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Abstract The Oldroyd-B equations model viscoelastic fluids. Attention here is focused on a three-dimensional
(3D) Oldroyd-B system with mixed dissipation, horizontal velocity dissipation and vertical diffusion for the non-
Newtonian stress tensor 7. The equation of 7 has no damping, a setup relevant to high Weissenberg viscoelastic
flows. In this paper, we solve the small-data global well-posedness and the stability problem in the Sobolev
space H2(R3). The lack of the horizontal dissipation or damping in the equation of 7 makes the problem almost
impossible. This paper discovers that the coupling and interaction of the fluid velocity v and 7 generates extra
smoothing and stabilization. Mathematically, v and PV -7 satisfy a system of wave equations, which provides the
desired enhanced dissipation. Here, P = I — VA~1V. denotes the projection onto divergence-free vector fields.
In addition, time-weighted energy functionals are introduced to control low-regularity terms. The second major
result of this paper establishes optimal decay rates by making use of the aforementioned enhanced dissipation

and the integral representation.
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1 Introduction

This paper focuses on a special three-dimensional (3D) Oldroyd-B model with anisotropic dissipation.
The Oldroyd-B model, originally derived by Oldroyd [30], governs the motion of viscoelastic fluids such
as a solvent with particles suspended in it (see [2]). Mathematically the Oldroyd-B model considered
here is given by

Ou+ (u-Vu+VP=pApu+1nV-1, 2R3 t>0,
Ot + (u- V)T + Q(7,Vu) = n 027 + 1o D(u),

V-u=0,

u(x,0) = uo(x), 7(x,0)=70(x),

(1.1)
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where u = (u1,u2,us) and P denote the fluid velocity and pressure, respectively, and 7 is the non-
Newtonian stress tensor represented by a symmetric matrix. The parameters u,n, 1 and o are all real
and positive. Here, Aj, = 07 + 95 denotes the horizontal Laplacian, D(u) the deformation tensor, i.e.,

D(w) = 5(Vu+ (Vu)T),
and Q(7, Vu) is bilinear and given by
Q =1u) — Qu)T + b(D(uw)T + 7D(u))

with Q(u) = 3(Vu — (Vu) ") being the vorticity tensor and b € [—1,1] a constant. When b = 0, the
system is called corotational. The term Q(7, Vu) appears in typical models of viscoelastic fluids.

In this special Oldroyd-B model (1.1), the velocity obeys the anisotropic Navier-Stokes equation forced
with the non-Newtonian stress tensor. The anisotropic Navier-Stokes equation models anisotropic fluids
such as turbulent flows in Ekman layers [31]. The equation of non-Newtonian stress tensor 7 involves
no damping but only vertical diffusion. When the Weissenberg number We is high, the damping term
with the coefficient 1/We can be ignored [32]. In the circumstance when the vertical diffusivity in the
equation of 7 is far bigger than the horizontal one, (1.1) becomes relevant [29]. The anisotropic Oldroyd-B
system considered here can be derived from general viscoelastic models for applications with fluids that
are anisotropic in elasticity as well as in dissipation (see, e.g., [5,33]).

Our goal here is to solve the global well-posedness and stability problem of (1.1). In addition, we
are also interested in the precise large-time behavior of the solutions. The motivation for this study is
two-fold. The first one is physical. Understanding the stability properties and large-time behavior is
essential in modeling physical or biological processes. It is hoped that this investigation will help better
predict the behavior of the system in the modeling of real-world phenomena. The second is mathematical.
We intend to develop new approaches that are effective for the stability problems concerning anisotropic
systems. Most existing methods have been designed for fully dissipative systems and appear to fail on
the system studied here. Indeed, the equation of 7 in (1.1) has no damping and the dissipation is in a
single direction, and classical energy methods would have immediate difficulties. We exploit the extra
smoothing and stabilizing effect due to the coupling and interaction within the system. As described later,
this paper discovers the hidden wave structure and develops an effective approach on how to incorporate
the associated regularization in solving the intended stability problem.

Our main results are stated in the following two theorems. The first one asserts the global existence,
regularity and stability of (1.1) in the Sobolev space H? while the second presents the optimal decay
rates of the solutions when we assume that the initial data is also in L'. The notation P denotes the
projection onto divergence-free vector fields, i.e., P =1 — VA~V

Theorem 1.1.  Consider (1.1) with p > 0,7 > 0, 11 > 0 and vy > 0. Assume that (ug, 7o) € H*(R?)
satisfies V - ug = 0 and (10)i; = (70);: for 4,7 = 1,2,3. Then there exists a sufficiently small constant
0 > 0 such that if

l[uoll rr2(rs) + [[boll m2(rs) < 6, (1.2)

then (1.1) has a unique global solution (u,b) € C([0,00); H*(R3)). In addition, (u,b) obeys the upper
bound

t
()32 ey + 17 137 ey +/0 (IVu(s) 12 @sy + 1VRV2u(8)172 sy
+ 11057 (5) 1312 g3y + PV - 7(5) |31 sy ) s < €67 (1.3)

for some uniform constant C and for any t > 0. Moreover, the following decay rate holds: For a constant
C >0,

[N

HVu(t)HHl(Rg) + ||IF’V . T(t>||H1(R3) < C(l + t)_ . (14)
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(1.3) and (1.4) reveal the extra smoothing and stabilizing effect that does not originate from the
dissipation in the system. The velocity equation in (1.1) only has horizontal dissipation, but the time
integrability of ||Vu|%. (rey in (1.3) clearly implies the vertical dissipative effect. In addition, (1.3)
and (1.4) indicate that the special quantity PV -7 enjoys regularized properties that the vertical dissipation
of 7 cannot provide.

(1.4) provides the decay rates for |Vu(t)| g1 (rs) and [PV - 7(t)|| g1 (rsy. However, without additional
conditions on the initial data, it appears impossible to assess the large-time behavior of the solution itself
and other derivatives. Our second main result establishes the optimal decay rates when we assume that
the initial data is also in L.

Theorem 1.2.  Let (ug,70) € H*(R?) N LY(R3) with V -ug = 0 and (10)ij; = (10)ji for i,j = 1,2,3.
Assume that for some sufficiently small constant § > 0,

Let (u,7) be the corresponding global solution of (1.1) obtained in Theorem 1.1. Then (u,T) obeys the
following decay estimates:

(w0, 70) | 23y + || (w0, 70) |1 (r3) < 9. (1.5)

() 223y + [03u(t)|| L2 @) + |05P(V - 7) (1) || L2sy < C8 (1 + 1)1,
IV u(t)]| 2 es) + VA Valt)| 2 msy < C6(1+)7F,
1057 (8) || 1 sy < C (L+8)7%, BV - 7)(t)| p2msy < CO(L+ 1),

where C is an absolute constant independent of & and t.

The decay rates for ||u(t)||zz and ||Vu(t)||r2 are the same as the corresponding ones for the solution
of the heat equation with full Laplacian dissipation in R3,

Owu = vAu, u(z,0)=ug € L' N H".

Therefore, they are optimal and reflect the extra smoothing effect resulting from the interaction of
and 7.

We explain the proofs of Theorems 1.1 and 1.2. Since the local (in time) well-posedness can be
established via standard procedures (see, e.g., [28]), the proof of Theorem 1.1 reduces to showing the
global a priori bound on the solution (u,7) in H?. We make use of the bootstrapping argument to
serve this purpose. The main task is to control the nonlinearity in terms of the anisotropic dissipation.
The horizontal velocity dissipation Apu is sufficient for the Navier-Stokes nonlinearity (u - V)u, but the
one-directional vertical dissipation 937 is clearly not enough to bound the nonlinear terms (u - V)7 and
Q(Vu, 7). The idea here is to seek the extra smoothing and stabilizing effect from the interaction between
u and 7. Applying the Leray projection operator P = I — VA~V to the velocity equation in (1.1) (to
eliminate the pressure) and the operator PV- to the equation of 7 in (1.1), we obtain

Ou+P(u - V)u = pApu + 1PV - 7,

] (1.6)

PV -7 +PV - (u- V)T + PV - Q(1,Vu) = n3PV - 7 + iugAu,
1

where we have used V- D(u) = ;Au. Setting A = PV - 7, differentiating (1.6) in ¢ and making several

substitutions, we discover that (u,.A) satisfies the wave equations

1
Opu — (uAp + nag)atu — 51/1 vo Au + ,unagAhu = Ry,
(1.7)
1
3ttA — (,UA}L + n@%)@t.A — 51/1 12} AA+ HU@%A}LA = RQ,

where R; and Rs represent the nonlinear terms, i.e.,

Ry = (=0; + 102)P(u - Vu) — iPV - (u - V)T — 1PV - Q,
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Ry = féwm((u V) + (—0) + ) (PY - (u- V)7 + PV - Q).

That means both v and A actually satisfy a system of damped wave equations with exactly the same
linear parts. In comparison with the original system (1.1), the new system (1.7) exhibits much more
smoothing and stabilization properties. It is this wave structure that makes the stability and large-time
behavior problem of (1.1) plausible. The extra smoothing properties revealed in (1.1) will be incorporated
into the construction of the energy functional.

Naturally, the energy functional should include the H?-norm of (u,7) together with the time integral
pieces resulting from the dissipative terms Aju and 937, i.e.,

EV(t) = sup [[(u(s),7(s))|%2 + / (IVnu(s) 132 + 1857 (s)|[%2)ds.

0<s<t

In addition, we also take into account the extra regularizing properties revealed by the wave equa-

tions (1.7). The terms 17 vo Au and 114 v5 AA in (1.7) yield weaker dissipation that is one-derivative-
order lower than the Laplacian dissipation. Therefore, the energy functional associated with the weaker
dissipation is given by

¢
EP () = /0 UIVu(s)IF + [PV - 7)($)[[7)ds.
Putting E(()l)(t) and E(gz)(t) together leads to
Eo(t) = B (1) + B (1)

= sup [[(u(s), 7(s))lI %2 +/0 (IVru(s)1Fr2 + 105u(s)zn + 1057 ()| Zr2 + [P(V - 7)(5)l[71)ds.

0<s<t

There appear to be additional difficulties that cannot be overcome by the smoothing due to the wave
structure (1.7). One term from the L?-estimate of 7, i.e.,

/Q(VU,T) crdr < C’/ |Vul|r||7|dx,

cannot be bounded in terms of Fy(t). Due to the anisotropic dissipation, we naturally use the anisotropic
upper bounds for this triple product (see (2.2)), i.e.,

/Q(Vu,T) -mdr < OVl 2]|01Vul £ 102Vl 12110102V | Lo |7l 2 057l 22 [ 7] 22- (1.8)

However, the time integral of the right-hand side above cannot be bounded in terms of Ey(t) because of
the lack of the horizontal dissipation in 7. To overcome this difficulty, we include a time-weighted energy
functional

Ey(t) = sup (1+s)([Vu(s)llF +2P(V - 7)(s)lI3)

0<s<t
[ T+ 90t
+|05P(V - 7)(s) 72 + IVRP(V - 7)(5)[122)ds.
Therefore, the total energy functional E(t) is defined to be
E(t) := Eo(t) + F1 (). (1.9)

The inclusion of E;(t) helps bound the time integral of the right-hand side of (1.8). In fact, we have

‘/Ot/Q-Td(EdS

1 1 3
< C sup (14 9)%([Vuls)| 2 lI7lI72
0<s<t
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t 3 3 1 1
x/(1+s)s||vhvu||;;1||a3f||;2(1+s)—2ds
0

1 1 3 t %
< C sup (145)%[Vu(s)|| 2]l 72 [/ 1+ ) VaVul3ds
0

0<s<t

t 1 t , 2
X [/ |637'||%2ds] {/ (1+s)3d5}
0 0

< CE () By (1)3.

These estimates also illustrate the power of the time-weighted functionals when we deal with anisotropic
systems. The rest of our task is to verify that (1.9) is sufficient and allows us to show

E(t) < Oll(uo, 10) |32 + CEo(t)% + CEo(t)Er(t)% + CEo(t)? Ey(1)
< O|l(uo, 70) |42 + C E(t)3. (1.10)

Once (1.10) is established, a direct application of the bootstrapping argument would lead to the desired
global bound for ||(u(t), 7(t))|| g2z when the initial norm ||(ug, 70)|| g2 is taken to be sufficiently small. Our
main efforts are devoted to proving (1.10). This is a long process, which fully exploits the smoothing
effect of the wave structure in (1.7), and makes use of various anisotropic inequalities and some special
identities. The technical details are provided in Section 3.

The proof of Theorem 1.2 relies on the integral representation of (1.6). Naturally, our first step
is to convert (1.6) or (1.7) into an integral form. To do so, we take the Fourier transform of (1.6),
solve the linearized system and then apply Duhamel’s principle to represent the nonlinear system. This
representation involves four Fourier multiplier operators. These multipliers are anisotropic and their
bounds play an essential role in the decay rates. To obtain their optimal bounds, we decompose the
frequency space into subdomains and pinpoint the exact upper bounds for these multipliers in each
subdomain (see Proposition 4.1).

With the integral representation and the optimal bounds for the multipliers at our disposal, the proof
of the decay rates in Theorem 1.2 is then divided into three parts. In the first part, we apply the
bootstrapping argument to establishing the optimal decay rates for ||u||z2 and ||[Vul||z2. In the second part,
we prove the decay rates for ||VVju| 2, ||0sVu| 2 and ||0s37| 1. To facilitate the proof, we introduce
three time-weighted energy functionals and invoke the bootstrapping argument. The last part is devoted
to the decay rate for P- V7, which is obtained by taking the L?-norm of its integral representation, making
use of the anisotropic inequalities and invoking the decay rates from the first two parts. The details are
long and presented in Section 4.

Finally, we describe some related works. There are extensive mathematical studies on various models
of viscoelastic fluids and significant progress has been made on many fundamental issues (see, e.g.,
[9,19-21,24,25]). Due to its special structure and the intriguing behavior of its solutions, the Oldroyd-
B model has attracted considerable interest. There are substantial developments and understanding
of the well-posedness and related problems (see, e.g., [1,6,8,10,11, 14-18, 22, 23, 27, 35, 36, 41, 42, 46]).
More recent investigations focus on the Oldroyd-B models with various partial dissipation. Zhu [45]
successfully solved the small-data global well-posedness problem on the 3D Oldroyd-B model with only
kinematic dissipation and without damping or diffusion in the equation of the non-Newtonian stress.
In a very recent work [12], Constantin et al. were able to obtain the global existence and stability of
classical solutions to the general d-dimensional Oldroyd-B model with no damping and only fractional
stress-tensor diffusion —(—A)87 (1/2 < 8 < 1). The authors maximally exploited the structure of the
system to gain extra regularization for the velocity field, which is governed by the 3D Euler equation.
Sharp decay estimates for this Oldroyd-B system have been established by Wang et al. [37]. The global
solutions obtained in the aforementioned three papers are in various Sobolev spaces. Several recent
papers [7,39,43,44] were able to reestablish their global existence and uniqueness in critical Besov spaces,
which helped reduce the regularity requirements on the initial data. This current paper appears to be
the first one that focuses on an anisotropic Oldroyd-B model.
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We introduce some notation to be used in the rest of this paper. Without loss of generality, we set
v1 = v = 1. The letter C' denotes a generic absolute positive constant which may change from line to
line. In addition, we use the following abbreviated notation:

Vi =(01,02), Ap= 3% +6§, vp = (v1, va) for v = (v1,vq,v3),
Iolleg zs zz, = lollze, llzg, oz, fori #j # k,

1CF )7e = 111 + lgllZre for s > 0.

The rest of the paper is organized as follows. Section 2 presents some anisotropic inequalities and
an identity on PV - (u - V7) to be used in the proofs of Theorems 1.1 and 1.2. In Section 3, we prove
Theorem 1.1 while Section 4 focuses on the proof of Theorem 1.2.

2 Preliminaries

This section serves as a preparation for the proofs of Theorems 1.1 and 1.2. First, we state and prove
several anisotropic inequalities for triple products. Such triple products appear naturally in the estimates
of the nonlinear terms. The Oldroyd-B model considered here has anisotropic dissipation and these
anisotropic inequalities are indispensable tools in the study of such systems. Attention here is focused on
the 3D functions and the inequalities for the 2D ones can be found in several references (see, e.g., [4,26]).

Lemma 2.1.  For some constants C >0, i,j,k =1,2,3 and i # j # k, we have
1 1 1 1 1 1
/|fgh|dx <C ||f||i2(R3)||81f||22(R3)||9||22(R3)||029Hi2(]RB)Hh||22(R3)||63h|‘zz(Ra)’ (2.1)
1 1 1 1
[ 175h1d < C A1 o 10851 195 i 10305 e
1 1
X H9||z2(]R3)Hakgnzz(RS)||h||L2(R3)» (2.2)

1 1 1 1 1 1
HngL2(R3) <C ||f||f2(R3)||81f||£2(R3)||82f||22(R3)||6162f||£2(R3)||9||z2(R3)||‘939H22(R3)- (2-3)

Proof.  The first two inequalities have been stated and proven in [40]. Here, we focus on the proof
of (2.3). We first recall the basic 1D inequality

1 1
”fHng(R) < ﬂ”f”igl(]g)||8lf||[2,gl(]1§)a I = 1,2,3. (2-4)
As a consequence,

1 1
1fgll2@ey < W fllge, 12 llgllez . ree < Clfllnge, r2, 191172 Re) 1039117 2 goy-

xz)xo T3 ryxg T3 ryxg T3

Applying the Minkowski inequality, (2.4) and Holder’s inequality yields

1 1
1flless,, 2, <M Fllesg ez, v < CUIAIZ: 100F1172 ez, e
1 1
< OIS ez Es 1101 FzsEs ez,
1 1
< CNIFlleg Iz, 02 Fllegy lF
1 1 1 1
< C||f||}i2(R3)||82f||£2(R3)||81f||£2(R3)||8162f||£2(R3)-
Therefore,
1 1 1 1 1 1
||f9||L2(R3) < C||f||z2(R3)||81fH22(]R3)HaZfHEZ(RS)H8162f”z2(R3)HQHIZQ(RS)H639||Z2(]R3)~

This completes the proof of Lemma 2.1. O
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Next, we state an identity of Zhu [45] as a lemma. This identity decomposes a special nonlinear term
into several terms that can be dealt with more easily. The proof of this identity can be found in [45].

Lemma 2.2.  For any smooth u and 7, the following decomposition holds:
PV - (u-V7)=P((u-V)P(V 7)) +P(Vu-Vr) —P(Vu - VATV -V .7). (2.5)
To avoid any confusion on the vectors on the right-hand side, we write their k-th components as follows:

[(w-V)P(V - 7)]i = Zu APV - )k,

[Vu . VT]k = Z 8Juz 81'Tkj,
4,7
[Vu VATV Vo7l =Y Okt A" 00T

?,7,m

3 Proof of Theorem 1.1

This section proves Theorem 1.1. Since the local existence and uniqueness follows from a rather routine
process (see, e.g., [28]), our attention is focused on the global a priori bound on ||(u,7)||g2. As
aforementioned in the introduction, this is accomplished by proving the inequality

Eo(t) + E1(t) < C||(uo,70) |32 + CEo(t)? + CE(t)E1(t)? + CEo(t)? By (), (3.1)
and then applying the bootstrapping argument (see, e.g., [34, p.21]).

We first assume (3.1) and prove Theorem 1.1. We then come back to prove (3.1).
Proof of Theorem 1.1.  We set E(t) = Eo(t) + F1(¢). Then (3.1) implies

E(t) < C1 || (uo, 7o) |13 + C2E(t)? (3.2)

for two positive constants C7 and Cy. We show that if § in (1.2) is taken to be sufficiently small, then
the global uniform bound (1.3) in Theorem 1.1 holds for all time ¢ > 0. To apply the bootstrapping
argument, we start with the ansatz that E(t) < M := (ﬁ)2 Then it follows from (3.2) and (1.2) that

1
B(t) < Crll(uo, ) 32 + 5 B (),

or
E(t < 201 ||(U0,7'0)||2H2 g 20152. (33)

)
If § satisfies 62 < then E(t) < 2. The bootstrapping argument then implies that (3.3) holds for

allt >0, ie.,

1
16C,C2°

Cu(t), 7(£)) 132 + /Ot(IVhU(S)IIfqz + [|05u(s) || 71

+ 11057 ()l + IP(V - 7)(5)[[72)ds < C62, (3-4)
L+ B)(IVu(s) [ + 2PV - 7)(s)[F0) + /Ot(l +8)(IVVau(s) |7 + [IVOsu(s)||Z

H105P(V - 7) ()72 + [VAP(V - ) (s)[|72)ds < Co2, (3.5)

which gives (1.3) and also implies the decay estimate (1.4). O

We now return to prove the estimate (3.1). The proof is split into two parts. The first part proves the
bound for Ey(t) while the second shows the estimate for £y (¢). Then (3.1) follows immediately from (3.6)
in Proposition 3.1 and (3.21) in Proposition 3.5.
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3.1 Upper bound for Ey(t)

Proposition 3.1.  Let (u,7) be the solution of (1.1) with initial data (ug, 7o) satisfying divug = 0 and
(10)ij = (10)ji. Then, for a constant C > 0, we have

Eo(t) < C(||(uo, 70) |42 + Eo(t)? + Eo(t)Er(£)). (3.6)

The proof of (3.6) is long, so we divide it into three lemmas.

Lemma 3.2.  For a constant C > 0, we have

I Cu(t), T ()17 + 2/0 (el Vru(s)llzz +nllds7(s)l[2)ds

< C||(uo, 70)||%> + CEo(t)Ey (t)? + CEo(t)?. (3.7)

[V

Proof. ~ Due to the equivalence of ||(u,7)| g2 with ||(u,7)||z2 + |[(u, )| g2, it suffices to establish the
estimates for ||(u,7)||r2 and ||(u, T)|| ;2. Taking the L?-inner product of (1.1) with (u, ), we have

5= (lu@®)ll72 + I7Oll72) + (Ul Vau®)|72 +nllds7(t)]72) = —/Q -Tdz.
Here, we have used
/(v 7Y udz+ /D(u) rdz =0, (3.8)

which can be verified by integration by parts and the symmetry of 7,
/(V-T)-udm+/D(u)-de
1
= Z/aﬂ'ij widz + Z ) /(@-ui + O;uj)Tjdx
] 1,9
1
== Z/Tia‘ djuidz + Z 3 /(8jui Tij + Ogu; 7ji)d
Y i,
4,3 i,j

We note that even in the case where 11 and vy are different, we can still obtain (3.8) by taking the inner
product of the equation for u in (1.1) with vou and the equation for 7 with v;7. Clearly, multiplying by
extra constants in the L2-estimate would not affect any other terms. By the anisotropic inequality (2.2),
we obtain

—/Q~de<0/|Vu||T\|T\dm
1 1 1 i 1 1
< OIVul 22101Vl 72102V ul| 12 10102V ul 22 17122 1957 (1 22 M7l 22
1 3 3 1
< CIVull 2 IVRVull g llT 221057 -

Then, by virtues of Holder’s inequality and the definitions of Ey and F;, we have
t 1 1 3
_/ /Q rdeds < C sup (1+ ) [Vu(s)| L)),
0 0<s<t
¢ 3 3 1 1
X / (14 5)3 ||V Vul| . 103772 (1 + 5) " 2ds
0
3
5

A 1 3 t
< C sup (1+8)3[[Vu(s)||Z271I7- {/0 (1+ )| VaVul3ds

0<s<t
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<| / ||asT||des} |/ t<1+s>-%dsf

< CEy(t)Eq ()%,
Therefore,

; I Viu(s)lze +nll057(s) |1 22)ds

(lu®)l7> + IIT(t)IIizH?/ (
VEq(t)2.

< [[(uo, 7o) |72 + CEolt (3.10)
Next, we estimate ||(u(t),7(t))|| z2. Applying the operator A to (1.1) and taking the L2-inner product of
the resulting equations with (Au, A1), we have
1d

5 77 1Au®)17z + 1AT(O]72) + (| VrAu®)|72 +nllosAT()][72)

/A(u-Vu)-Audaz—/A(u~Vr)-Ade—/AQ~ATdm
= Il +IQ+[3

(3.11)
Here, we have used

/A(V 1) - Audz + /AD(u) Ardz =0

which can be verified similarly as (3.9). By integration by parts and the anisotropic inequality (2.1)

/Au Vu - Audz — 2/(Vu -V)Vu - Audz < 3/ |Vu||V2ul| Au|dz
< ClIVull72 105 Vull 721 Vul 221100 V20l 22 | Al 22 102 Al 7.
<C

IVull e (IV2ull72 + [IVEVZull72).
Then,

t t
[ s < e sw [Vu@ln [ (Va6 + [1Va72u(s) )
0 0<sst 0

ds < CEy(t)%.
For I, by (2.1) and (2.2),

(3.12)

f/Au~V7'~ATd:U—2/(Vu~V)VT~Ade

1 1 1 1 1 1
CllAul[Ea 101 Aul| L VT 22102V T | 22 | AT 2 |03 AT
1 1 1 1 1 1
+ CIVull £ 101Vl £ 102Vl 1210102 Vull 2| V27|72 |05 V27| 2 | AT 2
3 1 1 1 3 1 3 1
ClIVTllza 1Aul 22 101 Aul 2211057 22 + CIUVAT]| 22 [ Vul £l ViVl f 105 A7 | 72

Integrating in time and applying Hoélder’s inequality, we have

t 5 t ) N
/ Iy(s)ds < C sup [ Vr(s)||En / (1+ )4 Au(s)|| s
0 0<s<t 0

x (14 8)1]|0 Au(s)]|2, |05 A7 (s)[| 2. (1 + 5) " 2ds
+Cosup V27 (s)]|2. (1 + 8) % || Vu(s)|| i

<s<t

t . 3 1 1
X/ (14 8)% | VaVu(s)| . 105 A7 (s)|| 22 (1 + 5) > ds
0
< CEo(t)Ey(t)?.

(3.13)
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By integration by parts,
I5 < C/ |V V2ul||7||AT|d2 + C/ |02u|(|0s7||03 7| + |T||037|)d
—|—C’/|V2u||VT||AT|dx+C/|Vu||AT||AT|da:
< C/|VhV2uHT||AT|dx+C/|8§u||r|\6§7’|dm

+C/|V2u||VT||AT|dx+C’/|Vu||AT||AT|d:E
=: I3y + Isg + Is3 + Is4. (3.14)
By (2.2) and Sobolev’s inequality, I3; and I35 can be bounded by
I+ Tso < O Va0l |07 | 1071 21100 7 | o | A 2 | s 2
+ Ol oo 03 ull 2 1057 2
< OV V2ull g2 |7l 105 AT o + 72 (193ul22 + 1037132).

Then

t 3 t 1 1 1
/ (I31(s) + Is2(s))ds < C sup |[7(s)]| / (1+8) 2| Vi V2u(s)|| 2|0 A7(s) ]| 72 (1 + 5) "2 ds
0 0

0<s<t

t
+C sup I\T(S)Ilm/o (05 u(s)l 72 + 1957 (s)I172)ds

0<s<t

< CEo(t)Ey(t)? + CEo(t)?.

For I33 and I34, invoking the estimate as in I5, we have

/0 (Iss(s) + Is4(s))ds < CEo(t)Ey(t)?.

Therefore,

/ " L(s)ds < CE(0Ey(1)?. (3.15)
0

Integrating (3.11) over [0, ¢] and using (3.12), (3.13) and (3.15), we get

t
[Au(t)||7 + [|[AT()]1 72 + 2/0 (LIVRAU(s)]172 + nl|0sAT(5)]]72)ds
< [(Aug, A7o)||22 + CEo(t)? + CEy(t)Ey(1)?,

which, together with (3.10), implies the desired estimate (3.7). This completes the proof of
Lemma 3.2. O

The next two lemmas establish the desired upper bounds for the last two time integrals in Ey(t), i.e.,
fot |03u(s)||%:ds and fot [PV - 7(s)||%;:ds. The time integrability of these two terms is a consequence of
the regularization revealed by the wave structure (1.7). We extract the time integrability by considering
the time evolution of two cross inner products (A=*03u, A=103PV - 7)1 and (u(t),PV - 7(t)) 1. Here,
(F,G) 1 denotes the H'-inner product of F and G.

Lemma 3.3. For a constant C > 0,

P!
(0000 A108Y 1)+ [ {10~ Glanu(e) s — (14 +7 )l s

1 3
< §\|(U07VTO)||%11 + CEy(t)>. (3.16)
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Proof. By (1.6), a simple calculation yields

d 1
%(A—lagu,A—lagpv STV + §||83u||§,1 — |OsATIPY - 7|3
= 7(A7183]P(U . VU), A*163]P’(V . T))Hl — (Ailagu, A7183[P’V . (U . VT))Hl
— (A_lagu, A‘1831P>V . Q)Hl + /,L(A_183Ahu, A‘183P(V . T))Hl
+ 77(A_183u, A‘18§’]P’(V . T))Hl
::I4+"'+I87
where we have used the fact that |A='Vdsulz1 = ||dsul|g: due to Plancherel’s theorem. Invoking
|IPv]|L2 < Cllv||L2 and applying Holder’s inequality and Sobolev’s inequality, we have
I < CI[AT'03P(u - V)| i [[AT 05 B(V - 7)| i
< lw- Vul g [PV - 7)1
< (lullz [ Vull g + [Vl 2a) [PV - 7)l|
< Ollull = ([[Vulfr + 1BV - 7)[[300),

where we have used the property that the Riesz operator R; = A~19; is L?-bounded. To bound I, we
integrate by parts and apply Hoélder’s inequality and Sobolev’s inequality to get

Is = (A '03u, APV - (u- V7)) i1 < C||Osul| g1 ||u - V|| g
< OIVull g (lull L VTl + [Vl s [V 7| £+)

< ClIVull s |Vl £ 920l 2o [Vl + 197 [Vl
< CIVT ] IVl
Similarly,
Is =Y (A'030;u, A7 05Qij) ir < C||Vull 11 | Q)
(2%
< CNVullg (Irllp IVull g + 1Vl o[ V7l 2a) < CIVull 7l e
By integration by parts and Holder’s inequality,
It + Iy = p(AT 03 80u, AT 05 P(V - 7))y — (AT 05u, ATHOFP(V - 7))
< Blawulz + 105r) + §1sulls + 2105V

Collecting all estimates for I, through Ig above, we obtain

d, . _ _ 1
(AT 05u, AT 5BV - ) + 2 [9sulF — S AnulF - (’; + 1) P A
< Clllullaz + Il =) (IVullF + 1PV - 7)l70)- (3.17)
Integrating (3.17) in time derives (3.16). This completes the proof of Lemma 3.3. O

Lemma 3.4. For a constant C > 0, we have

1

OB 7O + [ |GV 7B = (5 + 1) VU (o) s - HloaT (o) | as

1
< 5”(“07V7-0)H§11 +CEo(t)2. (3.18)

Proof.  As in the proof of Lemma 3.3, we have

d 1
= WPV ) £ [PV 7|3 — SVl
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= P(u-Vu),P(V-7)m + (u,PV - (u- V7)) g1 + (u,PV - Q) i1
— p(Apu, P(V - 7)) g — n(u, 8§]P’(V “T))
=: Ig+-~~+]13.

Invoking the estimates for I, through I yields

Iy + Lo+ I < |lu- Vul| g1 [PV - 7l g + ([Vull gl VTl g + [Vl g ]| Q| e

<
< Clullgz + 7l a2) IVl + [PV - 7]F).
Clearly, for I 5 and I3, we have

Iy + Iy = —p(Apu, P(V - 7)) gn +1(03u, 03P(V - 7)) e

2
1% 1 7
< gllAhUHip +3IB(V - i + §(||33UII%1 + 105V 7|[71).

Consequently,
d 1 I I n
- OBV 5IPY 7l = (5 ) IVl - Al - 2ol
< Cllullzs + s IVl + 1B - 7)) (3.19)

Integrating (3.19) in time yields the desired estimate (3.18). This completes the proof of Lemma 3.4. O

We are now ready to prove Proposition 3.1.
Proof of Proposition 3.1.  Multiplying (3.16) by A; and then adding it to (3.7), and combining

1
(A1 03u, AT1 03PV - T) i 2 —§(IIUH§{1 +IV7IZ),

we see that

ICut), 7(t))]|3 + / (IVhu(s)[1 42 + 105ull3 + 1957 (s)]|%2)ds
< C|(uo, 70)||%2 + CEo(£)Ex(1)% + CEo(1)%, (3.20)

provided that A; is sufficiently small. Furthermore, we make a similar calculation (3.18) x Ay + (3.20)
and select A2 to be sufficiently small to derive (3.6). This completes the proof of Proposition 3.1. O

3.2 Estimates for F1(t)

Proposition 3.5.  Let (u,T) be the solution of (1.1) associated with the initial data (ug, 7o) satisfying
divug =0 and (79)i; = (70)ji- Then, for a constant C' > 0, we have

E1(t) < CEy(t) 4 C||(uo, 70) || %> + CEo(t)? Ey (). (3.21)

The proof of Proposition 3.5 is divided into two parts, which will be presented in two lemmas.

Lemma 3.6.  For some constant C > 0, we have

¢
A+ )(IVu@®)lF + 2PV - 7(@)l[70) + /O (1 + ) (el VaVu(s) |7 +nllosPV - 7(s)ll7 )ds
< 2Eo(t) + 2||(Vuo, V7o) |31 + CEo(t)? By (t). (3.22)
Proof.  Taking the H'-inner product of (1.6) with (Au,PV - 7) and then multiplying the resulting
equations by the time weight (1 + ), we get

1d
gt ) (IVu®)lin + 2PV - 7(®))13) + 1+ ) (el Vi Vu)llF + 20|05PV - 7(t) 1)
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13
= %(I\Vu(t)llil +2|[BV - 7(6) 7)) + (1 4+ ) (P(u - Vu), Au)
—214+t)(PV - (u-V7),PV-7)g1 =21+ t)(P(V-Q),PV - 7)1
= J1+Jo+ J3+ Js. (323)

By integration by parts, Holder’s inequality, Gagliardo-Nirenberg’s inequality and the anisotropic
inequality (2.1), we have
Jo = (1+t)/u~Vu~Audx— (1+t)/(AUoVu~Au+2Vu~V(Vu)~Au)dx
< (L4 D)l [Vl 22 | Aul| L2
3 3 (w2, 2 2,13 (|02, 2 2,113
+ O+ 0)[Vul 05Vl 212l 2 00V 2ull | V2 £ 0292l £
1 1
<O+ )Vull 22 1V2ull 22Vl 2 [ Aul 2 + C(1+ )|Vl i [V ul| 2|V V0] 2.
Therefore,

t s
/ Jo(s)ds < C sup (1+ s)2||Vu(s)| Lz / (IVu(s)||gr (14 s)2||Au(s)||L2ds
0 0

0<s<t

t
+C sup ||Vu(5)||H1/O L+ 8)(IV2u(s) 72 + VR V2u(s) |72 )ds

0<s<t

< CEo(t)2 By (b). (3.24)

The estimate for J3 is more subtle. We first rewrite it as follows:

Jg:—2(1+t)/IPV-(u-VT)~PV~de—2(1+t)/V]P’V-(u-VT)-VPV-TdJ:
= J31 + J32.

By (2.5), PPv = Pv, integration by parts and V - u = 0, we further split J3; into two parts

J31 = 2(1+t)</IP’(Vu~VT) oIF’Vonas—/]P’(Vu~VA71V~VoT) oIF’Von:r).
Applying integration by parts and (2.2) to the first term of Js; yields
—2(1+1) /]P’(Vu -V71) PV - 7dz
=2(1+1) Z /3kui Tjk 0[PV - 7];dx
3,5,k
1 1 1 1 1 1
S CA+)[Vull 12101 Vul[ 12102V ul| 12 [|0102Vull 1 171 721057 72 [ VEV - 7 2
1 1 1 1
S CA+ DN 2 NVull 72 IVRVull 2 1057 22 VPV - 7 2,

where we have used PPv = Pv. Due to the fact that [|[A™IV -V - 7||z2 < ||7]|z2, the second term of J3;
admits the same bound as the first one. Therefore, we derive

t

i 1 1 1 1 1 1
/O J31(s)ds < C sup [[7(s)]172(1+ )7 |[Vu(s)l 7 [ (1+ )7 [VaVu(s)| 71057 7

0<s<t

x (14 8)2||VPV - 7(s)|| p2ds < CEo(t)? Ey ().

S—

For J3s, similar to J31, we first write

Js = 2(1+t)(/vxp>(u.v1p>v-¢)-VW.de+/VP(vu-vT)-VW.de
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—/VIP’(Vu~VA‘1V-V~T) -vw-m)
=:J321 + J32,2 + J32.3.
By PPv = Po, integration by parts and (2.2), we have
J321 =-2(1+ t)/Vu VPV .7.VPV . 1dz
< C(+1)[|Vull;2[101Vul 12|02 Vu| £2[|0102Vul|| L | VPV - 7| 2, |03 VPV - 7| 2, [ VPV - 7| 12
S CL+0)|Vul 7 [VPV - 7] 2. |02 V|| 7. |05 VPV - 7] 2, [ VPV - 7| 2.

Then,

t 1 1
/ Jsza(s)ds < C sup [|[Va(s)|[ 2, ]|VEV - 7(s)]| 2,
0 t

0<s<
x /Ot(l +5)([10:Vu(s) |} + [0:VPV - 7(5) |72 + [[ VPV - 7(s)|[72)ds
< CEo(t)2 ().
For J322, by means of (2.1) and (2.2), we can similarly obtain
Ja22 < 2(1 +t)/(|V2uHVr| + |Vu||V27|) | VPV - 7|dx

< O+ ) Vull 220100 V2ull 2 V7122102V 7 | 22 | VY - 7| 1|05 VEY - 7] .

+ O+ 8)[ V| 10y Vul| 2 | VOsul 3210182V ul 3 [ V27| 22 05927 | 2, | VPV - 7 2
< OO+ )V [V2ul 22 [0 V2u] 5, | VPV - 7|2, 05V - 72,

+ OO+ D) Vull 2 V27 2, 19050l 2 [9sV27 ]| 2. [ VPV - 7] 1.

Thus, integrating J3z 2 in ¢ yields

t 1
/ Ja2,2(s)ds < ¢ sup IV 7 ()12 V2 u(s) 7.
0

<s<t

t
x / L+ s)(l01V2u(s)[[ 2 + VPV - 7(s)l[72 + |05 VPV - 7(s)||72)ds
0

1 1 t 1 1 1
+C sup (1+S)ZIIVU(S)IIEP||V2T(8)||iz/0 (1+ 5) 7| Vru(s)l| 11105V (s)| 72

0<s<t
x (1+5)2||VPV - 7(s)| 2ds
< CEo(t)? B (1),

Similarly,
t 1
/ J3213(8)d8 < CEo(t)fEl(t)
0
Combining all the estimates above, we obtain
t
/ Jaa(s)ds < CEo(t)? By (t).
0

Consequently,

/O " Jy(s)ds < CEo(0) v (t). (3.25)
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We finally bound J4. By integration by parts, we rewrite it as
Jo=2(1+1) Z/QU» 0,[PV - luda — 2(1 + t)/V(V LQ) - VPV - rdz = Ju1 + Jus.
4,J

It follows from the estimate of .J3; that

/0 t Ju1(s)ds < CEq(t)2 Eqy(t). (3.26)
For Jyo, invoking (3.14), with a similar argument, we first have

Jio < C(1+1) / |V, V2ul|7||[VPV - 7|dz + C(1 + t) / |02u||T||05PV - 7|da

+O(+1) / V20| V7| [VBY - 7ldz + C(1 +¢) / V|| V27| VPV - 7|da
=:Jy21 +Ja22 + Ja23 + Ju2 4.
For the first two terms, by Hoélder’s inequality and Sobolev’s inequality,

L+ Ol VAVl L2 [ VPV - 7|2 + V20l £2]| 03PV - 7] 2)

Jao1 + Jip2 < C
< CA+ )7l (IVAVZullz + VPV - 7] 72 + | V2ul|72 + |05PV - 7]|72).

Hence,
t 1
/ (J42}1(S) + J42,2(S))d8 < CEo(t)§E1 (t)
0
Invoking the estimates of J32 9 yields
t 1
/ (Jaz,3 + Ja2,4)(s)ds < CEy(t)2 By ().
0
Thus,
t 1
/ J42(S)d8 < CEo(t)EEl (t),
0
which, together with (3.26), gives
¢ 1
/ Ja(s)ds < CEy(t)2 E1(t). (3.27)
0
Inserting (3.24), (3.25) and (3.27) into (3.23) and then integrating in time, we conclude
¢
L+ BIVu®) |5 + 2PV - r(0)]F) + /O (L + )l Vi Vu(s)|F +nl0sPV - 7(s)|7)ds

< 2Eo(t) + 2||(Vuo, V7o) |21 + CEo(t)? By (t).

This completes the proof of Lemma 3.6. O

Next, we make use of the wave structure in (1.7) to gain the time integrability

t
| ) aTuo)ie + VAPV - (s) )i
0
Lemma 3.7. For some constant C' > 0, we have

(1 + 1)[(Bsu(t), PV - 7(£)) + (Vau(t), V4PV - 7(t))]
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1 t
5 [ @+ 1Tu(s) s + 2| VhPY - 7(5) )
0

t
- 01/ (L+ 8)([|VRVu(s) |71 + [0V - 7(s)||71 )ds
0
< Eo(t) + ||(Vug, V210)||22 + CEo(t)? Ey (1), (3.28)

where Cp = max{3(1+p+p®+n),1+ 4 +n*+1}.
Proof.  The proof is divided into two steps. The first step establishes the bound for fot (1435)[|05Vul|2.ds
while the second is devoted to fot(l + 8)| VAPV - 712, ds.

Step 1. The bound for fot(l +5)||05Vu|2.ds. We consider 4 (1+1)(05u, 93PV - 7). By (1.6), we have

d
t(l + t)(agu 83PV T) (1 + t)||83VuH%2 - (1 + t)||83]P’V . T||%2

d
= (d3u, 03PV - 7) — (1 +t)(83 (u-Vu),03P(V - 1))
— (1 +t)(O3u, 3PV - (u- V7)) — (1 + t)(Bgu 03PV - Q)
+ (14 ) (9324w, 3P(V - 7)) + n(1 + t)(O3u, O3 P(V - 7))
=: (O3u, 03PV - 1) + J5 + - - - + Jo, (3.29)

where (F,G) denotes the L?-inner product of F' and G. By integration by parts, Holder’s inequality and
Gagliardo-Nirenberg’s inequality, we have

Js = (1+ t)/u Vu - BP(V - 7)dz < C(1+t)|Jul|poe || Vul| 12 | 03P(V - 7)]| 2
< OO+ )Vl 2 IVul 21Vl 22| 05P(V - 7)l| e

Then

t t
/ Js(s)ds < C sup (1+ )2 Vu(s)|| / IVu(s) 12 (1 + $)2|G2B(V - 7)(s)|| 2ds
0 0<s<t 0

< CEy(t)? Ey ().
By integration by parts and (2.5),
Jo = (1+t)/8§u~IP’V-(u-VT)da:
= (1+1) /8§u -(P(u-VPV -7) +P(Vu-V7) —P(Vu - VATV -V - 7))dz
= (1+t)/8§u~(u-VPV-T+Vu-VT—Vu-VA_1V~V-T)dx
where we have used (Pu,v) = (u,Pv). Holder’s inequality, Sobolev’s inequality and (2.1) yield
Jo < C(1+t)([[ull 2= |03 ull 2 | VE(V - )| 2

1 1 1 1 1 1
+105ull72 10105 ull 7= |Vl 2. 182V ull 721V 2. 105V 71 7

+ 1050l 2210105 ull 72 |Vl 72102Vl 2 [VATIV - V- 7 2|05 VATV - V- 7 72)
< CA+t)|ull 2| V2ull L2 | VP(V - 7)]| 2

1 1 1 1
+ CA+ DV 2 Vul 21 Vull 1210105 ull 72 |05V 7 ..

Hence,

/O Jo(s)ds < C sup [Ju(s)]|: / 1+ ) ([V2u(s) |25 + [ V(Y - 7)(s) 2 )ds

0<s<t
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1 1
+C sup [[V7(s)|7: (1 + 5)7[|Vu(s)] 7

0<s<t
< [+ DT 1+ 941035 0070 s
< CEo(t)? Ex (1),
J can be bounded by
J. < C(1 +t)/|6§u|(|V2u||T| + V|| Vr|)da.

As in the estimates of the first two terms of Jg, we have

[ mors <€ [0 il 1913 + 18ul s n03ul Wl vl VL0097 s
< CEo(t)2 Ex ().
Clearly,
Js o = n(1 4 £)(@s A B5B(Y - 7)) — (1 + 1)(@3u, B3B(Y - 7))

n 1
< (D) B10aduls + BT 7)) + 10ulls + o2 102R(V -l |

Integrating (3.29) over [0,¢] and combining all the estimates above, we see that

¢ 1
(1 +t)(93u, 5PV - 7) +/0 (1+5) {463wn732 - gnagAhun%z - (g + 1) 03PV - 7|2,

—PlIeR(V - T>||iz} ds

1 [t 1 1
<5 [ (ouulRs + 102V - rla)ds + 5(10uuols + 105V - lF2) + CEo(t) Ea(t)
0

1 1 1
< SBo(t) + 5 (IVuollzs + IV2ml22) + CE(0) Er (1) (3:30)

Step 2. The bound for fg(l +5)|| VAPV - 7]|2.ds. We calculate (1 +t)(Viu, V4PV - 7) to get

d 1
— %(1 +1)(Vhu, ViPV - 7) + (1 + )| VAPV - 7|32 — 5(1 + )|V Vul|7e

= (Vau, Vi,PV - 1) + (1 + ) (VaP(u - Vu), Vi P(V - 7))
+ (1 + ) (Vrou, VaPV - (u - V7)) + (1 4+ t)(Vru, VPV - Q)
— u(L+ ) (VaAru, ViP(V - 7)) — n(1 + t)(Viu, V,O5P(V - 7))
= (Vpu, ViPV - 1) + Jio + - - + J14. (3.31)

Jio through Jy4 can be similarly estimated as the corresponding terms in J; through Jg. Clearly, the
linear integral can be bounded by

Jiz + Jia

2
1
<(L+1) [’“;nvmhu@z + SIVAB(V - D)lF2 + 2105 Viula + S 185VAB(V - 7)][3 |
By Holder’s and Sobolev’s inequalities,

Jio=(1+1) /(U -VViu+ Vyu-Vu) - ViP(V - 7)dx



18 Lin H X et al. Sci China Math

< CA+)([ull Lo IV VRl L2 [VRP(V - )| 22 + [Vul 74 [ VaP(V - 7)] 2)
1 3
< CA+)|ull a2 IVVaul L2 VRP(V - )22 + [Vull 2|Vl 72 [ VAP(Y - 7).

Hence,

/ Jio(s)ds < €' sup HU(S)Ilm/ (1 +8)(IV*u(s) 72 + IVRP(V - 7)(5)[[72)ds
0 0

0<s<t

< CEy(t): Ex(t).

As in Jg, we have
t t .
/ Ji1(s)ds = —/ (1+ s)/Ahu PV - (u-V71)dzds < CEy(t)? By ().
0 0
For Ji2, we first bound it by
Ji2 < C(1 +t)/|Ahu|(|V2u||T| + |Vul|Vr))de
and then invoke the estimate of J; to obtain
t 1
/ J12(S)d5 g CEo(t)EEl(t)
0

Consequently, integrating (3.31) in time and incorporating the estimates for Jyo through Ji4, we obtain

t 1 1
— (1+t)(Vihu, ViPV - 1) +/ (1+s) {2||ww T3 — (2 + Z) 1V hVul?,
0

p "
— ?HV;LA}]U/HQLQ - §||83th[])(V ' T)||2L2:| ds

1 1 1
< 5 Fol®) + 3 (IVuoll2a + 19°70]3:) + CEo(t)* Ea(1),

which, together with (3.30), gives the desired estimate. This completes the proof of Lemma 3.7. O

We combine Lemmas 3.6 and 3.7 to complete the proof of Proposition 3.5.

Proof of Proposition 3.5.  According to Lemmas 3.6 and 3.7, for a sufficiently small Az, a direct
calculation of (3.22) + A\3(3.28) yields the desired a prior estimate

E\(t) < CEy(t) 4 C|(Vuo, V7o)||%: + CEo(t)? By (t).

This completes the proof of Proposition 3.5. O

4 Proof of Theorem 1.2

The section is devoted to proving Theorem 1.2. The proof makes use of the integral representations of
(u,P-V7). For the sake of clarity, we divide this section into four subsections. The first subsection derives
the integral representation of (u, PV -7) from the differential equations (1.6) and establishes sharp upper
bounds for the Fourier multiplier operators involved. The multipliers are anisotropic and the frequency
space is divided into subdomains. Optimal bounds are obtained for them in each subdomain. The
second subsection makes use of the integral representation and applies the bootstrapping argument to
obtain the optimal decay rates for ||u||r2 and ||Vu||r2. The third subsection extracts the decay rates
for |[VVrul|p2, ||0sVul| 2 and ||037| g:. To facilitate the proof, we introduce three time-weighted energy
functionals and prove their boundedness via the bootstrapping argument. The last subsection computes
the decay rate for ||P- V7| 2.
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4.1 Integral representation and sharp bounds for the kernels

We first derive the integral representation for (u, PV - 7) satisfying (1.6). Taking the Fourier transform

of the equations (1.6) yields
a i Ny
S N PR
at(PV'T) (IPV-T)+<N2+N3>’

where

(—ul&nz 1 > Ny = —P(u- Vu),
-3l —n&3

No=-PV-(u-V7), Ny=-P(V-Q)
with |£,|? = €2 + €2. The eigenvalues of the matrix A are given by

_ —(plénl® +ngd) — vT
2

_ —(ulénl? + &) + VT
2 b

)\1 ) )\2

where .
= Gl + 062 — 4l 63 + 516

The corresponding eigenvectors are

1 1
e (/\1+u|§h|2)7 P2 (A2+M|§h|2>'

A% can be explicitly written as

Therefore, e

et L (G-nare -
et = (P17p2)< N t)(pl,pz) L= " ' ' ,
0 en? TGl G + plénl*Gq
where
e)\zt _ e)\lt )\2€>\2t _ )\16)\115
Gi(t) = ————, Go(t)= 22— — Mt 4 NGyt
1(1) JY v 2(t) JA— e+ MG (1),
)\ )\1t _ )\ kzt
Gg(t) = —26 1° = e)‘lt - )\1G1(t).
Ao — M\

By Duhamel’s principle,

u(é,t) = @1@)170 + QQ(t)ﬁ'\TO

+/O (Or1(t — $)N1(5) + Oalt — 5)Na(s) + Ot — 5)Na(s))ds, (A1)

PV - 7(&,1) = Qs(t)io + Qa(t)PV - 70

~

+ /0 (Q3(t — s)N1(s) + Qu(t — s)Na(s) + Qu(t — s)N3(s))ds, (4.2)
where

Q1(t) = G3(t) — plén2Gi (1),  Qa(t) = —Ca(1),

o~ 2 o~
Qs(t) = %Gl, Qa(t) = G2 + plén]*G.
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We remark that when A; = Az, the representation in (4.1) and (4.2) remains valid if we replace G; by its

limiting form
e)\Qt _ e)\lt

_ : — At
Gl (t) - )\211%1,%\1 )\2 — /\1 te '

One can refer to [3] for a detailed explanation of a similar situation.

The decay rates depend crucially on the upper bounds of the Fourier multiplier operators. Since the
multipliers are anisotropic, we divide the frequency space into subdomains and seek optimal upper bounds
for the multipliers in each domain.

Proposition 4.1.  The domain R? is split into two subdomains, R® = A; U Ay with

(pl€n]” + n€3)*
1

(pl€n]* + n€3)*
1

M= {eerirs or 3ulesl? + nl)? < 16 (nle 3 + 51el) .

Ay = {5 €ER':T > or 3(pl&n]® +me3)* > 16<un|§h|2s§ + ;|£|2> }

(1) There exist two constants C' > 0 and ¢y > 0 such that for any £ € Ay,
2 2 2 2
~ plEn]® + nés Redy < P&l + més

2 ’ 4 ’

u\&h\2+n£§t
— e dngy

Re>\1 g

te Qi(t)] < Cemlét =14,

G1 ()] <
| < Cle[tem e Qs ()] < COlefecolél,

Q2 (1)

where Ref denotes the real part of f.
(2) There are two constants C > 0 and ¢; > 0 such that for any § € As,

Bl +ngd) i+ 3lef
o Wlenl? g

2 2 2 (enl? inedyt | el Il 5 _ent
Q2(t)] = |G1(1)] < g g (e WIS ITHIS) e wisnlTinss ) < Of¢]7%e™
1€nl? + né3
pnlep 1?3+ 1€12

|Q\Z(t)| < C(e*%(ﬂ\ﬁhl%wzﬁg)t _’_67 “‘5h,‘2+"5:2; ) < Cefclt’ i = 1,374’

A<

If we further divide Ao into three subdomains Asy, Ass and Ass with

A21 = {5 € A2a :u|§h|2 ~ 776??}3
Agy = {€ € Ay, plén]? > né3},
A23 = {5 S A23 :U‘|£h|2 < 7765’%}3

then for three constants C' > 0, co > 0 and c3 > 0,

i) < Cem2lelPtmest i1 3.4 |Qy(1)] < Cle| 22l et ire e Ay,
()] < Ceme&it=est =13 4 |Qa(t)| < Cl¢|2e 28175t if € € Ay,
()] < CemealénlPimest 5 1 3 4 |Qy(t)] < C|€| 2o 2l imest - yre e Ayl

Q) ) )

Proof. (i) For £ € Ay, we have T < M. By the definitions of A\; and Ay and the mean-value
theorem applied to Gy,

2 2 2 2
_ 3(plénl” + ngs) < Re), < /& +n£37
4 2
2 2 I€5 12483
RGAQS—M, |G1(L‘)|<L‘ef“ b 73t'

4
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Then, by the simple fact that ze™ < C for z > 0, we have

Q1(t)] = [t — MG (t) — plén*Ga (1)

uléh\2+n£§t u\&h\2+71€23t
- 2 1

e + (ulénl® + n€3)te™ + MG1(1)]

<
< Cem0lét 4 |\ G4 (1)

21

(4.3)

for some constant ¢y > 0. Next, we bound |A1G1] in two cases: I' > 0 and I' < 0. In the case I' > 0, it is

easily seen that

uléh\2+n£§t
— &SR TR

IMGL()] < (ulén]® +néd)te < Cemolél™t,

In the case I' < 0, Ay is an imaginary number and we have

1
I\ = &6 + §|€|2, T =4\ ] = (ulénl® + né3)>

(4.4)

We further divide the consideration into two subcases: |\;| < |VT | and [M| = [VT |. If |\i] < VT,

according to the definition of G, we can infer

A
|>\1G1(t)| = ||\/%|| |e>‘1t — e)‘zt\ g Ce

7“|€’L‘Z+”§§t'
If [\;| > |VT |, then

AP = 4 f? = (ulénl® +n€d)°
or

V31| < plénl® +nés.

Hence,

11€p 12 +ne3
——h 3y

1 1 e
IMG1()] < —=(plén]? +1€3) |G| < %(thﬁ + né3)te < Cem@lel™,

V3
As a consequence of (4.4)—(4.6),

MG ()] < Ceeolel’t)
which, together with (4.3), yields that for £ € Ay,
101 (1)) < Ceme0lé*t,
Similarly,

1Qa(t)] = |2 + MG (1) + plén|>Ga(1)] < Cemcolénlt,

(4.5)

Now we proceed to bound @2 (t). Again the consideration is divided into two cases: I' > 0 and T" < 0.

When I' > 0,
1
(e + 62 = 4 (e} + 516

which implies v/2|¢| < pl&x|? + né2. Thus

_plepl?ne, 1 _c 2 02y, 1 _ 2,
1 e (1ln]=+né3) <C—e colé|

|Q2(t)| = [G1(t)] < te WG e ] ;
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where we have used the fact that xze™ < C for x > 0. When I" < 0, we further divide the consideration
into subcases: |vT| > |¢] and [VT| < |¢]. If |V/T| > |€], the definition of Qo(t) implies

1

7e—co|§|2t.

€l

‘eklt _ eAgtl g

@01 =|

If |VT| < |¢] or |T| < [€]?, we have
1
(1len P65+ ) ~ e+ €3 < P

or
Apn|&nl?E5 + €17 < (ulénl® +né3)%,

which implies €] < p|&n|* +n€3. Then,

1 2 2 1 2
C e Cco(ulénl*+n&s)t « o~ g—colénlt,
plénl? + nég -l

Therefore, for all the cases, @Q(t) is bounded by

|Q:2(t)] = G ()] <

|@2(t)| < C|€‘_1e_00|€h‘2t'
For Qs(t), we also have

|Qs(t)] < §|G1(t)| < C|¢leolel’t,

(ii) For £ € Ay, we have
plén + més

5 < VT < pl&|* +né3.

It is then easy to check that

3
— (ul&n? +n&3) <M1 < _Z(M‘fﬂz +1é3),

_ Dl +0ed)® _ pnl&nE + 31¢P
T2+ 0 +VT) - plénl? + el

For € € Ag, we have |¢| > C for some C > 0. Therefore,

|@2(t)\ = |G1(t)] < ——— (Mt + M)
AQ - )\1

9 _wnlgn?e3+g1el?

< m(e—%(uéﬂnlihlz)t te  HaPtnd ) L Ol 2em

for some constant ¢; > 0. Furthermore,

Q1(®)] = [ = MG (t) — ulén*Gr(t)] < e+ 2(ulén|* +n€R) |G (1))
_wnlenl?e3+31¢)?
< Clem FWlenP+ned)t 4 o7 T uie P ) < Qe
Similarly,
M’H\gh|2§§+%\§‘2t

|Qa()] = |1lEnPGr(t) + MGa(t) + '] < Ce™ F WD 1 o7 uaPoE ) < Com,

Also,

|£|2 pnlép 123+ 1€12

1Qs(t)] 5 IG1(8)] < Cle~ iWlenl® et 4 o™ " wlenPineE ) < e,
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We finally present more definite upper bounds by dividing As into Asy, Ass and Asz. For &€ € Asp and
(1l€n1? ~ né3, we have

pnlénl*€3 + 3¢

plénl? +né3
For € € Ag and pu|€,|? > né2, there exists sufficiently small ¢p > 0 and c3 > 0 such that
pn|€nl €3 + 51€17

plénl? + né3

The case £ € Asz can be similarly handled. This completes the proof of Proposition 4.1. O

~ ¢+ 1.

} Cgfg + C3.

Next, we present two important tools to be used in the proof of the decay rates in the next few
subsections. The first one provides an exact decay rate for the general heat operator associated with a
fractional Laplacian operator AP := (—A)B/ 2. Here, the fractional Laplacian operator can be defined
through the Fourier transform, for any £ € R,

APF(E) = l° F(e).

The proof of the following lemma can be found in many references (see, e.g., [13,38]).

Lemma 4.2. Assume that a > 0 and 8 > 0 are real numbers. Let 1 < p < g < 0o. Then there exists
a constant C > 0 such that for any t > 0,

a —AP _a_d(l_ 1
[A% A fll Laray < Ct 55670 || £l Lo gay.- (4.7)

The second lemma gives sharp upper bounds for a convolution type integral.

Lemma 4.3. Assume 0 < s1 < so. Then, for some constant C' > 0,

t C(l +t)_317 Zf s2 > 1,
/ (Ltt—7) 1 (L4 m)%2dr <{ O+t In(1+1), s =1, (4.8)
’ C(1+t)l-s1-s2, if 5o < 1.

Now we start proving Theorem 1.2. The decay rates are shown in the following three subsections.
Throughout the proof, without loss of generality, we assume ¢ > 1.

4.2 The decay for ||u(t)|| 2 and |[|[Vu(t)| 2

This subsection is devoted to the proof of the decay rates for ||u(t)||L2 and ||Vu(t)||r2. We apply the
bootstrapping argument to establish the desired decay estimates. We start with the ansatz that for ¢t < T,

(L4 6) 3 lu()] 22 + (L+ O3 Va(®)]| 2 < Cod, (4.9)
where () is a suitably selected pure constant and will be specified in the proof. Our goal is to show

y

A+ )3 ul)rz + (1 +6) 7| Vult)| 2 < (4.10)

by using the ansatz (4.9) and the integral representation (4.1) for . Then the bootstrap argument verifies
that the desired global bound (4.10) actually holds for any time ¢ > 0.

Proof. By the integral representation (4.1) and Plancherel’s theorem,
lu(®)| 2 ey = I1u(t) [l L2 Re)

t
< Qi(t)tollL2(rsy + [|Q2(H)PV - 7ol L2 (rs) +/ 1Q1(t — 8)N1(s) |l L2(rs)ds
0

t t
b [ 1@t = ) Ralo)zzquords + [ 1Qa(t = 5)Ra(s) sy ds
0 0
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Next, we use the ansatz (4.9) to bound the terms in (4.11) one by one. Recalling the upper bounds
on Q1(t), Proposition 4.1, (4.7) and (1.5), we have

K, < C”eicom%aOHL?(Al) +C||eicltaOHL2(A2)
<CA+8) T ugllzr + (1 +8) " |Jugllze < C5(1 + )73, (4.12)

where we have used the fact that e~ “*(1 4 ¢)™ < C(c1,m) for any m > 0 and ¢ > 0. Similarly,

2, — —
Ky < O||¢| el PY - Tollz2(ay) + CIlIE]~2e 1 'PV - 70| 12 (,)
<O+ )" H([[rollp + [Iollz2) < Co(1+1)71, (4.13)

where we have used the fact |{] > C for £ € As. For K3, by Proposition 4.1 and the fact that the
projection operator P is bounded in L2,

fa s C/ot le= <0l =) Ny || paa,ds + C/ot le= =Ny || 2, ds

t—1 ) N ¢ . R

= C/ Hefco\ﬁl (t*S)N1||Lz(A1)ds+C/ ||efc(]|£| (t*S)NlHLZ(Al)dS
0 , t—1

+c/ eI |Ny || 24, ds

t—Ol t

< C/ He—co\£|2(t—8)m”L2(R3)d8 + C/ e—m(t—S)”u - V| L2 ms)ds,
0 0

where, due to the simple fact that e=“1(!=%) > ¢~ for s € [t — 1,], we have used

t . N t ~
/ ||e_60|5| (t_S)N1||L2(A1)dS <e / 1e_cl(t_s)||N1||Lz(Al)ds.
t t—

-1

Then, applying Holder’s inequality, Sobolev’s inequality, (4.9) and (4.8), and combining ||u|| gz < Cd, we
find that for m > 2,

t—1 t
K3 < C/ (1+tfs)*%||u~Vu||L1ds+C/ (I4+t—s)""|u-Vul| r2ds

0 0
t 3 t

<C [t tm s Hulla| Vullads + € [ (14t 5) " fullm [ Vullods
0 0
t 3 t

<C/ (1+t7s)*ZHuHLzHVUHdeerC/ (14t —9)""||ullg2||Vul L2ds
0 0

t t
<00052/ (1+t—s)—%(1+s)—%ds+00052/ (1+t—s5)"™(1+s) ids
0 0
< CCy2(1+1)75. (4.14)

Similar to K3, K4 can be first bounded by
t 5 e
K, < c/ 1€t M E=IPY - (u - VT)|| 12 (a,)ds
0
t —_—
+c/ €1~ 2e=1 =PV “(0 - V7) | 24y ds
0

t—1 t
< C/ Hefco|€|2(t75)u- VTHLz(Rs)dS—i—C/ efc1(t78)||u. V| L2 r#)ds,
0 0
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where we have used the fact that || > C for £ € Ay. By Lemmas 4.2 and 4.3, Holder’s inequality and
Gagliardo-Nirenberg’s inequality,

t—1 t
2 _— —m
K, < C§ :/ ||efco|§| (t*5)|§‘uiTjk||L2(R3)dS+C/ (1+t75) ||7_LHLoo||VTHL2dS
irjik 70 0

t s t 1 1
QCZ/ (1+t—s)_1||uiTjk||L1ds—|—C/ (L4t =)™Vl 2, | V?ul| 2, || V7| 2ds
0 0

1,5,k
< C/Otﬂ +t—s)3IIuIIL2IIT||des+C/Ot(1 Ft— 8) | Vul| 2 [ V2] 2|V 7| o ds
< CCod” /Ot(l +t—s) "5 (1+5)"Vds + CCf 52 /Ot(l +t—s) (14 s) Fds
<CC*(1+)7F +CCHR1+1)F <C(Co+CHEM+E, (4.15)

where m > 1 and we have used ||V2ullz < C6(1 +1t)"2 and ||7||gz < C4. Finally, with a similar
argument as in the estimate of Ky, for m > 2, we have

t—1 t
K5 < C/ ||e_c°‘5‘2“_5)Q||L2(1R3)d3+C/ e~ I Q)| 2 sy ds

0 0
t 3 t

<0/ <1+t—s>*zu@||pds+c/ (14— 5)™|Q||2ds
0 0
t 3 t

<C/ (1-‘rt—S)_ZHV’U,HLZHTHdeS-FC/ (T+t—8)"™|Vullp2||7|| L= ds
0 0

< CCyb? /Ot(l +t—8) (14 s)"ids + CCys> /Ot(1 +t—5)""(1+s) ids
< CCY*(1+1t)7%. (4.16)
Combining the bounds (4.12)—(4.16), we conclude that
lull 2 < CS(1+1)"F + C(Co + CF)5>(1 + 1)~ 1. (4.17)
Next, we prove the decay rates for ||Vu| 2. For k = 1,2,3, we have
Ou(€,1) = Qu(B)ug + Q2(t) PV - o
+ /;(@(t — )0k N1(5) + Qa(t — 5)(OeNa(s) + O N5(s)))ds.
We take the L?(R?)-norm to obtain
IVullze = [ Vull 2

t
< 1Q1(H)Vuol| L2 + |Q2(H) VPV - 70| 2 +/ 1Q1(t = 5)VN1(s)| L2ds
0

t t
4 [ 1@t = ) TNal)lads + [ Qe — 5)TNas)lds
0 0
=: K¢ + K7 + Kg + Ko + K.
According to Proposition 4.1 and Lemma 4.2,

K C||e_C°|£|2t@o||L2(Al) + CHe_Clt@OHLz(AQ)

— 2 ~ -
lle=ls™ ¢t || p2a,) + Ce™ | Vuo]| 12 an)

<
<
<O+ ) Huol|prmsy + C(L+ )~ | Vuo|| p2msy < CO(1 + )~ 5. (4.18)

c
c
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Similarly,

Kz <O+ (Il + Imollz2) < €O +1)7F. (4.19)
As in the estimate of K3, Kg can be first bounded by

t t
K < C/ ||e_60|§|2(t_s)VN1 ||L2(A1)ds + C/ ||e_cl(t_s)vN1HL2(A2)dS
0 0

t—1 - t
< c/ ||e*co‘€‘2<t*8>wu.vu)||L2(R3)ds+c/ e 9|V (u - V)| p2rsy ds.

0 0
Then, by Holder’s inequality and Gagliardo-Nirenberg’s inequality, for m > 1,

t—1
Kg < c/ (1+t—s)"%|u-Vul1ds
0

t
+C/0 (L4t =) " (IVullZs + ull L [V?ull22)ds

<

X

t t 1 3
C/ (1+t*5)*%IIU||L2HVUHL2dS+C/ (14t =) IVull 72 V?ul 2.ds
0 0

t 1 t "
<00052/ (1+t—s)—3(1+s)—ids+ccg(52/ (1+t—5)""(1+s) sds
0 0
< C(Co+ O+ )%,

(4.20)
where we have used ||V2ul|zz < C6(1 + t)_%. The estimate for Ky is more elaborate. We first bound it
by

t 2 —_ t —_
Ko < C [ 1161 e P ITRG aayds +C [ 172 09T Na iz s
0 0

t—1 o t —
= C’/ ||efco|§|2(tfs)]Pv- (u~VT)||L2(A1)dS+C/ ||e*00|§|2(tfs)]P>v. (u.VT)||L2(A1)d3
0 t—1

t -
e / e~ =) |€] 1PV (i V) 1 (ap)
0

=: Kg1 + Koz + Kos.
By Lemma 2.2,

PV -(u-V7)=P((u-V)P(V-7))+P(Vu-V71)+P(Vu- VA~V . V. T)
= IP’(’)j(uj PV - T) + Paj(Vuj T) —i—IP’aj(Vuj A_lv -V 7’).
Therefore,

t—1 —
Ko < CZ/ e léP =) |¢|(u, PV - 7 + Vu; 7+ (Vuy; A=V -V - 7)) | p2ds
— Jo
J

t
< CZ/ (]. +t— S)ig(HUJ]P)V . ’7'||L1 + ||V’U,J T||L1 + ||VU‘7‘A71V -V- THLl)dS
. 0
J

t
S C/ L+t = )75 (Jull 2PV - 7llz2 + [ Vull g2 I7] 22 + [Vl 2 |[ATIV -V - 7] 12)ds
0

t
< 00052/ (1+1—5)"T(1+5) Fds < CC0*(1 +5) %,
0

(4.21)
where we have used the ansatz (4.10) and ||PV - 7|2 < C8(1 4 t)~2. For Ky, applying (2.5) again, we
further split it into three terms as follows:

t t
Koy < C/ e_“(t_s)H(u-V)P(V'T)HLz(Al)dS—FC/ e—01(t—s)”e—co\fP(t—S)vu.V7—||L2(Al)d8
0 0
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t —_—
+ C’/ e_cl(t_s)||e_C°|5|2(t_S)Vu -VATIV -V - 7| 12(4,)ds
0
=: K921 + K922 + Koz 3.
For Ky 1, a direct estimate leads to
t
Koz < € / (14t = )7 ful] . [ VB(V - )| p2ds
0
t 1 1
< C/ (1+t— s)_mHVquzHV%HE;,HV]P’(V - T)||g2ds
0
32 ! —m —1iL 352 -4
<COCZ [ (14t—s)™(1+s) Fds<CCZ2(1+1)"%.
0

Recalling the inequality (4.7) and the fact that e=¢1(*=%) > e~ for s € [t — 1,t], m > 2 and % + % =1
with 1 < p < 2, we have

t —
K2 <C) / e~ 179 [l (=9, (T 7) | 2ds
. 0
J

t
<C [t s EVurrpads
0
t 1
< C/ efcl(t*S) (t _ S)iEHVU”L?”T”LOOdS
0

¢ “1 1
< 00062/ e Tt — )T (1 4+t —s)T™(1 + s)_%ds
0

t % t L
< 00062[/ e_y(t_s)(t—s)_gds} [/ (14— s)"™(1 4 5)" 19ds

0 0
<CC8(1+1)7 1,

where we have used e~ 2 (%) < C(1 + ¢ — s)~™ for any m > 0 and the fact that the integral
I z*~te=*dx (s > 0) converges to I'(s). Similarly,

0
Koo3 < CCod%(1 + 1) 1.
Consequently,

Koz < O(Co + C2)02(1 +1)~1. (4.22)

Similarly,

t
Koz < C'Z/ e ) (lu; P(V - 7)|| 22 + ||V 7|2 + | Vu; ATV -V - 7| 12)ds
~Jo
j

<C(Co+ O (1 + 1)1
Combining the bounds for Jg1, Jo2 and Jgg yields
Ko < O(Co + C2)6%(1 + )% (4.23)

We now bound the last term K;(. First, we have
t t
K <C / llg]~ e IVPY Q|| 24,y ds + C / llg] =261 VPV - Ql|r2(ay) ds
0 0

t—1 t
< C'/ Hefco\f\?(tfs)lpv,Q||L2(A1)ds+0/ HCfCDIEIZ(tfs)pv.QHLQ(Al)dS
1

0 t—
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t
+c/ 19 Q 24, ds
0
=: K01 + K10,2 + K10,3-

By (4.7), (4.8) and the ansatz (4.10),
t—1 ) N
Kioa < C / o0 l€P (=9 ¢ G| 2 ds
0
t 5 t 5
< c/ (14t —5) F|Qluads < c/ (L4t — 5)~ 3|Vl o 7l 2ds
0 0
t
< 00052/ (14+t—8)"1(14s) ids < CCos*(1+1)7 5. (4.24)
0
As in Kgz 2, we have
t , N
K2 < C / o=e(t=5) | o=eol€ (=) ¢| 3] L2ds
t—1
t 1 t 1
<c / 1= (¢ — 5) =} Q|| ods < C / =19 (¢ — 54| Vul| o 7] g2 dls
0 0

t
< 00052/ e (=) (¢ — §)73(1+5) " Fds < CCu8%(1+ )7 1. (4.25)
0

A simple estimate leads to, for m > 2,
¢ 5
Kips < O/ (14t —8)"™||Vul|p2||7|| g2ds < CCu6*(1 4 t) 1.
0

Therefore,
Ko < CCo0*(1+ 1)~ 1. (4.26)
Combining (4.18)—(4.20), (4.23) and (4.26) leads to
IVullzz < C8(L+ 1)~ % +C(CE + Co)d?(1 + 1) F,
which, together with (4.17), gives
(L+0) 5 full 2 + (1+6) ¥ Vul 22 < C18+ Co(Co + 1)62.

Then, if we select Cy and § satisfying

C
Ci < %, C2(Co+1)d < IO»

we obtain the desired estimate
3 5 Co
A+ )T lufzz + L+ )7 Vull 2 < 6.
This completes the proof of (4.10). O

4.3 The decay rates for ||V2ul||; 2 and ||057|| ;2

This subsection proves the decay rates for | V2u| 2 and ||@37]| 1. For clarity and notational convenience,
we introduce three functionals, i.e.,

BEs(t) = (1+ )3 | VA Va2,
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Ey(t) = sup (1+5)%[|(95Vu, 03PV - )7

0<s<t

t
4 / (1+ )3 (ul|VaBsVul2s + 7| 02PY - 7]|2,)ds
0

Es(t) = sup (1+5)|[(95u, 057)| 7 +/ (1 + ) (ullVadsul s + nllo37][3 ) ds

0<s<t

We use the bootstrapping argument to show their boundedness and start with the ansatz for ¢t < T,
Eg(t) + E4(t) + E5(t) < 0352, (427)
where C5 will be determined later. We show that under the ansatz, F3(t), E4(t) and Fs5(t) actually satisfy

Cs

Es(t) + Eq(t) + E5(t) < 5

52 (4.28)

Then the bootstrapping argument implies that (4.28) holds for any time ¢ > 0. The desired decay rates
for |VVpullrz, |[VOsul|r2 and ||057] f: then follow. The detailed estimates for F5(t), E4(t) and Es5(t) are
presented in the three lemmas below.

Lemma 4.4. For a constant C > 0,
Es(t) < C8* 4 C(1 + C3)5*. (4.29)

Proof.  First of all, we have that for ¢,5 =1,2,3,

t
8i8ju(§, t) = @1 (t)&iajuo + @g(t)ﬁzaﬂP’V . 7'0 + / (Ql(t — T)aiale(S)
0

+Qa(t — 8)(B,0;N,,(5) + 0,0;N 4(5)))ds.

Then
vahu||L2(R3) = ||Vth||L2(R3)
< Q1) VVhuol L2y + |Q2() VVLPY - 7ol L2 rs)
t t
4 [ 1@t = VN6 ageoyds + [ 1Qa(t — ) TTRNas) | 2(ao ds
0 0
t
+ / ||Q2(t — S)vvhNg(S)HLZ(]RS)dS
0
=:L1+ Lo+ L3+ Ly+ Ls.
Clearly,
Ly < Clle™ P TV g | 2, ) + Clle™ V0 Vol 12 (s
< C||efc°‘£‘ €T 2 (a,) + Ce™ |V V huol| 2 ay)
<O+ luglpr + CA+ )5 VVhuo|| 12 < CO(1 + )75
Similarly,

»Nﬂ

Ly <CL+ )" (||70]lr + | V7ollz2) < C6(1+ 1)~

As in the estimate of K3, L3 can first be bounded by

t—1 o t
Lz < C/ le= o€ =TV, (u - Vu) | g2z ds + C/ eI VV (u- V)| 2 g ds
0 0

=: L31 + L3».
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For L3;, we have
t—1 , - t—1 i
L3 < C'/ [e=0le"t=5) €120, . Vul| f2ds < C/ (14+t—s)"1||u- Vullrrds
0 0

< c/t(1 +t— )T |Jul| 2 ||Vl L2ds < C6? /t(l +t—5) "5 (1+s) ids
0
<C8(1+1)7 %,
where we have used ||Vul|2 < C8(1+¢)"3. By Holder’s inequality and Gagliardo-Nirenberg’s inequality,
ViV (u- V)2 < IVVhull s [ Vall o + [ Vaullze [ V2ullz + Jull L [V VZul| 2
< CIIV Tl V2Vl 2 [Vl £ 92l £ + €IV [V V] 2 V20 2
+ OVl [V 20 22 [V 92 - (430)

Inserting (4.30) in Lgy and using (4.27), (4.10), (3.5) and Hélder’s inequality, we find

Ly < c/ bt — ) VY (u- V)| ods

1

< 0o 08/ (I4t—s) (145 71 11+ ||V2th\|L2ds
0

t
+ 052/ (14t—8) (14 s)+i%ds
0

1

+C5/t(1+t—s)_m(1+s)_'3_(1+S) 2| V2V ul| 2 ds
<COCF + 1821 +4) %,
Thus,
Ly < O(CF +1)0%(1+ 1) .

As in the estimate of Kg, L4 can first be bounded by
t t
Li<C / Il el =TT, Ny | 24, ds + C / 11|72 IV, Ny 2y ds
0
- 0/ el =7, PV - (- V7)|| 124,y ds

+C ||e—co|5| (t— S)Vh]P’V (U VT)||L2(A1)ds—|—C/ —c1(t—s) ”]P)v ('LL VT)||L2(A2)dS
t—1
=: Ly1 + Lyo + Ly3.

It follows from (4.7) and the anisotropic inequality (2.3) that

Ly < CZ/ e~ € (=) ¢ PaTmn || L2 sy ds < OZ/ (14t — 5)~ 2 |ju;7i|| L2 ds

1,5,k 1,5,k
_3 1 1 1 1 1 1
SC/(Ht—S) ull 10wl £ | Baull 2 101 Bau £ | 711 1057 £ s
0
1

<C(52C§/ (L+t—s)™(1+s) ¥4 igs < o205 (1+1)~ ¥,
0

Substituting (2.5) into L4o and using (2.2) yield

t
Liy < c/ om0 €2 (=2) ¢
t—1
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(P(u - VPV - T)+]P’(Vu V1) +P(Vu- VA~ ATV .V - )| z2ds
C/ —er(t=s) (4 _ 573
< (- VBV - 7)1 + [V - Vrllps + [Vu - VATV -V - 7| 2)ds
<C / eI (¢ — )3 ||Vl 22 [Vl B[ VE(Y - 1)l 2
+ IVull 5100Vl 102 Vull 22 1900 Vull £ 1V 71122 195 V7122 ) ds

where we have used |[VATIV -V . 7|2 < C||V7|z2 in the last inequality. Then, by (4.27), (4.10)
and (3.5),

t .
Ly <C52/ e t=9)(f — g) "3 (1 4+ 5)" 21 s
0
t

+05%c§/ e ) (t—g)TI(1+5) TET (14 5)F ||ala2vu||§2d5
0

21 2

<OPA+1) % 108207 (1+1)~ 8 <021+ 02)1+1) B

)

where we have used a similar argument as in Kgg o in the second inequality. Similarly,

Lys < C/Ot(l +t—8)""(|(u- V)P(V - 7)||z2 + |V - V7|2 + |Vu- VATV - V - 7| 12)ds
<CP1+07)1+1) 1. (4.31)
Therefore,

Li< OO (1+C5 +CHA+1)"
Finally, we bound Ls. First, we have
t t
L < C [ € e S OO s+ C / Il I TT N g2 s
C/ ||e—co|€| (t— s)vhv Q”L?(A ds+C e _C0|5|2(t_5)vﬁ@|‘L2(Al)ds
t—1
+C/ e 1=V, Q|| L2 (a,)ds
0
=: Ls1 + Lso + Lss. (4.32)

The terms on the right-hand side of (4.32) can be estimated similarly as Kig. Clearly,
t—1 ) R
L <C [ el g Q] s
0
¢ 7 ¢ 7
< C/ (I4+t—s)"1|Q|rrds < C/ (I+t—s)" 1||Vulp2||7||r2ds
0 0
t
< 052/ (L+t—s5)"F(1 +5)"Fds < Co2(1 + )1,
0
Applying (2.3) and combining (3.5), (4.10) and the ansatz (4.27) yield
<0 [ et Tl s < © [ o) H V4 Ql s

c/ —e1(t=9) (¢ — )72 (| V, Vul| 2|7 2
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1 1 1 1 1 1
+ IVull g2 100Vl 121102V ull £ 0102V ul Lo (Va7 [| 22 105V AT £2)ds

1 t 1 5
gca?cg/ e=e1=3) (¢ _ =3 (1 + )~ ds
0

t 1
+05%c§/ e =) (1 — )73 (14 8) 716 (1 + 5)5 (|01, V|, ds
1 ’ 5
<0803 (1+t)74.
Similarly,

5

t
Lia < C [ (14t =5) " VhQliads < CECH(1+1)
0

,;;

Consequently,

5

Ly < O8(1+CH)1+07H
Collecting all the estimates of L; through Ls yields
IVVhullre < CO(1+ 1)~ %+ C6%(1+CF +C5 +C2)(1+ 1) %
This completes the proof of Lemma 4.4.

Lemma 4.5. For a constant C > 0,

E4(t) < 08% + C(1 + C3)d°.

(4.33)

Proof.  Differentiating (1.6) with respect to 3, taking the L2-inner product of the resulting equations

with (85Au, 3PV - 7) and multiplying the time weight (14 £)2, we obtain

1d
5 g7 L+ 02105V ulF2 +210PV - 7l|72) + (1 + )% (ul|03V4 Vul 72 + 9l|03PV - 772)
:Z(Ht)%(nagwn%z+2||83PV-TH§2) (1+1 %/agvpu V) - s Vuds

21+t%/6319>v (u-V7)- 0PV - rdx — 2(1 +t %/agpv Q- 5PV - 7dx

3 1
= S0+ )4 (105l + 2005PV - 73) + Lo + Ly + Ls.

It follows from (2.1) that
Lo=—(1+1)2 /[83Vu -Vu-93Vu+ (0su- V)Vu - 03Vu + (Vu - V)0su - 03Vuldz
<ca %/Wuuv?uuv?umm

1 1 1 1
< C(1+ 0} [Vull 22 105 Vul 2 [ V2ull 2210 V2l £ 920l 52 0924l .
1 1
< CA+ 02| Vul 710Vl 7 (| Vul 72 + [V ViullZ2).

Then, by (3.4), (3.5) and (4.10), we deduce

t 1 1 t
/ Lg(s)ds < C' sup (1+s)%||vu||gz||agw||22/ (1+ ) (V222 + | V2V hul|22)ds
0 0<s<t 0

< 08,

By integration by parts and inserting (2.5) in L7, we have

Ly =2(1+1)% </(U-V)]P’(V-T) : 8§PV~de+/(Vu~V7) - 02PV - 7dx

(4.34)
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+ /(Vu VAV -V .7)-02PV - de) =: L71 + Lo + L7s,

where we have used PPv = Pv. By Hoélder’s inequality and Gagliardo-Nirenberg’s inequality, L7; can be
bounded by

Ly < C(1+ )2 ||ul| o< [ V(Y - 7) | 12 |02V - 7] 12
1 1
< O+ 8)3 ||Vl 2|Vl 2 | VE(V - 7)|| 2]| 03PV - 7| 2.

By (3.4), (3.5), (4.10), the ansatz (4.27) and Holder’s inequality,

¢ 5 1 1 1
/ Ly(s)ds < C sup (1+ 5)3]|Vul| £, (1 + 5)¥[|V2ul 2,
0

0<s<t
¢
X / IVB(V - 7)|| 2 (1 + 5)3||O3PY - 7| p2ds
’ 1
<C§C2.
Recalling (2.2), we have

: 1 1 1 1 1 1
Lo < C(1+ )2 || Vul| 21|10y V| 2 V7] 12 102V 7| Ea |05V 7| 12 8205V 7| 2. | 03PV - 7| 2
1 1 1 1
< C(1+ 1) 3|Vl 2,10V 2 V7| 21 105V 7| 21 | 92PV - 7] 2.

Furthermore,
t 5 1 1
/ Loa(s)ds < C sup (1+ )% | Vu| .| V7|2,
0 0<s<t
¢ 1 1
8 / (1 + 8)T)|0y V| 2, 105V 7]| 21 (1 + 5) T |O3BV - 7| r2ds
0 1
<0803,
Similarly,

t
/ Lus(s)ds < C8C
0
As a consequence,
t 1
/ L (s)ds < C83C3.
0
We proceed to estimate Lg. Lg is first bounded by
Lg < C(1+ t)% (/ |V2u||7||02PV - 7|dx + / |Vu||VT||05PV - T|dz> =: Lg1 + Lso.
By (2.2),
3o2, 13 2,113 1 i i 1192
Lg1 < C(L+8)2[[Voull 22 100V 2 ul| 2 171 £2 10271 £ 1057 (| 2 | 02057 | 12 [| 03PV - 7| 2.
Then

t 1 1 1
/ Ley(s)ds < C sup |rlba (14 5) 1057 Es
0 0<s<t

' 192,112 3 2,113 21192
X (14 5)2||[V=ul 7. (1 + 8)1|01V7ul| 72 (1 + 5) 2| O5PV - 7| £2ds
0
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<0804,

Invoking the estimate for L7o, we have

t 1
/ LgQ(S)dS < 053035
0

Thus,

/OtLg( Jds < C(Ch + C3)s®.

Integrating (4.34) in time and combining all the estimates above and (3.5), we conclude
3 2 2 ' 3 2 2 2
(L4 8)2([|05Vullz2 + 2[05PV - 772) + / (1+5)2 (ulIVa0sVul[zz +nl|03PV - 7[[72)ds
0

3
Z/ 1 + 8 % H83Vu||L2 + 2||83PV 7'||L2)
1
+ *(Ha‘gquHLz + 2||83PV T()HLz) +C(1+ 03)(5
<C8 +C(1+ C3)8°.
This completes the proof of Lemma 4.5. O
Lemma 4.6. For a constant C > 0,

Fs(t) < C6% 4 C(1 + C3)8°. (4.35)

Proof.  Applying the derivative 3 to (1.1), and then taking the H'-inner product of the resulting
equations with (Osu, 0s7), we see that
1d
!
2 dt(
1
= 5 (19sullfs + 11957(171) — (L +)(9s(u - V), Ogu) i
— (L4 8)(9s(u - VT),057)r — (14 1)(93Q, 37) i1

1
= 5(”(9311,”%11 + ||(93T||§{1) + Lo+ Lig + L11. (4.36)

+0)([|05ullF + 1057 [70) + (1 + O)(u Vadsullzp +nll057(17)

By Hoélder’s inequality, Gagliardo-Nirenberg’s inequality and (2.1),

Ly < C(1+1) /(|Vu\3 + | Vu|| V|| V2u|)dz
< O+ )| Vul3l| V|2
+ O+ )|Vl 22105 Vull £ V2l £2 10 V2ul 2 [V ul| 22102Vl .
< OO+ )| Vull & IV2ull 2 [ Vull 2 + C1+ ) [Vl g (19222 + [V, V2ul22).

Thus, invoking (3.5), we have

t t 1 3
/Lg(s)dsgc sup (1+s)%\|vu||m/ IVul|2,(1 4 5) 1| V2ul|2,ds
0 0<s<t 0

t
+C swp [Vulm / (14 8)(IV2ul22 + [0 Vul22)ds
0

0<s<t

< 08,
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To bound Lqg, we first split it into three terms and apply (2.2) to get

Then

L10:(1+t)/u~V7~8§'rd:z:+(1+t)/Vu'VT~6§V7dx+(l+t)/u~v27~5‘§V7’dx

< C(1+ )l | 0rul | 0sul 5 01020 s

x (IV712, 1059721027 2 + V2712, 185 V7)1 2, 0397 2)

+ O+ )| Vull 5, 10 Vul| 1 102V L, 1010Vl 1 | V7112, 10597 2,182V 7 12
< O+ )l £ 19yull £ |90l 19712, 185 V7 2,4 1937

+CA+ ) Vull 3 IV Vaul 7 [V 7172 105V 7 22 05V 7| 2.

, by (4.10), (3.5) and (4.27),

t 1 1 5 1
[ Laots)ds <€ sup Vel (1 9 ful (1 + )% Joral
0

0<s<t
t 1 1 1 2
X/ [02ul| Z2 05V (| 72 (1 + ) 2 (|05 7| 2 ds
0

1 1
+C sup (1+ )TV 2 [|V7]| 2.
0<s<t

t 1 1 1
) / (1+5) 7 VVaullz: 105V 7|72 (1 + 5)2 |05V 7| 2ds
0

<OCE.

Similarly,

Then

LH:(1+t)/Q-8§7‘dx+(1+t)/VQ-8§Vde
<C(l+1) /(\Vu||7'||5§7'| + \V2u|\7||8§VT| + ‘VUHVTHa:)?VTDdl‘

< O+ 0)|Vull £ 1100Vl £ 1102V ull 2 910, V|

1 1 1 1
< (7172110571 221057 |2 + V7] 22105V 7122105V | 2)
+C+ )| V2ull 2|7 L= |05V 7| 2
1 1 1 1
< C+OIVull 102V ul 171 7 10571 7 1057 [ 2+ C (L + OV ull 2|7l 112 105V 7l 2.

t 1 1
| (s <€ sup Il 1+ 54Vl s
0

0<s<t

¢ 1 1
< [ @) 10Tl 007l 1+ )¢ B3 s
0

t
+C sup HTIIH2/ 1+ s)(IV?ullZ> + 105V 772)ds
0

0<s<t

<P (CE +1).

As a consequence, integrating (4.36) over [0, ] leads to

t
(1 + ) (10sullF + 10571 F) + 2/0 (1 + 8)(ullVrsull s + nll 0373 )ds

t 1
< /0 (l0sullF + 10573 )ds + (19suol|Fr + 19570l F0) + C(1+ CF)6°

35
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< O8% 4+ C(1+ C5)8°.

This completes the proof of Lemma 4.6. O

Now we are ready to prove (4.28).
Proof of (4.28). Tt follows from (4.29), (4.33) and (4.35) that

Bs(t) + E4(t) + BEs(t) < C46% + Cs(1 + C3)8° + Cg(1 + C3)d*

for some constants Cy, C5,Cs > 0. We choose C5 to satisfy Cy < % and choose ¢ sufficiently small such
that

G+ 0o < D G+ <
Then Es3(t) + E4(t) + E5(t) < %52. This completes the proof of (4.28). O

4.4 The decay rate for ||PV - 7|2

This subsection is devoted to the decay rate for ||PV - 7| 2. We make use of the decay rates obtained in
the previous subsections.

Proof of the decay rate for |PV - 7||L2.  Recalling the integral representation (4.2), we have
PV - 7(t) || r2(re) < 1Q5(8)Tol| 12 (rs) + |Qa(t)BY - To| r2(re)
t
+ [ 1@t = R 1oy
0
t R t R
+ / ||Q4(t — S)NQ(S)HL2(R3)dS + / ||Q4(t — S)Ng(S)HLz(]Rs)dS
0 0
= M1++M5
According to Proposition 4.1 and Lemma 4.2,

—col€?t —c
My < C|l[€le™ " g || L2a,) + Ce™ M |luo|| L2 (4s)

<
< C(L+ 1) Huollpr +C(L+ 1)~ lugl|zz < CO(L+1)~ 1.
Similarly, we have

My < C(L+8)" % |mollp: +C(1+ )" || Vrollre < C5(1+1)"%.

For M3, we first decompose it as
t , N t ~
My < C [ lgle IR aayds +C [ e Rillgaands
0 0

t—1 t
=0 [ W Ry [ lelem O Rl
0

t—1

+ c/ot &1 | N | p2agy 5
=: M3y + M3z + Ms3s.
It follows from the estimates of the first term in (4.20) and the second term in (4.14) that
Mgy + Msz < C82(1+1¢)7 4.

By Holder’s inequality and Sobolev’s inequality,

t
M3y < 0/ e (¢ — )75 |lu - V|| 2 gs)ds
t—1
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t
<C / e~ =) (¢ — )~ |[u| oo | V]| p2ds
0
t 1
<C/ e (=9 (¢ — &)= |lu| g2 || V|| 2l
0

t
<cs [t hu s s < e,
0

where the last inequality was obtained by using a similar argument as in Kgz 2. Thus, M3 < C§%(1 +t)*%.

Combining the estimates (4.21), (4.22) and (4.31), we obtain

t P t e
My < C/ IIe‘CO'f'Q“‘S)PV-(u-VT)IIL2<A1>dS+C/ le™ PV - (u- V7) || £2(ay)ds
0 0
< C2(144)7 1,

Next, we bound M5. First, we have

t t
Ms < C/ le=<0l =BT - Q| 12 (a,)ds + C/ Q4 PV - Qll12(4,)ds =: M5y + Mso.
0 0

Recalling the estimates (4.24) and (4.25) for K01 and Kjg 2, we get
Ms; < C8(1+1t)75.

The estimate for Mso is subtle. We need to bound it in different subdomains of As. It holds that
t
My < c/ o 3(t=9) =216 =BT Q|| (4110400148
0

¢
+ C/ e~ 179 [|em G I=IPY Q|| 2, ds
0
=: Mso,1 + Ms25.

By (4.7),

z3 Tz

t
Msa,1 < c/ e (= 5)"3 |V Q2,11 , ds.
0
By Holder’s inequality, Minkowski’s inequality and Sobolev’s inequality,

1 1
ez, < Clllfllzg llzz,,, 9lle < ClFIZ 105 FIIZ: lgllze-

T1T2

1fallez, oy ,, <]z

r3TT1T2 T1T2

lgll 22

1T

Therefore,
! —c3(t—s) _1 ) 1 1 1 1
Ms2, <C/ e @t — )2 (IVZull 2 17N 2210571 £ 2 + [ Vull 2l VT 72105V 7|72 )ds
0

t

< 052/ e (t — )3 ((1+ )1+ (1+5)"1)ds
0

<O (1+t)~

For M52 2, we further decompose it as

3 t
Msz2 < C’Z/ om 7 |jem 279y Qg | 2dls
i=1"0

3 2 t
—C —S8 —C 2 —S8 3 A
+CZZ/Oe 8(t=9) |28 (=99, Q.|| L2 ds

i=1 j=1
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zixg T3y

t t
gC/ e—%(t—s)(t—s)—%uQHchszrc/ et — ) H Vi@l 1o ds.  (4.37)
0 0

The first integral can be bounded by

t t
/ e=30=5) (¢ — §)77||Q| 2ds < c/ e=3(=5) (¢ — §) 73 ||Vl 2 ||7|| sr2ds
0 0

We state two inequalities, i.e.,

Ifallza,, o, < IFlzs, lallce, oz, ., < Clfllzelgls, zss., < ClFlzellglae,  (4:38)
Mfollza oo, < MIFlzz Ngllee, oz, < Clfllza, oas 22, gz, 22, oo
1 1 1 1
< OlIF 100171132 1912 19211 . (4.39)

Applying (4.38) and (4.39) to the second integral in (4.37) yields

t
/e—%(t—%—s)—%uthHLg L ds
0

1z T3

t 1 1 1 1
<C / e =) (t — §) 7T (V|| 2|7l 2 + | Vuul| 22101 Vil 2. |V a7 2 102V 7|22 ) ds
0

t
< 052/ e = (1 — 5) i (14 5) " Fds < CO2(1+1) 1.
0

Hence, Msoo < C02(1 + t)~i. Therefore, Msy < C62(1 + t)~!. Consequently, M5 < CO2(1 + t)~1.
Collecting the estimates for M; through M;, we conclude ||PV - 7(t)||pz < C§(1 +t)~1. This completes
the proof of the decay rate for |PV - 7]|p2. O

5 Conclusions and discussions

In this paper, we investigate the stability of the 3D Oldroyd-B model with partial mixed dissipation.
By discovering that the coupling and interaction of the fluid velocity u and 7 generates extra smoothing
and stabilization, we overcome the difficulties of the lack of the horizontal dissipation or damping in the
equation of 7 and solve the global well-posedness and the stability problem of (1.1). In addition, we also
present the implicit decay rates of the solution that reveals the precise large-time behavior of the solution.
In the future, we are interested in the 2D Oldroyd-B model with partial dissipation, i.e., the system with
horizontal viscosity in the equation of u and vertical dissipation in the equation of 7. Compared with
the three-dimensional system, the Sobolev inequalities in two dimensions are critical. This makes the
stability problem of the 2D Oldroyd-B model extremely challenging and we have to seek the new strategy
and idea.
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