.2)
R

The following commutator estimate will also be used later.

Lemma 2.3 Forany(0 < o < 1, we have

1A, f-VIgllLr < CIV flln 1A% gL, (2.3)

where p,r1,ry € (1, 00) such that % = % + %

@ Springer



Global regularity results of the 2D fractional Boussinesq equations

Proof Using the summation convention on repeated indices, we have

[A%, f-Vig = A% (fidrg) — frA% kg
= A% (frg) — fu A kg — A° (Ok frg)
= A% (frg) — fu A" Okg — gA” O fx + A% Ok fr — A% (g0 fr)-
2.4)
Letting A°T! = A3y, it follows from (2.4) that
[A%, f-Vig= A" (frg) — A" g — gA T fi — [A°, 1ok fi
= (A7 (hg) = AT g = VAT g — gATH )
+ VATV g — (A7, g0k fi
= (A7 (g) = AT g = VAT g — gaTH )
+ VAT g — (A%, g1k fi, 2.5)

where the symbol A°+1-V is defined via Fourier transform as
ATTLY (&) = —iVe (A7T1(§)).
Taking s1 = 1, 52 = o in (1.9) of [28], we have

1A (frg) — A" g = VATV g — g AT fille < CIV Flln 1A gl
(2.6)

Moreover, one gets
ITA?, g10k ficllLr < CIAT gl 10k filln < CIV fllLn 1A% gL, 2.7
where we have used the inequality (see [28, Corollary 5.2] and [27, Theorem 6.1])
A7, ulvliLr < CllvllLr 1A ullpr.

Direct computations yield

—iVe (AT (§)) F(E)
iVe(E17i8) (&)
~V(E76)1E1 AT (&)
mE)AT (),

ATHI £ (€)

(1>

where m(§) = (m1(§), ma(§)) is given by
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mj(E) = —Ve, (§1°8) €] ™°
= —(0|E1° 725 + 1EI780)|E17°
= —(0 &7 6 + 8 1)

Hence, m(&) of course obeys the Hormander-Mihlin condition. Now invoking the
well-known Hormander-Mihlin theorem, we are able to show

1AT* Vel < CIIAgllLn, 1 <r2 < o0 (2.8)
Putting the above estimates (2.6), (2.7) and (2.8) into (2.5), we show that

IAC, f-Viglr < 1A (frg) — AT g = VATV g — g AT fillen
+ IV ATV el e + A, g1k fell e
< CIVFln A gl + IV fid TV gl

< CIVFlnIAgl + CUIV fill i 1A Vgl 1
< CIVfliilIAgllpr.

This finishes the proof of the lemma. O

The next lemma concerns the bilinear estimate (see [36]).

Lemma24 Let2 <m < ooand 0 < s < 1, then it holds

I ALl < CUF gy 1A
A2 F e < ClLElLBg  IF IR, 2.9)

where p,q,r € (1, c>o)3 such that% = qi + %

The following lemma is concerned with the Holder continuity of the advection
fractional-diffusion equation (see [32]).

Lemma 2.5 Consider the following advection fractional-diffusion equation with 0 <
B <1inR?

30 + (u- V)0 + APo =0,
V-u=0,
0(x,0) = Gy(x).

Let 0y € L™®(R?) and u be a vector field in L*°((0, T1, C'=#(R?)) for given T > 0.
Then the solution 0 is Holder continuous for any positive time 0 < t < T. Moreover,
it holds

101l oo 0, 71; ctm2yy < CllbollL=,

where the constant C and £ > 0 depend on B and |u||-1- only.

@ Springer



Global regularity results of the 2D fractional Boussinesq equations

Finally, we recall the differentiability of the advection fractional-diffusion equation
(see [33, 38)).

Lemma 2.6 Consider the following advection fractional-diffusion equation with 0 <

B < 1inR?

30 + (u- V)0 + APo =0,
V-u=0,
8(x,0) = Go(x).

Assume T > 0 be given. Let 6y € L®(R?) and u be a vector field in
L®((0, T1, CY=B+E(R2)) for any ¢ € (0, B). Then the solution 6 actually belongs
to space Cl-¢. Moreover, it holds

101l Loo o, 71, ¢t e r2yy < CllbollLoe,

where the constant C depends on B and ||u|| c1-p+¢ only.

3 The proof of Theorem 1.1

This section proves Theorem 1.1. Since the local well-posedness of (1.1) for smooth
initial data is well-known (see for instance [5, 29]), the main efforts are devoted to
obtaining global a priori bounds for (u, 8) on [0, T]forany given 7' > 0. Throughout
this paper, we denote by C an universal positive constant whose value may change
from line to line. The symbol C(a, b, ...) means that C depends on variables a, b and
SO on.

Let us begin with the natural energy estimates.

Proposition 3.1 Assume that uy € L? and 6y € L?> N L. Then
2 LB 2 2
||9<t>||L2+f IAZ0() 17, dT < l60l72. 10Ollr < 60lle. ¥p € [2,00],
0
t
lu@)lI3 +/ IAZu(D)3,d7 < (luoll 2 + t60ll12)*
0

Based on (1.3), we are able to show the following estimate.

Proposition3.2 Ifa + 8 > 1 and% <a < 1, then

B ! @
IGOI72 + IAZ0®)]7. +/0 (IAZG @7, + 1AP0(D)13,) dT < C(t, uo, bo).
3.1
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Proof Testing (1.3) by G and integrating in the space variable, one finds that

1d

2 2 2 B—
Zdt||G(t)||L2+||A2G||L2 _A;Z [Ry, u-VI3e de—i—/RzA “9y,0 Gdx

=/ [Ra, ug - V10 de+/ [Ra, ug - V10 Gdx
R2 R2
+/ AP79.,6 Gdx
RZ
AN| 4+ N>+ N3. (3.2)
Applying A% to (1.1)2, multiplying by A%6 and integrating on R?, we find
Ld A%6m)2, + 1A%612, = —/ AT (u-VO)AT0 dx
2dt L L R?
B B
= —f [A2,u-V]0 A20dx
RZ
£ Ny. (3.3)
Summing up (3.2) and (3.3) yields
L G012, + 1850012 + 1ASGIZ, + IAP0I2: = Ny + Na+ N3 + N
2d[ L2 L2 L2 L2 — 1 2 3 4.
(3.4)
Thanks to (2.1) with s; = 0,52 = 5, p1 = oo and pp = p3 = 2, one has
Ny = CllfllL= Gl 211Gl 2
< Cllbolli= (Gl 2 + IAZ Gl 2) Gl 2

=

1AZG |2, + CIG?,.

0| =

In view of (2.2) with sp = %,2—57"‘ <si<l—a,p; =2and pr =2, p3 = 00, we
have

Ny = CIA" 012Gl g 21161 oo

< CIA"Ol2(IGll2 + 1A T Gll2) 160 L
B—s1 st o
<clol 1A%01 /UGl + IA2 Gl 2)

< Liaserz, + Niafez, +ca v 1612
< gIAGIE + ZIAPOI, + U+ IGI).

Moreover, by interpolation,
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N3 < CIAPO) 2 IA 4Gl 2
3a—2 2(1 o)

< CIAPOINIGI, 5 IAZG]

< Lia%61%, + L1ake2, + cla)?
= 8 L2 8 L2 L2

To control the last term N4, we should restrict & and 8 to the subcritical case ¢+ 8 > 1.
Indeed, an application of (2.3) gives

g g
Ny = ClIIAZ, u- VIO 4 IAZ0] s
£2
= CliVull2|A2 01174

8
= ClIVuli2lA201 g IA%6) o4

Boooo 2

o

< Clloli 2101 3o, 117612
< CUIGl2 + IA01 ) 1101 L | AP 2

a+p—1 1—a

CUG + 116l ||Aﬂe||§)||e||mo||Aﬂ0||Lz

IA

I/\

—||Aﬁ9||L2 +CIOl7<IGlI72 +C + ||9||Lz|I9II”’3 l

IA

1
gIIAﬁ9||L2+C(l+IIGIILz), (3.5

where the sharp interpolation inequality has been used (see [1, Theorem 2.42])

—2 2

Ifllzr < CIIfIIB”a IlfIIBy :

_ a(p—2)

> P € (2, 00). (3.6)

We note that the condition @ + 8 > 1 is first used (3.5). Inserting the above estimates
into (3.4), we get

d 2 g 2 z 2 B2 2
E(||G(t)||L2+||A29(t)||L2)—|—||A2G||L2+||A Ol =CA+1GI72). BT

The desired (3.1) follows from (3.7) and the Gronwall inequality. m]

Naturally, the next step is to show the global a priori bound for |G (¢)| .= with
m > 2. To this end, we appeal to the following iterative approach. Comparing with
the previous works, this iterative approach is a new idea which is an effective approach
to deal with the subcritical case. Now we are in the position to prove the following
proposition, which plays a crucial role in proving our main result.

Proposition3.3 Letra + B > 1 and % < a < 1. Ifit holds

IGO I, +/ IG@I™,, dt <M, (3.8)
L2«
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then
||G(t)||r]ff,f,;'rl +/ G (t )||m‘2:;,'(+l T <C(t, M, ug, 6o),
L 2—a
where
8Bmy

T = 50812 = 3a) + 2 — ) fmy

Furthermore, we may restrict my and myy to the range

1 2(2+ﬂ)}

2< 9 i { b 9 .
=M Ml =TT T4 2t a)p

Proof We first claim that under the assumption of (3.8), it holds
t
1A% @I + f 1A% +20(0)|2, dT < (. uo. o).
0

where & is given by
BLQ2 + a)my — 2]
4

S8k = < 1.

To prove (3.11), we apply A% to (1.1); and multiply it by A%6 to obtain

d s 2 s+L 52 $ 8t
S IAROWIE, + A% 29||L2=—/RzAk(u-ve)AAedx

=— | [A%,u-V]o A%6dx

R2

= —/ (A%, ug - V10 A%0 dx
RZ

—f [A% up - VIO A%6 dx
RZ

£ Ns + Ng.
Thanks to (2.3) and (3.6),

Ns < CI[A%, ug - V10| 25,45 IA%6] 25,48
L Sk +B S

L
b F)
< Cl|Vugll 25k+/3 | A0 B [A%O 25,48
L L %
b
< C|G] 25k+ﬁ | A%6|2 2548
L %

2my
L2—«

_5k
OO o0

2Bmy —(2—a)(25;+p) 2285 +B—Pmy) 28
a (25, +B) (28, +PB) ) 25, +P § 20k +B
<C(IGIm " 1G]] k [ AG] . T IIA%O )™
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Global regularity results of the 2D fractional Boussinesq equations

45k
c <||G|| Gl 2z‘fnk ) (nen DT A g ﬂ)

L2

| 5 (28, +p) 2028, +B)

2+a 2+a
Z||A5k+ze|| 2+ ClOIT IG5 1G] S

L2—a
1 81\+
= 7la 2017, +C||0||Lx||G||Lmk IGI™,, - (3.13)
L2

Using again (2.3) and (3.6), due to @ + 8 > 1, one has

Ne < CII[A%, ug - V10| By A% 2
Ky

L %+ L Sk
< ClIVugll 2508 IA%O] 2548 [AO] 2548
L F L % L %
1- a2
<ClIA Y0 B h A% 25,45
L L %
igk g zszﬂﬁ 25 ﬁﬁ 284 skﬂ
1- s 1- T 5 TB A S +
<C|IA T, f(l o 1A 0N s ) A5 IA%KO )™
- BZZ P BDCOO 822
BB 1w 45
(H@II S V] 57 161;% T | pb+ 01 47

45

(1—a) (28, +B _ Mk
ke 26 +ﬂ 5 25, +8
=ClOllr=llA 2 9|| ENA b 20,5

2(a+p-1) P 2(1—a) P 45k
25, +P B} 28 +B Sk+5 28,+8
ClOllzee (161, IA%T200 570 | IA%T20] 3

25, +ﬂ

||A5k+29||L2 +ClION37 101 v (3.14)

IA

I /\

We point out that this is the last place where « and § are required to be in the subcritical
case « + f > 1. Inserting (3.13) and (3.14) into (3.12) implies

amy, 28+
d —k
5, 1A%6 I + AR, < CIOIZ Gl 2, IGI™S,, +COIET 1013

=
(3.15)

Keeping in mind (3.8) and integrating (3.15) in time, we are able to show that (3.11)
is valid. Now with the help of (3.11), we are in the position to show (3.9). By (3.11),
we get from (3.6) that

4y 4y
(a+2)my, T (a+)my
9||L2L§ 161l foopoe ™ s

|AYPO| @i <ca”
L, L,
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where
(@ + 2)my

4
Taking the inner product of (1.3) with |G| ~2G, we obtain, after integrating by parts

0<y<

1d
— NG OIITm +/ (A"G)|G|" %G dx =/ AP=90,,0 |G|" %G dx
m dt R2 R2
+/ [Ra, ug - V10 |G|">G dx
R2

+/ [Ra, ug - V10 |G" %G dx
R2
£ K|+ K, + Ks. (3.16)

By the maximum principle (see [6] for example) and the Sobolev embedding, we
observe

/RZ<A“G)|G|*"‘2de > CIA2GE|2, = 5||G||’Z%, (3.17)

where C > 0 is an absolute constant. It thus follows from the Holder inequality and
(2.9) that

|K1|sC||AVf‘e|| iy AT EB(GI"2G) | @i

L (a+2)mp =2y

<C||Ayﬂ0|| o |Gl gioesans 1GI" s
(a+2 )mk oV —dv

T (a+2)my — 2y

< CllA"o) e IG5 IGI™ Nt Dmyn2)

L (at2)mp—4y

L (a+2)my—4y

where we have used the fact

o 2 4+2 —3a
1-— 1-— - _— 3.18
at(d=-y)f<3 ory-> 25 (3.18)
Consequently, we have
IK1l = CIIAy’s9II o2 IGIl,, ¢ IGI™ ot Dy =) (3.19)

L @ my—ay
To handle the term K7, we choose s; = y8 € [0, | — «) and s, satisfying
o
2-2a—yB <5< 5
which requires the following restriction to ensure the existence of such s, above
o
2—2a—yB < 5 (3.20)
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Thanks to Lemmas 2.2 and 2.4, we conclude

-2
|K2| < CIIAyﬂQII (et 2omy 101 MNGI" Gl wsom

14 T (at2)my =2y

= C||AV/39|| (et 160l G 1l g2 G s 2img -2
2, (af;)% L @ Ay

= CIIAV’SGII o2, 1G4 IGI™ N Dy - (3.21)

[ @m—ay
To bound the term K3, we take
s =1—a+36,

where § > 0 is sufficiently small. Form — 1 < ¢ < 2(m — 1) and % + é =1, we
apply Lemma 2.2 and Lemma 2.4 to obtain

|K3| < ClIGILallOllL=GI"™ 2GII

S p
2

2
< ClloollL=lIGllLa IIGII’"(m Dty IGI 523
# p
g—m—-1)"
< Clléoll= Gl G e
q— e
< Clboll= G157 G -1+ 2D -

We further require g > (m 1) to obtain the following interpolation inequality

I—p Iz
Gl 2n-1) = ClGI " IGI o,

a
H7a+5+ H?2

where
_2(0—a)g+4(m—1)

oq
Therefore, for ‘3(5"__2? < q < 2(m — 1), one finds that

€ 0, 1).

S I
|K3| < ClibollL= Gl G IIGIIH%

< CIGI7s IIGII’L (3.22)

Substituting (3.17), (3.19), (3.21) and (3.22) into (3.16), one may readily check that

IIG(t)IILm + IIGII o _CIIAVﬂé’II CEST 1G4 1G1™ Nt Dy

L @ Dm Ay

+ClIGIT, IIGII“ (3.23)
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It follows from the Gagliardo-Nirenberg inequalities that

IGI 2es2mm— < CIG|1" ||G||“2m , (3.24)
L (a+2)my -4y
IGllre < C||G||Lm“||c||“2m , (3.25)

where A1, Ay € (0, 1) are given by

_ let mitdyim — 4@+ Dme g —m)

a(a +2)ymp(m — 2) agq

In order for A, A2 € (0, 1), we impose the following restrictions

(a +2)mr(4 — m) <y < a(a+2)mr(m —2) + (o + 2)mp (4 — m)
4m -7~ 4m ’
m (3.26)
m=gq =
2—«a

In view of (3.24), we obtain

-2
Clav’o| o IG5 IGI™ yas2mm—2
2y L (a+2)my —4y

—2)(1—A —2)A
<C||AVﬂ0|| wom |Gl g Gy ”||G||(L’"2,,,“

—a
~ — m(m— 2)(12))»1)
m—(m A
SEIIGIImzm +C<||Ayﬁ9|| ey 1Gl, ) IIGIIL IR (3.27)
Coming back to (3.25), one observes
1
CIGIE M IGI" o < CIGIT “>||G||('” L€
~ 1 m(m— I)(Il )
m—(m—1)x m—(m A
< EHGHZM, +CIGI" o "G "L (328)
Inserting (3.27) and (3.28) into (3.23), it holds that
d e o)
EIIG(I)II'L”m +||G|I’Z% <C (IIA”ﬁQII t2mg G g) Gl m =Dk
m(m—1)(1-1y)
+C||G||m (m ])Az ”G”Lm (m—1)Ay ) (329)

Obviously, we are able to check that

m(m —2)(1 — Xyp) “m m(m —1)(1 — i) -
m—m-2r ~—  m—(m—1r
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and the following is valid
mi

A
m—(m—1ky —

duetom < ﬁ Thanks to m < %, we further choose y such that

- [8—(2— ot)m]mk'

i (3.30)

Later we explain why such y can be selected. Then, for y satisfying (3.30), one gets

m - 2(x + 2)my,
m—(m—2r ~ (a+2my +4y°

Therefore, we deduce from (3.29) that

(a+2)my,

d
5ﬁG@M%+«GW%§scO+WAWw(ﬁmk+wm2)u+nm%u
L

a
2y 2

(3.31)

Let us now explain that g and y can be selected to satisfy all the restrictions stated
above. The number ¢ should satisfy

4(m — 1)
3a — 25"

. 2m
m] <q<m1n{2(m—1), > }
-«

Direct computations yield that the number g can be fixed if we select § < %

Putting all the restrictions (3.18), (3.20) and (3.26), (3.30) on y, we have
B(@) <y < B(), (3.32)

where

26+2 -3 4— —5ux (a+2)mk(4—m)}

B(a) = max {0, 2 T e

B(a) = min

’

H(a—i—Z)mk l—a ala+2)mr(m —2)+ (o +2)mp(4 — m)
4 B 4m
[8 — (2 — a)m]my }
4m

Moreover, the number m should obey

. 8 1
2<m<m1n{ , }
2—a 1l—«a
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Invoking direct computation yields that for m > 2

(a + 2)my - a(a+2)mr(m —2) + (o + 2)mp (4 — m) - [8 — (2 — a)m]my
4 - 4m - 4m ’

As a consequence of the above fact, the condition (3.32) reduces to

264+2—-3a (a+2)ymp(4—m)
max {O, , }
28 dm
C(l—a [8—Q2—a)ymlmy
< y < min 5 y }
Now we take m as
8Bmy

m < , (3.33)
228 +2 —3a) + 2 — a)Bmy

then it is not difficult to check that the y would work (see Remark 3.1 below for
details). Therefore, we deduce from (3.31) that

d (a+2)my
ZNGOIHL + 161", <C(1+IAP01 s, +1GI2 g )
L 2—« L~ 2vr
x (1L+ G mit)). (3.34)

where in addition to (3.10), my41 should further satisfy

8Bmy
228 +2 —3a) + (2 — a)Bmy

My <

Applying the Gronwall inequality to (3.34) implies the desired result (3.9). This
finishes the proof of Proposition 3.3. O

Remark 3.1 In order to ensure the existence of y, we need a restriction on the upper
bound of 8, namely g < 7. Here are the details.

28 +4+2—3«a 11—« o
w o P
264+2—-3a [8— 2 —a)m]lmy 8Pmy '
28 4m S 22B+2 =30 + =B’
(a +2)mr(4 — m) l—« 4(a + 2)Bmy
< =m > >
4m B (@ +2)Bmi +4(1 —a)
(¢ +2)ymi (4 — m) [8 — 2 — a)ym]my
< =m > 2.
4m 4m
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By the direct computations, we achieve

4(a + 2)Bmy - 8Bmy
(@+2)Bmp +4(1 —a)  2QB+2—3a)+ (2 — a)Bmy
= (@ +20)Bmr+8(1 —a) +2(@+2)Ba —2—28) > 0
=20 +20)B+8(1 —a)+2(@+2)Ba —2—28) > 0
302
4—a?’

=B <

where we have used the fact m; > 2. Concerning the above estimates, we take m as
(3.33). Moreover, g should satisfy

i 8 |« 302 o
—a < B <minq —, = —.
27 4—¢g2 2

Proposition 3.3 allows us to show the following key estimate.

Proposition3.4 Leta + B > 1 and % < a < 1, then it holds

t
1G@Im + /O IGOI" 4, dt = Ct. uo. 6, (335)

where m satisfies

1 22+p8) 2(25+3a—2)}

8
25m<mm{z—a’ -« Ctap  C—a)p

Proof Before proving this proposition we point out that it suffices to consider the case
a e (%, %‘) as the global regularity of the remainder case o € [%, 1) has been proven
by [36, 40]. Now recalling (3.9) and (3.1), we have fork =0, 1,2, - - -

t
1GOOI wit + /0 IG@) "5y, dT < C(t, uo, 60),
L 2—a

where m| = 2 and

- 8Bmy
228 +2 —3a) + (2 — a)Bmy

Mi+1

Duetoa € (%, ‘5—‘) and 8 > 1 —«,
228 4+2—-3a)+ 2 —a)Bmi >0, VYmy > 2.
We choose small € > 0 and take mj4 as

8Bmy
22B+2—-3a+¢€)+ 2 —a)fmy’

Mmi+1 =
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where € > 0 will be specified later. By means of the direct computations, m; can be
solved as
2(2 300 —2 —
myp = (/3+0l 6) . kzl
Q2—a)B+ (af +3a—2— e)(%)

If we fixe > 0 as
30 —2—-2B <€ <3a—2+ap,

then the sequence {my}ienN is increasing. Notice that o« € (%, ‘5—‘) and 8 > 1 —aq, it
yields
30 —2—-28 <0,

which leads to
0<e<af+3a—2.

Moreover, we are able to show

. 224+ 30 —2 —¢)
lim my =
k—o00 2—-w)p

Due to the arbitrariness of € > 0, it allows us to derive (3.35) for any m satisfying

2028 + 30 — 2)
<m< —
- 2-w)B

Furthermore, due to o > %, it is obvious to see that

) [ 8 1 22+ B) 2(2,3—1—301—2)} 2
min , , , > —.
2—a 1l—a Q4+a)B 2—-w)p o
Consequently, (3.35) is valid and the proof of Proposition 3.4 is completed. O

The following proposition allows us to obtain more higher regularity estimate of
the combined quantity G.

Proposition 3.5 Consider (1.3), namely
G+ (u-V)G+ A“G = [Rq, u-V]9+A’37°‘8xl9. (3.36)

LetB>1—aanda > % Suppose G admits the following bound

2
sup |G()llpa <00, g > — (wemayassumeq < ——),
0<t<T a l -«

for any given T > 0, then for any 0 < s <2«a — 1 — B, it holds

sup [|G(®)lp;,, < o0,
0<t<T
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Global regularity results of the 2D fractional Boussinesq equations

where r is given by
2q
<r<_—-
200 — 1 2—(1—-wgq

Proof The proof is inspired by [36, Lemma 2.5]. For the sake of completeness we
present here the full argument. Applying Ay to (3.36), one obtains

dALG + A*AG = Ar([Ry, u - V10) — Ar(u - VG) + A AP8,,6.
(3.37)

Multiplying (3.37) by |AxG|" 2 A G, integrating the result over space R? and using
the divergence-free condition, we get

1d
;EHAkG(t)ll’Lr + /RZ(A"‘A;{GNA;{GV’ZA;{G dx = If + 15 + 1§, (3.38)

where
I = f AL(Re, u - V10) |ALGI MG dx,
RZ

Ik = _f Ax(u - VG) |AG "2 AG dx,
R2

%= /2 ARANPT0,,0 |ALG" T2 AL G dx.
R

We recall the following lower bound (see [9])

/Rz(A“AkG)|AkG|’_2AkG dx > 2| AGlhr k=0

with an absolute constant ¢ > 0 independent of k. According to r < %(%—wa’ one
has

lull g < ClIA“ulzr
< ClA%ugllr + ClIAugll .-
< CIIA* "Gl + CIIA* ' RoO e
< C|Gllzs + ClIGll 2 + ClO] s
< C(T, ug, 69). (3.39)

Let us recall the following estimate (see (A.8) of [36])
|A6([Ras - VIOer < C(2072 ul gy + llall 2 + 1612 ) 6] o,

which together with (3.39) directly gives
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| AR - VI0)2r < C2C72K Jul| o 101l + Clllull 2 + 1011 2) 101

S C2(2—2C()k
As a result, we obtain
1If| < C22- K AGI (3.40)

Noticing (3.39), it follows from the proof of the estimate (7.17) in [25] that

a2 _ 2 _
15| <C A%u] 2" “+r>’<||AkG||;,-1(||AkG||Lr+ > 20EDOYAL G

m<k—1

2y (k=
+ Y 2eTEA, G )

m>k—1

2 2
=2 AGI (184Gl + Y 2 P8, Gl

m<k—1

2
+ Y 2(“—7>(’<—’">||Amc||u). (3.41)

m>k—1
Finally, it follows from the Bernstein inequality

15| <ClIlALAP =8y, 000 1| MG

<C2BTI=DK AL 1 | ARG

<C2PH=ONAG (3.42)

Inserting (3.40), (3.41) and (3.42) into (3.38) yields that for § > 1 — «

d
SIAGOIL + 2| ARGl <C220=0k 4 coBFl-mk | coll—at Dk ()
<CoBHI-k | col—a+ Dy gy, (3.43)

where L(t) is given by

2
L2 MGONr + Y 28O A, G0

m<k—1

2y (k—
+ Y 2@ DE AL Gl

m>k—1

Integrating (3.43) in time yields
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1ALGD) Il <e 2" | AkGollr + C2BH1 -2k

t
+ C2Ume Dk / e~ =2 L(v) dr. (3.44)
0

Multiplying (3.44) by 2°% with s < 2« — 1 — 8 and taking sup with respect to k, it is
obvious to see that

IG5, = 1Gollgg,, +C + M1+ Mz + M3,

r,0o —

where

t
Ml =C sup <2(1—a+%)k25k/ e—C(f—r)2(¥k”AkG(r)”Lr d‘[),
k>—1 0

2 ! o 2
M, = C sup (2(1_“+7-)k2Sk/ e—ct=m2% Z 2UFDM=B AL, G ()| 1r dt>,
k>—1 0

m<k—1
2 . t . o 2
M3 = C sup (2“—‘“?)’“2”‘/ =2 N @M AL G (D) 1 dr).
kz-1 0 m>k—1

Thanks to the condition r > ZL

a7 We choose € as

2
0<e<min{2a—1——,s}.
r

By the Bernstein inequality and the convolution Young inequality, we can conclude

2 ! %
My =C sup (2017 FFok / e~ UmDF Ok AL G (D)1 d )
k>—1 0

2 ! ak
<C sup (2<1—“+?+e)"f e G (1) || poe dr)
k>—1 0 e

—Qa—1-2—e)k
<C sup 27 G Lo

o1 o)

—Qa—1-2—
=<C sup 27 ® NG| oo, 7,y
k>—1 ’

<CIG N, 8570
Similarly, we may derive

M, =C sup (2(]*‘”%*5)1‘/

te—c(t—r)z"‘k Z 2(1+%7s+e)(m7k)2(sf6)m||Am(;(r)||Lr dT)
k>—1

m<k—1

(=)

2 t k 2
<C sup (2(17‘”7“)/(‘/(; emet=D2* ( Z 2(1+77S+€)(m7k)>HG(T)”B;"; dr)

k=—1 m<k—1
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2 t k
<C sup (20-atrrok / TG (@) | yoe )
k>—1 0 r.00

SC“G”LOO(Q T;Bﬁ;é)‘
In terms of the term M3, we can deduce that

M3 =C sup (2(1—a+%+e)k /t e—c(l—z)2“k Z 2(06—%+S—E)(k—m)2(5—6)mHAmG(r)HU d-[>
k>—1 0

m>k—1
2 ! k 2
<C sup (2(1—a+7+e)k/ clt—1)2® )3 z(a_7+s—e)(k—m)”G(T)”BH dr)
k>—1 0 mk—1 r,00

2 t k
<C sup (2“*‘”7*6)’( / NG (@) e dr)
k>—1 0 r,00

SC”G”LOO(Q T:B’;_OZ)'

Therefore, it follows that

1G>, T:85 o) = €+ 1GollBs o, + CNG oo, 7: 83 7)- (3.45)

r,00

Using the Bernstein inequality and (3.1), we have for 0 < € < s that

ClGllgc <C sup 2C7V[A;Gllrr +C sup 27| A;Gllrr
nee —1<j<L Jj=L+1

<C sup 29792GD|A;Gll2 +C sup 272Gl

—-l=jsL jzL+1
. 2 .
<C sup 2/UTTEDIG| 2+ C sup 27 Glig
—1<j=<L Jj>L+1 '

SC2L(1+s767%) |Gl 2 + c2Le 1GliBs

1
<C+ 351Gl (3.46)
where in the last line we have fixed L satisfying

<Cc27te <

s
| —

Inserting (3.46) into (3.45) yields

1
1G>, 7:8 o) =C + 1GollBs o, + §||G||ch(o, T:B o) (3.47)
Therefore, it follows from (3.47) that

sup “G(t)”Bfoo < C(T, ug, bp)- O<s<2a—1-¢.
0<t<T ’

This completes the proof of Proposition 3.5. O
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We are ready to prove Theorem 1.1.

Proof According to Proposition 3.4, G satisfies

sup |G@)llm < C(T, uo, o),
0<t<T

where

m<min{

8 1 2Q+p) 2(2/3+3a—2)}
2—a 1—-a C+a)B C-a)p

This along with Proposition 3.5 implies

sup [[G(D)l

0<t<T

p2e-1-p < C(T, up, 00).
2m 00
2—(1—a)ym’

Form>%ando:1+a—,3—%>1—,B,W€have

luglice = IVEAT'Gllco
~ [IVEAT Gy,
< ClGl2 + CliGl g1,
< ClGlz2 + ClGI -1

m
2—(1—a)m’ o

< C(T, uo, 60o)-
For uyg, it is not hard to see that

lugllce = V=A™ R0l ce
~ |[VEAT RO e,
< Cl6li2 +Cléligy,
< Cl6ll2 + CllflI >
< C(T, up, 00).

Letting y = min{o, o} > 1 — B, the above two estimates allow us to conclude
lullcr < lluglicr + llugller < llugllce + llualice < C(T', uo, 6o).

Now applying Lemma 2.6 to the #-equation (1.1), it implies that 6 becomes
immediately differentiable, namely for some positive constant ¢

||9(t)||C15(R2)) =< C(Ta uo, 90)7
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which of course gives

T
/ IVO@) L~ dt < C(T, uo, 6o). (3.43)
0

Moreover, we deduce from (1.2) that

t
lo@llze < llwollzee +/0 IVO(D) L~ d. (3.49)

Then (3.48) and (3.49) imply (u, 0) is the desired classical solution. Actually, the
standard energy method allows us to derive

d o B
Z(IIASu(t)IIZLz + A ODI3,) + 1A Tull?, + IAF20]7,
< C(L+ | Vule + VO L) I ull 7, + |A°0]13,). (3.50)

Recalling the following logarithmic Sobolev embedding inequality
IVullo = C(1+ 2 + ol In (e + 1A%l2)),
we deduce from (3.50) that

d . . (e 4B
E(HAW)H%Z F A0 + AT Zul7, + [AF20]7,

< C+ @l + VOl L) Ine + | A%ul? 5 + [A°O17) (A Ul + | A*0]7,).
(3.51)

Keeping in mind (3.48) and (3.49), one obtains by applying the Log-Gronwall
inequality to (3.51)

t
a B
IASu@)3, + 1A*0@)]7, +f IATF2ul?, + 1A T20)2,) (1) dT < C(t, uo, 6).
0

This completes the proof of Theorem 1.1. O

4 The proof of Theorem 1.3

The main effort of this section is devoted to the proof of Theorem 1.3. It suffices to
consider the case 0 < o < % asthecase 8 > a = % can be handled without using
the following combined quantity (see the end of this section). First, we define the
combined quantity

G =w+Rgh, Rpg2d AP
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Global regularity results of the 2D fractional Boussinesq equations

Apply the integral operator Rg to f-equation to obtain
0;Rp0 + (u - V)YRgO + 0y,0 = —[Rg, u-VIo. 4.1
Combining (1.2) and (4.1) yields
3:G1+ (u-V)G1 + A*G, =A°‘7ﬁ8xl9—[72ﬁ, u-ViJe. 4.2)

Note that the singularity of A*~# 0y, 0 at the right hand side of (4.2) seems to be higher.

In fact, to control the term A%~ # dy, 0, it requires B > ZTT“, which is stronger than

B > a when o < % Therefore, we naturally weaken this singularity. Precisely, we

need the iterative method. Actually, we apply A*~2# dy, to 6-equation to obtain
HATPY 0+ (- V)N 0+ AP0 = —[A“TPY,,, u-VIP. (4.3)
Setting G, = G| + A“2£3,,6, one deduces from (4.2) and (4.3) that

Ga+ (u-V)Gr 4+ A*Gy = A*@ P06 — [Rg, u- V10 — [A*PRg, u- V6.
(4.4)

Applying A2%~3£3, to f-equation, one gets

QAP0 4+ - VYA, 0 + A2 Py 0 = —[A* 3P, u- V6.
(4.5)

Denoting G3 = G, + A3 0y, 0, we deduce from (4.4) and (4.5) that
8G3+ (u-V)G3 + A*G3y =A>“"P3,,6 — [Rp, u- V10 — [A*PRp, u- V]
— [A*PRg u - V6.

Repeating the same arguments above, we are able to conclude that there exist
consequence {G,, };ueN such that

3G+ (- V)G + NGy = A" P30 — [Rp, u-V10 — fi, (4.6)

where G, and f;, are given by

m—1

m
Gm=w+y Ay 0 £, =D [ACPRg u-VIp.
=1 =1

Due to 8 > «, we choose the unique integer k£ > 1 such that

2—a—28 ke 2 - 3a ’
2(8 — @) 2(8 —a)
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which ensures
(k—=Da—-kB+12=0, Ofkw—ﬂ%+1<ﬂ+%,(k—Dw—ﬂ%+lzﬂ+%.

Now we denote

k k—1
G=w+y APy 0 f=>[APRg u- Vo,
=1 =1

then it follows from (4.6) that
%G+ - V)G + NG = AN"Py.0 —[Rg, u-VIo — f. (4.7)
Since u is determined by w via the Biot-Savart law, we have

u=v=taTle

k
=via! (G -3 A(l_l)“_lﬁaxﬁ)

=1

k
=VIATIG =Y vEATIA DB e

k
2ug+ Y uy. (4.8)
=1

Roughly, the terms at the right hand side of (4.8) can be viewed as
ug ~ A7'G, uy ~ APy,
Moreover, it holds
lug e < g e + lug e, 1< <k.
Now we establish the following commutator estimate involving Rﬂ.

Lemma4.1 Letr € [1,00] and p, p1, p2 € (1,00) satlsfy ot E Assume

thate € [0, 1) and B € (0, 1) satisfys € (—1,B8—€). If fisa dlvergence -free vector
field, then it holds true

IRg, £+ Vgl < CIAT flluoligh gsises. 4.9)

Remark 4.1 Note that one does not necessarily need precisely the form Rg of (4.9).
In fact, the estimate applies for any Fourier multiplier I' such that its symbol )
is a homogeneous function of degree 1 — 8 and F(“g‘) e C®(S" 1, for example
I=Al=A
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Proof According to the Bony decomposition, we have

AlRg, f-Vig = Z Ak([Rﬁ, ijlf’V]Ajg)
lj—kl=4

+ > A(Rp, Ajf - VI35-g)
lj—kl<4
+ 3 Ak([Rﬁ, Aif- V]Ajg)
j—k>—4
2 Ny + Na+ Ns. (4.10)
Notice that for fixed k, the summation over | j —k| < 4 involves only a finite number of
J's. For the sake of simplicity, we shall replace the summations by their representative
term with j = k in N 1 and Nz Notice that if Z is an annulus centered at the origin,

then for every F with spectrum supported on 2/ Z, there exists € S(R?) whose
Fourier transform supported away from the origin, such that

RpF = 2/07PyJ )«F.

Based on this observation, we deduce from [42, Proposition A.3] and the Bernstein
inequality that
INillzr < Clx2XC= @R 1V Sk—1 fllom 1 Ac Vgl
< CIx2"C P @ ) | L I ASk—1 fll Lo | AV gll o2
< Cx25 =P @5 ) | 1 2% ISkt A fllim 1Ak Vgl Lo
< C2XPEINAE Fllm (| ArgliLe.

Similarly, one gets

IN2 e < ClIx2XC=PIn@* O 1 ARV FllLe 1Sk—1V gl e

< CKEPYA Flim D IAIVEllLr
1<k—2

< CIA " flipm Y 2% DEPANHED A g 10,
I<k—2

In view of V - f = 0, the term IV3 can be rewritten as

Z AgV - (Rﬁ(Ajijg) - Aijﬂng)-
j—k>—4

We thus derive that
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)

N3l <€ Y Zk("Ak(Rﬁ(Ajijg))HL,ﬂrHAk(Aijﬁng)‘
j—k>—4
< 5 #(frmorsnl,, + ol )
j—k>—4

<C Y 2UCEPYAATE fln Al e
j—k=—4

<C > 2CEPYUNT F i lIA gl
j—k>—4

N

p.r» We are able

Putting all the above estimates into (4.10) and using the definition of B
to show

IRp, f - Vil <|| 2" 1N I e 12+||2’”||N2||Lp gt |25 1 N5 1 .o
<CIA" Fllon [|2X6FF+ ) Argll Lo

l

I

I

+ C”Al—ef”LPI Z 2(k—l)(S+€—ﬁ)21(S+1+€—ﬁ)”Alg”Lpz
I<k—2 !

+CIA T flipm | Y 2T DEHDRCHAER A 0,
j—k>—4

<CIAT Fllin gl gyerees,
where we have used s € (—1, 8 — €). Therefore, the desired bound (4.9) holds
true. O

With (4.9) in hand, we are now in the position to derive the following estimate
involving G and 6.

Lemma4.2 Ifa, B € (0, 1) satisfy (1.8), then the following estimate holds

B ! @
IG5 + IAZ60)]72 +/0 (IA2G @72 + 1AP0(D)13,) dT < C(t, uo, 6o).
4.11)

Proof Recalling (3.3) and (3.5), we may conclude

1d B
MnAze(r)niz + 1A%,

—/ A% (1 VO)AZO dx
R2

| A% u-VIe A0 dx
]R2

g g
CIIAZ, u- VIO 4 IIA20] s

IA
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B
< ClIVull2llA20]l7,

8 8
= ClVull2lA200 s IA20] s
2 BZ

Boo/oo 2

[N}

< Clwla 0z 12701,

k
<cC (IIGllz +> ||A""°‘”’axle||z) 1011 oo | AP6] 2
=1

k

<cC (nan +> ||A’<“ﬁ>““9||z) 1011 1 AP0 12
=1

= C (UGN + IATPol + [ AK@P 1= ) 6] 1 | APE)) 2

= C (UG + IA™Po 12 + 16112) 10111 APl

28-1

21 1-8
<CUl6ll2+ IGl2 +101,7 11A%01,5 HIAP6]

1
< g I1A%015, + Ca +1GIIZ).

4—a?
443

where we have used 8 > % due to 8 > with0 < o < % As a result, it follows

that
1d B 7
EEnAze(mniz + guAﬁeniz < C(+[Gl3,). (4.12)

To close (4.12), it suffices to estimate |G| 2. To this end, multiplying (4.7) by G and
using (4.8), we obtain

1d 2 g k(@—B)
EE”GO)”LZ +11A2G;2 =/RZA “Py 0 Gdx — RZ[R,s, u-vV3ye Gdx

k—1
—~ Z/ AP Rg, u- V10 Gdx
1=1 /B

=/ APy, 6 G dx —/ [Rg, ug - V10 G dx
R2 R2

k
- Z/ [Rg, uy™ - V16 G dx
R2

m=1

k—1
—~ Z/ AP Rg, ug - V10 Gdx
R2
=1

k—=1 k
-y Z/ AP Rg, ul™ - V10 G dx.
R2

=1 m=1
(4.13)
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By means of the interpolation inequality, it yields

/RZ AF@=Py 60 Gdx <C|A¥@PT1=30| L |A2G 2

_k@=p)+1-§ k@=p)+1-§

<Cloll,, " Ao, " IA2G]

1 g 2 1 2 2
=5 147Gl + ﬁnAﬂeuLz +Cllo13,

<L ia%GI2, + Lyafel2, + .
—32 L 32 L

According to (2.22) and (2.23) of [42], the following estimate is valid as long as
)
ﬂ > j’TgOt’

1 o L
—/ [Rg. ug - V10 Gdx < —[|A2G|7, + C(1 + [|[A"P0]]” )G 7.
R2 32 LY

where 0 < y < % and

1-2y

B2
1a7P| L L= CI|A29I|L’§L§II9I|L?QLQC < 0. (4.14)

L;

. . . —a?
We also point out that this is the only place in the proof where we use § > %. Due

to B > o, modifying the proof of (2.22) and (2.23) of [42], we are able to show
k—1 | w 1
-3 /RZ[A1<“—'3>R,3, uG VI Gdx < | A2GI7, +C+ ||Ayﬂe||2%>||G||iz.
=1

Using (4.9) withs = —5, e = 7, p =r = 2, one has

1 1 a
~ [ [Rp ) V10 Gax <R, ) VIO 5 145G
R2 B, ;
_x 1 a
<CIA " 5ug 4100 1o IAZGl 2
B4,2
<CIAPZ3014101 154 1A Gll2
4,2
1-p—¢ ) o a
<CIATP 61 g9, 161 1-9-4 142 Gl

~[01l %IIA%GIILL (4.15)

2
L 1—p—
By,
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where we have used the embedding B‘?’z(Rz) < L*(R?). We may assume 8 < 1—%,
otherwise we immediately have

101 1-p-g = CUUONL2 + 11011 24) = C.

4,2

Making use of the fractional type Gagliardo-Nirenberg inequality (see [19]), we are
able to derive

1 L
1011 ,1-p-2 < ClON; 1011° 5 55
B4'2 4 BOQ2 B;z B 2

1 1-t T
< C(l0ll2 + 161z=)2 11611, 3 I1AP6]17,, (4.16)

L

where
442k —a—48
T =

25 e (0,1

by selecting « as
o . o
max{o, E+2,3-2}</<<mm{1, 5+3,3—2}.

. _ . —o? _
To ensure the existence of x, we need 8 > 47“. Obviously, we have 3 T3 > 4T“

when 0 < o < % Now inserting (4.16) into (4.15), it ensures

—f (Re. u -V Gdx < 017, o IASGI,2
R? By, *
< UL + 1011015 IAPOIT, 1A S Gl

I |
o ﬁ 2
< 55 IA3GI%: + 1A%,

2
+CUI0N2 + 1101 L) T 16172

1 o 2 1 /3 2
53—2||A2G|IL2+3—2||A oll;. +C. (4.17)
Thanks to 8 > «, it follows from the same argument in proving (4.17) that
L 1 1
(m) g ~2 B2
—~ X_;/Rz[R,s, ug" V10 Gdx < IATGI + 14761 +C,

k=1 k
1« 1
-3 Z/ (AP R, ui” - V16 Gdx < —A2GI2, + — |1APO)%, + C.
L it Jpo 32 32
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Inserting the above estimates into (4.13), we infer

1d I ) Lo Bon2 b7 2
52 1GOIE: + SIARGIE, = CIABIL, +CA+1A617 (A +IGI).
(4.18)

Summarizing (4.12) and (4.18), one derives
d B @ L
TUGOIT: +IAZ0MIT) +IAZGIT, + IAPOIL, < (1 + ||AV/39||Z%>(1 +1GII72).

It thus follows from the Gronwall inequality and (4.14) that

B d a
IGOIT. + IIAZ0®)17, +f0 (IAZG @7, + IAPO(D)17,) dT < C(t, uo, 6o).

We therefore complete the proof of Lemma 4.2. O

With the help of (4.11), we are able to improve the regularity estimate of 6. Here
we mention that 8 < % is our main target as the case 8 > % was already considered
in [42]. In this sense, the regularity of € in (4.19) is higher than of 6 in (4.11). This
improved regularity estimate (4.19) is crucial for us to derive the global L2-bound of
the vorticity.

Lemma4.3 Ifa, B € (0, 1) satisfy (1.8), then the following estimate holds
t
4
1Ao7, +f IA'=20(0)|17,dT < C(t, uo. 60). (4.19)
0
Proof Applying A'~# to (1.1), and multiplying the resultant by A'~#6, we arrive at
d ]
-8 2 1-5512 _ 1-8 1-8
EEHA OO+ 1A 7207, =— /RZA (u-VO)A' PO dx
=— | AP u-VIo A'Podx
R2
=—/ AP ug - V10 A Podx
R2
k
- Z/ (AP ul" - v10 AP dx
R2
m=1

M| + M. (4.20)

Making use of (2.3) and (3.6), it follows that
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/ (AP u) . vIo A Podax| < ClIA' P, Wl VIl 5
RZ

(1
< CIIVu 1A P12,

<A o3,

Ao

<ClA' oy, - plA ﬂen -

R 2

6(1-8)

4.21)

< Clolg |
206-1) 8 (-
< Clol~lol, 27 120,27
< —||A1—79||L2 + CIOIEE o1,
1,8
< 1A= + €

where 8 > Was used. Similar to (4.21), we also get

A direct consequence of (4.21) and (4.22) is
Lo,
IM2|§Z||A 2005 +C.

By (2.3) and (3.6) again, we get

M1l = CIIA™ ug - VIO 2 IATFON 2

< Cl|Vuglir A~ ﬁen .
Lp-1

< ClGlrIA'""Po)? 5,

4-Q2—a)p 2(p=2) 2 2p-2
<CIGH,“ IATGI 7 IAPOI” 4, AT f’en i’
BOOOO
4=Q2-a)p 2(p=2) 2
o
<CIGI,“ I1AZG],57 ||9||P1ﬂ s I

()0 oo
4-Q2-a)p 2(p=2)

<CIGI,.*" IAZG] 7 (||9||L2-|-||9|IL<>°)"||Al '39I|

18
(AP ul” V10 A Pgax| < ghal2elg. +c.
2

| w2
A ﬁeué

-

N
[S)

(4.22)

(4.23)

-2
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1 1_7 4— (2 a)p 2([) 2) 2
=ZlA 20117, + CIGll |IA2G|I (16112 + 161 )

1 _8

ZIIAl 29||L2+C(1+||A2G|| 2), (4.24)

where p satisfies

max{z, %}fpfmin{Z—i—a, 4;/3}.

In order to ensure the existence of such p, we need

P
“34a
Obviously, we have I3 3a > 3 +a when 0 <o < 3 2. We finally get by putting (4.23)
and (4.24) into (4.20)
d _ _B a
EIIAl Pom)7, +1IA'" 2013, < C(L+ |AZG3,). (4.25)

Integrating (4.25) in time and using (4.11), we immediately derive (4.19). Therefore,
this completes the proof of Lemma 4.3. O

We now briefly sketch the proof of Theorem 1.3.
Proof Recalling

k
G=wt+ Y AV g
=1

it is clear from (4.11) and (4.19) that

k
loll2 < 1G 2+ ) IATD* o, 6,
=1
k
<Gl + Y A PH=eg)
=1
<Gz + CUA PO 2 + | AFC=PIF =g )
< IGll2 +CUA"PO| 2+ 161l,2)
< C(t, up, 6o),

which implies for any 2 < r < 0o

2

@l < COlulLlolls” < C, uo, 6. (4.26)
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Moreover, one may check that

4— o2 1
max | o, > . 4.27)
4 + 3a 14+«

Keeping in mind (4.26) and (4.27), the following key bound is an easy consequence
of [42, Lemma 2.12]

IVO(@)llLe + o)l < C(z, uo, o). (4.28)

With (4.28) in hand, the remainder proof of Theorem 1.3 is the same as the proof for
Theorem 1.1. We thus complete the proof of Theorem 1.3.

Finally, let us show the global regularity of (1.1) witho = 8 > % namely

du+ w-Vyu+puAu+Vp=0es, xeR? t>0,
00+ (u-V)0 +xkA%0 =0,

V-u=0,

u(x,0) = up(x), 06(x,0)=0p(x),

(4.29)

where p and k are two positive constants As stated in introduction, it suffices to
consider the case o = % as the case o > 3 is more easier to deal with. It should be
pointed out that the combined quantity G is not workable for the system (4.29). In fact,
one may check that the corresponding combined quantity G obeys the same equation
as the vorticity equation, which reads

B+ (- Vo + pA3w = oy, 0.
One thus derives
d 2 302
Eallw(t)lle + ullA3 ol = - 00 wdx. (4.30)
It follows from (4.29), that
4 Ao A3G)2, = A3, u-V]0 A36d
EE” Ol +«ll 7. =— Rz[ su-V] x,

which yields

1d

CUT, —nllA3 9(t)||Lz+nK||A39I|Lz ——n/ [AS,u- V10 A30dx (4.31)

. 2 . . .
with n > Tk Summing up (4.30) and (4.31) implies
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1 d ) L L .
5 2 (oI +nIA0OI7:) + wIAS 0l +nclA617,

=/ Bxlewdx—n/ [AS,u-V]0 A36dx. (4.32)
R2 R2

By the Young inequality, one has

IA

1 2
A3l 2| A30] L2

/ 0y, 0 wdx
R2

IA

Mool 2
zuAswniz +Z||A39||iz

72N nk .2
SIAS0lg: + - IAS6IE,, (4.33)

IA

where in the last line we have used the assumption n > % By means of (2.3) and
(3.6), we conclude

’—n/ [AS,u-V]0 AS@dx| < CI[A3,u- VIO «[A36]
R2 L3

1
< C|[Vull 2l A30]74
1 1
< Clloll21A30] 1 1A36]] 1
B B

00,00 2,2

2
< Cllll 2110l 5, 13612
2
< Cllwll218llz=IA36]|,2
nK o2
< 7”1\39”%2 + CllONFllwl7s. (4.34)

Putting (4.33) and (4.34) into (4.32), we have

d 1 1 2

= (lo®IZ: +nIATOIF. ) + mIAS 0l + 0l ASOIF: < ClOIE~ o]},
which implies

Keeping in mind (4.35) and the proof of Theorem 1.3, the global regularity of (4.29)
with o > % follows immediately. O
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Appendix A. The proof of Theorem 1.2

In this appendix, we sketch the proof of Theorem 1.2, which is largely inspired by the
proof of Theorem 1.1. Of course, the vorticity obeys

dhw~+ (u- Vo + A% = vdy,0.
We denote G = w — VR, 0, then G satisfies
3G+ u-V)G 4+ A%G =v[Ry, u- V10 +vAP~%3,,6.
Based on the Biot-Savart law, the velocity u can be divided into two parts
u=Vralo=VtATHG +vReH) = VEATIG + vVEATIRLO £ ug + ue.

Roughly, we have
ug ~ A7'G, up ~vAT6.

Based on this observation, we are able to prove Theorem 1.2 which is divided into the
following several steps.

Step 1: If o + = 1 and 3 < o < 19, then it holds

B ! a
IGOIN32 + AZ60®)]7, +f0 (IAZG@I3, + 1APO(D)II72) dT < C(t, uo. 6o).
(A.1)

In fact, according to (3.4), we have
1d 2 g 2 & 2 B2
5 7 IGOIT: +IAZ0MI5) + IATGIT, + IAP6I7, = Ny + Na + N3+ Na.
(A.2)

The estimates of Ny, Ny, N3 stated in Proposition 3.1 are still valid fora + 8 = 1
with o > % Therefore, it suffices to consider the term N4, which can be bounded by

B B
Ny < CIlIIAZ . u- V6]l 4 11A26] 14
B
< C[Vull2IlA26]74

8 8
= ClVull2lAZ01 s IA20] 8
2 BZ

Booso 2

()

< Clol2l0] 5, _IIA%0] 2
< C(IGlz2 + WIIAT%0) ) 101 L | APO]| 2
< C(IGll2 + WIIAPOI ) 160l L | APO]| 12
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A

1
1—6||Aﬂ9||iz + Clolz=1IGI7, + CrlvllfollL= |1 APO]17,

A

1
gIAPOIL, + CIGI,,

where in the last line we have taken v satisfying

1

[j— (A3)
16C11160 2=

Inserting the above estimates of N1, No, N3 and Ny into (A.2), we are able to show

the desired bound (A.1).
Step 2: Leta + 8 = L and 3 < o < 19. If it holds

IG O +/ IG@I™,, dt

L2«
then
IG@I 7 misy + / ||G<f)||'"§;;“ T < C(t, M, ug, bp), (A4)
where
8(1 — a)my
Mmi+1 <

204 —5a) + (1 — )2 — a)my

Furthermore, we may restrict

1 23 —a) }= 1
1

2 < my, in{>——. :
=M Ml =TS T T8 U—a) 2+ a)

_a.

Actually, according to the proof of Proposition 3.3, it is sufficient to estimate N as
the remainder terms are still valid. Invoking again (2.3) and keepinginminda+8 =1,
it is not hard to check

Ne < CIIA%, ug - V10| 2,45 A "9|| 2gth

L %th
)
< Cl[Vugll 254 [|A™O| 2548 IIA"9|| 2 +8
L B L % L %
1— ) 2
S CIIATYON 2548 1A% 25,45
L P L %
28, —B 28 28 45
1—« ZS:H‘ l—ap 2%tB Sk ) kTP Sk 25k‘kHS
<C| | IAT70] _u_a)IIA O™ (1 —wes—p) IA%O", 50 IA%ON 5
i % Boo,0o BZ
2.2 2.2

28 —B (—Dt)(25k+f3 48k
25+ — 5 —— 28 +/3 28 +f3 S 285, +B
= Ch| (||9|| S lA oll,> 615" 1A k+29|| )
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48
(1-) 28+ Ay
U—0@y+p) oy +/3 P 25 +B
< ClllllLel|A 2 9|| ¥ ||A’<+29|| k

IA

P
CalvllI6oll L= | A%F26]17,

IA

1 B
IA%T201, (A.5)

where in the last line we have taken € > 0 satisfying

1
W< —— (A.6)
4C3 160l L

As aresult, (A.5) can be absorbed by the left quantity ||A5’<+g9 ||iz. Therefore, (A.4)
holds true. Moreover, combining (A.3) and (A.6), the Cp of (1.7) can be fixed as

1
Co = mi St
0 mm{wcl 402}

Step3: Ifa + 8 =1 and % <a < ﬁ, then it holds
GO + / IIG(T)IImzm dt < C(t, uo, o), (A7)
where m satisfies
1
2<m< .
l—«

In fact, recalling (A.4) and (3.1), we have fork =0, 1,2, - - -

IGOI7 4 + f IG@I™L,, dr < €, uo, 60),

2’"k+1

where m; = 2 and

8(1 — a)my
2(4 —5a) + (1 —a)2 —a)my

Mmr41 <

We take mjy as

8(1 — a)my
24—-5a+¢€)+ (1 —a)2 —a)ymy

Mi+1 =
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with arbitrarily small € > 0 to be fixed later. By means of the direct computations,
can be solved as
2o —
my = (a E) - k Z 1'
(1= @)@~ @ = da+ 2+ (45

If we fix e > 0 as
0<e<—(a®—da+2),

then the sequence {my}xen is increasing. Moreover, it holds

. 2(ax —€)
Im my = ——M—-—.
k—o00 (1—a)2—a)

Due to the arbitrariness of € > 0, (A.7) holds true when m further satisfies

2a
2<m< —m .
1-a)2—a)

Furthermore, due to o > %, we have

2o 1
I-0)C—-a) I-a

> —.
o

In summary, m should be satisfied

. 1 2a 1
2§m<m1n{ , }= .
l—a (1—-a)2-—a) l—«a

Step 4: It follows from Proposition 3.5 that: If « + 8 = 1 with % <a < %,and G
satisfies

2
sup |G(t)|lLs <00, g > — (wemayassumeq < ——),
0<t<T o l—«a
then it holds
sup [|G(#)|l ga—2 < 00, (A.8)
0<t<T oo

where r obeys
2 2q

<r<-—.
200 — 1 “2—-(1—-wg
With (A.8) in hand, we are able to complete the proof of Theorem 1.2. Thanks to
(A.7), we can check that G satisfies

sup |G@) L = C(T, uo, bo)

0<t<T
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where m > 2 satisfies

1—a

This together with (A.8) implies

sup 1G)llysez = C(T, uo, 60).

0<t<T e ®

Due to o > %, we have m > % which yields ¥ = 2a — % > o =1— B. Asaresult,
we are able to show
lugllcr = IV-A~'Gllcr
~IVEATIGr
< ClIGl2 +CIGI g1,
< ClIGI2 +ClIGll gz
2=(T—aym

< C(T, up, ).
Moreover, one also obtains

luglice = WIIVEAT RGO e
~ [|VEAT RO e
< Cll6ll2 +Clollgy, .

< Cl|®llg2 + ClI@]l L=
< C(T, ug, 6p).

The above estimates imply
lullce < lluglice + lluglice < lluglicr + luslice = C(T, uo, 6o)- (A.9)

Noticing (A.9) and applying Lemma 2.5 to the 6-equation (1.1),, we are able to show
that 6 is Holder continuous, namely |0 cn < oo for some n > 0, which of course
implies

lugllcatn = WIIVEAT2"*9,, 0l casn < Cl10ll 12 + CllOllcn < C(T, uo, 6p).
Letting y = min{y, « + n} > a = 1 — B, it gives

lullcr < lluglicr + lluglicr < lluglicy + llugllcetn < C(T, uo, 6o).  (A.10)
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Thanks to (A.10) and Lemma 2.6, itimplies that 6 becomes immediately differentiable,
namely for some positive constant {

0@ lcr.c w2y < C(T, uo, 6o),

which immediately gives
T
/ VO@)llLedt < C(T, uo, 6o). (A1)
0
Moreover, we deduce from (1.2) that
t
lwo@)llLe < llwollLee +/0 IVO(@)llLe dT < C(T, uo, o). (A.12)

With (A.11) and (A.12) in hand, it is not hard to finish the proof of Theorem 1.2 (see
the proof of Theorem 1.1).
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