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Abstract
This paper studies the stability and large-time behavior of perturbations around a
large, constant magnetic field in a periodic, infinite channel under specific symmetry
constraints. Mathematically, the perturbations are governed by the 2D incompressible
magnetohydrodynamic equations with no velocity dissipation and only horizontal
magnetic diffusion. This stability result is sharp in the sense that removing this hor-
izontal magnetic diffusion leads to instability. The proof is nontrivial and involves
delicate construction of a time-weighted energy functional. Our result rigorously con-
firms the stabilizing effect of a background magnetic field on electrically conducting
fluids.
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1 Introduction

We consider the 2D incompressible magnetohydrodynamic (MHD) system with only
horizontal magnetic diffusion

⎧
⎨

⎩

∂t ũ + (̃u · ∇ )̃u = −∇ P̃ + (̃b · ∇ )̃b,
∂t b̃ + (̃u · ∇ )̃b = η ∂21 b̃ + (̃b · ∇ )̃u,

∇ · ũ = ∇ · b̃ = 0,
(1.1)

where ũ = (̃u1, ũ2)�, b̃ = (̃b1, b̃2)� and P̃ denote the velocity field of the fluid, the
magnetic field and the scalar pressure, respectively. η is a positive constant and denotes
the resistivity coefficient.The goal here is to understand the stability and large-time
behavior of perturbations near a constant background magnetic field.

The spatial domain is taken to be� = T×R, whereT represents a one-dimensional
periodic domain. This configuration helps generate a spectral gap and eliminates the
need for boundary conditions. The background magnetic field b̃(0) is set as b̃(0) ≡
e1 := (1, 0). Together with the zero velocity field ũ(0) ≡ 0, they constitute a stationary
solution (̃u(0), b̃(0)). We consider perturbations (u, b) near this special steady state,
namely

u := ũ − ũ(0), b := b̃ − b̃(0).

It is easy to check that (u, b) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + (u · ∇)u = −∇P + (b · ∇)b + ∂1b, x ∈ �, t > 0,
∂t b + (u · ∇)b = η ∂21b + (b · ∇)u + ∂1u, x ∈ �, t > 0,
∇ · u = ∇ · b = 0, x ∈ �, t > 0,
u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.2)

We seek the small-data global well-posedness and stability on (1.2) in the Sobolev
setting H3.Without loss of generality, we takeT to be the interval [− 1

2 ,
1
2 ]. We restrict

our consideration to the initial perturbation (u0, b0) with the following symmetries

u01, b02 are odd periodic with respect to x1,

u02, b01 are even periodic with respect to x1. (1.3)

Solutions of (1.2) in the Sobolev space H3 are unique. The uniqueness allows us to
verify that the corresponding solution shares the same property,

u1, b2 are odd periodic with respect to x1,

u2, b1, P are even periodic with respect to x1. (1.4)
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One can verify (1.4) similarly as in the 3D anisotropic Boussinesq equations (Wu
and Zhang 2021). These symmetry constraints help eliminate kernels associated with
specific spectral components, thereby ensuring a spectral gap and facilitating decay.

There are several motivations for this study. The first is to gain understanding
on the dynamics of the ideal MHD equations. When the magnetic induction process
dominates overmagnetic diffusion such as in strongly collisional plasma, the following
ideal MHD system applies,

⎧
⎨

⎩

∂t ũ + (̃u · ∇ )̃u = −∇ P̃ + (̃b · ∇ )̃b,
∂t b̃ + (̃u · ∇ )̃b = (̃b · ∇ )̃u,

∇ · ũ = ∇ · b̃ = 0,
(1.5)

Mathematically, (1.5) is difficult to analyze due to the lack of dissipation andmagnetic
diffusion. In fact, many fundamental issues such as the global regularity and stability
problems remain open even in the 2D case. A natural and important question is how
much dissipation or magnetic diffusion one really needs to assess the stability and
large-time behavior. This paper presents an important example of the 2DMHD system
for which we can establish the stability and understand the precise large-time behavior
when the system involves some minimal regularization.

The second motivation is to reveal the mechanism underlying the remarkable stabi-
lizing phenomenon observed in many physical experiments (see, e.g., (Alemany et al.
1979; Alexakis 2011; Alfvén 1942; Bardos et al. 1988; Gallet and Doering 2015)).
The result presented in this paper establishes this phenomenon as a mathematically
rigorous fact for the MHD model.

This third is to solve an open problem in a special case. The 2D MHD equations
with only magnetic diffusion

⎧
⎨

⎩

∂t ũ + (̃u · ∇ )̃u = −∇ P̃ + (̃b · ∇ )̃b,
∂t b̃ + (̃u · ∇ )̃b = η �b̃ + (̃b · ∇ )̃u,

∇ · ũ = ∇ · b̃ = 0
(1.6)

model magnetic reconnection and magnetic turbulence when the role of resistivity
is important and the fluid viscosity can be ignored (see (Priest and Forbes 2000)).
The global regularity and the stability problems on (1.6) have attracted considerable
interests and there are many recent developments.

When the spatial domain is the whole spaceR2, establishing global well-posedness
and stability near the trivial solutionor around abackgroundmagneticfield for equation
(1.6) remains a challenging open problem. The primary difficulty lies in proving that
the vorticity ω is essentially bounded. The absence of velocity dissipation makes this
seem impossible. As shown in Jiu et al. (2015), this is a critical problem; while we
can bound the L p-norm of ω for any 1 ≤ p < ∞, a bound in the L∞-norm remains
elusive, and few results exist for the whole space case. Another closely related work
for the whole space case is by Boardman et al. (2020), who examined a variant of
(1.6) where the vorticity satisfies an Euler-like equation, including an additional term
given by a singular integral operator. In this case, the vorticity is also not known to
be essentially bounded. Nonetheless, Boardman et al. (2020) successfully addressed
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the stability problem and derived precise long-time behavior for the solutions near a
constant background magnetic field.

Many more results are currently available for the periodic domain T
2, which has

a key advantage over the whole space due to a Poincaré-type inequality. In this set-
ting, significant progress has been made on the small-data well-posedness problem.
Zhou and Zhu (2018) established global classical solutions of (1.6) near a background
magnetic field under symmetry and mean-zero conditions on the initial perturbation
(u0, b0). Wei and Zhang (2020) proved global existence for small initial data near the
trivial solution in the Sobolev space H4, assuming a mean-zero condition only for b0.
A crucial ingredient in their proof is the fact that this mean-zero condition enables
exponential decay of the magnetic field in H1. However, the problem of global exis-
tence and stability near a background magnetic field remains open. Ye and Yin (2019)
improved upon Wei and Zhang (2020) by lowering the regularity requirement on the
initial data (u0, b0), allowing it to be in either critical Besov spaces or the Sobolev
space Hs × Hs−1 with s > 2. The mean-zero condition on b0 is still required. It is
worth noting that the Sobolev norms of solutions obtained in Wei and Zhang (2020)
and Ye and Yin (2019) grow over time.

Currently, no regularity or stability results for equation (1.6) are available in the
domainT×R. Thework of Ren and Zhao (2017) gives a rigorous proof of the damping
of the velocity and magnetic field for the linearized inviscid MHD equations around
strictly monotone positive magnetic field B = (b(y), 0) in a finite channel T× (0, 1).
It is worth noting that there have been many other significant developments in this
area (see, e.g., (Cao et al. 2014; Ji and Wu 2020; Jiu et al. 2015; Lai et al. 2022; Lei
and Zhou 2009; Yamazaki 2014; Zhang 2022; Zhou and Zhu 2018)). This list is by no
means exhaustive.

This paper is able tomake progress on the stability problem evenwhen themagnetic
diffusion is only in the horizontal direction. As noted in the introduction, the spatial
domain is chosen as � = T×R, and we further restrict our analysis to initial pertur-
bations with specific symmetry. Our study is motivated by the stabilizing phenomena
observed in physical experiments (Alemany et al. 1979; Alexakis 2011; Alfvén 1942;
Bardos et al. 1988; Gallet and Doering 2015).

The velocity equation in (1.2) is the 2D Euler with Lorentz forcing. Solutions to
the Euler equations can grow rather rapidly in time (see (Kiselev and Sverak 2014;
Zlatos 2015, 66)). Therefore, without the magnetic field, the fluid itself is not stable.
To solve the desired stability problem, we fully exploit the smoothing and stabilizing
effect of the magnetic field on the fluid. Mathematically the coupling and interaction
in (1.2) generates a wave structure that reveal the hidden stabilizing effect. It is not
difficult to show that any sufficiently regular solution (u, b) of (1.2) satisfies

⎧
⎪⎨

⎪⎩

∂t t u − η∂11∂t u − ∂11u = (∂t − η∂11)N1 + ∂1N2,

∂t t b − η∂11∂t b − ∂11b = ∂t N2 + ∂1N1,

∇ · u = ∇ · b = 0,

(1.7)
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where N1 and N2 are the nonlinear terms in (1.2), namely

N1 = P((b · ∇)b − (u · ∇)u), N2 = (b · ∇)u − (u · ∇)b

with P being the projection operator onto divergence-free vector fields. In comparison
with (1.2), u and b in (1.7) actually satisfy the same linearized wave equation, which
contains more regularizing terms. The two extra terms in the equation of u come
from distinct sources: −η∂11∂t u due to the horizontal magnetic diffusion and −∂11u
from the background magnetic field. In spite of these smoothing effects, there are
complications. One challenge is that the dissipation from the background field is
relatively weak. We will elaborate on this technical difficulty later.

With these preparation at our disposal, we are ready to state our main result.

Theorem 1.1 Let (u0, b0) ∈ H3(�) satisfy ∇ · u0 = 0,∇ · b0 = 0 and (1.3). Then
there exists sufficiently small δ0 = δ0(η) > 0 such that, for any δ ≤ δ0, if

‖u0‖H3(�) + ‖b0‖H3(�) ≤ δ, (1.8)

then there exists a unique global solution (u, b) ∈ C
([0,∞); H3(�)

)
of (1.2) satis-

fying

‖(u, b)(t)‖2H3(�)
+

t∫

0

(
‖∂1u(τ )‖2H2(�)

+ η ‖∂1b(τ )‖2H3(�)

)
dτ ≤ Cδ2 (1.9)

for any t > 0 and some uniform constant C > 0. In addition, we have the following
time decay estimate:

‖u(t)‖H1(�) + ‖∇2u2(t)‖L2(�) + ‖b2(t)‖H2(�) ≤ C(1 + t)−1 (1.10)

provided that δ is small enough.

The proof of Theorem 1.1 overcomes several major difficulties. The first is to con-
struct a suitable energy functional. This is the key component of the bootstrapping
argument. Philosophically the energy functional should involve the Sobolev norm of
the solution and the time integral parts due to dissipation. In addition, it should have
enough number of terms so that one can prove a closed energy inequality. Since we
are seeking solutions in the Sobolev space H3, the energy functional should naturally
contain the H3-norms of u and b as well as the time integral piece associated with the
horizontal magnetic diffusion. Certainly the energy functional should also include the
aforementioned enhanced dissipation revealed in the wave structure (1.7), especially
the weak dissipation in the direction of the background magnetic field. Mathemat-
ically this dissipation provides one-derivative order lower smoothing than standard
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dissipation. These considerations prompt us to define the following functional

E0(t) = sup
0≤τ≤t

(
‖u(τ )‖2H3 + ‖b(τ )‖2H3

)
+

t∫

0

(‖∂1u(τ )‖2H2 + η ‖∂1b(τ )‖2H3) dτ.

(1.11)

The time integral of ‖∂1u(τ )‖2
H2 represents the enhanced dissipation and cannot be

strengthened to the time integral of ‖∂1u(τ )‖2
H3 . This weaker dissipation makes it

extremely difficult to control the Navier–Stokes nonlinearity term u · ∇u in the H3-
estimate. When we apply the energy method to bound the H3-norm of u or the H2-
norm of the vorticity ω = ∇ × u, we encounter the term

2∑

i=1

∫

∂i u · ∇(∂iω) ∂2i ω dx =
∫

∂1u · ∇∂1ω ∂21ω dx +
∫

∂2u1 ∂1∂2ω ∂22ω dx

+
∫

∂2u2 ∂22ω ∂22ω dx .

It is clear that the most challenging term would be the one with vertical derivatives,
namely

T ∗
0 =

∫

∂2u2 ∂22ω ∂22ω dx = −
∫

∂1u1∂
2
2ω ∂22ω dx .

It doesn’t appear to be possible to bound it by the terms in E0 defined in (1.11) due to
the weak horizontal dissipation ‖∂1u‖H2 . This motivated us to define a time-weighted
energy functional E1 by

E1(t) = sup
0≤τ≤t

(1 + τ)2
(
‖u2(τ )‖2H2 + ‖b2(τ )‖2H2

)

+
t∫

0

(1 + τ)2(‖∂1∇u2(τ )‖2L2 + η ‖∂1b2(τ )‖2H2) dτ.

The definition of E1 takes into account the decay properties of the solution (u, b). The
total energy E(t) is the sum of E0 and E1,

E(t) = E0(t) + E1(t).

As we shall see in Lemma 3.2, the difficult term can be suitably controlled in terms
of E1(t), i.e.,

t∫

0

T ∗
0 (τ ) dτ ≤ C

t∫

0

‖∂2∂1u2‖
1
2
L2‖∂22u2‖

1
4
L2‖∂22∂1u2‖

1
4
L2‖∂22ω‖2L2 dτ
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≤C sup
0≤τ≤t

‖∂22ω‖2L2(1 + τ)
1
4 ‖∂22u2‖

1
4
L2

(
t∫

0

(1 + τ)2‖∂2∂1u2(τ )‖2L2 dτ
) 1

4

×
(

t∫

0

‖∂22∂1u2(τ )‖2L2 dτ
) 1

8
(

t∫

0

(1 + τ)−
6
5 dτ

) 5
8

≤CE
9
8
0 (t)E

3
8
1 (t),

which allows us to eventually establish the estimate

E(t) ≤ C1E(0) + C2E
3
2 (t). (1.12)

Our main efforts are devoted to proving (1.12). A bootstrapping argument then leads
to the desired global uniform bound on E(t) for all time.

We briefly remark that the MHD models have been extensively investigated and
important progress has been on various aspects of the MHD flow (see, e.g., (Cai and
Lei 2018; Cao andWu 2011; Cao et al. 2013; Deng and Zhang 2018; Dong et al. 2018,
2019; Du and Zhou 2015; Fan and Ozawa 2014; Fan et al. 2014; Fefferman et al. 2014,
2017; Feng et al. 2021; He et al. 2018; Hu and Lin 2014; Jiang and Jiang 2019, 2020,
2021; Li et al. 2017; Lai et al. 2021, 2022; Lin and Du 2013; Lin et al. 2015, 2020;
Paicu and Zhu 2021; Pan et al. 2018; Ren et al. 2014, 2016; Schonbek et al. 1996;
Suo and Jiu 2022; Tan and Wang 2018; Wan 2016; Wei and Zhang 2017; Wu 2018;
Wu and Wu 2017; Wu et al. 2015, 55, Yamazaki 2014; Ye and Yin 2020; Yuan and
Zhao 2018; Yang et al. 2019; Zhang 2014, 2016)).

The rest of this paper is organized as follows. Section2 recalls several tools to be
used in the proof of main estimate (1.12). In particular, we provide strong Poincaré-
type inequalities and anisotropic Sobolev bounds for triple products. Sections3 and 4
are devoted to the proofs of the estimates for E0(t) and E1(t), respectively. Section5
completes the proof of Theorem 1.1.

2 Preliminary

This section recalls strong Poincaré-type inequalities and several anisotropic upper
bounds for triple products. They will be used in the proof of (1.12).

To simplify the notation, we write

∂iv = ∂xi v (i = 1, 2), ‖v‖Hs = ‖v‖Hs (�),
∫

f (x)dx =
∫

�

f (x)dx .
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We shall also use the norm notation: ‖( f , g)‖2Hs = ‖ f ‖2Hs + ‖g‖2Hs . In additions, we
use f for the average of f on T, i.e.,

f =
∫

T

f (x1, x2) dx1.

This first lemma assesses the strong Poincaré-type inequalities involving only the
x1 partial derivative in homogeneous Sobolev space Ḣ s(�).

Lemma 2.1 Let f = 0 and f ∈ Hs(�) with s ≥ 0 being an integer. Then the
Poincaré-type inequality holds

‖ f ‖Ḣ s (�) ≤ C‖∂1 f ‖Ḣ s (�), (2.1)

where C > 0 is a pure constant. In particular, for any (u, b) with the symmetry
properties in (1.4),

‖ui‖Ḣ s (�) ≤ C‖∂1ui‖Ḣ s (�), i = 1, 2, (2.2)

‖b2‖Ḣ s (�) ≤ C‖∂1b2‖Ḣ s (�). (2.3)

Proof of Lemma 2.1 As s = 0, Dong et al. (2021) has shown the proof of (2.1) (see
Lemma 4 for detailed). In fact, due to f = 0, we can apply the 1-D Poincaré inequality
to get

‖ f ‖L2
x1

≤ C‖∂1 f ‖L2
x1

.

Taking the L2-norm in x2 yields

‖ f ‖L2 ≤ C‖∂1 f ‖L2 . (2.4)

That means (2.1) holds as s = 0. For s > 0, it is easy to prove ∇s f = 0. Then by
(2.4) we can derive

‖ f ‖Ḣ s ≤ C‖∂1 f ‖Ḣ s

for any s > 0. For (2.2) and (2.3), it suffices to verify that u and b2 satisfy the mean-
zero condition. First, by (1.4) it is obvious that u1 = b2 = 0. For u2, it is noted that
by the incompressible condition for u, there exists a stream function ψ such that

u = ∇⊥ψ := (−∂2ψ, ∂1ψ), (2.5)

which implies u2 = 0. This completes the proof of Lemma 2.1. �

We remark that a much sharp version of (2.1) has recently being obtained in Feng

et al. (2023), but (2.1) is good enough for our purpose. The second lemma presents
two anisotropic inequalities related to L∞-norm and triple product. We refer to the
proof in Dong et al. (2021) (see Lemma 3).
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Lemma 2.2 Assume f = 0 and f , ∂1 f ∈ H1(�), g, ∂2g, h ∈ L2(�). Then we have

‖ f ‖L∞(�) ≤ C‖∂1 f ‖
1
2
L2(�)

‖∂2 f ‖
1
4
L2(�)

‖∂12 f ‖
1
4
L2(�)

≤ C‖∂1 f ‖H1(�), (2.6)
∫∫

�

| f gh|dx1dx2 ≤ C‖∂1 f ‖L2(�)‖g‖
1
2
L2(�)

‖∂2g‖
1
2
L2(�)

‖h‖L2(�) (2.7)

for some pure constant C > 0.

In addition, we will use the simple fact that, for any (u, b) with the symmetry
properties in (1.4),

∇ku = 0, ∇kω = 0, ∇kb2 = 0

for k ≥ 0 an integer. This can be verified by the symmetry condition (1.4) together
with (2.5).

3 Estimates of E0(t)

This section proves the following estimate for E0(t):

Proposition 3.1 Suppose that (u0, b0) satisfies the conditions in Theorem 1.1. Then
we have

E0(t) ≤ 1

c0

(
c1E(0) + Cc2E

3
2
0 (t) + Cc2E

3
2
1 (t)

)
, (3.1)

where c0 = min{1 − λ0(2 + η2), λ0}, c1 = 4 + 2λ0 and c2 = 1 + 1
η

+ λ0 with

λ0 < 1
2+η2

.

For the sake of clarity, we divide E0(t) into two parts,

E0(t) = E0,0(t) + E0,1(t),

where

E0,0(t) = sup
0≤τ≤t

(
‖u(τ )‖2H3 + ‖b(τ )‖2H3

)
+ η

t∫

0

‖∂1b(τ )‖2H3 dτ,

E0,1(t) =
t∫

0

‖∂1u(τ )‖2H2 dτ.

The first part E0,0 includes essential terms required for estimating the H3-norms of
(u, b), namely the L∞-in-time norm of ‖(u, b)‖H3 and the time integral of terms
related to the dissipative effects in the MHD system. This part alone does not suffice
for our stability estimates. The second part E0,1 exploits the enhanced dissipation on
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the velocity in the horizontal direction due to the background magnetic field in the
same direction. The contributions from E0,0 are relatively straightforward, as they are
natural components of the energy. In contrast, the contribution E0,1 comes from the
hidden wave structure of the system and is relatively more challenging to estimate.
By combining E0,1 with E0,0, we can effectively control all nonlinear terms involving
horizontal derivatives.

Then the proof of the estimate for E0(t) is naturally split in two parts, which will
be shown in two subsections. The first subsection bounds ‖(u, b)‖H3 while the second
subsection is to bound the velocity dissipation

∫ t
0 ‖∂1u(τ )‖2

H2dτ .

3.1 Bound for E0,0(t)

We start with the estimates on E0,0(t). As explained in the introduction, the most
difficult terms are the nonlinear integrals with vertical derivative for all terms. To
overcome the difficulty, we exploit the stability effect and the time decay of the solution
by introducing the time-weighted energy functional, i.e., E1(t). With the help of E1(t)
and E0,1(t), we are able to establish the closed estimate for E0,0(t). It is worth noting

that the term E
9
8
0 E

3
8
1 with especial exponents appears in the upper bound, arising

from the hard terms T ∗
0 , T ∗

1 , T ∗
2 and their associated estimates. While these exponents

differ from those in other terms within E0(t) and E1(t), it actually can be bounded by

E
3
2
0 (t) + E

3
2
1 (t) by means of Young’s inequality, which is fundamentally equivalent.

Lemma 3.2 Suppose that the initial data (u0, b0) satisfies the conditions in Theo-
rem 1.1. Then we have

E0,0(t) ≤ 4E(0) + C

(

1 + 1

η

) (
E

3
2
0 (t) + E

3
2
1 (t)

)
(3.2)

for the constants C > 0 independent of η.

Proof of Lemma 3.2 Weformally compute ∂t E0,0(t),where the norm H3 was chosen as
‖·‖L2+‖∇3·‖L2 basedon the fact of their equivalence. In the followingproof, any terms
involving ‖∂1∇3b‖L2 can be controlled by using the horizontal magnetic dissipation.
However, in contrast to the setting of full dissipation, a major challenge concerns
estimating higher derivatives of the velocity as well as estimating vertical derivatives
of the magnetic field. To this end we crucially exploit the enhanced dissipation due to
the background magnetic field and coupling and interactions.

Now, we will specifically present our estimation process. Firstly, it is clear that

‖(u, b)(t)‖2L2 + 2η

t∫

0

‖∂1b(τ )‖2L2dτ = ‖u0‖2L2 + ‖b0‖2L2 . (3.3)

Now we bound ‖(∇3u,∇3b)‖2
L2 . Before the proof, we show the following facts:

‖ω‖Ḣ s = ‖∇u‖Ḣ s , ‖ j‖Ḣ s = ‖∇b‖Ḣ s
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where s ≥ 0 is an integer. In fact, by integration by parts and the incompressible
condition, we have

‖ω‖2L2 =
∫

(|∂1u2|2 − 2∂1u2∂2u1 + |∂2u1|2) dx

=
∫

(|∂1u2|2 − 2∂1u1∂2u2 + |∂2u1|2) dx = ‖∇u‖2L2 .

Notice

‖(∇3u,∇3b)‖2L2 = ‖(∇2ω,∇2 j)‖2L2 ≤ 2
2∑

i=1

‖(∂2i ω, ∂2i j)‖2L2 . (3.4)

Thus, it suffices to establish
∑2

i=1 ‖(∂2i ω, ∂2i j)‖L2 -estimates. Applying the operator
∇× to (1.2), then (ω, j) satisfies

{
∂tω + (u · ∇)ω = (b · ∇) j + ∂1 j,
∂t j + (u · ∇) j = η ∂21 j + (b · ∇)ω + ∂1ω + Q,

(3.5)

where
Q = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2).

We apply ∂2i to the system (3.5) and multiply the first and second equations of the
resulting system by ∂2i ω and ∂2i j , respectively. After integration by parts, we get

1

2

d

dt

2∑

i=1

‖(∂2i ω, ∂2i j)‖2L2 + η

2∑

i=1

‖∂1∂2i j‖2L2

= −
2∑

i=1

∫

∂2i (u · ∇)ω ∂2i ωdx +
2∑

i=1

∫

∂2i (b · ∇) j ∂2i ωdx −
2∑

i=1

∫

∂2i (u · ∇) j ∂2i jdx

+
2∑

i=1

∫

∂2i (b · ∇)ω ∂2i jdx +
2∑

i=1

∫

∂2i Q ∂2i jdx

:= I1 + I2 + · · · + I5. (3.6)

(1) The bound for I1.
By integration by parts, we first split I1 in three parts,

I1 = −
2∑

i=1

∫

(∂2i u · ∇ω) ∂2i ωdx − 2
2∑

i=1

∫

∂i u · ∇(∂iω) ∂2i ωdx

= −
( ∫

∂21u · ∇ω ∂21ωdx + 2
∫

∂1u · ∇(∂1ω) ∂21ωdx + 2
∫

∂2u1∂1∂2ω ∂22ωdx
)

−
( ∫

∂22u1∂1ω ∂22ωdx +
∫

∂22u2∂2ω ∂22ωdx
)

− 2
∫

∂2u2∂
2
2ω ∂22ωdx
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= I11 + I12 − 2T ∗
0 .

Applying Hölder’s inequality, Sobolev’s inequality and the Poincaré inequality (2.6)
with f = ∂2u1 yield

I11 ≤ ‖∂21u‖L4‖∇ω‖L4‖∂21ω‖L2 + 2‖∂1u‖L∞‖∂1∇ω‖2
L2

+ 2‖∂2u1‖L∞‖∂1∂2ω‖L2‖∂22ω‖L2
≤ C‖∂21u‖H1‖∇ω‖H1‖∂21ω‖L2 + C‖∂1u‖H2‖∂1∇ω‖2

L2
+ C‖∂2∂1u1‖H1‖∂1∂2ω‖L2‖∂22ω‖L2

≤ C‖u‖H3‖∂1u‖2
H2 .

Due to ∂22u1 = ∂2ω = 0, we can use the anisotropic inequality (2.7) to bound I12 as

I12 ≤C‖∂22∂1u1‖L2‖∂1ω‖
1
2
L2‖∂1∂2ω‖

1
2
L2‖∂22ω‖L2

+ C‖∂22u2‖
1
2
L2‖∂32u2‖

1
2
L2‖∂1∂2ω‖L2‖∂22ω‖L2

≤C‖u‖H3‖∂1u‖2H2 .

T ∗
0 can not be closed directly by the energy functional E0(t) due to the lack of the

vertical dissipation for u. We need to resort to the decay rates in E1(t). It will be
handled at the end of this proof. Therefore, we obtain

I1 ≤ C‖u‖H3‖∂1u‖2H2 − 2T ∗
0 . (3.7)

(2) The bound for I2.
We proceed to bound I2. Owing to b1 �= 0, j �= 0, the proof will be more compli-

cated than I1. So are the bounds for I3, I4 and I5. Similarly to I1, we first decompose
I2 as

I2 =
2∑

k=1

Ck2
∫

∂k1b · ∇∂2−k
1 j ∂21ω dx +

2∑

k=1

Ck2
∫

∂k2b1 ∂2−k
2 ∂1 j ∂22ω dx

+
∫

∂22b2 ∂2 j ∂22ω dx + 2
∫

∂2b2 ∂22 j ∂22ω dx +
2∑

i=1

∫

(b · ∇)∂2i j ∂2i ωdx

=I21 + I22 + I23 + 2T ∗
1 +

2∑

i=1

∫

(b · ∇)∂2i j ∂2i ωdx .

It is easy to get the bound for I21.

I21 ≤
2∑

k=1

Ck2‖∂k1b‖L∞‖∇∂2−k
1 j‖L2‖∂21ω‖L2

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .
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For I22, we first use integration by parts and then apply (2.7) with f = ∂2ω to obtain

I22 = −
2∑

k=1

Ck2
∫

(∂k+1
2 b1 ∂2−k

2 ∂1 j + ∂k2b1 ∂3−k
2 ∂1 j) ∂2ω dx

≤C
2∑

k=1

Ck2 ‖∂k+1
2 b1‖L2‖∂2−k

2 ∂1 j‖
1
2
L2‖∂3−k

2 ∂1 j‖
1
2
L2‖∂2∂1ω‖L2

+ C
2∑

k=1

Ck2 ‖∂3−k
2 ∂1 j‖L2‖∂k2b1‖

1
2
L2‖∂k+1

2 b1‖
1
2
L2‖∂2∂1ω‖L2

≤C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

Similarly, by ‖∂2ω‖L2 ≤ C‖∂2∂1ω‖L2 we have

I23 = −
∫

(∂32b2 ∂2 j + ∂22b2 ∂22 j) ∂2ω dx

≤ ‖∂32b2‖L4‖∂2 j‖L4‖∂2ω‖L2 + ‖∂22b2‖L∞‖∂22 j‖L2‖∂2ω‖L2

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

The estimate of T ∗
1 possesses the same difficulty as T ∗

0 . We also bound it in the last
step. Thus,

I2 ≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 + 2T ∗
1 +

2∑

i=1

∫

(b · ∇)∂2i j ∂2i ωdx . (3.8)

(3) The bound for I3.
I3 can be bounded in a similar way. We first have

I3 = −
2∑

k=1

Ck2
∫

∂k1u · ∇∂2−k
1 j ∂21 j dx −

2∑

k=1

Ck2
∫

∂k2u1 ∂2−k
2 ∂1 j ∂22 j dx

−
2∑

k=1

Ck2
∫

∂k2u2 ∂3−k
2 j ∂22 j dx

=I31 + I32 + I33.

Applying Hölder’s inequality and Sobolev’s inequality to I31, the anisotropic inequal-
ity (2.7) to I32, we get

I31 + I32 ≤
2∑

k=1

Ck2 ‖∂k1u‖L4‖∇∂2−k
1 j‖L2‖∂21 j‖L4

+ C
2∑

k=1

Ck2 ‖∂k2∂1u1‖L2‖∂2−k
2 ∂1 j‖

1
2
L2‖∂3−k

2 ∂1 j‖
1
2
L2‖∂22 j‖L2
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≤C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

By integration by parts, Sobolev’s inequality, (2.6) and (2.2), I33 can be estimated as

I33 =4
∫

u1 ∂1∂
2
2 j ∂22 j dx +

∫

∂2u1 ∂1∂2 j ∂22 j dx +
∫

∂2u1 ∂2 j ∂22∂1 j dx

≤4‖u1‖L∞‖∂1∂22 j‖L2‖∂22 j‖L2 + ‖∂2u1‖L4‖∂1∂2 j‖L4‖∂22 j‖L2

+ ‖∂2u1‖L4‖∂2 j‖L4‖∂22∂1 j‖L2

≤C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

Consequently,

I3 ≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 . (3.9)

(4) The bound for I4.
We now turn to I4. We rewrite it as follows

I4 =
2∑

i=1

2∑

k=1

Ck2
∫

∂ki b1 ∂1∂
2−k
i ω ∂2i j dx +

2∑

i=1

2∑

k=1

Ck2
∫

∂ki b2 ∂2∂
2−k
i ω ∂2i j dx

+
2∑

i=1

∫

(b · ∇)∂2i ω ∂2i jdx

=I41 + I42 +
2∑

i=1

∫

(b · ∇)∂2i ω ∂2i jdx .

Applying integration by parts and the anisotropic inequality (2.7) with f = ∂2−k
i ω

yields

I41 = −
2∑

i=1

2∑

k=1

Ck2
∫

∂2−k
i ω

(
∂1∂

k
i b1 ∂2i j + ∂ki b1 ∂2i ∂1 j

)
dx

≤C
2∑

i=1

2∑

k=1

Ck2 ‖∂1∂2−k
i ω‖L2

(
‖∂1∂ki b1‖

1
2
L2‖∂2∂1∂ki b1‖

1
2
L2‖∂2i j‖L2

+ ‖∂ki b1‖
1
2
L2‖∂2∂ki b1‖

1
2
L2‖∂1∂2i j‖L2

)

≤C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

Also, Sobolev’s inequality together with ‖�b2‖L∞ ≤ C‖∂1�b2‖H1 , ‖∂2ω‖L2 ≤
C‖∂2∂1ω‖L2 leads to

I42 =
2∑

i=1

∫

∂2i b2 ∂2ω ∂2i j dx + 2
∫

∂1b2 ∂1∂2 ω ∂21 j dx + 2
∫

∂2b2∂
2
2ω ∂22 j dx
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≤ ‖�b2‖L∞‖∂2ω‖L2‖� j‖L2 + 2‖∂1b2‖L∞‖∂2∂1ω‖L2‖∂21 j‖L2 + 2T ∗
1

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 + 2T ∗
1 .

Thus, we derive

I4 ≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 + 2T ∗
1 +

2∑

i=1

∫

(b · ∇)∂2i ω ∂2i jdx . (3.10)

(5) The bound for I5.
For the last term I5, we need more subtle estimates.

I5 = 2
2∑

i=1

∫

∂2i

(
∂1b1(∂2u1 + ∂1u2)

)
∂2i j dx − 2

2∑

i=1

∫

∂2i

(
∂1u1(∂2b1 + ∂1b2)

)
∂2i j dx

:= I51 + I52.

It is simple to bound I51. By (2.7) we infer

I51 = 2
2∑

i=1

2∑

k=1

Ck2
∫

∂ki ∂1b1 ∂2−k
i (∂2u1 + ∂1u2) ∂2i j dx

+ 2
2∑

i=1

∫

∂1b1 ∂2i (∂2u1 + ∂1u2) ∂2i j dx

≤ C
2∑

i=1

2∑

k=1

Ck2‖∂1∂ki b1‖
1
2
L2‖∂2∂1∂ki b1‖

1
2
L2‖∂2−k

i ∂1∇u‖L2‖∂2i j‖L2

+ 2‖∂1b1‖L∞‖�∂1u2‖L2‖� j‖L2 + 2T ∗
2

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 + 2T ∗
2 ,

where

T ∗
2 =

∫

∂1b1∂
3
2u1∂

2
2 j dx .

To bound I52, we first split it in four parts by integration by parts.

I52 = − 2
2∑

i=1

2∑

k=0

Ck2
∫

∂ki ∂1u1 ∂2−k
i (∂2b1 + ∂1b2) ∂2i j dx

=2
2∑

i=1

2∑

k=1

Ck2
∫

∂ki u1 ∂2−k
i (∂1∂2b1 + ∂21b2) ∂2i j dx

+ 2
2∑

i=1

2∑

k=1

Ck2
∫

∂ki u1 ∂2−k
i (∂2b1 + ∂1b2) ∂2i ∂1 j dx
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+ 2
2∑

i=1

∫

u1 ∂2i (∂1∂2b1 + ∂21b2) ∂2i j dx

+ 2
2∑

i=1

∫

u1 ∂2i (∂2b1 + ∂1b2) ∂2i ∂1 j dx

:=I52,1 + I52,2 + I52,3 + I52,4.

For I52,1, I52,2, by means of (2.7) we have

I52,1 + I52,2 ≤ C
2∑

k=1

Ck2 ‖∇k∂1u1‖L2

(
‖∇3−k∂1b‖

1
2
L2‖∂2∇3−k∂1b‖

1
2
L2‖∇2 j‖L2

+ ‖∇3−kb‖
1
2
L2‖∂2∇3−kb‖

1
2
L2‖∂1∇2 j‖L2

)

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 .

For I52,3, I52,4, invoking Hölder’s inequality, Sobolev’s inequality and (2.6) yields

I52,3 + I52,4 ≤ 2‖u1‖L∞(‖∇3∂1b‖L2‖� j‖L2 + ‖∇3b‖L2‖�∂1 j‖L2)

≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 ,

which together with the estimates for I52,1, I52,2 and I51 derives

I5 ≤ C‖b‖H3‖∂1u‖H2‖∂1b‖H3 + 2T ∗
2 . (3.11)

Combining all estimates in (3.7)–(3.11) and integrating with respect to time, we
obtain

2∑

i=1

‖(∂2i ω, ∂2i j)‖2L2 + 2η
2∑

i=1

t∫

0

‖∂1∂2i j(τ )‖2L2 dτ

≤ C

t∫

0

(‖u‖H3‖∂1u‖2H2 + ‖b‖H3‖∂1u‖H2‖∂1b‖H3) dτ

+ 4

t∫

0

(−T ∗
0 (τ ) + 2T ∗

1 (τ ) + T ∗
2 (τ )) dτ

≤ C sup
0≤τ≤t

‖(u, b)(τ )‖H3

t∫

0

(
‖∂1u‖2H2 + ‖∂1b‖2H3

)
dτ

+ 4

t∫

0

(−T ∗
0 (τ ) + 2T ∗

1 (τ ) + T ∗
2 (τ )) dτ
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≤ C

(

1 + 1

η

)

E
3
2
0 (t) + E(0) + 4

t∫

0

(−T ∗
0 (τ ) + 2T ∗

1 (τ ) + T ∗
2 (τ )) dτ.

In what follows, our efforts focus on bounding T ∗
0 , T ∗

1 and T ∗
2 . Actually, T

∗
0 , T ∗

1 and
T ∗
2 have the similar difficulties in essence. Hence, we only show the estimate of T ∗

0 .
First, by the anisotropic inequality (2.6), we can get

T ∗
0 ≤ ‖∂2u2‖L∞‖∂22ω‖2L2 ≤ C‖∂2∂1u2‖

1
2
L2‖∂22u2‖

1
4
L2‖∂22∂1u2‖

1
4
L2‖∂22ω‖2L2 .

Then

t∫

0

T ∗
0 (τ ) dτ ≤C sup

0≤τ≤t
‖∂22ω‖2L2(1 + τ)

1
4 ‖∂22u2‖

1
4
L2

×
t∫

0

(1 + τ)
1
2 ‖∂2∂1u2‖

1
2
L2‖∂22∂1u2‖

1
4
L2(1 + τ)−

3
4 dτ

≤C sup
0≤τ≤t

‖∂22ω‖2L2(1 + τ)
1
4 ‖∂22u2‖

1
4
L2

(
t∫

0

(1 + τ)2‖∂2∂1u2(τ )‖2L2 dτ
) 1

4

×
(

t∫

0

‖∂22∂1u2(τ )‖2L2 dτ
) 1

8
(

t∫

0

(1 + τ)−
6
5 dτ

) 5
8

≤CE
9
8
0 (t)E

3
8
1 (t).

Similarly, we have for T ∗
1 , T ∗

2

t∫

0

(T ∗
1 (τ ) + T ∗

2 (τ )) dτ ≤ CE
9
8
0 (t)E

3
8
1 (t).

Therefore, applying Young’s inequality and (3.4), we can conclude

‖(∇3u,∇3b)(t)‖2L2 + 2η

t∫

0

‖∂1∇3b(τ )‖2L2 dτ

≤ 2E(0) + C(1 + 1

η
)E

3
2
0 (t) + CE

9
8
0 (t)E

3
8
1 (t)

≤ 2E(0) + C(1 + 1

η
)E

3
2
0 (t) + CE

3
2
1 (t). (3.12)
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Then using (3.12) and (3.3) yields

1

2
‖(u, b)(t)‖2H3 + η

t∫

0

‖∂1b(τ )‖2H3 dτ ≤ 2E(0) + C

(

1 + 1

η

) (
E

3
2
0 (t) + E

3
2
1 (t)

)
.

(3.13)

This completes the proof of Lemma 3.2. �


3.2 Bound for E0,1(t)

This subsection is devoted to constructing the horizontal dissipation for u in H2 arising
from the background magnetic field. That is to establish the bound for E0,1(t), which
plays an important role in the establishment of closed bound for E0,0(t). However,
the dissipation achieved in H2 for u is weaker than that for b. The key reason for
this lies in the dissipation term ∂21b in the magnetic field equation. When we establish
‖∂1u‖H2 , the linear term

∫
∂1∇ω · ∇∂21 j will emerge, which needs three-order dis-

sipation ‖∂1b‖2H3 to absorb it. In addition, the upper bound for E0,1(t) will generate
E0,0. While this is not a fundamental difficulty, we can address it by multiplying the
bound in (3.14) by a sufficient small constant and combining it with (3.2) to eliminate
the effect. The following lemma presents these results.

Lemma 3.3 Assume that (u0, b0) satisfies the conditions in Theorem 1.1. Then we
have, for a pure constant C > 0

E0,1(t) ≤ 2E(0) + (2 + η2)E0,0(t) + C(1 + 1

η
)E

3
2
0 (t). (3.14)

Proof of Lemma 3.3 In order to establish the bound for
∫ t
0 ‖∂1u(τ )‖2

H2dτ , we shall
make full advantage of the structure of (1.2) and (3.5). As in Lemma 3.2, it suffices to
show the estimates for

t∫

0

‖∂1u(τ )‖2L2dτ and

t∫

0

‖∂1∇ω(τ)‖2L2dτ.

We first consider the L2-inner product (∂1u, b). Then by virtues of the velocity
equation and the magnetic equation in (1.2), we have

d

dt
(∂1u, b) = (∂1ut , b) + (∂1u, bt )

=
∫

∂1

(
− (u · ∇)u + (b · ∇)b

)
· b dx − ‖∂1b‖2L2

+
∫

∂1u ·
(

− (u · ∇)b + η ∂21b + (b · ∇)u
)
dx + ‖∂1u‖2L2 , (3.15)
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where
∫

∂1(∇ p) ·bdx = 0 by the incompressible condition. Similarly, it follows from
the vorticity equations (3.5) that

d

dt
(∂1∇ω,∇ j) =

∫

∂1∇
(

− (u · ∇)ω + (b · ∇) j
)

· ∇ jdx − ‖∂1∇ j‖2L2

+
∫

∂1∇ω · ∇
(

− (u · ∇) j + η ∂21 j + (b · ∇)ω + Q
)
dx + ‖∂1∇ω‖2L2 . (3.16)

Adding (3.15) to (3.16), we obtain

− d

dt

[
(∂1u, b)+(∂1∇ω,∇ j)

]
+(‖∂1u‖2L2 +‖∂1∇ω‖2L2)−(‖∂1b‖2L2 + ‖∂1∇ j‖2L2)

=
∫

(
∂1(u · ∇)u − ∂1(b · ∇)b

) · b dx +
∫

∂1u · ((u · ∇)b − (b · ∇)u) dx

+
∫

(
∂1∇(u · ∇ω) − ∂1∇(b · ∇ j)

) · ∇ j dx

+
∫

∂1∇ω · (∇(u · ∇ j) − ∇(b · ∇ω)
)
dx

−
∫

∂1∇ω · ∇Q dx − η

∫

(∂1u · ∂21b + ∂1∇ω · ∇∂21 j) dx

:= J1 + · · · + J6. (3.17)

Noticing u = b2 = 0. We first use integration by parts and then apply Hölder’s
inequality, Sobolev’s inequality, (2.6) and (2.2) to get

J1 + J2 = −
∫

(
(u · ∇)u − b1 ∂1b − b2 ∂2b

) · ∂1bdx +
∫

∂1u · ((u · ∇)b − (b · ∇)u)dx

≤
(
‖u‖L∞‖∇u‖L2 + ‖b1‖L∞‖∂1b‖L2 + ‖b2‖L∞‖∂2b‖L2

)
‖∂1b‖L2

+
(
‖u‖L∞‖∇b‖L2 + ‖b‖L∞‖∇u‖L2

)
‖∂1u‖L2

≤ C(‖u‖H1 + ‖b‖H2 )(‖∂1u‖2H1 + ‖∂1b‖2H1). (3.18)

Similarly, J3 can be bounded by

J3 ≤
(
‖u‖L∞‖∇ω‖L2 + ‖b1‖L∞‖∂1 j‖L2 + ‖b2‖L∞‖∂2 j‖L2

)
‖∂1� j‖L2

≤ C(‖u‖H2 + ‖b‖H2)(‖∂1u‖2H1 + ‖∂1b‖2H3).

For J4, we first divided it into several parts. Then a similar argument to J1 reaches

J4 =
∫

∂1∇ω · (∇u · ∇ j + u · ∇2 j − ∇b1∂1ω − ∇b2∂2ω − b1∂1∇ω − b2∂2∇ω
)
dx

≤‖∂1∇ω‖L2

(
‖∇u‖L∞‖∇ j‖L2 + ‖u‖L∞‖∇2 j‖L2 + ‖∇b1‖L∞‖∂1ω‖L2

+ ‖∇b2‖L∞‖∂2ω‖L2 + ‖b1‖L∞‖∂1∇ω‖L2 + ‖b2‖L∞‖∂2∇ω‖L2

)
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≤C(‖u‖H3 + ‖b‖H3)(‖∂1u‖2H2 + ‖∂1b‖2H2).

Also, J5 can be bounded by

J5 ≤2
∫

|∂1∇ω|
(
|∂1∇u1| |∇b| + |∂1u1| |∇2b| + |∂1∇b1| |∇u| + |∂1b1| |∇2u|

)
dx

≤‖∂1∇ω‖L2

(
‖∇∂1u1‖L2‖∇b‖L∞ + ‖∂1u1‖L∞‖∇2b‖L2

+ ‖∇∂1b1‖L2‖∇u‖L∞ + ‖∂1b1‖L∞‖∇2u‖L2

)

≤C(‖u‖H3 + ‖b‖H3)(‖∂1u‖2H2 + ‖∂1b‖2H2).

Finally, it is obvious that

J6 ≤ 1

2
(‖∂1u‖2L2 + ‖∂1∇ω‖2L2) + η2

2
(‖∂21b‖2L2 + ‖∂1∇2 j‖2L2).

Inserting the estimates above in (3.17), we obtain

(‖∂1u‖2L2 + ‖∂1∇ω‖2L2) − (2‖∂1b‖2L2 + 2‖∂1∇ j‖2L2 + η2‖∂21b‖2L2 + η2‖∂1∇2 j‖2L2)

≤ C(‖u‖H3 + ‖b‖H3)(‖∂1u‖2H2 + ‖∂1b‖2H3) + 2
d

dt

[
(∂1u, b) + (∂1∇ω,∇ j)

]
.

(3.19)

Then integrating (3.19) over [0, t] and applying Hölder’s inequality yield

t∫

0

‖∂1u(τ )‖2H2dτ − (2 + η2)

t∫

0

‖∂1b(τ )‖2H3dτ

≤2(‖(∂1u, b)‖2L2 + ‖(∂1∇ω,∇ j)‖2L2) + 2(‖(∂1u0, b0)‖2L2 + ‖(∂1∇ω0,∇ j0)‖2L2)

+ C sup
0≤τ≤t

(‖u(τ )‖H3 + ‖b(τ )‖H3)

t∫

0

(‖∂1u(τ )‖2H2 + ‖∂1b(τ )‖2H3) dτ,

which implies the desired bound (3.14). This completes the proof of Lemma 3.3. �

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1 The inequality (3.1) is a direct consequence of Lemma 3.2
and Lemma 3.3. In fact, we can make the combination

(3.2) + λ0 × (3.14)

to get

(1 − λ0(2 + η2))E0,0(t) + λ0E0,1(t)
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≤ (4 + 2λ0)E(0) + C(1 + 1

η
+ λ0)(E0(t)

3
2 + E1(t)

3
2 ) (3.20)

provided that λ0 < 1
2+η2

. Furthermore, we derive from (3.20) the desired bound (3.1).
�


4 Estimates of E1(t)

This section proves the a priori estimate on E1(t).

Proposition 4.1 Assume (u0, b0) obeys the conditions stated in Theorem 1.1. Then the
solution of the system (1.2) satisfies

E1(t) ≤ 1

c̃0

(
C(1 + 1

η
)(λ + 1)(E

3
2
0 (t) + E1(t)

3
2 ) + (λ + 1)E(0) + Cc̃1E0(t)

)
,

(4.1)

where

c̃0 = min
{
λ − 1

2
, λ − c0, λ(2η − δ1) − 1

2
, λ(2η − δ1) − η2

2
− 1

2
,
1

2
− δ2 − 2δ0λ

}

and

c̃1 = λ(
1

δ 0
+ 1

δ1η
) + 1

δ2η

with δ1 < 2η, δ2 < 1
2

λ > max
{1

2
, c0,

1 + η2

2(2η − δ1)

}
and δ0 <

1
2 − δ2

2λ
.

As aforementioned in the introduction, the time-weighted energy functional E1(t)
serves to solve the most difficult terms with all vertical derivatives, i.e., T ∗

0 , T ∗
1 and

T ∗
2 in E0(t). By making full of the decay rates in E1(t), we are able to control the

growth of these hard items. Thereby, the closed bound (3.1) for E0 can be established.
This is the key part of the whole proof.

The proof is split into two subsections, which will be devoted to the estimates of
E1,0(t) and E1,1(t), respectively, where

E1,0(t) = sup
0≤τ≤t

(1 + τ)2
(
‖u2(τ )‖2H2 + ‖b2(τ )‖2H2

)
+ η

t∫

0

(1 + τ)2‖∂1b2(τ )‖2H2 dτ,

E1,1(t) =
t∫

0

(1 + τ)2‖∂1∇u2(τ )‖2L2 dτ.
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4.1 Bound for E1,0(t)

Lemma 4.2 Let (u,b) be the solution of the system (1.2). Then it holds

(1 + t)2
(
‖(u2, b2)(t)‖2L2 + ‖(�u2,�b2)(t)‖2L2

)

+ (2η − δ1)

t∫

0

(1 + τ)2
(
‖∂1b2(τ )‖2

L2
+ ‖∂1�b2(τ )‖2

L2

)
dτ

≤ 2δ0

t∫

0

(1 + τ)2‖∂1∇u2‖2L2 dτ +
(

1 + 1

η

)

E
1
2
0 (t)E1(t) + E(0) + C

(
1

δ0
+ 1

δ1η

)

E0(t), (4.2)

where δ0, δ1 are two positive constants.

Proof Due to the equivalence

‖v‖H2 ∼ ‖v‖L2 + ‖�v‖L2 ,

it suffices to prove the time-weighted functional

(1 + t)2‖(u2, b2)‖2L2 and (1 + t)2‖(�u2,�b2)‖2L2 .

Taking the L2-inner product of the equations of u2 and b2 in (1.2) with (u2, b2), then
multiplying the time weight(1 + t)2, we have

d

dt
(1 + t)2‖(u2, b2)‖2L2 + 2η(1 + t)2‖∂1b2‖2L2

= 2(1 + t)‖(u2, b2)‖2L2 − 2(1 + t)2
∫

∂2P u2dx . (4.3)

By Poincaré-type inequality (2.2) and (2.3), the first term in (4.3) can be bounded as

2(1 + t)‖(u2, b2)(t)‖2L2 ≤ C(1 + t)‖∂21u2‖L2‖∂1u2‖L2 + C(1 + t)‖∂1b2‖2L2

≤ (1 + t)2(δ0‖∂21u2‖2L2 + δ1‖∂1b2‖2L2)

+ C(
1

δ 0
‖∂1u2‖2L2 + 1

δ 1
‖∂1b2‖2L2), (4.4)

where δ0, δ1 are two small positive constants to be determined later.
For the second term in (4.3), recalling P = �−1∇ · (b · ∇b − u · ∇u), we have

−2(1 + t)2
∫

∂2P u2dx = 2(1 + t)2
∫

∂2�
−1∇ · (u · ∇u − b · ∇b) u2 dx .

For the integral term involving u, we can apply Sobolev’s inequality and (2.2) to get

∫

∂2�
−1∇ · (u · ∇u) u2 dx
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=
∫

∂2�
−1∂2(u · ∇u2) u2 dx +

∫

∂2�
−1∂1(u1∂1u1) u2 dx

+
∫

∂2�
−1∂1(u2∂2u1) u2 dx

≤ C(‖u · ∇u2‖L2 + ‖u1∂1u1‖L2 + ‖u2∂2u1‖L2) ‖u2‖L2

≤ C(‖u‖L∞‖∇u2‖L2 + ‖u1‖L∞‖∂1u1‖L2 + ‖∂2u1‖L∞‖u2‖L2) ‖u2‖L2

≤ C‖u‖H3‖∂1∇u2‖2L2 ,

where we have used the fact that the Riesz transform Ri = ∂i (−�)− 1
2 is bounded in

L p for 1 ≤ p < ∞. Similarly, by (2.3) we have

∫

∂2�
−1∇ · (b · ∇b) · u2 dx ≤ C‖b‖H3‖∂1∇b2‖L2‖∂1∇u2‖L2 .

Hence, we obtain

−2(1 + t)2
∫

∂2P u2dx ≤ C(1 + t)2‖(u, b)‖H3(‖∂1∇u2‖2L2 + ‖∂1∇b2‖2L2). (4.5)

Combining the estimates (4.4) with (4.5), we derive

(1 + t)2‖(u2, b2)‖2L2 + (2η − δ1)

t∫

0

(1 + τ)2‖∂1b2‖2L2 dτ

≤ δ0

t∫

0

(1 + τ)2‖∂21u2‖2L2 dτ + C

t∫

0

(‖∂1u2‖2L2 + ‖∂1b2‖2L2) dτ

+ C

t∫

0

(1 + τ)2‖(u, b)‖H3(‖∂1∇u2‖2L2 + ‖∂1∇b2‖2L2) dτ + ‖(u02, b02)‖2L2 .

(4.6)

Now we focus on the second-order time-weighted energy estimate. We first take � to
the equations of u2, b2, and multiply the resulted equations by (1 + t)2(�u2,�b2)
and then integrate in �,

d

dt
(1 + t)2‖(�u2,�b2)‖2L2 + 2η(1 + t)2‖∂1�b2‖2L2

= 2(1 + t)‖(�u2,�b2)(t)‖2L2 − 2(1 + t)2
∫

∂2�P �u2dx

− 2(1 + t)2
∫

�(u · ∇u2)�u2 dx + 2(1 + t)2
∫

�(b · ∇b2)�u2 dx

− 2(1 + t)2
∫

�(u · ∇b2)�b2 dx + 2(1 + t)2
∫

�(b · ∇u2)�b2 dx
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:= K1 + K2 + · · · + K6. (4.7)

The estimates for the right-side terms in (4.7) are complicated and subtle. We
shall bound them one by one. By means of Sobolev’s inequality ‖∇v‖L2 ≤
C‖v‖

1
2
L2‖∇2v‖

1
2
L2 , Poincaré-type inequality (2.2) and (2.3), we obtain

K1 ≤ C(1 + t)‖∇u2‖L2‖∇3u2‖L2 + C(1 + t)‖∂1�b2‖2L2

≤ C(1 + t)‖∂1∇u2‖L2‖∇3u2‖L2 + C(1 + t)‖∂1�b2‖2L2

≤ (1 + t)2(δ0‖∂1∇u2‖2L2 + δ1‖∂1�b‖2L2) + C(
1

δ 0
‖∂1u‖2H2 + 1

δ 1
‖∂1b2‖2H2),

(4.8)

where we also use ‖∇3u2‖L2 = ‖∂1∇2u‖L2 .
Next we bound all the integral terms in (4.7). It is the most difficult to handle

K2 among all of them. Due to the weak dissipation of u2, we need more elaborate
argument. Firstly, by �P = ∇ · (b · ∇b − u · ∇u), we have

K2 = 2(1 + t)2
∫

∂2∇ · (u · ∇u) · �u2 dx − 2(1 + t)2
∫

∂2∇ · (b · ∇b) · �u2 dx

:= 2(1 + t)2(K21 + K22)

By integration by parts, we decompose it into several parts as follows

K21 = −
∫

∂2∇∇ · (u · ∇u) · ∇u2 dx = −
2∑

i=1

2∑

j=1

∫

∂2∇(∂ j ui∂i u j ) · ∇u2 dx

= −4
∫

(∂2∂1u1 ∂1∇u1 + ∂1u1 ∂1∂2∇u1) · ∇u2 dx

− 2
∫

(∂1u2 ∂22∇u1 + ∂1∂2u2 ∂2∇u1) · ∇u2 dx − 2
∫

∂1∇u2 ∂22u1 · ∇u2 dx

+ 2
∫

∂2∇u2 · (∂2∂1u1 ∇u2 + ∂2u1 ∂1∇u2)dx .

By the anisotropic inequalities (2.6) and (2.7) and Poincaré-type inequality (2.2), we
derive

K21 ≤ C‖∂2∂1u1‖L2‖∂1∇u1‖
1
2
L2‖∂1∂2∇u1‖

1
2
L2‖∂1∇u2‖L2

+ C‖∂1u1‖
1
2
L2‖∂1∂2u1‖

1
2
L2‖∂1∂2∇u1‖L2‖∂1∇u2‖L2

+ C‖∂1u2‖
1
2
L2‖∂1∂2u2‖

1
2
L2‖∂22∇u1‖L2‖∂1∇u2‖L2

+ C‖∂2∂1u2‖L2‖∂2∇u1‖
1
2
L2‖∂22∇u1‖

1
2
L2‖∂1∇u2‖L2

+ C‖∂1∇u2‖L2‖∂22u1‖
1
2
L2‖∂32u1‖

1
2
L2‖∂1∇u2‖L2
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+ C‖∂2∇u2‖L2‖∂1∂2u1‖
1
2
L2‖∂1∂22u1‖

1
2
L2‖∂1∇u2‖L2

+ C‖∂2∇u2‖L2‖∂2u1‖L∞‖∂1∇u2‖L2

≤ C‖�u2‖L2‖∂1u‖H2‖∂1∇u2‖L2 + C‖u‖H3‖∂1∇u2‖2L2 , (4.9)

where we use ‖∂1u1‖L2 ≤ ‖∂21u1‖L2 , ‖∂1u2‖L2 ≤ ‖∂21u2‖L2 .
Thanks to strong dissipation ‖∂1b2‖H2 , it is simpler to bound K22. By integration

by parts, K22 is first split into the following parts

K22 = −
2∑

i=1

2∑

j=1

∫

∂2(∂ j bi∂i b j )�u2 dx

= −4
∫

∂1b1∂2∂1b1 �u2 dx

+ 2
∫

(∂1∂2∇b2 ∂2b1 + ∂1∂2b2 ∂2∇b1+∂1∇b2 ∂22b1+∂1b2 ∂22∇b1) · ∇u2 dx .

Then applying Sobolev’s inequality and Poincaré-type inequality (2.2) and (2.3) yields

K22 ≤ 4‖∂1b1‖L2‖∂1∂2b1‖L∞‖�u2‖L2 + 2‖∂2∂1∇b2‖L2‖∂2b1‖L∞‖∇u2‖L2

+ 4‖∂1∇b2‖L4‖∂2∇b1‖L4‖∇u2‖L2 + 2‖∂1b2‖L∞‖∂22∇b1‖L2‖∇u2‖L2

≤ C‖∂21b1‖L2‖∂1b‖H3‖�u2‖L2 + C‖∂2∂1∇b2‖L2‖∂2b1‖H2‖∇∂1u2‖L2

+ C‖∂1∇b2‖H1‖∂2∇b1‖H1‖∂1∇u2‖L2 + C‖∂1b2‖H2‖∂22∇b1‖L2‖∇∂1u2‖L2

≤ C‖�u2‖L2‖∂1b2‖H2‖∂1b‖H3 + C‖b‖H3‖∂1∇u2‖L2‖∂1b2‖H2 . (4.10)

Therefore, by (4.9) and (4.10),

K2 ≤ C(1 + t)2(‖�u2‖L2‖∂1u‖H2‖∂1∇u2‖L2 + ‖u‖H3‖∂1∇u2‖2L2

+ ‖�u2‖L2‖∂1b2‖H2‖∂1b‖H3 + ‖b‖H3‖∂1∇u2‖L2‖∂1b2‖H2). (4.11)

We proceed to deal with K3. First, we rewrite it as follows

K3 = −2(1 + t)2
( ∫

�u · ∇u2 �u2 dx + 2
∫

∇u · ∇(∇u2)�u2 dx
)

:= K31 + K32.

For K31, we further split it in four terms and then use Sobolev’s inequality and (2.7),
(2.2) to get

K31 = −2(1 + t)2
( ∫

�u · ∇u2 ∂21u2 dx +
∫

∂21u · ∇u2 ∂22u2 dx

+
∫

∂22u1∂1u2 ∂22u2 dx +
∫

∂22u2∂2u2 ∂22u2 dx
)
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≤ C(1 + t)2
(
‖�u‖

1
2
L2‖�∂2u‖

1
2
L2‖∂1∇u2‖L2‖∂21u2‖L2

+ ‖∂21u‖
1
2
L2‖∂21∂2u‖

1
2
L2‖∂1∇u2‖L2‖∂22u2‖L2

+ ‖∂1∂22u1‖L2‖∂1u2‖
1
2
L2‖∂1∂2u2‖

1
2
L2‖∂22u2‖L2

+ ‖∂22u2‖
1
2
L2‖∂32u2‖

1
2
L2‖∂1∂2u2‖L2‖∂22u2‖L2

)

≤ C(1 + t)2(‖u‖H3‖∂1∇u2‖2L2 + ‖�u2‖L2‖∂1u‖H2‖∂1∇u2‖L2).

Similarly, by (2.6) and (2.7) we have

K32 = −4(1 + t)2
( ∫

∂1u · ∇∂1u2�u2 dx +
∫

∂2u1∂1∂2u2�u2 dx +
∫

∂2u2∂
2
2u2�u2 dx

)

≤ C(1 + t)2
(
‖∇u‖L∞‖∂1∇u2‖L2‖�u2‖L2 + ‖∂1∂2u2‖L2‖∂22u2‖

1
2
L2

‖∂32u2‖
1
2
L2

‖�u2‖L2
)

≤ C(1 + t)2‖�u2‖L2‖∂1u‖H2‖∂1∇u2‖L2 .

Thus,

K3 ≤ C(1 + t)2(‖u‖H3‖∂1∇u2‖2L2 + ‖�u2‖L2‖∂1u‖H2‖∂1∇u2‖L2). (4.12)

For K4, we first divide K4 into three parts.

K4 = 2(1 + t)2
( ∫

�b · ∇b2 �u2 dx + 2
∫

∇b · ∇(∇b2) �u2 dx +
∫

b · ∇(�b2) �u2 dx
)

:= 2(1 + t)2
(
K41 + K42 +

∫

b · ∇(�b2) �u2 dx
)
.

To Bound K41, we further split it and apply Sobolev’s inequality and (2.2), (2.3) to
get

K41 =
∫

∂21b · ∇b2 �u2 dx +
∫

∂22b2 ∂2b2 �u2 dx

−
∫

(∂22∇b1 ∂1b2 + ∂22b1 ∂1∇b2) · ∇u2 dx

≤ ‖∂21b‖L4‖∇b2‖L4‖�u2‖L2 + ‖∂22b2‖L4‖∂2b2‖L4‖�u2‖L2

+ ‖∂22∇b1‖L2‖∂1b2‖L∞‖∇u2‖L2 + ‖∂22b1‖L4‖∇∂1b2‖L4‖∇u2‖L2

≤ C‖∂21b‖H1‖∇∂1b2‖H1‖�u2‖L2 + C‖∂22b2‖H1‖∂2∂1b2‖H1‖�u2‖L2

+ C‖∂22∇b1‖L2‖∂1b2‖H2‖∇∂1u2‖L2 + C‖∂22b1‖H1‖∇∂1b2‖H1‖∇∂1u2‖L2

≤ C‖b‖H3‖∂1b2‖H2‖∂1∇u2‖L2 + C‖∂1b‖H2‖∂1b2‖H2‖�u2‖L2 .

Similarly,

K42 = 2
∫

∂1b · ∇∂1b2 �u2 dx + 2
∫

∂2b2 ∂22b2 �u2 dx
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− 2
∫

(∂2∇b1 ∂1∂2b2 + ∂2b1 ∂1∂2∇b2) · ∇u2 dx

≤ 2‖∂1b‖L∞‖∇∂1b2‖L2‖�u2‖L2 + C‖∂2∂1b2‖L2‖∂22b2‖
1
2
L2‖∂32b2‖

1
2
L2‖�u2‖L2

+ 2‖∂2∇b1‖L4‖∂2∂1b2‖L4‖∇u2‖L2 + 2‖∂2b1‖L∞‖∇∂2∂1b2‖L2‖∇u2‖L2

≤ C‖b‖H3‖∂1b2‖H2‖∂1∇u2‖L2 + C‖∂1b‖H2‖∂1b2‖H2‖�u2‖L2 .

Consequently, we obtain

K4 ≤ C(1 + t)2
(‖b‖H3‖∂1b2‖H2‖∂1∇u2‖L2 + ‖∂1b‖H2‖∂1b2‖H2‖�u2‖L2

)

+ 2(1 + t)2
∫

b · ∇(�b2)�u2 dx . (4.13)

For I5, it’s easily to get

K5 = −2(1 + t)2
( ∫

�u · ∇b2 �b2 dx + 2
∫

∇u · ∇∇b2 �b2 dx
)

≤ 2(1 + t)2
(‖�u‖L4‖∇b2‖L4‖�b2‖L2 + 2‖∇u‖L∞‖∇2b2‖L2‖�b2‖L2

)

≤ C(1 + t)2‖u‖H3‖∂1b2‖2H2 . (4.14)

Also, the last term K6 can be bounded as

K6 = 2(1 + t)2
( ∫

�b · ∇u2 �b2 dx + 2
∫

∇b1 · ∂1∇u2�b2 dx

+ 2
∫

∇b2 · ∂2∇u2�b2 dx +
∫

b · ∇(�u2) �b2 dx
)

≤ 2(1 + t)2
(
‖�b‖

1
2
L2‖∂2�b‖

1
2
L2‖∂1∇u2‖L2‖�b2‖L2 + ‖∇b1‖L∞‖∂1∇u2‖L2‖�b2‖L2

+ ‖∇b2‖L4‖∂2∇u2‖L4‖�b2‖L2 +
∫

b · ∇(�u2) �b2 dx
)

≤ C(1 + t)2‖(u, b)‖H3(‖∂1∇u2‖2L2 + ‖∂1b2‖2H2 )

+ 2(1 + t)2
∫

b · ∇(�u2)�b2 dx . (4.15)

Inserting (4.8), (4.11), (4.12), (4.13), (4.14) and (4.15) in (4.7) and integrating in time,
we obtain

(1 + t)2‖(�u2,�b2)(t)‖2L2 + (2η − δ1)

t∫

0

(1 + τ)2‖∂1�b2(τ )‖2L2 dτ

≤ δ0

t∫

0

(1 + τ)2‖∂1∇u2‖2L2 dτ + C

t∫

0

(
1

δ 0
‖∂1u‖2H2 + 1

δ 1
‖∂1b‖2H2

)

dτ

123



   55 Page 28 of 36 Journal of Nonlinear Science            (2025) 35:55 

+ C

t∫

0

(1 + τ)2‖(u, b)‖H3(‖∂1∇u2‖2L2 + ‖∂1b2‖2H2) dτ

+ C

t∫

0

(1 + τ)2(‖∂1u‖H2 + ‖∂1b‖H3) (‖∂1∇u2‖L2 + ‖∂1b2‖H2) ‖�u2‖L2 dτ

+ ‖(�u02,�b02)‖2L2 . (4.16)

It is noted that

t∫

0

(1 + τ)2‖(u, b)‖H3

(
‖∂1∇u2‖2L2 + ‖∂1b2‖2H2

)
dτ

≤ C sup
0≤τ≤t

‖(u, b)(τ )‖H3

t∫

0

(1 + τ)2(‖∂1∇u2‖2L2 + ‖∂1b2‖2H2) dτ

≤ C(1 + 1

η
)E

1
2
0 (t)E1(t),

and

t∫

0

(1 + τ)2(‖∂1u‖H2 + ‖∂1b‖H3)(‖∂1∇u2‖L2 + ‖∂1b2‖H2 )‖�u2‖L2 dτ

≤ sup
0≤τ≤t

(1 + τ)‖�u2‖L2

t∫

0

(‖∂1u‖H2 + ‖∂1b‖H3)(1 + τ)(‖∂1∇u2‖L2 + ‖∂1b2‖H2 ) dτ

≤ C(1 + 1

η
)E

1
2
0 (t)E1(t).

Then by (4.6) and (4.16) we conclude

(1 + t)2
(
‖(u2, b2)(t)‖2L2 + ‖(�u2,�b2)(t)‖2L2

)

+ (2η − δ1)

t∫

0

(1 + τ)2
(
‖∂1b2(τ )‖2

L2
+ ‖∂1�b2(τ )‖2

L2

)
dτ

≤ 2δ0

t∫

0

(1 + τ)2‖∂1∇u2‖2L2 dτ + C

(

1 + 1

η

)

E
1
2
0 (t)E1(t) + E(0) + C

(
1

δ 0
+ 1

δ1η

)

E0(t).

This completes the proof of Lemma 4.2.
�
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4.2 Bound for E1,1(t)

To establish the bound for E1(t), it remains to bound E1,1(t). This can be done by
making use of the linear term in (1.2). We have the following result.

Lemma 4.3 Let (u,b) be the solution of the system (1.2). Then it holds

t∫

0

(1 + τ)2
(1

2
− δ2

)
‖∂1∇u2‖2L2 dτ

−
t∫

0

(1 + τ)2
(1

2
‖∂1b2‖2L2 + 1 + η2

2
‖∂1�b2‖2L2

)
dτ

≤ 1

2
(1 + t)2(‖∂1∇u2‖2L2 + ‖∇b2‖2L2) + C(1 + 1

η
)E

1
2
0 (t)E1(t)

+ E(0) + C
1

δ2η
E0(t), (4.17)

where δ2 is a positive constant.

Proof of Lemma 4.3 Similarly to (3.17), we introduce the time-weighted inner product
(1 + t)2(∂1∇u2,∇b2) to get

(1 + t)2‖∂1∇u2‖2L2 − (1 + t)2‖∂1∇b2‖2L2 − d

dt
(1 + t)2(∂1∇u2,∇b2)

= −2(1 + t)(∂1∇u2, ∇b2)

+ (1 + t)2(∂1∇u2,∇(u · ∇b2)) − η(1 + t)2(∂1∇u2, ∂
2
1∇b2)) − (1 + t)2(∂1∇u2, ∇(b · ∇u2))

+ (1 + t)2(∂1∇(u · ∇u2), ∇b2) + (1 + t)2(∂1∇∂2P, ∇b2) − (1 + t)2(∂1∇(b · ∇b2), ∇b2)

:= H1 + H2 + · · · + H7.

Firstly, by Hölder’s inequality and (2.3), we have

H1 + H3 ≤
(1

2
+ δ2

)
(1 + t)2‖∂1∇u2‖2L2 + η2

2
(1 + t)2‖∂21∇b2‖2L2 + C

1

δ 2
‖∂1∇b2‖2L2 .

where δ2 > 0 is a small pure constant.
For H2, a simple application of Hölder’s inequality, Sobolev’s inequality as well as

(2.3) leads to

H2 = (1 + t)2
∫

(∇u · ∇b2 · ∂1∇u2 + u · ∇(∇b2) · ∂1∇u2)dx

≤ (1 + t)2(‖∇u‖L∞‖∇b2‖L2‖∂1∇u2‖L2 + ‖u‖L∞‖∇2b2‖L2‖∂1∇u2‖L2)

≤ C(1 + t)2‖u‖H3‖∂1b2‖H2‖∂1∇u2‖L2 .
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Similarly,

H7 = (1 + t)2
∫

(∇b · ∇b2 · ∂1∇b2 + b · ∇(∇b2) · ∂1∇b2)dx

≤ C(1 + t)2‖b‖H3‖∂1b2‖2H2 .

For H4, we first divide it in three parts and then use Hölder’s inequality, Sobolev’s
inequality, (2.2) and (2.3) to get

H4 = (1 + t)2
∫

(∇b · ∇u2 + b1∂1∇u2 + b2∂2∇u2) · ∂1∇u2dx

≤ (1 + t)2(‖∇b‖L∞‖∇u2‖L2 + ‖b1‖L∞‖∇∂1u2‖L2

+ ‖b2‖L4‖∇∂2u2‖L4)‖∂1∇u2‖L2

≤ C(1 + t)2‖(u, b)‖H3(‖∂1b2‖2H2 + ‖∂1∇u2‖2L2).

H5 can be bounded with a similar argument.

H5 = −(1 + t)2
∫

(∇u · ∇u2 + u1∂1∇u2 + u2∂2∇u2) · ∂1∇b2dx

≤ (1 + t)2(‖∇u‖L∞‖∇u2‖L2‖∂1∇b2‖L2 + ‖u1‖L∞‖∇∂1u2‖L2‖∂1∇b2‖L2

+ ‖∂1u2‖L2‖∇∂2u2‖
1
2
L2‖∇∂22u2‖

1
2
L2‖∂1∇b2‖L2)

≤ C(1 + t)2‖u‖H3(‖∂1b2‖2H2 + ‖∂1∇u2‖2L2),

where we have used ‖∂1u2‖L2 ≤ C‖∂21u2‖L2 . Now we handle H6. Invoking �P =
∇ · (b · ∇b − u · ∇u), we have

H6 = −(1 + t)2
∫

∇∂2�
−1∇ · (b · ∇b − u · ∇u) · ∇∂1b2 dx

= −(1 + t)2
2∑

i=1

2∑

j=1

∫

∇∂2�
−1(∂ j bi∂i b j − ∂ j ui∂i u j ) · ∇∂1b2 dx

≤ (1 + t)2
2∑

i=1

2∑

j=1

‖∂ j bi∂i b j − ∂ j ui∂i u j‖L2‖∇∂1b2‖L2

≤ C(1 + t)2‖∇∂1b2‖L2(‖∂1u1‖L∞‖∂1u1‖L2 + ‖∂2u1‖L∞‖∂1u2‖L2

+ ‖∂1b1‖L∞‖∂1b1‖L2 + ‖∂2b1‖L∞‖∂1b2‖L2)

≤ C(1 + t)2‖(u, b)‖H3(‖∂1∇b2‖2L2 + ‖∂1∇u2‖2L2),

where we have used

‖∂1u1‖L2 ≤ C‖∂21u1‖L2 , ‖∂1u2‖L2 ≤ C‖∂21u2‖L2 ,
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‖∂1b1‖L2 ≤ C‖∂21b1‖L2 , ‖∂1b2‖L2 ≤ C‖∂21b2‖L2 .

Collecting all estimates for H1 through H7, integrating in time and using Hölder’s
inequality yield

t∫

0

(1 + τ)2
(1

2
− δ2

)
‖∂1∇u2‖2L2 dτ −

t∫

0

(1 + τ)2
(1

2
‖∂1b2‖2L2 + 1 + η2

2
‖∂1�b2‖2L2

)
dτ

≤ 1

2
(1 + t)2(‖∂1∇u2‖2L2 + ‖∇b2‖2L2 ) + C(1 + 1

η
)E

1
2
0 (t)E1(t) + E(0) + C

1

δ2η
E0(t).

Here we have used

‖∂1∇b2‖2L2 = −
∫

∂1b2 ∂1�b2dx ≤ 1

2
(‖∂1b2‖2L2 + ‖∂1�b2‖2L2).

This completes the proof of Lemma 4.3. �


Now we are ready to prove Proposition 4.1.

Proof of Proposition (4.1) According to Lemma 4.2 and Lemma 4.3, we make the cal-
culation as follows

λ × (4.2) + (4.17).

That is

(1 + t)2
(
λ‖(u2, b2)(t)‖2L2 + (λ − 1

2
)‖�u2‖2L2 + (λ − c0)‖�b2‖2L2

)

+
(
λ(2η − δ1) − 1

2

)
t∫

0

(1 + τ)2 ‖∂1b2(τ )‖2L2 dτ

+
(
λ(2η − δ1) − η2

2
− 1

2

)
t∫

0

(1 + τ)2‖∂1�b2(τ )‖2L2 dτ

+
(1

2
− δ2 − 2δ0λ

)
t∫

0

(1 + τ)2‖∂1∇u2‖2L2 dτ

≤ C(1 + 1

η
)(λ + 1)E

1
2
0 (t)E1(t) + (λ + 1)E(0) + C

(
λ(

1

δ 0
+ 1

δ1η
) + 1

δ2η

)
E0(t),

(4.18)

where we have used
1

2
‖∇b2‖2L2 ≤ c0‖∂1∇b2‖2L2

123



   55 Page 32 of 36 Journal of Nonlinear Science            (2025) 35:55 

for some pure constant c0 > 0. Now for some given sufficiently small δ1 < 2η and
δ2 < 1

2 , we can select λ and δ0 to satisfy

λ > max
{1

2
, c0,

1 + η2

2(2η − δ1)

}
and δ0 <

1
2 − δ2

2λ
.

Then from (4.18) we derive

(1 + t)2
(
‖(u2, b2)(t)‖2L2 + ‖(�u2,�b2)‖2L2

)

+
t∫

0

(1 + τ)2
(
η‖∂1b2(τ )‖2L2 + η‖∂1�b2(τ )‖2L2 + ‖∂1∇u2‖2L2

)

≤ 1

c̃0

(
C(1 + 1

η
)(λ + 1)(E

3
2
0 (t) + E1(t)

3
2 ) + (λ + 1)E(0) + Cc̃1E0(t)

)
,

where

c̃0 = min
{
λ− 1

2
, λ−c0,

λ(2η − δ1)

η
− 1

2η
,

λ(2η − δ1)

η
− η

2
− 1

2η
,
1

2
−δ2 −2δ0λ

}

and

c̃1 = λ(
1

δ 0
+ 1

δ1η
) + 1

δ2η
.

This completes the proof of (4.1).
�


5 Proof of Theorem 1.1

In this section, we will apply the bootstrapping argument (see (Tao 2006), p.21) to
prove Theorem 1.1. Before the proof, we first show the a priori estimate for E(t).

Proposition 5.1 Suppose that the initial data (u0, b0) satisfies the conditions in The-
orem 1.1. Then for two positive constants C1,C2, it holds

E(t) ≤ C1E(0) + C2E
3
2 (t). (5.1)

Proof of Proposition 5.1 Making a simple calculation (3.1) + ε1 ×(4.1) with ε1 be a
positive constant and applying Young’s inequality yields

(1 − ε
1

Cc̃1
c̃0

)E0(t) + ε
1
E1(t) ≤

(c1
c0

+ ε1(λ + 1)

c̃0

)
E(0)

+C
(c2
c0

+
ε1(1 + 1

η
)(1 + λ)

c̃0

)
E(t)

3
2 .
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Now we take ε1 > 0 sufficiently small such that 1 − ε1
Cc̃1
c̃0

> 0. Then we derive, for
two positive constants C1(η),C2(η)

E(t) ≤ C1E(0) + C2E
3
2 (t),

where

C1(η) = 1

C3

(c1
c0

+ ε1(λ + 1)

c̃0

)
, C2(η) = 1

C3

(c2
c0

+
ε1(1 + 1

η
)(1 + λ)

c̃0

)

with C3 = min{(1 − ε1
Cc̃1
c̃0

), ε1}. This completes the proof of Proposition 5.1. �

With (5.1) at our proposal, we are able to prove Theorem 1.1.

Proof of Theorem 1.1 We will utilize the bootstrapping argument to prove the global
existence of smooth solutions. To initiate the bootstrapping argument, we start with
the ansatz

E(t) ≤ 1

4C2
2

. (5.2)

Then it suffices to prove that E(t) actually admits a smaller bound.This can be achieved
via (5.1). Invoking (5.2) and the initial data assumption (1.8), we infer

E(t) ≤ C1δ
2 + 1

2
E(t)

or

E(t) ≤ 2C1δ
2.

Then if we select δ sufficiently small to obey

δ ≤ 1

4
√
C1C2

,

we can derive

E(t) ≤ 1

8C2
2

.

The bootstrapping argument then asserts the desired global bound

E(t) ≤ Cδ2. (5.3)

As a result, the uniform upper bound (1.9) and the decay rates (1.10) follow from (5.3)
immediately. The proof of Theorem 1.1 is therefore complete. �
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