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 A B S T R A C T

The stability of 3D perturbations to 2D Navier–Stokes solutions is a fundamental problem with 
significant mathematical and physical implications. Stability has been established for the 3D 
Navier–Stokes equations with full dissipation or anisotropic dissipation in two spatial directions. 
This paper intends to understand the stability problem under the situation when dissipation is 
present only in one direction. We establish stability results in the case where dissipation acts 
only in the vertical direction and on the vertical average of the solution.

1. Introduction

Many real-world flows, like in the atmosphere and oceans, are effectively two-dimensional (2D) due to strong stratification or 
rotation(see, e.g. [1,2]). Understanding the stability of these 2D flows under 3D perturbations is crucial for explaining the emergence 
and persistence of 2D behavior in such systems. Mathematically the 3D incompressible Navier–Stokes equations are extremely 
difficult to analyze. If 2D flows can be shown to be stable under 3D perturbations, this justifies using simplified 2D models in 
place of full 3D dynamics in certain regimes.

This type of stability problem has been investigated by several authors (see, e.g. [3–5]). The work of Ponce, Racke, Sideris, and 
Titi showed that any 2D solution in the class 𝐿1 ∩𝐻1 of the 2D Navier–Stokes is stable under 3D 𝐻1 perturbations [5]. All these 
previous results rely on full dissipation in the 3D Navier–Stokes equations. Our main objective is to relax this requirement and still 
establish stability. Prior work has succeeded in proving stability when full dissipation is reduced to anisotropic dissipation in two 
directions [4,6–8]. This paper focuses on the case with dissipation only in one direction, partly motivated by applications in physical 
fluid systems.

Consider the 2D Navier–Stokes system in the 2D periodic box T2 = [0, 1]2, 
⎧

⎪

⎨

⎪

⎩

𝑈𝑡 + (𝑈 ⋅ ∇)𝑈 + ∇𝑞 = 𝜈𝛥𝑈,
∇ ⋅ 𝑈 = 0,
𝑈 (𝑡 = 0) = 𝑈0 .

(1.1)

It is well-known that, for any 𝑈0 ∈ 𝐻𝑘(T2) with 𝑘 ≥ 0, (1.1) has a unique global solution 𝑈 satisfying
𝑈 ∈ 𝐶([0,∞);𝐻𝑘(T2)) ∩ 𝐿2(0,∞;𝐻𝑘+1(T2)).
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In addition, if 𝑈0 has mean zero,

∬ 𝑈0 𝑑𝑥𝑑𝑦 = 0,

then there exists a constant 𝑎 = 𝑎(𝜈) > 0 such that 
‖𝑈 (𝑡)‖𝐻𝑘 ≤ 𝐶𝑒−𝑎 𝑡‖𝑈0‖𝐻𝑘 ≤ 𝑀𝑒−𝑎𝑡, 𝑘 ≤ 4. (1.2)

Our objective is to study the stability of 3D perturbations near this 2D solution. More precisely, we analyze the 3D Navier–Stokes 
equations that govern perturbations around 𝑈 , 

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝑢 + (𝑢 + 𝑈 ) ⋅ ∇𝑢 + 𝑢 ⋅ ∇𝑈 = −∇𝑝 + 𝜈𝜕23𝑢 + 𝜈𝛥𝑢̄, 𝑥 ∈ T3, 𝑡 > 0,
∇ ⋅ 𝑢 = 0,
𝑢(𝑥, 0) = 𝑢0(𝑥),

(1.3)

where the spatial domain is taken to be the 3D periodic box T3 = [0, 1]3, 𝑢 denotes the velocity filed, 𝑝 the pressure and 𝜈 the 
viscosity. Here 𝜈𝜕23𝑢 is dissipation acting only in the vertical direction, where 𝑢̄ is defined as

𝑢̄(𝑥1, 𝑥2) =
1
|T| ∫T

𝑢(𝑥1, 𝑥2, 𝑥3) 𝑑𝑥3.

This study is motivated by turbulence models involving anisotropic viscosity, where vertical viscosity is enhanced due to strong 
stratification, while horizontal mixing occurs on a larger scale (see, e.g., [9]).

We establish the following theorem.

Theorem 1.1. Consider (1.3) with 𝜈 > 0. Assume 𝑢0 ∈ 𝐻3(T3) with ∇ ⋅ 𝑢0 = 0. There exists a suitable constant 𝐶0(𝜈, ‖𝑈0‖𝐻3 ) > 0 such 
that, if

‖𝑢0‖𝐻3 ≤ 𝐶0 𝜈,

then (1.3) has a unique global solution 𝑢 ∈ 𝐿∞([0,∞);𝐻3(T3)). Furthermore, 𝑢 remains uniformly bounded. That is, there is 𝐶1(𝜈, ‖𝑈0‖𝐻3 ,
𝐶0), such that for any 𝑡 > 0, 

‖𝑢(⋅, 𝑡)‖𝐻3(T3) ≤ 𝐶1(𝜈, ‖𝑈0‖𝐻3 , 𝐶0). (1.4)

2. Proof of Theorem  1.1

We prove Theorem  1.1 in this section. As a preparatory step, we first state two tool lemmas. We express
𝑓 = 𝑓 + 𝑓,

where 𝑓 denotes the vertical average of 𝑓 and 𝑓 denotes the oscillation part, 

𝑓 (𝑥1, 𝑥2) = ∫T
𝑓 (𝑥1, 𝑥2, 𝑥3) 𝑑𝑥3 and 𝑓 = 𝑓 − 𝑓. (2.1)

The following lemma outlines some basic properties of 𝑓 and 𝑓 . 

Lemma 2.1. Let 𝑓 and 𝑓 be defined as in (2.1). The following properties hold:
(1) The average and oscillation commute with any derivatives, namely

𝜕𝑖𝑓 = 𝜕𝑖𝑓, 𝜕𝑖𝑓 = 𝜕𝑖𝑓.

As a special consequence, if 𝑢 is divergence-free, ∇ ⋅ 𝑢 = 0, then 𝑢̄ and ̃𝑢 are also divergence-free, ∇ ⋅ 𝑢̄ = 0 and ∇ ⋅ 𝑢̃ = 0.
(2) 𝑓 and 𝑓 are orthogonal. More precisely, for 𝑓 ∈ 𝐻𝑘(T3) with any non-negative integer 𝑘, the inner product of 𝑓 and 𝑓 in 𝐻𝑘 is 

zero,

∫T3
𝜕𝛼𝑓 (𝑥) 𝜕𝛼𝑓 (𝑥) 𝑑𝑥 = 0

for any multi-index 𝛼 with |𝛼| ≤ 𝑘. As a special consequence,
‖𝑓‖2

𝐻̇𝑘 = ‖𝑓‖2
𝐻̇𝑘 + ‖𝑓‖2

𝐻̇𝑘

and

‖𝑓‖𝐻𝑘 ≤ ‖𝑓‖𝐻𝑘 and ‖𝑓‖𝐻𝑘 ≤ ‖𝑓‖𝐻𝑘 .

(3) 𝑓 satisfies the strong Poincaré type inequality 
‖𝑓‖𝐿2 ≤ 𝐶 ‖𝜕3𝑓‖𝐿2 (2.2)
2 
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Several versions of Lemma  2.1 for different types of spatial domains can be found in [10–13].
Throughout this paper, we adopt the following notation for anisotropic Lebesgue spaces

‖𝑓‖𝐿𝑝
𝑥1

𝐿𝑞
𝑥2

𝐿𝑟
𝑥3

∶= ‖‖‖𝑓‖𝐿𝑝
𝑥1

(T)‖𝐿𝑞
𝑥2

(T)‖𝐿𝑟
𝑥3

(T).

The subscripts 𝑥1, 𝑥2 and 𝑥3 indicate in which direction the norm is taken. The notation for anisotropic Lebesgue and Sobolev norms 
should be understood similarly.

The following lemma provides an anisotropic upper bound on the integral of triple products, which is particularly useful when 
estimating the nonlinear terms of PDEs with anisotropic dissipation. 

Lemma 2.2. Assume that 𝑓, 𝜕1𝑓, 𝑔, 𝜕2𝑔, ℎ, 𝜕3ℎ are all in 𝐿2(T3). Then, for a constant 𝐶 independent of 𝑓 , 𝑔 and ℎ,
|

|

|

|

∫T3
𝑓 (𝑥) 𝑔(𝑥)ℎ(𝑥) 𝑑𝑥

|

|

|

|

≤𝐶 ‖𝑓‖
1
2
𝐿2 (‖𝑓‖𝐿2 + ‖𝜕1𝑓‖𝐿2 )

1
2
‖𝑔‖

1
2
𝐿2 (‖𝑔‖𝐿2 + ‖𝜕2𝑔‖𝐿2 )

1
2

× ‖ℎ‖
1
2
𝐿2 (‖ℎ‖𝐿2 + ‖𝜕3ℎ‖𝐿2 )

1
2 .

As a special consequence, if ℎ just has the vertical oscillation part, then
|

|

|

|

∫T3
𝑓 (𝑥) 𝑔(𝑥) ℎ̃(𝑥) 𝑑𝑥

|

|

|

|

≤𝐶 ‖𝑓‖
1
2
𝐿2 (‖𝑓‖𝐿2 + ‖𝜕1𝑓‖𝐿2 )

1
2
‖𝑔‖

1
2
𝐿2 (‖𝑔‖𝐿2 + ‖𝜕2𝑔‖𝐿2 )

1
2

× ‖ℎ̃‖
1
2
𝐿2‖𝜕3ℎ̃‖

1
2
𝐿2 .

We will also use the following 2D version of the anisotropic upper bound. 

Lemma 2.3. Assume that 𝑓, 𝜕1𝑓, 𝑔, 𝜕2𝑔, ℎ are all in 𝐿2(T2). Then, for a constant 𝐶 independent of 𝑓 , 𝑔 and ℎ,
|

|

|

|

∫T2
𝑓 (𝑥) 𝑔(𝑥)ℎ(𝑥) 𝑑𝑥

|

|

|

|

≤ 𝐶 ‖𝑓‖
1
2
𝐿2 (‖𝑓‖𝐿2 + ‖𝜕1𝑓‖𝐿2 )

1
2
‖𝑔‖

1
2
𝐿2 (‖𝑔‖𝐿2 + ‖𝜕2𝑔‖𝐿2 )

1
2
‖ℎ‖𝐿2 .

Proof of Theorem  1.1.  We first take the 𝐿2-inner product of (1.3) with 𝑢 to obtain 
1
2
𝑑
𝑑𝑡

‖𝑢(𝑡)‖2
𝐿2 + 𝜈‖𝜕3𝑢(𝑡)‖2𝐿2 + 𝜈‖∇𝑢̄‖2

𝐿2 ≤ ‖∇𝑈‖𝐿∞‖𝑢‖2
𝐿2 . (2.3)

Let 𝜔 = ∇ × 𝑢 be the vorticity and 𝛺 = ∇ × 𝑈

𝜕𝑡𝜔 + (𝑢 + 𝑈 ) ⋅ ∇𝜔 + 𝑢 ⋅ ∇𝛺 − (𝛺 + 𝜔) ⋅ ∇𝑢 − 𝜔 ⋅ ∇𝑈 − 𝜈𝜕23𝜔 − 𝜈𝛥𝜔̄ = 0. (2.4)

Due to the equivalence of the two norms ‖𝑢‖𝐻3  and ‖𝑢‖𝐿2 + ‖𝐷3𝑢‖𝐿2 , it suffices to estimate ‖𝐷3𝑢‖𝐿2 . We recall that ‖𝐷3𝑢‖𝐿2  is 
comparable to ‖𝛥𝜔‖𝐿2 . Applying 𝛥 to (2.4) and taking the inner product with 𝛥𝜔, we have 

1
2
𝑑
𝑑𝑡

‖𝛥𝜔‖2
𝐿2 + 𝜈‖𝜕3𝛥𝜔‖

2
𝐿2 + 𝜈‖∇𝛥𝜔̄‖2

𝐿2 = 𝐼1 + 𝐼2 + 𝐼3, (2.5)

where

𝐼1 = −∫ 𝛥(𝑢 ⋅ ∇𝜔) ⋅ 𝛥𝜔𝑑𝑥, 𝐼2 = ∫ 𝛥(𝜔 ⋅ ∇𝑢) ⋅ 𝛥𝜔𝑑𝑥,

𝐼3 = −∫ 𝛥(𝑈 ⋅ ∇𝜔 + 𝑢 ⋅ ∇𝛺 −𝛺 ⋅ ∇𝑢 − 𝜔 ⋅ ∇𝑈 ) ⋅ 𝛥𝜔𝑑𝑥.

Due to ∇ ⋅ 𝑢 = 0, 

𝐼1 = −∫ 𝛥𝑢 ⋅ ∇𝜔 ⋅ 𝛥𝜔𝑑𝑥 − 2∫ ∇𝑢 ⋅ ∇∇𝜔 ⋅ 𝛥𝜔𝑑𝑥 (2.6)

and 
𝐼2 = ∫ 𝛥𝜔 ⋅ ∇𝑢 ⋅ 𝛥𝜔𝑑𝑥 + 2∫ ∇𝜔 ⋅ ∇∇𝑢 ⋅ 𝛥𝜔𝑑𝑥 + ∫ 𝜔 ⋅ ∇𝛥𝑢 ⋅ 𝛥𝜔𝑑𝑥. (2.7)

Moreover,

𝐼3 = −∫ 𝛥𝑈 ⋅ ∇𝜔 ⋅ 𝛥𝜔𝑑𝑥 − 2∫ ∇𝑈 ⋅ ∇∇𝜔 ⋅ 𝛥𝜔𝑑𝑥

− ∫ 𝛥(𝑢 ⋅ ∇𝛺 −𝛺 ⋅ ∇𝑢 − 𝜔 ⋅ ∇𝑈 ) ⋅ 𝛥𝜔𝑑𝑥. (2.8)

We first bound the terms in 𝐼3. By Hölder’s and Sobolev’s inequalities,

− ∫ 𝛥𝑈 ⋅ ∇𝜔 ⋅ 𝛥𝜔𝑑𝑥 ≤ ‖𝛥𝑈‖𝐿3‖∇𝜔‖𝐿6 ‖𝛥𝜔‖𝐿2 ≤ 𝐶 ‖𝑈‖𝐻3 ‖𝛥𝜔‖2𝐿2 ,

− 2 ∇𝑈 ⋅ ∇∇𝜔 ⋅ 𝛥𝜔𝑑𝑥 ≤ ‖∇𝑈‖𝐿∞ ‖𝛥𝜔‖2 ≤ 𝐶 ‖𝑈‖ 3 ‖𝛥𝜔‖2 .
∫ 𝐿2 𝐻 𝐿2

3 
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After applying Leibniz’s rule for differentiation, along with Hölder’s and Sobolev inequalities, we obtain

− ∫ 𝛥(𝑢 ⋅ ∇𝛺 −𝛺 ⋅ ∇𝑢 − 𝜔 ⋅ ∇𝑈 ) ⋅ 𝛥𝜔𝑑𝑥

≤ ‖𝛥𝑢‖𝐿6 ‖∇𝛺‖𝐿3‖𝛥𝜔‖𝐿2 + 2‖∇𝑢‖𝐿∞‖𝛥𝛺‖𝐿2‖𝛥𝜔‖𝐿2

+ ‖𝑢‖𝐿∞‖𝑈‖𝐻4 ‖𝛥𝜔‖𝐿2 + ‖𝛺‖𝐿∞ ‖𝛥𝜔‖2
𝐿2

+ ‖∇𝑈‖𝐿∞ ‖𝛥𝜔‖2
𝐿2 + ‖∇𝜔‖𝐿6‖𝛥𝑈‖𝐿3‖𝛥𝜔‖𝐿2

≤ 𝐶 ‖𝑈‖𝐻4 ‖𝛥𝜔‖2𝐿2 .

That is, 

|𝐼3| ≤ 𝐶‖𝑈‖𝐻4‖𝛥𝜔‖2𝐿2 . (2.9)

For 𝐼1 and 𝐼2, we will use the following estimates to bound all these terms. 

Proposition 2.4. Assume that 𝑓, 𝑔, ℎ are all elements of matrix (𝜕𝑗𝑢𝑘)3×3. Then, for a constant 𝐶 independent of 𝑓 , 𝑔 and ℎ,

|∫T3
𝑓 (𝑥) 𝜕𝑙𝑗𝑔(𝑥) 𝜕𝑖𝑘ℎ(𝑥) 𝑑𝑥| + |∫T3

𝜕𝑙𝑓 (𝑥) 𝜕𝑗𝑔(𝑥) 𝜕𝑖𝑘ℎ(𝑥) 𝑑𝑥|

≤ 𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ).

Proof. We first write

𝑓 = 𝑓 + 𝑓, 𝑔 = 𝑔̄ + 𝑔 and ℎ = ℎ̄ + ℎ̃.

The integral can be written

|∫T3
𝑓 (𝑥) 𝜕𝑙𝑗𝑔(𝑥) 𝜕𝑖𝑘ℎ(𝑥) 𝑑𝑥| + |∫T3

𝜕𝑙𝑓 (𝑥) 𝜕𝑗𝑔(𝑥) 𝜕𝑖𝑘ℎ(𝑥) 𝑑𝑥|

≤ ∫T3

[

|𝑓 (𝑥) 𝜕𝑙𝑗𝑔(𝑥)| + |𝜕𝑙𝑓 (𝑥) 𝜕𝑗𝑔(𝑥)|
]

|𝜕𝑖𝑘ℎ(𝑥)| 𝑑𝑥

≤ 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5,

where

𝐸1 = ∫ (|𝜕𝑙𝑓𝜕𝑗𝑔| + |𝑓𝜕𝑙𝑗𝑔|) |𝜕𝑘𝑖ℎ̃| 𝑑𝑥, 𝐸2 = ∫ (|𝜕𝑙𝑓𝜕𝑗𝑔| + |𝑓𝜕𝑙𝑗𝑔|) |𝜕𝑘𝑖ℎ̃| 𝑑𝑥,

𝐸3 = ∫ (|𝜕𝑙𝑓𝜕𝑗 𝑔̄| + |𝑓𝜕𝑙𝑗 𝑔̄|) |𝜕𝑘𝑖ℎ̃| 𝑑𝑥, 𝐸4 = ∫ (|𝜕𝑙𝑓𝜕𝑗𝑔| + |𝑓𝜕𝑙𝑗𝑔|) |𝜕𝑘𝑖ℎ̄| 𝑑𝑥,

𝐸5 = ∫ (|𝜕𝑙𝑓𝜕𝑗 𝑔̄| + |𝑓𝜕𝑙𝑗 𝑔̄|) |𝜕𝑘𝑖ℎ̄| 𝑑𝑥.

We will use Lemma  2.2 and then Lemma  2.1 to obtain bounds for these terms.

|𝐸1| ≤𝐶 ‖𝜕𝑙𝑓‖
1
2
𝐿2‖𝜕𝑙𝑓‖

1
2
𝐻1‖𝜕𝑗𝑔‖

1
2
𝐿2‖𝜕𝑗𝑔‖

1
2
𝐻1‖𝜕𝑘𝑖ℎ̃‖

1
2
𝐿2‖𝜕3𝑘𝑖ℎ̃‖

1
2
𝐿2

+ ‖𝑓‖𝐿∞‖𝜕𝑙𝑗𝑔‖𝐿2‖𝜕𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜕𝑙𝑓‖𝐻1‖𝜕3𝑗𝑔‖𝐻1‖𝜕3𝑘𝑖ℎ̃‖𝐿2 + 𝐶‖𝑓‖𝐻2‖𝜕3𝑙𝑗𝑔‖𝐿2‖𝜕3𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ),

and

|𝐸2| ≤𝐶 ‖𝜕𝑙𝑓‖
1
2
𝐿2‖𝜕𝑙𝑓‖

1
2
𝐻1‖𝜕𝑗𝑔‖

1
2
𝐿2‖𝜕𝑗𝑔‖

1
2
𝐻1‖𝜕𝑘𝑖ℎ̃‖

1
2
𝐿2‖𝜕3𝑘𝑖ℎ̃‖

1
2
𝐿2

+ ‖𝑓‖𝐿∞‖𝜕𝑙𝑗𝑔‖𝐿2‖𝜕𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜕𝑙𝑓‖𝐻1‖𝜕3𝑗𝑔‖𝐻1‖𝜕3𝑘𝑖ℎ̃‖𝐿2 + 𝐶 ‖𝑓‖𝐿∞‖𝜕𝑙𝑗𝑔‖𝐿2‖𝜕𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ).

And also

|𝐸3| ≤𝐶 ‖𝜕𝑙𝑓‖
1
2
𝐿2‖𝜕𝑙𝑓‖

1
2
𝐻1‖𝜕𝑗 𝑔̄‖

1
2
𝐿2‖𝜕𝑗 𝑔̄‖

1
2
𝐻1‖𝜕𝑘𝑖ℎ̃‖

1
2
𝐿2‖𝜕3𝑘𝑖ℎ̃‖

1
2
𝐿2

+ ‖𝑓‖𝐿∞‖𝜕𝑙𝑗 𝑔̄‖𝐿2‖𝜕𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜕3𝑙𝑓‖𝐻1‖𝜕𝑗 𝑔̄‖𝐻1‖𝜕3𝑘𝑖ℎ̃‖𝐿2 + 𝐶‖𝜕3𝑓‖𝐻2‖𝜕𝑙𝑗 𝑔̄‖𝐿2‖𝜕3𝑘𝑖ℎ̃‖𝐿2

≤𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ),
4 
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and

|𝐸4| ≤𝐶 ‖𝜕𝑙𝑓‖
1
4
𝐿2‖𝜕𝑙𝑓‖

3
4
𝐻1‖𝜕𝑗𝑔‖

1
4
𝐿2‖𝜕𝑗𝑔‖

3
4
𝐻1‖𝜕𝑘𝑖ℎ̄‖𝐿2 + ‖𝑓‖𝐿∞‖𝜕𝑙𝑗𝑔‖𝐿2‖𝜕𝑘𝑖ℎ̄‖𝐿2

≤𝐶 ‖𝜕3𝑙𝑓‖𝐻1‖𝜕3𝑗𝑔‖𝐻1‖𝜕𝑘𝑖ℎ̄‖𝐿2 + 𝐶‖𝜕3𝑓‖𝐻2‖𝜕3𝑙𝑗𝑔‖𝐿2‖𝜕𝑘𝑖ℎ̄‖𝐿2

≤𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ).

By 2.3, we have

|𝐸5| ≤𝐶 ‖𝜕𝑙𝑓‖
1
2
𝐿2‖𝜕𝑙𝑓‖

1
2
𝐻1‖𝜕𝑗 𝑔̄‖

1
2
𝐿2‖𝜕𝑗 𝑔̄‖

1
2
𝐻1‖𝜕𝑘𝑖ℎ̄‖𝐿2 + ‖𝑓‖𝐿∞‖𝜕𝑙𝑗 𝑔̄‖𝐿2‖𝜕𝑘𝑖ℎ̄‖𝐿2

≤𝐶 ‖𝜔̄‖𝐻2‖∇𝛥𝜔̄‖2𝐿2 .

This completes the proof of Proposition  2.4. □

We continue the proof of Theorem  1.1. By Proposition  2.4, 𝐼1 and 𝐼2 can be bounded by 
|𝐼1| + |𝐼2| ≤ 𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2

𝐿2 ). (2.10)

Inserting the bounds (2.9) and (2.10) in (2.5) yields
1
2
𝑑
𝑑𝑡

‖𝛥𝜔‖2
𝐿2 + 𝜈‖𝜕3𝛥𝜔‖

2
𝐿2 + 𝜈‖∇𝛥𝜔̄‖2

𝐿2

≤ 𝐶 ‖𝜔‖𝐻2 (‖𝜕3𝛥𝜔‖2𝐿2 + ‖∇𝛥𝜔̄‖2
𝐿2 ) + 𝐶‖𝑈‖𝐻4‖𝛥𝜔‖2𝐿2 . (2.11)

Adding (2.3) and (2.11) yields 
𝑑
𝑑𝑡

‖𝑢‖2
𝐻3 + (2𝜈 − 𝐶2 ‖𝑢‖𝐻3 )

(

‖𝜕3𝑢‖
2
𝐻3 + 𝜈‖∇𝑢̄‖2

𝐻3

)

≤ 𝐶3 ‖𝑈‖𝐻4‖𝑢‖2𝐻3 . (2.12)

We use the bootstrapping argument to show that, if the initial data 𝑢0 satisfies
‖𝑢0‖𝐻3 ≤ 𝐶−1

2 𝑒−𝐶3𝑀∕(2𝑎) 𝜈,

then (1.3) has a unique global solution 𝑢 satisfying (1.4). In fact, if we make the ansatz that
2𝜈 − 𝐶2 ‖𝑢(𝑡)‖𝐻3 ≥ 0 or ‖𝑢(𝑡)‖𝐻3 ≤ 2𝐶−1

2 𝜈.

Then, by applying Gronwall’s inequality and the bound in (1.2), we obtain from (2.12) that

‖𝑢(𝑡)‖2
𝐻3 ≤ ‖𝑢0‖

2
𝐻3𝑒

𝐶3 ∫
𝑡
0 ‖𝑈 (𝜏)‖𝐻4 𝑑𝜏 ≤ ‖𝑢0‖

2
𝐻3𝑒

𝐶3𝑀∕𝑎 ≤ (𝐶−1
2 𝜈)2

or 
‖𝑢(𝑡)‖𝐻3 ≤ 𝐶−1

2 𝜈. (2.13)

The bootstrapping argument then implies that (2.13) holds for all 𝑡 > 0. This completes the proof of Theorem  1.1. □
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