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Abstract
The FENE dumbbell model combines the Navier–Stokes equations of the fluid veloc-
ity with a Fokker-Planck equation for the dynamics of polymer distribution in the fluid 
medium. The FENE model admits a special equilibrium solution (0, ψ∞). This paper 
explores two types of enhanced dissipation associated with the system governing the per-
turbations near this steady state, one due to the equilibrium and one due to the coupling 
and interaction. Mathematically the linearized perturbation system admits a hidden wave 
structure. Making use of the smoothing and stabilizing effects in this wave structure, we 
are able to establish the global existence and stability of a 2D anisotropic FENE model in 
R2 with the velocity equation involving only horizontal dissipation. Without the coupling, 
the corresponding 2D Navier–Stokes is not known to be stable. When the spatial domain 
is T × R, the FENE model with even less dissipation is shown to be stable, and the solu-
tion is shown to decay exponentially to its horizontal average. This result also relies on 
the above enhanced dissipation. The last part of our paper illustrates the importance of 
enhanced dissipation in the study of inviscid limit for a partially dissipated FENE system.
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1  Introduction

Due to their importance in physics, chemistry, and biology, PDE systems modeling the 
interaction of fluids and polymers have recently attracted considerable attention [5, 33]. 
One of these models is the finite extensible nonlinear elastic (FENE) dumbbell model. In 
this model, a polymer is represented as an “elastic dumbbell” consisting of two “beads” 
connected by a spring that can be modeled by a vector R [5, 6, 13, 35]. At the fluid level, 
the FENE dumbbell model combines the Navier–Stokes equations describing fluid velocity 
with a Fokker-Planck equation governing the dynamics of polymer distribution in the liquid 
medium. The micro–macro FENE dumbbell model reads as follows:

	




∂tu + (u · ∇)u = µ∆u − ∇p + div τ, div u = 0,
∂tΨ + u · ∇Ψ = ε∆Ψ + divR [−σ(u) · RΨ + β∇RΨ + ∇R UΨ] ,
τj,k =

∫
B

(Rj∂Rk
U)Ψ(x, R, t) dR,

u(x, 0) = u0, Ψ(x, R, 0) = Ψ0,
(∇RΨ + ∇R UΨ) · n = 0 on ∂B(0, R0).

� (1)

In (1), u(x, t) denotes the velocity of the polymeric liquid, p(x, t) denotes the pressure, and 
Ψ(x, R, t) denotes the distribution function for the internal configuration, where x ∈ R2 or 
x ∈ T × R. The polymer elongation R is bounded in a ball B(0, R0), which indicates that 
the extensibility of the polymers is finite. Also, the potential U  is given by

	
U(R) = −k log

(
1 − |R|2

R2
0

)

for some k > 0, the magnitude of k is an important parameter as it portrays the strength of 
singularity of the equilibrium state ψ∞ on the boundary ∂B(0, R0). In addition, µ is the 
viscosity of the fluid, ε ≥ 0 is the center-of-mass diffusion rate of the polymer, and β relates 
to the Boltzmann constant and temperature. In general, σ(u) = ∇u. For the co-rotation 
case, σ(u) = ∇u−(∇u)T

2 .
As in [33], to ensure the conservation of Ψ, we add an additional boundary condition, 

namely

	 (−∇u · RΨ + β∇RΨ + ∇R UΨ) · n = 0 on ∂B(0, R0).

This boundary condition implies that Ψ = 0 on ∂B(0, R0), and if 
∫

B
Ψ0(x, R) dR = 1, 

then for all (x, t), we have 
∫

B
Ψ(x, R, t) dR = 1. In fact, by integrating the equation of Ψ in 

(3) in R-variable and using the above boundary condition, we find

	
∂t

∫

B

Ψ dR + u · ∇
∫

B

Ψ dR = ε∆
∫

B

Ψ dR.

Hence, if ε = 0, the above equation is a transport equation, and the conservation of the 
polymer density comes from the property of trajectory; if ε > 0, the above equation is a 
parabolic equation with initial data 

∫
B

ψ(·, R, 0) dR = 1, and the conservation of the poly-
mer density comes from the uniqueness of the solution.

In this paper, we will set µ = 1, β = 1 and R0 = 1. Notice that (u, ψ) with u = 0 and
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ψ = ψ∞(R) := e−U(R)∫

B
e−U(R) dR

= (1 − |R|2)k∫
B

(1 − |R|2)k dR

is a stationary solution of (1), and direct computation shows that

	
∇RΨ + ∇R UΨ = ψ∞∇R

Ψ
ψ∞

,

and we denote

	
LΨ = divR(∇RΨ + ∇R UΨ) = divR

(
ψ∞∇R

Ψ
ψ∞

)
.

The well-posedness of various types of viscoelastic models has been widely studied. For the 
FENE dumbbell model with general drag term, in the case that the effect of center-of-mass 
diffusion of Ψ is ignored, namely, ε = 0, Renardy [36] established the local well-posedness 
in Sobolev space with potential U(R) = (1 − |R|2)1−σ  for some σ > 1. Later, Jourdain 
et al. [20] proved the local existence of a stochastic differential equation with potential 
U(R) = −k log(1 − |R|2) in the case b = 2k > 6 for a Couette flow. Zhang and Zhang [41] 
proved the local well-posedness for the FENE model in three dimensions when b = 2k > 76 
in weighted Sobolev spaces. Masmoudi [33] discovered some useful Hardy-type inequali-
ties to handle the singular term div τ , and proved local and global well-posedness under 
small assumption near the equilibrium for the FENE model when b = 2k > 0. Also near 
the equilibrium, Lin et al. [25] proved the global existence under certain constraints on the 
potential. Masmoudi [34] proved the global existence of weak solutions in L2 under some 
entropy conditions. On the other hand, the center-of-mass diffusion of polymer is physically 
justifiable, and if this diffusion term is not neglected, there is also a number of relevant 
research. The global existence of weak solution of the FENE model with center-of-mass 
diffusion is established in [4]. Also, Barrett and Süli [3] inserted a “microscopic” cut-off 
function in the drag term of the Fokker-Planck equation, and established the existence of 
global-in-time weak solutions to a mollification model with a general class of spring-force 
potentials, including the FENE potential. Later, Barrett and Süli [2] removed the cut-off in 
[3] and extended the results to the case of bead-spring chain models. For the FENE dumb-
bell model with co-rotation drag term, for instance, see [26, 29, 31, 33]. For the Hookean 
dumbbell model, one can consult [9, 18, 19, 23–25, 28] and the references therein.

Moreover, substantial research has been devoted to exploring the decay of viscoelastic 
fluid models. For incompressible viscoelastic dumbbell models, Schonbek [37] studied the 
L2 decay of the velocity for the co-rotation FENE dumbbell model, and obtained the decay 
rate (1 + t)− N

4 + 1
2 . Later, Luo and Yin [30, 31] improved the L2 decay results developed 

in [37] by Fourier splitting methods, and obtained the decay rate (1 + t)− 1
4  with N = 2. 

Ai et al. [1] proved the optimal decay rates of the solution and its higher order derivatives 
of 3D general rate-type viscoelastic fluids, in their assumptions, the L2 norm of the higher 
order derivatives (n ≥ 4) of the initial data can be arbitrarily large. Chen et al. [10] showed 
the sharp decay rates of the 3D incompressible Phan-Thien-Tanner system with large data. 
While for compressible viscoelastic dumbbell models, Hu and Wu [19] obtained the optimal 
Lp decay rate of the compressible Hookean-type viscoelastic flows. Recently, Deng et al. 
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[12] studied the micro–macro compressible polymeric fluids near the equilibrium with one 
type of general potential terms, and obtained the decay result.

For the inviscid limit of viscoelastic fluids, there have been a number of important 
results. For incompressible viscoelastic dumbbell models, Zi [42] considered the vanish-
ing viscosity limit of the 3D incompressible Oldroyd-B model with small analytic data. 
Luo et al. [32] gave a result of local in time vanishing viscosity limit to the FENE model 
in Besov space. For compressible viscoelastic dumbbell models, Cai et al. [7] justified the 
vanishing viscosity limit for multi-dimensional incompressible viscoelasticity. Cui and Hu 
[11] proved the global existence of solutions of three-dimensional compressible viscoelastic 
systems around the equilibrium when the shear viscosity is arbitrarily small and the volume 
viscosity is arbitrarily large. Very recently, Wang and Xie [39] studied the inviscid limit of 
2D compressible viscoelastic equations with the no-slip boundary condition by conormal 
derivatives framework. Gu et al. [17] investigated the inviscid limit of 3D half-space com-
pressible viscoelastic systems with no-slip or Navier-slip boundary conditions, their result 
indicates that the deformation gradient can prevent the formation of strong boundary layers.

In this paper, we focus on the following 2D anisotropic FENE dumbbell model with 
partial dissipation

	

{
∂tu + (u · ∇)u = ∂2

1u − ∇p + div τ, div u = 0,
∂tΨ + u · ∇Ψ = υ∂2

2Ψ + divR (−∇u · RΨ) + LΨ,
τl,m =

∫
B

(Rl∂Rm U)Ψ(x, R, t) dR,
� (2)

where υ = 0 or 1 represents whether we have the vertical center of mass diffusion of ψ.
Next, we derive the perturbation form of (2) near the stationary solution (0, ψ∞). For this 

purpose, we denote ψ = Ψ − ψ∞. Since ∇xψ∞ = 0, we have

	
div τ = div

∫

B

(R ⊗ ∇RU)Ψ dR = div
∫

B

(R ⊗ ∇RU)ψ dR.

Hence, we may assume that

	
τ =

∫

B

(R ⊗ ∇RU)ψ dR.

Now, we write ψ0 := Ψ0 − ψ∞, and by direct computation, the equation governing the 
perturbation (u, ψ) of 2D FENE dumbbell model with partial dissipation reads as follows

	

{
∂tu + (u · ∇)u = ∂2

1u − ∇p + div τ, div u = 0,
∂tψ + u · ∇ψ = υ∂2

2ψ + divR (−∇u · R(ψ + ψ∞)) + Lψ,
τl,m =

∫
B

(Rl∂Rm U)ψ(x, R, t) dR.
� (3)

(3) will be our focus. We intend to understand its three aspects: small data global existence 
and stability, asymptotic behavior, and vanishing viscosity problem.

Hydrodynamic problems with partial dissipation are widely studied [8, 15, 21, 40]. Dis-
sipation in some systems of partial differential equations (PDEs) modeling fluids reduces 
to partial cases in certain physical regimes and after appropriate scaling. One of the signifi-
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cant examples is Prandtl’s boundary layer equation. Mathematically, compared to the FENE 
dumbbell model with full dissipation, the involvement of only one directional dissipation 
makes the existence and stability problem much more challenging.

For the viscoelastic model with mixed partial dissipation, Feng et al. [16] obtained the 
small data global existence and stability for the 2D Oldroyd-B model in Sobolev space 
H2(R2). In contrast to the Oldroyd-B model, the FENE model incorporates the finite exten-
sibility of real polymers and plays a pivotal role in elucidating complex and more realistic 
molecular behaviors [20]. In addition, the FENE dumbbell model presents heightened intri-
cacy due to its nature as a micro–macro model with singularities at the elongation limit. 
These considerations partially motivated our study on the well-posedness and stability of 
the anisotropic dumbbell model (3).

We remark that the stability and long-time behavior problems are generally not trivial 
for partially dissipated PDE systems. Many classical approaches such as the Fourier split-
ting method no longer work. Due to the lack of full dissipation, the schemes to obtain the 
exponential decay for the co-rotation FENE dumbbell ([30, 31]) now fail since the drag 
term in the equation of ψ in (3) cannot be eliminated directly. To overcome these difficulties, 
this paper introduces new ideas to solve the large-time behavior problem on the anisotropic 
FENE dumbbell model (3). We explore the enhanced dissipation generated by the steady-
state and the coupling and interaction. Mathematically we derive the hidden wave structure 
in the linearized system governing the dynamics of perturbations. In addition, we make 
use of the orthogonal decomposition associated with the horizontal periodic setting of the 
spatial domain.

The last part of this paper illustrates the power of the enhanced dissipation and wave 
structure in the study of the inviscid limits for partially dissipated FENE models. Without 
making use of the smoothing effect of the wave structure, it is impossible to obtain suitable 
upper bounds independent of the viscosity κ as κ approaches zero. Exploiting the wave 
structure helps us overcome this difficulty.

1.1  Statement of results

Our first topic is about the global existence and stability of small data solution of 2D aniso-
tropic FENE dumbbell model near the steady solution (0, ψ∞). For brevity, in this paper, we 
use c or C to denote constants independent of ε, η and t.

We begin with the global stability of perturbations satisfying the 2D FENE dumbbell 
model with mixed partial dissipation,

	




∂tu + (u · ∇)u = ∂2
1u − ∇p + div τ, div u = 0,

∂tψ + u · ∇ψ = ∂2
2ψ + divR(−∇u · R(ψ + ψ∞)) + Lψ,

u(x, 0) = u0, ψ(x, R, 0) = ψ0,
ψ∞∇R

ψ
ψ∞

· n = 0 on ∂B.

� (4)

We have the following result of small data global well-posedness.

Theorem 1.1  Suppose that k > 1 , there exists a small constant ε1 > 0  such that for 
u0 ∈ H 2 (R2 ), div u0 = 0  and ψ0 ∈ H 2 (R2 ; L2 ), if
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	 ||u0||H2 + ||ψ0||H2(L2) ≤ ε1,� (5)

then (4) has a unique global solution (u, ψ). In addition, for all t > 0 , (u, ψ) satisfies

	

||u(t)||2H2 + ||ψ(t)||2H2(L2)

+
∫ t

0

{
||∂1u(s)||2H2 + ||∂2u(s)||2H1 + ||∂2ψ(s)||2H2(L2) + ||ψ(s)||2

H2(Ḣ1)

}
ds ≤ Cε2

1.

Remark 1.1  Without coupling the equation of polymer flow, the uniform in time stability of 
the 2D Navier–Stokes equation in R2 with only horizontal dissipation is still open.

Remark 1.2  If the initial data ψ0 is even in R1 or R2, then k > 1 can be removed.

Since physically, the center-of-mass diffusion of ψ is much weaker than the diffusion in 
R-variable, it is natural to neglect the vertical center-of-mass diffusion of ψ, and consider the 
following 2D FENE dumbbell system with merely horizontal dissipation of u:

	




∂tu + (u · ∇)u = ∂2
1u − ∇p + div τ, div u = 0,

∂tψ + u · ∇ψ = divR(−∇u · R(ψ + ψ∞)) + Lψ,
u(x, 0) = u0, ψ(x, R, 0) = ψ0,
ψ∞∇R

ψ
ψ∞

· n = 0 on ∂B.

� (6)

The absence of vertical dissipation complicates the problem. By imposing a symmetry con-
dition in the R-variable, we can effectively eliminate the originally unmanageable terms 
arising from this lack of vertical dissipation. More precisely, we have the following result:

Theorem 1.2  Suppose that u0 ∈ H 2 (R2 ), div u0 = 0 , ψ0 ∈ H 2 (R2 ; L2 ) and ψ0  is even 
in R2 . There exists a small constant ε2 > 0  such that if

	 ||u0||H2 + ||ψ0||H2(L2) ≤ ε2,� (7)

then (6) has a unique global solution (u, ψ), and ψ is even in R2 . In addition, for all t > 0 , 
(u, ψ) satisfies

	
||u(t)||2H2 + ||ψ(t)||2H2(L2) +

∫ t

0

{
||∂1u(s)||2H2 + ||∂2u(s)||2H1 + ||ψ(s)||2

H2(Ḣ1)

}
ds ≤ Cε2

2. � (8)

Remark 1.3  As stated in Theorem 1.2, we can establish the global well-posedness and stabil-
ity results even in the absence of vertical dissipation. In this case, the symmetry condition 
in R-variable needs to be introduced.

Remark 1.4  We can replace the symmetry in R2 with the symmetry in R1, which will have 
the same eliminating effect.
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Once the global existence result is established, we can investigate the asymptotic behav-
ior of the solution of system (6). Here, we consider the system in Ω = T × R. Our result 
states that ψ and the oscillation part ũ decay to zero exponentially in time.

Theorem 1.3  Suppose that Ω = T × R, div u0 = 0  and ψ0  is even in R2 . There exists a 
small constant ε3 > 0  such that if

	 ||u0||H2 + ||ψ0||H2(L2) ≤ ε3,

then (6) has a unique global solution (u, ψ). Moreover, ψ and the oscillation part ũ decays 
exponentially in time in the sense that

	 ||ũ||H1 + ||ψ||H1(L2) ≤ C(||u0||H1 + ||ψ0||H1(L2))e−c′t,

for some constant c′ > 0  and for all t > 0 .

Remark 1.5  This is the first result of the exponential decay of the polymer distribution ψ for 
FENE dumbbell model with general drag term rather than co-rotation drag term.

As a corollary of the above theorem, we deduce that the solution (u, ψ) approaches to 
(ū, 0), where (ū, ψ̄) is governed by

	

{
∂tū + ũ · ∇ũ =

( 0
∂2p̄

)
+ ∂2

( 0
τ̄2,2

)
,

∂tψ̄ + ũ · ∇ψ̃ = −divR(∇ũ · Rψ̃) − ∂2ū1R2∂R1 (ψ̄ + ψ∞) + Lψ̄.

The final part of this paper focuses on the vertical vanishing viscosity limit problem. Having 
already established the global existence of the 2D FENE dumbbell model with both full dis-
sipation (1) (with ε = 0) and only horizontal dissipation (6), an important question is that if 
the vertical dissipation of u in (1) approaches zero, whether the solution of this system will 
converge to the solution of (6).

More precisely, we consider the vertical vanishing viscosity limit of the following aniso-
tropic FENE dumbbell model:

	




∂tu
κ + (uκ · ∇)uκ = ∂2

1uκ + κ∂2
2uκ − ∇pκ + div τκ, div uκ = 0,

∂tψ
κ + uκ · ∇ψκ = divR

[
−∇uκ · R(ψκ + ψ∞) + ψ∞∇R

ψκ

ψ∞

]
,

uκ(x, 0) = u0, ψκ(x, R, 0) = ψ0,

ψ∞∇R
ψκ

ψ∞
· n = 0 on ∂B.

� (9)

We investigate the behavior of the solution when κ → 0. Our result indicates that the solu-
tion of 2D FENE dumbbell model (6) is the global in time vanishing viscosity limit solution 
of the FENE dumbbell model with anisotropic full velocity dissipation (9).

Theorem 1.4  Suppose that Ω = T × R, div u0 = 0  and ψ0  is even in R2 . Let u0 ∈ H 2 (Ω) 
and ψ0 ∈ H 2 (Ω; L2 ) and are sufficiently small, namely
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	 ||u0||H2 + ||ψ0||H2(L2) ≤ ε4

such that (6) and (9) each has a unique global solution. Let (uκ, ψκ) and (u, ψ) be the solu-
tions of (6) and (9), respectively. Then, the following estimate holds:

	 ||uκ − u||2H1 + ||ψκ − ψ||2H1(L2) ≤ Cκ, ∀t > 0,� (10)

where C is a constant independent of t and κ.

1.2  Main difficulties and strategies

We now explain the main difficulties we encountered during our proofs and demonstrate 
our main strategies.

1.2.1  Global existence and stability

When proving the global existence and stability results in Theorems 1.1 and 1.2, a major 
obstacle arises from the absence of vertical dissipation of u. This greatly complicates the 
analysis and makes the issues of global existence and stability non-trivial.

Without coupling the equation of polymer density, system (3) becomes the Navier–
Stokes equation with only horizontal dissipation

	

{
∂tu + (u · ∇)u = ∂2

1u − ∇p, x ∈ R2,
div u = 0, � (11)

and the H2-stability problem on perturbations near the trivial solution u = 0 of (11) still 
remains open. When there is no dissipation at all, (11) becomes the 2D Euler equation

	

{
∂tu + (u · ∇)u = −∇p,
div u = 0.

Kiselev and Šverák [22] proved that the gradient of vorticity could grow double exponen-
tially in time. This result on the growth of the Euler equations suggests that the stability of 
(11) near the trivial solution may not be expected in Sobolev settings.

Based on the reasoning above, to achieve the global existence result of the FENE dumb-
bell model with partial dissipation, we do not expect the energy estimate could be closed 
only by the following conventional H2-energy structure:

	

Eυ,1(t) = sup
0≤s≤t

||u(s)||2H2 + sup
0≤s≤t

||ψ(s)||2H2(L2)

+
∫ t

0

{
||∂1u(s)||2H2 + υ||∂2ψ(s)||2H2(L2) + ||ψ(s)||2

H2(Ḣ1)

}
ds.

� (12)

Instead, we must investigate some special structure of system (3), and discover additional 
vertical regularity of u. Let P = I − ∇∆−1∇· be the Leray projection onto divergence free 
vector fields. By applying the Leray projection P to the first equation of (3), we obtain
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	 ∂tu = ∂2
1u + Pdiv τ + N1, N1 = −P(u · ∇u).� (13)

Now, by integrating the second equation of (3) with R ⊗ ∇RU , and applying Pdiv , we have

	

∂tPdiv τ =υ∂2
2Pdiv τ + Pdiv

∫

B

divR(−∇u · Rψ∞)R ⊗ ∇RU dR

+ Pdiv
∫

B

LψR ⊗ ∇RU dR + N2,

� (14)

where

	
N2 = −Pdiv

{
u · ∇

∫

B

ψR ⊗ ∇RU dR

}
+ Pdiv

∫

B

divR(−∇u · Rψ)R ⊗ ∇RU dR.

Using the symmetry of ψ∞, direct computation shows that

	

Pdiv
∫

B

divR(−∇u · Rψ∞)R ⊗ ∇RU dR

= P
(

c1(k)∂2
1u1 − 2c2(k)∂2

1u1 + c2(k)∂2
2u2

c2(k)∂2
1u2 − 2c2(k)∂2

2u2 + c1(k)∂2
2u2

)
= c2(k)∆u,

where

	
c1(k) = −2k

∫

B

R3
1∂R1 ψ∞

1 − |R|2
dR, c2(k) = −2k

∫

B

R2
1R2∂R2 ψ∞

1 − |R|2
dR,

and c1(k), c2(k) are integrable if k > 1, and satisfy c1(k) = 3c2(k) > 0.
Hence, by differentiating (13) and (14) in time and making several substitutions, with the 

notation Υ = Pdiv τ , we obtain that

	





∂2
t u − (∂2

1 + υ∂2
2)∂tu + υ∂2

1∂2
2u − c2(k)∆u + Pdiv

∫

B

LψR ⊗ ∇RU dR = N3,

∂2
t Υ − (∂2

1 + υ∂2
2)∂tΥ + υ∂2

1∂2
2Υ − c2(k)∆Υ − (∂t − ∂2

1)Pdiv
∫

B

LψR ⊗ ∇RU dR = N4,
� (15)

where

	 N3 = (∂t − υ∂2
2)N1 + N2, N4 = c2(k)∆N1 + (∂t − ∂2

1)N2.

In particular, (15) provides the crucial vertical regularity of u, which seems to be missing in 
the original system (3). Thanks to this wave structure, we can extract the enhanced regular-
ity of time integral of ∂2u, and this makes it promising to give the uniform bound of the 
following energy structure

	
E2(t) =

∫ t

0
||∂2u(s)||2H1 ds.� (16)
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Besides understanding the additional vertical regularity of u from the wave structure, there 
is another way to derive (16) without introducing the assumption k > 1. In fact, by integrat-
ing the second equation of (3) with RkRl, where k, l = 1, 2, we obtain

	

∫

B

∂tψRkRl dR +
∫

B

u · ∇ψRkRl dR

= υ

∫

B

∂2
2ψRkRl dR +

∫

B

divR(ψ∞∇R
ψ

ψ∞
)RkRl dR

+
∫

B

divR(−∇u · Rψ)RkRl dR +
∫

B

divR(−∇u · Rψ∞)RkRl dR.

� (17)

Due to the symmetry of ψ∞, we deduce that

	

∫

B

divR(−∇u · Rψ∞)RkRl dR =
2∑

i,j=1

∫

B

∂juiRjψ∞∂Ri (RkRl) dR

=
2∑

j=1

∫

B

{∂jukRjψ∞Rl + ∂julRjψ∞Rk} dR =
(

2
∫

B

R2
1ψ∞ dR

)
[Du]k,l,

where [Du]k,l = 1
2 (∂kul + ∂luk). By plugging the above equation into (17), we find

	

C[Du]j,k =
∫

B

∂tψRjRk dR +
∫

B

u · ∇ψRjRk dR − υ

∫

B

∂2
2ψRjRk dR

−
∫

B

LψRjRk dR −
∫

B

divR(−∇u · Rψ)RjRk dR,

� (18)

where C := 2
∫

B
R2

1ψ∞ dR.
Since ||Du||H1 = ||∇u||H1 , the time integrability of ∂2u can be estimated by the right-

hand side of (18). The reasoning above explains our strategy on how to prevent the growth 
of the Sobolev norms of velocity by exploiting the stabilizing effect of ψ on the fluid.

With suitable energy structures Eυ,1(t) and E2(t)( defined in (12) and (16)) at hand, we 
now introduce the most difficult term that will be encountered when performing the Ḣ2

-type energy estimate. If we apply ∂2
2  to the second equation of (3) and multiply it by ∂2

2ψ 
in L2(L2), we have to deal with the following nonlinear term

	

�

R2B

∂2
2∇u · Rψ∇R

∂2
2ψ

ψ∞
dR dx

=
∑

i, j = 1, 2,
(i, j) ̸= (2, 1)

�

R2B

∂2
2∂juiRjψ∂Ri

∂2
2ψ

ψ∞
dR dx +

�

R2B

∂3
2u1R2ψ∂R1

∂2
2ψ

ψ∞
dR dx.

Although the first term on the right-hand side of the above equation can be estimated by uti-
lizing the dissipation ∂2

1u or the divergence free condition ∂2u2 = −∂1u1, the second term 
can not be treated directly due to the lack of vertical dissipation ∂2

2u.
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System (4) in Theorem 1.1 In this case, since we have the vertical center-of-mass dif-
fusion of ψ, we can handle this term by integrating by parts. However, this will introduce 
a new singular term ψ/(1 − |R|2)k/2+1. To handle this singularity, we take advantage of 
Hardy inequality of R-variable with k > 1.

System (6) in Theorem1.2 In this case, we don’t have any vertical dissipation in x-vari-
able to work with. To overcome this difficulty, we introduce the symmetry condition of ψ in 
R-variable. Roughly speaking, by setting the initial data ψ0 even in R2, and if ψ can keep 
this property for all t > 0, then ∂R1 (∂2

2ψ/ψ∞) is also even in R2, and

	

∫

B

R2ψ∂R1

∂2
2ψ

ψ∞
dR = 0.

Nevertheless, it is fascinating that we introduce the condition on R-variable to handle the 
problem raised in x-variable.

1.2.2  Exponential decay

When proving the exponential decay result in Theorem 1.3, the Fourier splitting method 
used in [30, 31] no longer works due to the loss of vertical dissipation. On the other hand, 
different from the co-rotation case, the drag term in the equation of ψ in (3) cannot be elimi-
nated directly, this makes the problem much more difficult.

To overcome the above difficulties, we consider the decay of u and ψ simultaneously 
to counteract the linear part of the drag term. Also, we consider the system in the domain 
periodic in x1, namely Ω = T × R = [0, 1] × R. One of the significant advantages of the 
periodic domain Ω is that it allows us to separate the physical domain into its horizontal 
average and the corresponding oscillation part.

More precisely, we define the horizontal average

	
f̄(x2) =

∫

T
f(x1, x2) dx1,

then, f can decomposed into horizontal average f̄  and the corresponding oscillation part f̃ , 
namely

	 f = f̄ + f̃ .

We know that the horizontal average f̄  represents the zeroth horizontal Fourier mode while 
the oscillation f̃  consists of all the rest non-zero horizontal frequencies. Mathematically, the 
decay of the horizontal average of u is hardly to be expected. In fact, it is associated with 
the zeroth horizontal Fourier mode, and the dissipative effect in this mode vanishes. Hence, 
we will focus on the decay of ψ, and the oscillation part ũ. The vital mathematical ingredi-
ent for obtaining the exponential decay of the oscillation part is the strong version of the 
Poincaré inequality,

	 ||f̃ ||L2(Ω) ≤ C||∂1f̃ ||L2(Ω).� (19)
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Thanks to this Poincaré inequality, we can handle the convection term ũ · ∇u by the hori-
zontal dissipation ∂2

1 ũ under the smallness assumption.

1.2.3  Inviscid limit

When proving the vanishing viscosity result in Theorem 1.4, the main challenge is to make 
the estimates independent of time rather than growing over time. Our strategy is to consider 
this problem in Ω = T × R, and use the extra dissipation term discovered from the wave 
structure (16). By decomposing the nonlinear term in the average part and the corresponding 
oscillation part, we can take advantage of the strong version of Poincaré inequality (19) in 
Ω to obtain the desired dissipation terms. By the key ingredients listed above, we are able 
to bound the H1-type norm of the difference of the solution of (6) and (9) by Cκ, and C is 
a constant independent of time.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations and 
list several Lemmas that will be frequently used; Sect. 3 prepares the local existence result 
for the bootstrap argument; Section 4 devotes to the global existence and stability results 
and proves Theorems 1.1 and 1.2; Sect. 5 considers the exponential decay and proves Theo-
rem 1.3; Sect. 6 focuses on the vanishing viscosity limit problem and proves Theorem 1.4.

2  Preliminaries

In this section, we introduce some notations and useful lemmas that we shall use throughout 
the paper.

2.1  Notations

In this paper, we will use the following notations. We use f ≲ g to denote f ≤ Cg. Also, 
we use the abbreviation B = B(0, 1). ∂Ri , divR and ∇R denote the Ri-derivative, diver-
gence and gradient in R-variable, respectively. We define the following Hilbert spaces in 
R-variable:

	

L2 = L2( dR/ψ∞) =
{

ψ
∣∣∣∥|ψ||2L2 =

∫

B

|ψ|2 dR

ψ∞
< ∞

}
,

Ḣ1 =
{

ψ
∣∣∣∥|ψ||2Ḣ1 =

∫

B

ψ∞

∣∣∣∇R
ψ

ψ∞

∣∣∣
2
dR < ∞

}
,

H1 =
{

ψ ∈ L2
∣∣∣

∫

B

ψ2

ψ∞
+ ψ∞

∣∣∣∇R
ψ

ψ∞

∣∣∣
2
dR < ∞

}
.

Next, we define the norm involving x and R. For s ≥ 0,
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||ψ||2Hs(L2) =
∑

|α|≤s

�

R2B

|∂αψ|2 dR

ψ∞
dx,

||ψ||2
Hs(Ḣ1) =

∑
|α|≤s

�

R2B

ψ∞

∣∣∣∣∇R
∂αψ

ψ∞

∣∣∣∣
2

dR dx,

here, for α ∈ N2, ∂α denotes α1 times derivatives in x1 and α2 times derivatives in x2.
We also define the linear operator in R:

	
Lψ = divR

(
ψ∞∇R

ψ

ψ∞

)

with the domain

	
D(L) =

{
ψ ∈ L2

∣∣∣ ψ∞∇R
ψ

ψ∞
∈ L2, divR

(
ψ∞∇R

ψ

ψ∞

)
∈ L2, ψ∞∇R

ψ

ψ∞
· n

∣∣∣
∂B

= 0
}

.

The boundary condition ψ∞∇R
ψ

ψ∞
· n

∣∣∣
∂B

= 0 should be understood in the sense that for 

any ϕ ∈ Ḣ1,

	

∫

B

ϕLψ
dR

ψ∞
= −

∫

B

ψ∞∇R
ϕ

ψ∞
∇R

ψ

ψ∞
dR.

2.2  Horizontal average and oscillation

To study the decay property and the inviscid limit of (u, ψ), we define the horizontal average

	
f̄(x2) =

∫

T
f(x1, x2) dx1.� (20)

Then, we can decompose f into horizontal average f̄  and the corresponding oscillation part 
f̃ :

	 f = f̄ + f̃ .� (21)

The following lemma contains some properties of f̃  and f̄ , which are frequently used in the 
proofs of Theorems 1.3 and 1.4.

Lemma 2.1  ([14]) Let f be a 2D function defined on Ω = T × R and f ∈ H 2 (Ω), f̄  and f̃  
are defined as in (20) and (21). 

i.	 f̄  and f̃  satisfy the following properties 

	 ∂1f = ∂1f̄ = 0, ∂̃1f = ∂1f̃ , ∂2f = ∂2f̄ , ∂̃2f = ∂2f̃ , ¯̃f = 0.
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ii.	 If div f = 0, then f̄  and f̃  are also divergence free, namely 

	 div f̄ = 0 and div f̃ = 0.

iii.	 f̄  and f̃  are orthogonal in L2, namely 

	
(f̄ , f̃) =

∫

Ω
f̄ f̃ dx = 0, ||f ||2L2 = ||f̄ ||2L2 + ||f̃ ||2L2 .

iv.	 If f and g are defined in Ω, then 

	
(f̄ , g̃) =

∫

Ω
f̄ g̃ dx = 0.

Also, an important property of f̃  is that it satisfies a strong version of Poincaré inequality, 
which is crucial for proving both exponential decay and the inviscid limit.

Lemma 2.2  ([14]) Let f be a 2D function defined on Ω = T × R. ̃f  is defined as in (21), and 
f̃ ∈ H 1 (Ω). Then

	 ||f̃ ||L2(Ω) ≤ C||∂1f̃ ||L2(Ω).

2.3  Anisotropic inequalities

To optimize the utilization of anisotropic dissipation, we introduce a series of anisotropic 
inequalities that will play a crucial role in the proofs presented in the subsequent sections. 
These anisotropic bounds are very powerful tools when investigating anisotropic systems.

The first anisotropic inequality of R2 is for the triple product, which is a useful tool in 
bounding the nonlinear terms.

Lemma 2.3  ([8]) Assume that f, g, ∂1 f , ∂2 g are all in L2 (R2 ), then

	

∫

R2
fgh dx ≲ ||f ||

1
2
L2 ||∂1f ||

1
2
L2 ||g||

1
2
L2 ||∂2g||

1
2
L2 ||h||L2 .

Sometimes we take L∞ norm for the part with lower order derivatives in nonlinear terms, 
so the following anisotropic inequality is required.

Lemma 2.4  ([27]) Assume that f, ∂1 f , ∂2 f , ∂1 ∂2 f  are all in L2 (R2 ), then

	 ||f ||L∞(R2) ≲ ||f ||
1
4
L2 ||∂1f ||

1
4
L2 ||∂2f ||

1
4
L2 ||∂1∂2f ||

1
4
L2 ≲ ||f ||

1
2
H1 ||∂1f ||

1
2
H1 .

For Ω = T × R, the corresponding anisotropic inequalities read as follows.

Lemma 2.5  ([14]) Let Ω = T × R. 
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i.	 Assume that f, g, h, ∂1f , ∂2g are all in L2(Ω), then 

	

∫

Ω
fgh dx ≲ ||f ||

1
2
L2 (||f ||L2 + ||∂1f ||L2 ) 1

2 ||g||
1
2
L2 ||∂2g||

1
2
L2 ||h||L2 ,

∫

Ω
f̃gh dx ≲ ||f̃ ||

1
2
L2 ||∂1f̃ ||

1
2
L2 ||g||

1
2
L2 ||∂2g||

1
2
L2 ||h||L2 .

ii.	 Assume that f, ∂1f , ∂2f , ∂1∂2f  are all in L2(Ω), we have 

	

||f ||L∞(Ω) ≲ ||f ||
1
4
L2 (||f ||L2 + ||∂1f ||L2 ) 1

4 ||∂2f ||
1
4
L2 (||∂2f ||L2 + ||∂1∂2f ||L2 ) 1

4

≲ ||f ||
1
2
H1 (||f ||H1 + ||∂1f ||H1 ) 1

2 ,

||f̃ ||L∞(Ω) ≲ ||f̃ ||
1
4
L2 ||∂1f̃ ||

1
4
L2 ||∂2f̃ ||

1
4
L2 ||∂1∂2f̃ ||

1
4
L2 ≲ ||f̃ ||

1
2
H1 ||∂1f̃ ||

1
2
H1 .

2.4  Inequalities in R-variable

The first inequality in R is the Poincaré inequality, which is frequently used in Section 4 to 
identify the dissipation terms. Additionally, it plays a pivotal role in establishing the expo-
nential decay.

Lemma 2.6  ([33]) Assume that ψ ∈ H1  and 
∫

B ψ = 0 , then

	

∫

B

ψ2

ψ∞
dR ≲

∫
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣
2

dR.

To deal with the singular term div τ , the main tool is the Hardy type inequality innova-
tively developed in [33]. We denote x = 1 − |R|.

Lemma 2.7  ([33]) For all ε > 0 , there exists a constant Cε > 0  such that

	

(∫

B

|ψ|
x

dR

)2

≤ ε

∫

B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣
2

dR + Cε

∫

B

ψ2

ψ∞
dR.

The following Hardy inequality is restricted in the case that k > 1, and it can deal with 
stronger singularity.

Lemma 2.8  ([33]) Assume that k > 1 , 
∫

B ψ = 0 , and ψ ∈ Ḣ1 , then

	

∫

B

ψ2

ψ∞x2 dR ≲ |ψ|2Ḣ1 .
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3  Local existence

In this section, we devote to proving the large data local existence of 2D FENE dumbbell 
model (6) with symmetric initial data, and demonstrating the symmetry-preserving property 
of ψ. Then, with a similar procedure, we can obtain the local existence results of the models 
mentioned in Theorems 1.1, 1.3 and 1.4. Given that we account for the local existence of 
large solutions, this section examines the original form of the equation rather than the per-
turbed form (6). When ν = 0, the original form of system (2) reads as follows

	

{
∂tu + (u · ∇)u = ∂2

1u − ∇p + div τ, div u = 0,
∂tψ + u · ∇ψ = divR(−∇u · Rψ) + Lψ, � (22)

here we use the same notation for simplicity.
Before stating the local existence result, we should first clarify the definition of even and 

odd in this paper.

Definition 3.1  Suppose f is defined on B × [0, T ] and f ∈ L2([0, T ]; L2), then f is even 
(odd) in R2 if for all ξ ∈ L∞([0, T ]; L2) and ξ is odd (even) in R2, we have

	

∫

B

fξ dR = 0 for almost every t ∈ [0, T ].

Definition 3.2  Suppose g is defined on B × R2 × [0, T ] and g ∈ L2([0, T ]; L2(L2)), then 
g is even (odd) in R2 if for all ξ ∈ L∞([0, T ]; L2(L2)) and ξ is odd (even) in R2, we have

	

∫

B

gξ dR = 0 for almost every (x, t) ∈ R2 × [0, T ].

With the above definitions, the local existence result reads as follows.

Proposition 3.1  Suppose that u0 ∈ H 2 (R2 ), div u0 = 0 , ψ0 ∈ H 2 (L2 ) and is even in R2 , 
then there exists T > 0  such that there exists a unique solution (u, ψ) of (22) in the sense 
that

	

u ∈ L∞([0, T ]; H2(R2)), ∂1u ∈ L2([0, T ]; H2(R2)),
ψ ∈ L∞([0, T ]; H2(R2; L2)) ∩ L2([0, T ]; H2(R2, Ḣ1)).

Moreover, for s = 0 , 1 , 2  and j = 1 , 2 ,

	
∂s

j ψ, ∂R1

∂s
j ψ

ψ∞
areeveninR2, ∂R2

∂s
j ψ

ψ∞
isoddinR2.

Due to the involvement of the singular term τ , the local existence of (3) is not a stan-
dard result. To overcome this singularity, Masmoudi [33] established the crucial Hardy type 
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inequality in Lemma 2.7, and discovered that the linear operator −L in R variable has a 
similar dissipative effect as −∆.

Compared to [33], the local existence problem we consider is more difficult. On the one 
hand, we no longer have the vertical dissipation of u; on the other hand, we have to addition-
ally verify that the symmetry is maintained.

3.1  Linear solution in R

To prove the local existence result, we first show the global existence of a linear evolution 
equation in (R, t).

Lemma 3.2  Assume that Λ(t) ∈ L2 ([0 , ∞)) is a matrix-valued function, f ∈ L2 ([0 , T ]; L2 ) 
and ψ0 (R) ∈ L2  is even in R2 , then for any T > 0 ,

	

{
∂tψ = −divR(Λ(t) · Rψ) + Lψ + divRf,

ψ∞∇R
ψ

ψ∞
· n

∣∣∣
∂B

= 0, ψ(0) = ψ0, � (23)

has a unique weak solution in L∞([0 , T ]; L2 ) ∩ L2 ([0 , T ]; Ḣ1 ), and

	
ψ, ∂R1

ψ

ψ∞
areeveninR2, ∂R2

ψ

ψ∞
isoddinR2.

Proof  The proof of the existence and uniqueness of the solution is parallel to [33, Proposi-
tion 3.9]. Hence, it suffices to consider the symmetry property of ψ and its derivatives. First, 
we can deduce the symmetry of ψ by the uniqueness of solution. Suppose that ψ is a solution 
of (23), then φ with

	 φ = ψ(R1, −R2, t)

also satisfies (23) with initial data φ0 defined as

	 φ0 = ψ0(R1, −R2).

Since ψ0 is even in R2, we have φ0 = ψ0. By the uniqueness of the solution, for all 
0 ≤ t ≤ T , we have φ(t) = ψ(t), or

	 ψ(R1, R2, t) = ψ(R1, −R2, t).

Next, we prove the symmetry of the derivatives of ψ. We consider ∂R2
ψ

ψ∞
 as an example.

Notice that C∞
c (B) is dense in L2(B), for all ζ ∈ L∞([0, T ]; L2) and ζ is even in R2, 

we can use standard mollification to obtain a sequence {ζN }N≥1 and each ζN  is even in R2, 
such that ζN → ζ in L∞([0, T ]; L2) as N → ∞. Therefore, for any 0 < t1 < t2,

	

∫ t2

t1

∫

B

∂R2

ψ

ψ∞
ζ dR dt = H1 + H2,
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where

	

H1 :=
∫ t2

t1

∫

B

∂R2

ψ

ψ∞
ζ dR dt −

∫ t2

t1

∫

B

∂R2

ψ

ψ∞
ζN dR dt,

H2 :=
∫ t2

t1

∫

B

∂R2

ψ

ψ∞
ζN dR dt.

For H1, by Hölder’s inequality,

	 |H1| ≤ ||ψ||L2([0,T ];Ḣ1)||ζ − ζN ||L2([0,T ];L2) → 0 as N → ∞.

For H2, since ζN ∈ C∞
c (B), we can obtain directly from the definition of classical deriva-

tive that ∂R2 ζN  is odd in R2. Also, since ζN  has compact support, we can use integration by 
parts and ψ is even in R2 to obtain that

	
H2 = −

∫ t2

t1

∫

B

ψ

ψ∞
∂R2 ζN dR dt = 0.

Therefore, by passing the limit, we have

	

∫ t2

t1

∫

B

∂R2

ψ

ψ∞
ζ dR dt = 0.

Since t1 and t2 are arbitrary, we can deduce from Lebesgue’s Lemma that for almost every 
t > 0,

	

∫

B

∂R2

ψ(t)
ψ∞

ζ(t) dR = lim
δ→0

1
2δ

∫ t−δ

t+δ

∫

B

∂R2

ψ

ψ∞
ζ dR dt = 0.

Since the above equality holds for all ζ even in R2, we deduce from Definition 3.1 that 
∂R2

ψ(t)
ψ∞

 is odd in R2. Using the same density argument, we can obtain that ∂R1
ψ(t)
ψ∞

 is even 
in R2. � □

Next, we introduce the dependence of ψ on the x-variable through the involvement of a 
given u(x, t), and show the regularity in the x-variable as well as the symmetry of ψ.

Proposition 3.3  Assume that for some T > 0 , u ∈ L∞([0 , T ]; H 2 ), ∂1 u ∈ L2 ([0 , T ]; H 2 ). 
Also, suppose that ψ0 (x, R) ∈ H 2 (L2 ) and is even in R2  for almost every x ∈ R2 . Then

	

{
∂tψ + u · ∇ψ = −divR(∇u · Rψ) + Lψ,

ψ∞∇R
ψ

ψ∞
· n

∣∣∣
∂B

= 0, ψ(0) = ψ0, � (24)

has a unique solution
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	 ψ ∈ L∞([0, T ]; H2(R2; L2)) ∩ L2([0, T ]; H2(R2; Ḣ1)).

Moreover, for s = 0 , 1 , 2  and j = 1 , 2 ,

	
∂s

j ψ, ∂R1

∂s
j ψ

ψ∞
areeveninR2, ∂R2

∂s
j ψ

ψ∞
isoddinR2.

Proof  The proof of the spatial regularity is parallel to [33, Proposition 3.10], except that 
Lemma 2.4 is utilized when necessary.

Regarding the symmetry of ψ, similar to the corresponding part in Lemma 3.2, we utilize 
mollification and Lebesgue’s Lemma. For any ζ ∈ L∞([0, T ]; L2(L2)) and is even in R2, 
we have

	

∫

B

∂R2

∂kψ

ψ∞
ζ dR = 0 for almost every (x, t) ∈ R2 × [0, T ],

and by the Definition 3.2, ∂R2
∂kψ
ψ∞

 is odd in R2.
Using a similar argument, we can establish the remaining desired spatial regularity and 

symmetry as stated in Proposition 3.3. � □

3.2  A priori estimates

In this part, we prepare the a priori energy estimate of ψ for the subsequent fixed-point 
argument. The proof of the energy inequality will utilize the symmetry property of ψ, as 
established in Proposition 3.3.

Proposition 3.4  Suppose that the assumptions of Proposition 3.3 hold. Then there exists a 
constant C > 0  such that

	

sup
0≤s≤T

||ψ(s)||2H2(L2) +
∫ T

0
||ψ(s)||2

H2(Ḣ1) ds

≤ exp
{

C sup
0≤s≤T

||u(s)||2H2 T + C

∫ T

0
||∂1u(s)||2H2 ds

}
||ψ0||2H2(L2).

� (25)

Proof  First, we deduce the L2-type energy estimate of ψ. Integrating the second equation of 
(6) with ψ, then using div u = 0, integrating by parts, Lemma 2.4 and Young’s inequality, 
we have

	
d
dt

||ψ||2L2(L2) + ||ψ||2
L2(Ḣ1) ≤ C(||∇u||2H1 + ||∂1∇u||2H1 )||ψ||2L2(L2). � (26)

Now, we consider the Ḣ2-type estimate. By applying ∂2
k(k = 1, 2) to the second equation 

of (6), and integrating it with ∂2
kψ, we obtain

1 3

Page 19 of 50  190



J. Gao et al.

	
1
2

d
dt

||∂2
kψ||2L2(L2) + ||∂2

kψ||2
L2(Ḣ1) = H3 + H4, � (27)

where

	

H3 := −
�

R2B

∂2
k(u · ∇ψ)∂2

kψ
dR

ψ∞
dx,

H4 :=
�

R2B

∂2
kdivR(−∇u · Rψ)∂2

kψ
dR

ψ∞
dx.

Thanks to Lemmas 2.3, 2.4, and Hölder inequality, we can bound H3 by

	

H3 = −
�

R2B

∂2
ku · ∇ψ∂2

kψ
dR

ψ∞
dx −

�

R2B

∂ku · ∇∂kψ∂2
kψ

dR

ψ∞
dx

≲||∂2
ku||

1
2
L2 ||∂1∂2

ku||
1
2
L2 ||∇ψ||

1
2
L2(L2)||∂2 ∇ψ||

1
2
L2(L2)||∂

2
kψ||L2(L2)

+ ||∂ku||
1
2
H1 ||∂1∂ku||

1
2
H1 ||∇∂kψ||L2(L2)||∂2

kψ||L2(L2)

≲(||u||2H2 + ||∂1u||2H2 + 1)||ψ||2H2(L2).

For H4, after integration by parts in R-variable and using Lemmas 2.3, 2.4 and div u = 0, 
we find

	

H4 =
2∑

l=0

�

R2B

∂l
k∂1u1

(
R1∂2−l

k ψ∂R1

∂2
kψ

ψ∞
− R2∂2−l

k ψ∂R2

∂2
kψ

ψ∞

)
dR dx

≤C||∇u||
1
2
H1 ||∂1 ∇u||

1
2
H1 ||∂2

kψ||L2(L2)||∂2
kψ||L2(Ḣ1)

+ C||∂k∂1u||
1
2
L2 ||∂1 ∂k∂1u||

1
2
L2 ||∂kψ||

1
2
L2(L2)||∂2 ∂kψ||

1
2
L2(L2)||∂

2
kψ||L2(Ḣ1)

+ C||∂2
k∂1u||L2 ||ψ||H2(L2)||∂2

kψ||L2(Ḣ1)

≤1
2

||∂2
kψ||2

L2(Ḣ1) + C(||u||2H2 + ||∂1u||2H2 )||ψ||2H2(L2),

where for the first equality, we use the symmetry property in Proposition 3.3 to deduce

	

�

R2B

∂l
k∂2u1R2∂2−l

k ψ∂R1

∂2
kψ

ψ∞
dR dx =

�

R2B

∂l
k∂1u2R1∂2−l

k ψ∂R2

∂2
kψ

ψ∞
dR dx = 0.

Substituting the estimates of H5 and H6 into (27) yields

	

d
dt

||∂2
kψ||2L2(L2) + ||∂2

kψ||2
L2(Ḣ1)

≤ C(||u||2H2 + ||∂1u||2H2 + 1)||∂2
kψ||2L2(L2).

� (28)

Due to the norm equivalence
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||ψ||H2(L2)∩H2(Ḣ1) ∼ ||ψ||L2(L2)∩L2(Ḣ1) +

2∑
k=1

||∂2
kψ||L2(L2)∩L2(Ḣ1),

we can deduce from (26) and (28) that

	
d
dt

||ψ||2H2(L2) + ||ψ||2
H2(Ḣ1) ≤ C(||u||2H2 + ||∂1u||2H2 + 1)||ψ||2H2(L2),

and (25) comes directly after integrating the above inequality in time. � □

3.3  Existence proof

Now, we are ready to prove Proposition 3.1. In the energy estimates of u, due to the absence 
of vertical dissipation, it is necessary for us to utilize the symmetry of ψ to handle the sin-
gular term div τ .

Proof of Proposition 3.1  In order to use a fixed-point argument, for 0 < T ≤ 1, we set

	X =
{

(u, ψ)|u ∈ L∞([0, T ]; H2), ∂1u ∈ L2([0, T ]; H2), div u = 0, ψ ∈ L∞([0, T ]; H2(L2))
}

.

Also, we define operator F : X → X  by F(v, ξ) = (u, ψ), where ψ is the unique solution 
of

	




∂tψ + v · ∇ψ = divR(−∇v · Rψ) + Lψ,
ψ(x, R, 0) = ψ0,
ψ∞∇R

ψ
ψ∞

· n = 0 on ∂B,

and u is the unique solution of the following linear equation

	

{
∂tu + (v · ∇)u = ∂2

1u − ∇p + div τ,
div u = 0, u(x, 0) = u0,

where τ =
∫

B
(R ⊗ ∇U)ψ dR.

Let X0 be a closed subset of X  defined by

	
X0 =

{
(u, ψ) ∈ X

∣∣∣ sup
0≤t≤T

||u(t)||2H2 +
∫ T

0
||∂1u(t)||2H2 dt ≤ 6||u0||2H2 + 1, sup

0≤t≤T
||ψ(t)||2H2(L2) ≤ A

}
,

where

	 A = exp
{

2C(3||u0||2H2 + 1)
}

||ψ0||2H2(L2).

Now, we show that for T small enough, F  maps X0 into X0. Suppose that (v, ξ) ∈ X0, one 
first deduces from Proposition 3.4 that
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sup

0≤t≤T
||ψ(t)||2H2(L2) +

∫ T

0
||ψ(t)||2

H2(Ḣ1) dt ≤ e2C(3||u0||2
H2 +1)||ψ0||2H2(L2) = A. � (29)

Then we estimate Ḣ2 norm of u. For k = 1, 2, direct energy estimates show that

	
1
2

d
dt

||∂2
ku||2L2 + ||∂1∂2

ku||2L2 = H5 + H6, � (30)

where

	

H5 := −
∫

R2
∂2

k(v · ∇u)∂2
ku dx,

H6 :=
∫

R2
div ∂2

kτ∂2
ku dx.

By using Lemmas 2.3, 2.4, div v = 0 and Young’s inequality, we have

	

H5 = −
∫

R2
∂kv · ∇∂ku∂2

ku dx −
∫

R2
∂2

kv · ∇u∂2
ku dx

≤C||∂kv||
1
2
L2 ||∂2∂kv||

1
2
L2 ||∂k∇u||

1
2
L2 ||∂1∂k∇u||

1
2
L2 ||∂2

ku||L2

+ C||∂2
kv||L2 ||∇u||

1
2
H1 ||∂1 ∇u||

1
2
H1 ||∂2

ku||L2

≤1
4

||∂1∂2
ku||2L2 + C(||v||2H2 + 1)||u||2H2 .

Next, thanks to the symmetry property, by integrating by parts, div u = 0 and Lemma 2.7, 
we have

	

H6 = −2k

2∑
l=1

�

R2B

R2
l

1 − |R|2
∂2

kψ∂l∂
2
kul dR dx

= 2k
�

R2B

∂1∂2
ku1

R2
1 − R2

2
1 − |R|2

∂2
kψ dR dx

≤ 1
4

||∂1∂2
ku||2L2 + a||ψ||2

H2(Ḣ1) + Ca||ψ||2H2(L2),

where a > 0 is a small constant that will be determined later. Inserting the bounds of H7 
and H8 into (30), together with the norm equivalence ||u||H2 ∼ ||u||L2 +

∑
k ||∂2

ku||L2 , 
we get that

	
d
dt

||u||2H2 + ||∂1u||2H2 ≤ C(||v||2H2 + 1)||u||2H2 + a||ψ||2
H2(Ḣ1) + Ca||ψ||2H2(L2).

Integrating the above inequality in time, and recalling the bound of ψ in (29), we obtain that
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sup

0≤t≤T
||u(t)||2H2 +

∫ T

0
||∂1u(t)||2H2 dt ≤

(
||u0||2H2 + A(a + CaT )

)
e2C(3||u0||2

H2 +1)T . � (31)

Hence, if we take

	
a ≤ 1

2eA
and T ≤ max

{
1

2C(3||u0||2H2 + 1)
,

1
2eCa

}
,

then the right hand side of (31) is bounded by 6||u0||2H2 + 1. Together with (29), F  maps 
X0 into X0.

Next, we prove that F  is a contraction under the following norm:

	
||(u, ψ)||2X0

= sup
0≤t≤T

||u(t)||2L2 +
∫ T

0
||∂1u(t)||2L2 dt + θ sup

0≤t≤T
||ψ(t)||2L2(L2),

namely, by choosing θ and T suitably small, there is

	
||F(v1, ξ1) − F(v2, ξ2)||X0 ≤ 1

2
||(v1, ξ1) − F (v2, ξ2)||X0 .� (32)

For convenience, we denote (ui, ψi) = F(vi, ξi), i = 1, 2, then 
(δu, δψ) := (u1 − u2, ψ1 − ψ2) satisfies

	

{
∂tδu + v1 · ∇δu + (v1 − v2) · ∇u2 = ∂2

1δu + ∇P + div (τ1 − τ2),
∂tδψ + v1 · ∇δψ + (v1 − v2) · ∇ψ2 = divR(−∇u1Rδψ) + divR(−∇(v1 − v2)Rψ1) + Lδψ,
δu|t=0 = 0, δψ|t=0 = 0.

Similar to the previous energy estimates, by choosing θ small enough, it is not difficult to 
obtain that

	

d
dt

(||δu||2L2 + θ||δψ||2L2(L2)) + ||∂1δu||2L2

≤ C(||δu||2L2 + θ||δψ||2L2(L2) + ||v1 − v2||2L2 + θ||ξ1 − ξ2||2L2 ) + 1
2

||∂1(v1 − v2)||2L2 .

Hence, by integrating the above inequality in time and choosing T necessarily small, we 
obtain (32). Finally, by standard fixed-point argument, there exists a unique solution (u, ψ) 
in X . � □

4  Global existence

This section focuses on proving Theorems 1.1 and 1.2. The framework for proving the 
uniform global bound is the bootstrap argument (see e.g. p.21 of [38]). Our goal is to select 
the appropriate energy functionals and verify that they satisfy the required energy inequali-
ties. In this section, we will give the proof of Theorem 1.1 in Section 4.1 and the proof of 
Theorem 1.2 in Section 4.2.
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4.1  Mixed partial dissipation

As described in the introduction, our energy functional consists of two parts, the first part is 
the natural H2-type energy functional, and the second part incorporates the extra regular-
izing property revealed by the special wave structure (15). More precisely, we recall that

	 E(t) = E1(t) + E2(t),

where

	

E1(t) = sup
0≤s≤t

||u(s)||2H2 + sup
0≤s≤t

||ψ(s)||2H2(L2)

+
∫ t

0

{
||∂1u(s)||2H2 + ||∂2ψ(s)||2H2(L2) + ||ψ(s)||2

H2(Ḣ1)

}
ds,

� (33)

	
E2(t) =

∫ t

0
||∂2u(s)||2H1 ds.� (34)

The main ingredient of the proof of Theorem 1.1 is the following energy inequalities.

Proposition 4.1  Let E1 (t) and E2 (t) be the ones as (33) and (34), then there exists a con-
stant C > 0  independent of t such that

	 E1(t) ≤ E1(0) + CE1(t) 3
2 + CE2(t) 3

2 ,� (35)

	 E2(t) ≤ CE1(0) + CE1(t) + CE1(t) 3
2 + CE2(t) 3

2 .� (36)

With the above two energy inequalities at hand, we are able to prove Theorem 1.1.

Proof  (Proof of Theorem 1.1) We employ the bootstrap argument. It follows from (35) and 
(36) that

	 E1(t) + E2(t) ≤ C1E1(0) + C2(E1(t) + E2(t)) 3
2 ,

where C1 and C2 are some pure constants. If we make the ansatz that

	
E1(t) + E2(t) ≤ 1

4C2
2

,

then we have

	 E1(t) + E2(t) ≤ 2C1E1(0).

Hence, if we take the initial data (u0, ψ0) sufficiently small such that
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E1(0) = ||u0||2H2 + ||ψ0||2H2(L2) ≤ 1

16C1C2
2

:= ε2
1,� (37)

then

	
E1(t) + E2(t) ≤ 1

8C2
2

,� (38)

which is exactly half of our ansatz. Following the bootstrap argument, (38) holds for all 
t > 0 if the initial data satisfies (37), and this completes our proof. � □

Now, it suffices to prove Proposition 4.1.

Proof of Proposition 4.1  We first prove (35). Due to the equivalence

	
||u||2H2 + ||ψ||2H2(L2) ∼ ||u||2L2 +

2∑
k=1

||∂2
ku||2L2 + ||ψ||2L2(L2) +

2∑
k=1

||∂2
kψ||2L2(L2),� (39)

we consider the L2-type norm and the homogeneous Ḣ2-type norm of (u, ψ). We first con-
sider the L2 estimate. By Standard energy estimates and div u = 0, we have

	

1
2

d
dt

(||u||2L2 + ||ψ||2L2(L2)) + ||∂1u||2L2 + ||∂2ψ||2L2(L2) + ||ψ||2
L2(Ḣ1)

=
∫

R2
div τ · u dx +

�

R2B

divR(−∇u · Rψ∞)ψ dR

ψ∞
dx

+
�

R2B

divR(−∇u · Rψ)ψ dR

ψ∞
dx.

We start by analyzing the first two terms on the right-hand side of the equation. By integrat-

ing by parts and using the fact that −∂Ri
ψ∞

ψ∞
= ∂Ri U  and div u = 0, we obtain that

	

�

R2B

divR(−∇u · Rψ∞)ψ dR

ψ∞
dx

= −
�

R2B

div u ψ∞ψ dR dx +
2∑

i,j=1

�

R2B

∂juiRj∂Ri Uψ dRdx

= −
∫

R2
div τ · u dx.

� (40)

Thanks to the above equality, by using integrating by parts in R and Sobolev embedding, 
we have
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1
2

d
dt

(||u||2L2 + ||ψ||2L2(L2)) + ||∂1u||2L2 + ||∂2ψ||2L2(L2) + ||ψ||2
L2(Ḣ1)

=
�

R2B

∇u · Rψ · ∇R
ψ

ψ∞
dR dx

≲ ||ψ||H2(L2)(||∇u||2L2 + ||ψ||2
L2(Ḣ1)).

� (41)

Next, we consider the Ḣ2-type estimates. By applying ∂2
k(k = 1, 2) to (4) and multiplying 

them by (∂2
ku, ∂2

kψ) in L2 and L2(L2) respectively, we deduce

	

1
2

d
dt

(||∂2
ku||2L2 + ||∂2

kψ||2L2(L2))

+ ||∂1∂2
ku||2L2 + ||∂2∂2

kψ||2L2(L2) + ||∂2
kψ||2

L2(Ḣ1) =
5∑

i=1

Ii,
� (42)

where

	

I1 :=
∫

R2
∂2

kdiv τ · ∂2
ku dx,

I2 :=
�

R2B

∂2
kdivR(−∇u · Rψ∞)∂2

kψ
dR

ψ∞
dx,

I3 := −
∫

R2
∂2

k(u · ∇u) · ∂2
ku dx,

I4 := −
�

R2B

∂2
k(u · ∇ψ)∂2

kψ
dR

ψ∞
dx,

I5 :=
�

R2B

∂2
kdivR(−∇u · Rψ)∂2

kψ
dR

ψ∞
dx.

First of all, similar to (40), we directly obtain I1 + I2 = 0.
Thanks to div u = 0, we can bound I3 directly by using Lemma 2.3:

	

I3 = −
2∑

i=1

∫

R2
∂2

kui∂iu · ∂2
ku dx −

2∑
i=1

∫

R2
∂kui∂i∂ku · ∂2

ku dx

≲ ||∂2
ku||

1
2
L2 ||∂1∂2

ku||
1
2
L2 ||∂iu||

1
2
L2 ||∂2 ∂iu||

1
2
L2 ||∂2

ku||L2

+ ||∂ku||
1
2
L2 ||∂2∂ku||

1
2
L2 ||∂i∂ku||

1
2
L2 ||∂1 ∂i∂ku||

1
2
L2 ||∂2

ku||L2

≲ ||u||H2 (||∂2u||2H1 + ||∂1u||2H2 ).

� (43)

In order to bound I4, we take advantage of Lemmas 2.3, 2.4, 2.6 and div u = 0 to obtain
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I4 = −
2∑

i=1

�

R2B

∂2
kui∂iψ∂2

kψ
dR

ψ∞
dx −

2∑
i=1

�

R2B

∂kui∂i∂kψ∂2
kψ

dR

ψ∞
dx

≲ ||∂2
ku||

1
2
L2 ||∂1∂2

ku||
1
2
L2 ||∂iψ||

1
2
L2(L2)||∂2 ∂iψ||

1
2
L2(L2)||∂

2
kψ||L2(L2)

+ ||∂ku||
1
2
H1(L2)||∂1∂ku||

1
2
H1(L2)||∂i∂kψ||L2(L2)||∂2

kψ||L2(L2)

≲ ||ψ||H2(L2)(||∂2u||2H1 + ||∂1u||2H2 + ||ψ||2
H2(Ḣ1)).

� (44)

Now we consider I5, which is the most complex one to deal with. We let I5 = I5,1 + I5,2, 
where

	

I5,1 :=
�

R2B

∂2
1divR(−∇u · Rψ)∂2

1ψ
dR

ψ∞
dx,

I5,2 :=
�

R2B

∂2
2divR(−∇u · Rψ)∂2

2ψ
dR

ψ∞
dx.

We first consider I5,1. By integrating by parts in R and divergence free condition, We further 
divide I5,1 into three parts, namely I5,1 = I5,1,1 + I5,1,2 + I5,1,3, where

	

I5,1,1 :=
2∑

i,j=1

�

R2B

∂juiRj∂2
1ψ∂Ri

∂2
1ψ

ψ∞
dR dx,

I5,1,2 :=
2∑

i,j=1

�

R2B

∂1∂juiRj∂1ψ∂Ri

∂2
1ψ

ψ∞
dR dx,

I5,1,3 :=
2∑

i,j=1

�

R2B

∂2
1∂juiRjψ∂Ri

∂2
1ψ

ψ∞
dR dx.

Since we have the horizontal dissipation ∂2
1u, by Lemmas 2.3, 2.4, and Sobolev embedding, 

we can directly bound the above terms as follows

	

I5,1,1 ≲
2∑

j=1

||∂ju||
1
2
H1 ||∂1 ∂ju||

1
2
H1 ||∂2

1ψ||L2(L2)||∂2
1ψ||L2(Ḣ1)

≲||ψ||H2(L2)(||∂2u||2H1 + ||∂1u||2H2 + ||ψ||2
H2(Ḣ1)),

I5,1,2 ≲
2∑

j=1

||∂1∂ju||
1
2
L2 ||∂1 ∂1∂ju||

1
2
L2 ||∂1ψ||

1
2
L2(L2)||∂2 ∂1ψ||

1
2
L2(L2)||∂

2
1ψ||L2(Ḣ1)

≲||ψ||H2(L2)(||∂1u||2H2 + ||ψ||2
H2(Ḣ1)),

I5,1,3 ≲
2∑

j=1

||∂2
1∂ju||L2 ||ψ||L∞(L2)||∂2

1ψ||L2(Ḣ1)

≲||ψ||H2(L2)(||∂1u||2H2 + ||ψ||2
H2(Ḣ1)).
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Next, we consider I5,2. We use integrating by parts and div u = 0 to write I5,2 = I5,2,1 + I5,2,2, 
where

	

I5,2,1 :=
1∑

r=0

2∑
i,j=1

�

R2B

∂r
2∂juiRj∂2−r

2 ψ∂Ri

∂2
2ψ

ψ∞
dR dx,

I5,2,2 := −
2∑

i,j=1

�

R2B

∂2
2∂juiRj∂Ri ψ∂2

2ψ
dR

ψ∞
dx.

Similar to I5,1,1 and I5,1,2, we can bound I5,2,1 as follows

	

I5,2,1 ≲
2∑

j=1

||∂ju||
1
2
H1 ||∂1∂ju||

1
2
H1 ||∂2

2ψ||L2(L2)||∂2
2ψ||L2(Ḣ1)

+ ||∂2∂ju||
1
2
L2 ||∂1 ∂2∂ju||

1
2
L2 ||∂2ψ||

1
2
L2(L2)||∂2 ∂2ψ||

1
2
L2(L2)||∂

2
2ψ||L2(Ḣ1)

≲||ψ||H2(L2)(||∂2u||2H1 + ||∂1u||2H2 + ||ψ||2
H2(Ḣ1)).

We turn our attention to I5,2,2, which presents greater challenges due to insufficient vertical 
dissipation of u. Though it is natural to consider integrating by parts and utilize the vertical 
dissipation of ψ, this approach prevents us from transferring ∂Ri  to ∂3

2ψ as we did previ-
ously, or it will introduce a new term ∂Ri (∂3

2ψ/ψ∞), which cannot be bounded by E1(t) 
and E2(t). However, converting ∂Ri

ψ into the form of ψ1/2
∞ ∂Ri (ψ/ψ∞) introduces a high 

degree of singularity ψ/(xψ
1/2
∞ ). To effectively address this term, we will utilize Hardy 

inequality Lemma 2.8. Following the methodology discussed above, We deal with I5,2,2 as 
follows

	

I5,2,2 =
2∑

i,j=1

�

R2B

{
∂2∂juiRj

(
ψ

1
2∞∂Ri

ψ

ψ∞

)
ψ

− 1
2∞ ∂3

2ψ − 2k∂2∂juiRj

(
ψ

− 1
2∞

ψ

x

)
ψ

− 1
2∞ ∂3

2ψ
}

dR dx

+
2∑

i,j=1

�

R2B

{
∂2∂juiRj

(
ψ

1
2∞∂Ri

∂2ψ

ψ∞

)
ψ

− 1
2∞ ∂2

2ψ − 2k∂2∂juiRj

(
ψ

− 1
2∞

∂2ψ

x

)
ψ

− 1
2∞ ∂2

2ψ
}

dR dx

≲
2∑

j=1

||∂2∂ju||L2 ||∂2ψ||
1
2
H1(Ḣ1)||∂1 ∂2ψ||

1
2
H1(Ḣ1)||∂

3
2ψ||L2(L2)

+
2∑

j=1

||∂2∂ju||L2 ||∂2ψ||
1
2
L2(Ḣ1)||∂1 ∂2ψ||

1
2
L2(Ḣ1)||∂

2
2ψ||

1
2
L2(L2)||∂2∂2

2ψ||
1
2
L2(L2)

≲||u||H2 (||ψ||2
H2(Ḣ1) + ||∂2ψ||2H2(L2)),

where in the first equation, we have used integrating by parts and div u = 0, in the first 
inequality, we have used anisotropic inequalities in Lemmas 2.3, 2.4, as well as Hardy 
inequality in Lemma 2.8. Adding up all the components of I5, we obtain that

	 I5 ≲ (||u||H2 + ||ψ||H2(L2))(||∂1u||2H2 + ||∂2u||2H1 + ||ψ||2
H2(Ḣ1) + ||∂2ψ||2H2(L2)).� (45)
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Inserting the upper bounds (43)-(45) into (42), integrating in time and invoking the norm 
equivalence (39), we find

	

||u(t)||2H2 + ||ψ(t)||2H2(L2)

+
∫ t

0

{
||∂1u(s)||2H2 + ||ψ(s)||2

H2(Ḣ1) + ||∂2ψ(s)||2H2(L2)

}
ds

≤ ||u(0)||2H2 + ||ψ(0)||2H2(L2)

+ C
(

sup
0≤s≤t

||u||H2 + sup
0≤s≤t

||ψ||H2(L2)
)

×
∫ t

0

{
||∂1u||2H2 + ||∂2u||2H1 + ||ψ||2

H2(Ḣ1) + ||∂2ψ||2H2(L2)

}
ds

≤ E1(0) + CE
3
2
1 (t) + CE

3
2
2 (t),

and this proves (35).
Next, we take advantage of wave structure and prove (36). Thanks to div u = 0, we have 

||∇u||H1 = ||Du||H1 . We deduce from the equation of Du in (18) that

	
||Du||2H1 = (Du,Du) +

2∑
l=1

(∂lDu, ∂lDu) =
5∑

k=1

Jk,� (46)

where

	

J1 :=
2∑

j,k=1

�

R2B

d
dt

ψRjRk[Du]j,k dR dx +
2∑

j,k,l=1

�

R2B

d
dt

∂lψRjRk∂l[Du]j,k dR dx,

J2 :=
2∑

j,k=1

�

R2B

u · ∇ψRjRk[Du]j,k dR dx +
2∑

j,k,l=1

�

R2B

∂l(u · ∇ψRjRk)∂l[Du]j,k dR dx,

J3 := −
2∑

j,k=1

�

R2B

∂2
2ψRjRk[Du]j,k dR dx −

2∑
j,k,l=1

�

R2B

∂2
2∂lψRjRk∂l[Du]j,k dR dx,

J4 :=
�

R2B

{ 2∑
j,k=1

divR(∇u · Rψ)RjRk[Du]j,k +
2∑

j,k,l=1

∂ldivR(∇u · Rψ)RjRk∂l[Du]j,k dR
}

dx,

J5 := −
�

R2B

{ 2∑
j,k=1

LψRjRk[Du]j,k +
2∑

j,k,l=1

∂lLψRjRk∂l[Du]j,k

}
dR dx.

To bound J1, we set J1 = J1,1 + J1,2 + J1,3 + J1,4, where
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J1,1 :=
2∑

j,k=1

d
dt

�

R2B

ψRjRk[DPu]j,k dR dx,

J1,2 :=
2∑

j,k,l=1

d
dt

�

R2B

∂lψRjRk∂l[DPu]j,k dR dx,

J1,3 := −
2∑

j,k=1

�

R2B

ψRjRk
d
dt

[DPu]j,k dR dx,

J1,4 := −
2∑

j,k,l=1

�

R2B

∂lψRjRk
d
dt

∂l[DPu]j,k dR dx.

By integrating in time, we have

	

∫ t

0
J1,1 ds +

∫ t

0
J1,2 ds

≲ ||ψ0||H1(L2)||u0||H2 +
2∑

j,k=1

∣∣∣∣∣
�

R2B

ψRjRk[DPu]j,k dR dx

∣∣∣∣∣

+
2∑

j,k,l=1

∣∣∣∣∣
�

R2B

∂lψRjRk∂l[DPu]j,k dR dx

∣∣∣∣∣
≲ ||u||2H2 + ||ψ||2H2(L2) + ||u0||2H2 + ||ψ0||2H2(L2).

By substituting the second equation of (4) into J1,3 and J1,4, then using Lemmas 2.4 and 
2.6, we obtain

	

J1,3 + J1,4 ≲
2∑

j,k=1

∣∣∣∣∣
�

R2B

ψRjRk[DP(u · ∇u)]j,k dR dx

∣∣∣∣∣

+
2∑

j,k,l=1

∣∣∣∣∣
�

R2B

∂2
l ψRjRk[D(u · ∇u)]j,k dR dx

∣∣∣∣∣
+ ||∂1u||H2 ||ψ||H2(Ḣ1) + ||ψ||2

H2(Ḣ1)

≲(||ψ||H2(L2) + ||u||H2 )(||∂2u||2H1 + ||∂1u||2H2 + ||ψ||2
H2(Ḣ1))

+ ||∂1u||2H2 + ||ψ||2
H2(Ḣ1).

Summing up the bounds of J1,i(i = 1, 2, 3, 4) and integrating in t yields that
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∫ t

0
J1(s) ds ≲||u0||2H2 + ||ψ0||2H2(L2) + sup

0≤s≤t
||u(s)||2H2 + sup

0≤s≤t
||ψ(s)||2H2(L2)

+
(
1 + sup

0≤s≤t
||u||H2 + sup

0≤s≤t
||ψ||H2(L2)

) ∫ t

0
||∂1u||2H2 + ||ψ||2

H2(Ḣ1) ds

+
(

sup
0≤s≤t

||u||H2 + sup
0≤s≤t

||ψ||H2(L2)
) ∫ t

0
||∂2u||2H1 ds.

� (47)

By integrating by parts and Lemmas 2.3 and 2.4, we can bound J2 and J4 as follows

	

J2 ≲||u||L∞ ||∇ψ||L2(L2)||∇u||L2

+ ||∇u||
1
2
L2 ||∂1∇u||

1
2
L2 ||∇ψ||

1
2
L2(L2)||∂2 ∇ψ||

1
2
L2(L2)||∇

2u||L2

≲||u||H2 (||∇u||2H1 + ||ψ||2
H2(Ḣ1)),

� (48)

and

	

J4 = −
2∑

j,k,l=1

�

R2B

∇u · Rψ · ∇R(RjRk)[Du]j,k dR dx

−
2∑

j,k,l=1

�

R2B

∂l(∇u · Rψ) · ∇R(RjRk)∂l[Du]j,k dR dx

≲||∇u||2L2 ||ψ||L∞ + ||ψ||L∞ ||∇2u||2L2

+ ||∇u||
1
2
H1 ||∂1∇u||

1
2
H1 ||∇ψ||L2(L2)||∇2u||L2

≲||ψ|H2(L2)(||∂1u||2H2 + ||∂2u||2H1 ).

� (49)

Finally, by Hölder inequality,

	
J3 + J5 ≤ 1

2
||∇u||2H1 + C||∂2ψ||2H2(L2) + C||ψ||2

H1(Ḣ1).� (50)

Integrating (46) in time and invoking upper bounds in (47)-(50), we obtain

	

E2(t) ≤C||u0||2H2 + C||ψ0||2H2(L2) + C sup
0≤s≤t

||∂1u(s)||2H2 + C sup
0≤s≤t

||ψ(s)||2
H2(Ḣ1)

+ C

∫ t

0
||∂1u||2H2 + ||ψ||2

H1(Ḣ1) + ||∂2ψ||2H2(L2) ds

+ C
(

sup
0≤s≤t

||u||H2 + sup
0≤s≤t

||ψ||H2(L2)
) ∫ t

0
||∂1u||2H2 + ||∂2u||2H1 + ||ψ||2

H2(Ḣ1) ds

≤CE1(0) + CE1(t) + CE
3
2
1 (t) + CE

3
2
2 (t),

which is exactly (36), and our proof is accomplished. � □
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4.2  Merely horizontal dissipation

In this part, we consider the global existence and stability of the 2D FENE dumbbell model 
without any vertical dissipation. To address the challenge posed by the loss of derivative, we 
introduce the symmetry condition of initial data, namely, ψ0 is even in R2. In Section 3, we 
have shown that this symmetry property holds as long as the solution exists.

Due to the absence of vertical dissipation ∂2
2ψ, the corresponding energy functionals of 

(6) read as follows

	

E1(t) = sup
0≤s≤t

||u(s)||2H2 + sup
0≤s≤t

||ψ(s)||2H2(L2)

+
∫ t

0

{
||∂1u(s)||2H2 + ||ψ(s)||2

H2(Ḣ1)

}
ds,

E2(t) =
∫ t

0
||∂2u(s)||2H1 ds.

With this suitable energy structure at hand, we are ready to prove Theorem 1.2.

Proof  (Proof of Theorem 1.2) In a manner akin to the bootstrap argument used in the proof 
of Theorem 1.1, we proceed with the L2-type and Ḣ2-type estimate to establish Proposition 
4.1, replacing E1 and E2 with E1 and E2, respectively:

	 E1(t) ≤ E1(0) + CE1(t) 3
2 + CE2(t) 3

2 ,� (51)

	 E2(t) ≤ CE1(0) + CE1(t) + CE1(t) 3
2 + CE2(t) 3

2 .� (52)

Similar to (41) and (42), we have

	

1
2

d
dt

(||u||2L2 + ||ψ||2L2(L2)) + ||∂1u||2L2 + ||ψ||2
L2(Ḣ1)

≲ ||ψ||H2(L2)(||∇u||2L2 + ||ψ||2
L2(Ḣ1)),

� (53)

and

	

1
2

2∑
k=1

d
dt

(||∂2
ku||2L2 + ||∂2

kψ||2L2(L2))

+
2∑

k=1

||∂1∂2
ku||2L2 +

2∑
k=1

||∂2
kψ||2

L2(Ḣ1) :=
2∑

k=1

5∑
i=1

I ′
i,

� (54)

where I ′
1 to I ′

5 are identical to the corresponding I1 to I5 in (42). On the one hand, 
I ′

1 + I ′
2 = 0. On the other hand, since the bounds of I3, I4 and I5,1 in (43)-(45) do not 

involve the vertical dissipation term ||∂2ψ||H2(L2), these bounds also can be used to control 
I ′

3, I ′
4 and I ′

5,1. Hence, it suffices to consider I ′
5,2. Using integrating by parts in R, we have 

I ′
5,2 = I ′

5,2,1 + I ′
5,2,2 + I ′

5,2,3, where
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I ′
5,2,1 :=

2∑
r=0

2∑
j=1

�

R2B

∂1∂r
2ujRj∂2−r

2 ψ∂R1

∂2
2ψ

ψ∞
dR dx,

I ′
5,2,2 :=

2∑
r=0

�

R2B

∂2∂r
2u1R2∂2−r

2 ψ∂R1

∂2
2ψ

ψ∞
dR dx,

I ′
5,2,3 :=

2∑
r=0

�

R2B

∂2∂r
2u2R2∂2−r

2 ψ∂R2

∂2
2ψ

ψ∞
dR dx.

By using Lemmas 2.3 and 2.4, I ′
5,2,1 can be bounded by

	 I ′
5,2,1 ≲ (||u||H2 + ||ψ||H2(L2))(||∂1u||2H2 + ||ψ||2

H2(Ḣ1)).

By ∂2u2 = −∂1u1, I ′
5,2,3 shares the same bound as I ′

5,2,1.
Now, we take advantage of the symmetry property of ψ to eliminate I ′

5,2,2. Thanks to the 
symmetry property stated in Proposition 3.1,

we know that for i = 0, 1, 2, ∂i
2ψ and ∂R1

∂i
2ψ

ψ∞
 are even in R2. Hence, for almost every 

x ∈ R2 and t ∈ [0, T ],

	

∫

B

R2∂2−r
2 ψ∂R1

∂2
2ψ

ψ∞
dR = 0,

and consequently I ′
5,2,2 = 0. Hence, I ′

5,2 can be bounded by

	 I ′
5,2 ≲ (||u||H2 + ||ψ||H2(L2))(||∂1u||2H2 + ||ψ||2

H2(Ḣ1)).

Using the arguments parallel to the proof of Theorem 1.1, it is not difficult to achieve (51). 
Also, since estimate (52) can be treated identically to (36) except for some harmless details, 
we choose not to repeat them tediously. � □

5  Exponential decay

In this section, we deal with the equation of oscillation part (ũ, ψ̃) and the equation of ψ̄, 
focusing on proving Theorem 1.3. Throughout our proof, the properties of the orthogonal 
decomposition in Lemma 2.1, Poincaré inequality in Lemma 2.2 and anisotropic inequali-
ties in Lemma 2.5 will be frequently used.

By the definition of ū, we know that ∂1ū = 0 and

	 u · ∇ū = u1∂1ū + u2∂2ū = ū2∂2ū.

Due to the divergence free condition, there exists a stream function Ψ(x, t) associated with 
u such that

	 u = ∇⊥Ψ := (−∂2Ψ, ∂1Ψ),
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then

	 ū2 = ∂1Ψ = 0.

Therefore,

	 u · ∇ū = 0,

and

	 u · ∇u = u · ∇ũ = ū · ∇¯̃u + ũ · ∇ũ = ũ · ∇ũ.

Similarly,

	

u · ∇ψ = ũ · ∇ψ̃,

divR(−∇u · R ˜(ψ + ψ∞)) = divR(−∇ũ · Rψ̃).

On the other hand, using div u = 0, ∂1ū = 0 and ū2 = 0, we have

	

divR(−∇u · Rψ̄) = −
2∑

i,j=1

∂j ūiRj∂Ri ψ̄ = −∂2ū1R2∂R1 ψ̄,

divR(−∇u · Rψ∞) = −
2∑

i,j=1

∂j ūiRj∂Ri ψ∞ = −∂2ū1R2∂R1 ψ∞.

Now, we deduce the equation of (ū, ψ̄). Since ψ is even in R2, we have τ1,2 = τ2,1 = 0. 
Taking the x1-average of (6) and using the above properties, we deduce that

	

{
∂tū + ũ · ∇ũ =

( 0
∂2p̄

)
+ ∂2

( 0
τ̄2,2

)
,

∂tψ̄ + ũ · ∇ψ̃ = −divR(∇ũ · Rψ̃) − ∂2ū1R2∂R1 (ψ̄ + ψ∞) + Lψ̄.
� (55)

By the result stated in Theorem 1.3, the oscillation part (ũ, ψ̃) will eventually decay to 
(0,  0), and the velocity u in system (6) will turn to the first equation of the above one-
dimensional system of average part. To establish the decay result, we first prove the decay 
of the oscillation part (ũ, ψ̃), as shown in Proposition 5.2. Then, we use this result to prove 
the decay of the average part ψ̄ in Proposition 5.3.

Before proving the exponential decay, we first state the global existence and stability of 
the solution in Ω = T × R.

Proposition 5.1  Suppose that the assumptions of Theorem 1.3 hold, then (6) has a unique 
solution (u, ψ), and ψ is even in R2 . In addition, for all t > 0 , (u, ψ) satisfies
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||u(t)||2H2 + ||ψ(t)||2H2(L2) +

∫ t

0

{
||∂1u(s)||2H2 + ||∂2u(s)||2H1 + ||ψ(s)||2

H2(Ḣ1)

}
ds ≤ Cε2

3.

Since the existence result can be proven in a manner almost identical to the R2 case, we 
choose to omit the proof.

5.1  Decay of oscillation part

The decay of the oscillation part (ũ, ψ̃) reads as follows.

Proposition 5.2  Suppose that the assumptions of Theorem 1.3 hold, then (ũ, ψ̃) satisfies

	 ||ũ||H1 + ||ψ̃||H1(L2) ≤ (||ũ0||H1 + ||ψ̃0||H1(L2))e−c′
1t,

for some constant c′
1 > 0  and for all t > 0 .

Proof  To demonstrate the exponential decay of the oscillation part, we first deduce the equa-
tions of (ũ, ψ̃). Taking the average of (6) yields

	

{
∂tū + (u · ∇)u = ∂2

1 ū − ∇p̄ + div τ̄ , div ū = 0,

∂tψ̄ + u · ∇ψ = divR

[
−∇u · R(ψ + ψ∞) + ψ∞∇R

ψ̄
ψ∞

]
.

� (56)

Taking the difference of (6) and (56), we obtain that

	

{
∂tũ + ũ · ∇u = ∂2

1 ũ − ∇p̃ + div τ̃ , div ũ = 0,

∂tψ̃ + ũ · ∇ψ = divR

[
−

(
∇u · R(ψ + ψ∞)

)∼ + ψ∞∇R
ψ̃

ψ∞

]
.

� (57)

By the standard L2 energy method, we have

	

1
2

d
dt

(||ũ||2L2 + ||ψ̃||2L2(L2)) + ||∂̃1u||2L2 + ||ψ̃||2
L2(Ḣ1) =

5∑
i=1

Ri, � (58)

where

1 3

Page 35 of 50  190



J. Gao et al.

	

R1 := −
∫

Ω
ũ · ∇uũ dx,

R2 :=
∫

Ω
div τ̃ ũ dx,

R3 := −
�

ΩB

ũ · ∇ψψ̃
dR

ψ∞
dx,

R4 := −
�

ΩB

divR(∇u · Rψ)∼ψ̃
dR

ψ∞
dx,

R5 := −
�

ΩB

divR(∇ũ · Rψ∞)ψ̃ dR

ψ∞
dx.

By divergence free condition and the orthogonal property in Lemma 2.1,

	
R1 =

∫

Ω
−u · ∇ũũ dx +

∫

Ω
u · ∇ũũ dx −

∫

Ω
ũ · ∇ūũ dx = −

∫

Ω
ũ · ∇ūũ dx.

Since ∇ū and ∂1ū are independent of x1, we have

	
R1 = −

∫

Ω
ũ · ∇ūũ dx = −

∫

Ω
ũ · ∇ūũ dx = −

∫

Ω
ũ2∂2ūũ dx.

Hence, using Lemmas 2.2 and 2.5, we can bound R1 by

	

R1 ≲ ||ũ2||
1
2
L2 ||∂1ũ||

1
2
L2 ||∂2ū||

1
2
L2 ||∂2∂2ū||

1
2
L2 ||ũ||L2

≲||u||H2 ||∂1ũ||2L2 .
� (59)

For R2 and R5, base on the argument in (40), we have

	 R2 + R5 = 0.� (60)

Similar to the argument in R1, we can bound R3 by

	

R3 = −
�

ΩB

ũ · ∇ψ̄ψ̃
dR

ψ∞
dx

≲ ||ũ||
1
2
L2 ||∂1ũ||

1
2
L2 ||∇ψ̄||

1
2
L2(L2)||∂2 ∇ψ̄||

1
2
L2(L2)||ψ̃||L2(L2)

≲ ||ψ||H2(L2)(||∂1ũ||2L2 + ||ψ̃||2
L2(Ḣ1)).

� (61)

To bound R4, we use integrating by parts and Lemma 2.1 to decompose R4 into two parts

	
R4 =

�

ΩB

∇u · Rψ̃∇R
ψ̃

ψ∞
dR dx +

�

ΩB

∇ũ · Rψ̄∇R
ψ̃

ψ∞
dR dx.

Recall the symmetry property stated in Proposition 5.1, for almost every x and t,
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∫

B

R1ψ̃∂R2

ψ̃

ψ∞
dR =

∫

B

R2ψ̃∂R1

ψ̃

ψ∞
dR =

∫

B

R1ψ̄∂R2

ψ̃

ψ∞
dR =

∫

B

R2ψ̄∂R1

ψ̃

ψ∞
dR = 0.

The above equation together with divergence free condition ∂2u2 = −∂1u1, ∂1ū1 = 0 and 
Sobolev embedding yields

	

R4 =
�

ΩB

∂1ũ1(R1ψ̃∂R1

ψ̃

ψ∞
− R2ψ̃∂R2

ψ̃

ψ∞
) dR dx

+
�

ΩB

∂1ũ1(R1ψ̄∂R1

ψ̃

ψ∞
− R2ψ̄∂R2

ψ̃

ψ∞
) dR dx

≲||ψ||H2(L2)(||∂1ũ||2L2 + ||ψ̃||2
L2(Ḣ1)).

� (62)

Substituting (59)-(62) into (58), we find

	
d
dt

(||ũ||2L2 + ||ψ̃||2L2(L2)) + 2(1 − C||u||H2 − C||ψ||H2(L2))(||∂1ũ||2L2 + ||ψ̃||2
L2(Ḣ1)) ≤ 0.� (63)

We can deduce from Proposition 5.1 that if ε3 > 0 is sufficiently small and 
||u0||2H2 + ||ψ0||H2(L2) ≤ ε3, then

	 C||u||2H2 + C||ψ||H2(L2) ≤ c < 1.

Therefore, we can use Poincaré inequalities in Lemmas 2.2 and 2.6 to obtain

	 ||ũ(t)||L2 + ||ψ̃(t)||L2(L2) ≤ (||ũ(0)||L2 + ||ψ̃(0)||L2(L2))e−c′
11t,

where c′
11 = c′

11(ε3) > 0.
Next we consider the exponential decay of ||∇ũ||L2  and ||∇ψ̃||L2(L2). By applying ∂k

(k = 1, 2) to (57), we have

	

{
∂t∂kũ + ∂kũ · ∇u = ∂k∂2

1 ũ − ∂k∇p̃ + ∂kdiv τ̃ , div ũ = 0,

∂t∂kψ̃ + ∂kũ · ∇ψ = ∂kdivR

[
−

(
∇u · R(ψ + ψ∞)

)∼ + ψ∞∇R
ψ̃

ψ∞

]
.

� (64)

Integrating (64) with (∂kũ, ∂kψ̃), we obtain that

	

1
2

d
dt

(||∂kũ||2L2 + ||∂kψ̃||2L2(L2)) + ||∂k∂1ũ||2L2 + ||∂kψ̃||2
L2(Ḣ1) =

10∑
i=6

Ri, � (65)

where
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R6 := −
∫

Ω
∂k(ũ · ∇u)∂kũ dx,

R7 :=
∫

Ω
∂kdiv τ̃ ∂kũ dx,

R8 := −
�

ΩB

∂k(ũ · ∇ψ)∂kψ̃
dR

ψ∞
dx,

R9 := −
�

ΩB

∂kdivR(∇u · Rψ)∼∂kψ̃
dR

ψ∞
dx,

R10 := −
�

ΩB

divR(∂k∇ũ · Rψ∞)∂kψ̃
dR

ψ∞
dx.

Similar to the reasoning in R1, we bound R6 by

	

R6 = −
∫

Ω
∂ku · ∇ũ∂kũ dx −

∫

Ω
∂kũ · ∇ū∂kũ dx −

∫

Ω
ũ · ∇∂kū∂kũ dx

≲||u||H2 ||∂1∇ũ||2L2 .

� (66)

For R7 and R10, we use the argument in (40) to obtain

	 R7 + R10 = 0.� (67)

To bound R8, we use Lemma 2.1 and divergence free condition to rewrite it as 
R8 = R8,1 + R8,2, where

	

R8,1 :=
�

ΩB

∂ku · ∇ψ̃∂kψ̃
dR

ψ∞
dx,

R8,2 :=
�

ΩB

∂k(ũ · ∇ψ̄)∂kψ̃
dR

ψ∞
dx.

Since ψ̃ does not have any center-of-mass diffusion, to bound R8,1, we further rewrite it as 
R8,1 = R8,1,1 + R8,1,2 where

	

R8,1,1 :=
�

ΩB

∂kũ · ∇ψ̃∂kψ̃
dR

ψ∞
dx,

R8,1,2 :=
�

ΩB

∂kū · ∇ψ̃∂kψ̃
dR

ψ∞
dx.

Using Lemmas 2.3 and 2.6, R8,1,1 can be bounded directly as

	

R8,1,1 ≲ ||∂kũ||
1
2
L2 ||∂1∂kũ||

1
2
L2 ||∇ψ̃||

1
2
L2(L2)||∂2∇ψ̃||

1
2
L2(L2)||∂kψ̃||L2(L2)

≲ ||ψ||H2(L2)(||∂1∂kũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).
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For R8,1,2, notice that ū is only dependent on x2, and for any one dimensional function 
f ∈ H1(R),

	 ||f ||L∞(R)≤
√

2||f ||
1
2
L2(R)||f

′||
1
2
L2(R).� (68)

Hence, we apply Lemma 2.6 and (68) to obtain

	

R8,1,2 ≤ ||∂kū||L∞ ||∇ψ̃||L2(L2)||∂kψ̃||L2(L2)

≤ ||u||H2 ||∂kψ̃||2
L2(Ḣ1).

Collecting the above bounds of R8,1,1 and R8,1,2 yields that

	 R8,1 ≲ (||u||H2 + ||ψ||H2(L2))(||∂1∂kũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).� (69)

For R8,2, we infer from Lemmas 2.2, 2.5 and (68) that

	

R8,2 =
�

ΩB

∂kũ · ∇ψ̄∂kψ̃
dR

ψ∞
dx +

�

ΩB

ũ · ∇∂kψ̄∂kψ̃
dR

ψ∞
dx

≲||∂kũ||
1
2
L2 ||∂1∂kũ||

1
2
L2 ||∇ψ̄||

1
2
L2(L2)||∂2∇ψ̄||

1
2
L2(L2)||||∂kψ̃||L2(L2)

+ ||ũ||
1
2
L2 ||∂2ũ||

1
2
L2 ||∂k∇ψ̄||L2(L2)||∂kψ̃||L2(L2)

≲||ψ||H2(L2)(||∂1∂kũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).

� (70)

Combining (69) with (70), we find

	 R8 ≲ (||u||H2 + ||ψ||H2(L2))(||∂1∂kũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).� (71)

We now proceed to estimate R9, which presents greater difficulties. Using Lemma 2.1 and 
integrating by parts, we divide R9 by

	 R9 = R9,1 + R9,2 + R9,3,� (72)

where

	

R9,1 :=
�

ΩB

∂k(∇ũ · Rψ̃)∇R
∂kψ̃

ψ∞
dR dx,

R9,2 :=
�

ΩB

∂k(∇ū · Rψ̃)∇R
∂kψ̃

ψ∞
dR dx,

R9,3 :=
�

ΩB

∂k(∇ũ · Rψ̄)∇R
∂kψ̃

ψ∞
dR dx.

� (73)

First, we Lemma 2.1 and symmetry of ψ to proof R9,2 = 0. Recall that ū2 = 0, then
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R9,2 =
2∑

j=1

�

ΩB

∂k(∂2ūjRjψ̃)∂R2

∂kψ̃

ψ∞
dR dx

=
�

ΩB

∂k(∂2ū1R1ψ̃)∂R2

∂kψ̃

ψ∞
dR dx.

However, we obtain from the symmetry property of ψ that

	

∫

B

R1ψ̃∂R2

∂kψ̃

ψ∞
dR =

∫

B

R1∂kψ̃∂R2

∂kψ̃

ψ∞
dR = 0.

Hence, R9,2 = 0.
Next, by using the symmetry property of ψ, ∂2u2 = −∂1u1 and Lemma 2.5, we can 

directly bound R9,1 as

	

R9,1 =
�

ΩB

∂1∂kũ1ψ̃(R1∂R1

∂kψ̃

ψ∞
− R2∂R2

∂kψ̃

ψ∞
) dR dx

+
�

ΩB

∂1ũ1∂kψ̃(R1∂R1

∂kψ̃

ψ∞
− R2∂R2

∂kψ̃

ψ∞
) dR dx

≲||∂1∂kũ||L2 ||ψ̃||L∞(L2)||∂kψ̃||L2(Ḣ1)

+ ||∂1ũ||
1
2
L2 ||∂1∂1ũ||

1
2
L2 ||∂kψ̃||

1
2
L2(L2)||∂2∂kψ̃||

1
2
L2(L2)||∂kψ̃||L2(Ḣ1)

≲||ψ||H2(L2)(||∂1∇ũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).

� (74)

Also, parallel to R9,1, we can bound R9,3 by

	 R9,3 ≲||ψ||H2(L2)(||∂1∇ũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)). � (75)

Plugging the upper bounds in (74) and (75) into (72) gives

	 R9 ≲ ||ψ||H2(L2)(||∂1∇ũ||2L2 + ||∂kψ̃||2
L2(Ḣ1)).� (76)

Substituting (66), (67), (71) and (76) into (65), we obtain that

	

d
dt

(||∇ũ||2L2 + ||∇ψ̃||2L2(L2))

+ 2(1 − C||u||H2 − C||ψ||H2(L2))(||∂1∇ũ||2L2 + ||∇ψ̃||2
L2(Ḣ1)) ≤ 0.

� (77)

Similar to the previous L2 argument, if the initial data is sufficiently small, we can use the 
Poincaré inequalities in Lemmas 2.2 and 2.6 to obtain

	 ||∇ũ(t)||L2 + ||∇ψ̃(t)||L2(L2) ≤ (||∇ũ0||H1 + ||∇ψ̃0||H1(L2))e−c′
12t,

where c′
12 = c′

12(ε3) > 0. By taking c′
1 = min{c′

11, c′
12}, and the proof is accomplished. �□
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5.2  Decay of average part

Once we have established the decay of the oscillation part (ũ, ψ̃), we can leverage this prop-
erty, in conjunction with the dissipative effect of the operator L, to demonstrate the decay of 
the average component ψ̄. Here, the symmetry of ψ is pivotal in eliminating the linear term.

Proposition 5.3  Suppose that the assumptions of Theorem 1.3 hold, then ψ̄ satisfies

	 ||ψ̄||H1(L2) ≤ (||ψ0||H1(L2))e−c′
2t,� (78)

for some constant c′
2 > 0  and for all t > 0 .

Proof  Recall from the second equation of (55) that the average part ψ̄ satisfies

	 ∂tψ̄ + ũ · ∇ψ̃ = divR(−∇ũ · Rψ̃) − ∂2ū1R2∂R1 (ψ̄ + ψ∞) + Lψ̄.

Integrating the above equation with ψ̄, we have

	
1
2

d
dt

||ψ̄||2L2(L2) + ||ψ̄||2
L2(Ḣ1) = S7 + S8 + S9,� (79)

where

	

S7 := −
�

ΩB

ũ · ∇ψ̃ψ̄
dR

ψ∞
dx,

S8 :=
�

ΩB

divR(−∇ũ · Rψ̃)ψ̄ dR

ψ∞
dx,

S9 :=
�

ΩB

−∂2ū1R2∂R1 (ψ̄ + ψ∞)ψ̄ dR

ψ∞
dx.

Using Fubini-Tonelli Theorem, integrating by parts, Lemmas 2.5 and 2.6,

	

S7 =
�

ΩB

ũ · ∇ψ̃ψ̄
dR

ψ∞
dx ≲ ||ũ||2L2 + ||ψ̃||2H2(L2)||ψ̄||2

L2(Ḣ1),

S8 =
�

ΩB

−∇ũ · Rψ̃∇R
ψ̄

ψ∞
dR dx ≲ ||∇ũ||2L2 + ||ψ̃||2H1(L2)||ψ̄||2

L2(Ḣ1).

For S9, we deduce from the symmetry property of ψ that

	
S9 =

�

ΩB

∂2ū1R2(ψ̄ + ψ∞)∂1
ψ̄

ψ∞
dR dx = 0.

Hence, substituting the estimates of S7, S8 and S9 into (79), we obtain that
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d
dt

||ψ̄||2L2(L2) ≤ −(2 − C||ψ̃||2H1(L2))||ψ̄||2
L2(Ḣ1) + C||ũ||2H1 .� (80)

Thanks to Propositions 5.1 and 5.2, we have

	 −(2 − C||ψ̃||2H1(L2))||ψ̄||2
L2(Ḣ1) ≤ −c||ψ̄||2L2(L2),

and

	 ||ũ(t)||2H1 ≤ (||ũ0||2H1 + ||ψ̃0||2H1(L2))e
−c′

1t,

together with Lemmas 2.1 and 2.6, we obtain that

	
d
dt

||ψ̄||2L2(L2) + c||ψ̄||2L2(L2) ≤ C(||ũ0||2H1 + ||ψ̃0||2H1(L2))e
−c′

1t.

Hence, by the comparison principle of ODE, there exists a constant c′
21 > 0 such that

	 ||ψ̄||L2(L2) ≤ C(||u0||H1 + ||ψ0||H1(L2))e−c′
21t.

Next, we consider the Ḣ1-type estimate of ψ̄. By applying ∂2 to (79), and integrating with 
∂2ψ̄, we have

	
1
2

d
dt

||∂2ψ̄||2L2(L2) + ||∂2ψ̄||2
L2(Ḣ1) = S10 + S11 + S12, � (81)

where

	

S10 := −
�

ΩB

∂2(ũ · ∇ψ̃)∂2ψ̄
dR

ψ∞
dx,

S11 :=
�

ΩB

∂2divR(−∇ũ · Rψ̃)∂2ψ̄
dR

ψ∞
dx,

S12 :=
�

ΩB

−∂2(∂2ū1R2∂R1 (ψ̄ + ψ∞))∂2ψ̄
dR

ψ∞
dx.

For S10, we use div u = 0, Fubini-Tonelli Theorem, Lemmas 2.5 and 2.6 to obtain

	

S10 =
�

ΩB

∂2ũ · ∇ψ̃∂2ψ̄
dR

ψ∞
dx +

�

ΩB

ũ · ∇∂2ψ̃∂2ψ̄
dR

ψ∞
dx

≲||∂2ũ||L2 ||∇ψ̃||
1
2
L2(L2)||∂2∇ψ̃||

1
2
L2(L2)||∂2ψ̄||L2(L2)

+ ||ũ||
1
2
L2(L2)||∂2ũ||

1
2
L2(L2)||ψ̃||H2(L2)||∂2ψ̄||L2(L2)

≲||ũ||2H1 + ||ψ̃||2H2(L2)||∂2ψ̄||2
L2(Ḣ1),
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when applying the anisotropic inequality, we use the fact that ∂1∂2ψ̄ = 0.
For S11, by div u = 0, Fubini-Tonelli Theorem, symmetry property of ψ and Lemma 2.5

	

S11 =
�

ΩB

∂2∇ũ · Rψ̃∇R
∂2ψ̄

ψ∞
dR dx +

�

ΩB

∇ũ · R∂2ψ̃∇R
∂2ψ̄

ψ∞
dR dx

≲||∂2∂1ũ||L2(L2)||ψ̃||
1
2
L2(L2)||∂2ψ̃||

1
2
L2(L2)||∂2ψ̄||L2(Ḣ1)

+ ||∂1ũ||
1
2
L2 ||∂2∂1ũ||

1
2
L2 ||∂2ψ̃||L2(L2)||∂2ψ̄||L2(Ḣ1)

≲||ψ̃||2H1(L2) + ||ψ̃||2H2(L2)||∂2ψ̄||2
L2(Ḣ1).

By the symmetry of ψ, we have S12 = 0.
We plug the estimates of S10, S11 and S12 into (81) to obtain

	
d
dt

||∂2ψ̄||2L2(L2) ≤ −(2 − C||ψ̃||2H2(L2))||∂2ψ̄||2
L2(Ḣ1) + C(||ũ||2H1 + ||ψ̃||2H1(L2)).� (82)

By Lemma 2.6, Propositions 5.1 and 5.2, for sufficiently small ε3, we have

	

− (2 − C||ψ̃||2H2(L2))||∂2ψ̄||2
L2(Ḣ1) ≤ −c||∂2ψ̄||2L2(L2),

||ũ(t)||2H1 + ||ψ̃(t)||2H1(L2) ≤ (||ũ0||2H1 + ||ψ̃0||2H1(L2))e
−c′

1t.

Thus, following a similar argument as before, we establish the exponential decay of 
||∂2ψ̄||L2(L2). Then, by the equivalence of norm ||f̄ ||H1 ∼ ||f̄ ||L2 + ||∂2f̄ ||L2 , we arrive at 
the result of (78). � □

With Propositions 5.2 and 5.3 at hand, the decay property stated in Theorem 1.3 comes 
immediately.

Proof of Theorem 1.3  By combining Proposition 5.2 with Proposition 5.3, and choosing 
c′ = min{c′

1, c′
2}, we can directly derive the result stated in Theorem 1.3. � □

6  Vanishing viscosity limit

In this section, we focus on the vanishing viscosity limit problem of (9), our result indi-
cates that when κ → 0, system (9) converges to (6) in H1 sense. Throughout the proof, the 
enhanced dissipation (16) arises from the wave structure, as well as the strong type Poincaré 
inequality in Lemma 2.2 play critical roles.

Through arguments similar to Theorem 1.2, we have the global existence and stability of 
the solution of (9) in Ω = T × R.

Proposition 6.1  Suppose that κ ∈ (0 , 1 ), div u0 = 0  and ψ0  is even in R2 . Assume that 
u0 ∈ H 2 (R2 ) and ψ0 ∈ H 2 (R2 ; L2 ). There exists a small constant ε5 > 0  such that if

	 ||u0||H2 + ||ψ0||H2(L2) ≤ ε5,
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then (9) has a unique global solution (uκ, ψκ), and ψ is even in R2 . In addition, for all 
t > 0 , (uκ, ψκ) satisfies

	

||uκ(t)||2H2 + ||ψκ(t)||2H2(L2)

+
∫ t

0

{
||∂1uκ(s)||2H2 + κ||∂2uκ(s)||2H2 + ||∂2uκ(s)||2H1 + ||ψκ(s)||2

H2(Ḣ1)

}
ds ≤ Cε2

5.

It is worth emphasizing that the ε5 is independent of viscosity parameter κ, this implies 
that the energy estimate in Theorem is independent of κ, which is crucial to the following 
proof of vanishing viscosity limit result.

Proof of Theorem 1.4  Define

	 Uκ = uκ − u, Ψκ = ψκ − ψ, Πκ = Pk − P,

then, from (6) and (9), we have

	

{
∂tU

κ + uκ · ∇Uκ = −Uκ · ∇u + ∂2
1Uκ + κ∂2

2Uκ + ∇Πκ + div (τκ − τ) + κ∂2
2u,

∂tΨ
κ + uκ · ∇Ψκ = −Uκ · ∇ψ + divR(−∇uκ · RΨκ) + divR(−∇Uκ · R(ψ + ψ∞)) + LΨκ. � (83)

Integrating the above system with (Uκ, Ψκ) yields

	

1
2

d
dt

(||Uκ||2L2 + ||Ψκ||2L2(L2)) + ||∂1Uκ||2L2 , +κ||∂2Uκ||2L2 + ||Ψκ||2
L2(Ḣ1) =

5∑
i=1

Ti, � (84)

where

	

T1 := −
∫

Ω
(Uκ · ∇u)Uκ dx,

T2 :=κ

∫

Ω
∂2

2uUκ dx,

T3 := −
�

ΩB

(Uκ · ∇ψ)Ψκ dR

ψ∞
dx,

T4 :=
�

ΩB

divR(−∇uκ · RΨκ)Ψκ dR

ψ∞
dx

T5 :=
�

ΩB

divR(−∇Uκ · Rψ)Ψκ dR

ψ∞
dx.

Here we use the fact that

	

∫

Ω
div (τκ − τ)Uκ dx +

�

ΩB

divR(−∇Uκ · Rψ∞)Ψκ dR

ψ∞
dx = 0.
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For T1, to take advantage of Lemma 2.2, we use Lemma 2.1 and split T1 into the average 
part and the oscillation part T1 = T1,1 + T1,2 + T1,3, where

	

T1,1 := −
∫

Ω
Ũκ · ∇ũ Uκ dx,

T1,2 := −
∫

Ω
Uκ · ∇ũŨκ dx,

T1,1 := −
∫

Ω
Ũκ · ∇uŨκ dx.

Using Lemmas 2.2 and 2.5, we can bound T1,1 by

	

T1,1 ≤C||Ũκ||
1
2
L2 ||∂1Ũκ||

1
2
L2 ||∇ũ||

1
2
L2 ||∂2∇ũ||

1
2
L2 ||Uκ||L2

≤C||∇u||2H1 ||Uκ||2L2 + 1
6

||∂1Uκ||2L2 ,

and T1,2, T1,3 can be bounded similarly. Hence,

	
T1 ≤ C||∇u||2H1 ||Uκ||2L2 + 1

2
||∂1Uκ||2L2 .

For T2-T5, by integrating by parts, Lemmas 2.5, 2.6 and symmetry of ψ,

	

T2 ≤ κ

2
||∂2u||2L2(L2) + κ

2
||∂2Uκ||2L2(L2),

T3 ≤ C||ψ||2H2(L2)(||U
κ||2L2 + ||∂1Uκ||2L2 ) + 1

3
||Ψκ||2

L2(Ḣ1),

T4 ≤ C(||∂2uκ||2H1 + ||∂1uκ||2H2 )||Ψκ||2L2(L2) + 1
3

||Ψκ||2
L2(Ḣ1),

T5 ≤ C||ψ||2H2(L2)||∂1Uκ||2L2(L2) + 1
3

||Ψκ||2
L2(Ḣ1).

Combining (84) with the bounds of T1-T5 yields that

	

d
dt

(||Uκ||2L2 + ||Ψκ||2L2(L2))

≤ −(1 − 2C||ψ||2H2(L2))||∂1Uκ||2L2 + κ||∂2u||2L2

+ 2C(||∂2(uκ, u)||2H1 + ||∂1(uκ, u)||2H2 + ||ψ||2H2(L2))(||U
κ||2L2 + ||Ψκ||2L2(L2)).

� (85)

Next, we consider the Ḣ1-type estimate. By applying ∂k(k = 1, 2) to (83) and multiplying 
them by (∂kUκ, ∂kΨκ) in L2 and L2(L2) respectively, we deduce

	

1
2

d
dt

(||∂kUκ||2L2 + ||∂kΨκ||2L2(L2))

+ ||∂1∂kUκ||2L2 + κ||∂2∂kUκ||2L2 + ||∂kΨκ||2
L2(Ḣ1) =

12∑
i=6

Ti,
� (86)
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where

	

T6 := −
∫

Ω
∂k(uκ · ∇Uκ)∂kUκ dx,

T7 := −
∫

Ω
∂k(Uκ · ∇u)∂kUκ dx,

T8 :=κ

∫

Ω
∂2

2∂ku∂kUκ dx,

T9 := −
�

ΩB

∂k(uκ · ∇Ψκ)∂kΨκ dR

ψ∞
dx,

T10 := −
�

ΩB

∂k(Uκ · ∇ψ)∂kΨκ dR

ψ∞
dx,

T11 :=
�

ΩB

∂kdivR(−∇uκ · RΨκ)∂kΨκ dR

ψ∞
dx,

T12 :=
�

ΩB

∂kdivR(−∇Uκ · Rψ)∂kΨκ dR

ψ∞
dx.

Similar to T1, we split T6 into the average parts and oscillation parts as T6 = T6,1 + T6,2 + T6,3, 
where

	

T6,1 :=
∫

Ω
(∂kũκ · ∇Ũκ)∂kUκ dx,

T6,2 := −
∫

Ω
∂kũκ · ∇Uκ∂kŨκ dx,

T6,3 := −
∫

Ω
∂kuκ · ∇Ũκ∂kŨκ dx.

When k = 1, T6,1 = 0. When k = 2, by Ū2 = 0, Lemmas 2.2 and 2.5, we can bound T6,1 by

	

T6,1 ≤ C||∂2ũκ||
1
2
L2 ||∂2∂2ũκ||

1
2
L2 ||∂2Ũκ||

1
2
L2 ||∂1 ∂2Ũκ||

1
2
L2 ||∂2Uκ||L2

≤ C||∇uκ||2H1 ||∇Uκ||2L2 + 1
12

||∂1∂2Uκ||2L2 ,

and T6,2, T6,3 shares similar bounds with T6,1. Hence,

	
T6 ≤ C||∇uκ||2H1 ||∇Uκ||2L2 + 1

4
||∂1∂kUκ||2L2 .

By the reasoning identical to T6,

	
T7 ≤ C(||∂2u||2H1 + ||∂1u||2H2 )||Uκ||2H1 + 1

4
||∂1∇Uκ||2L2 .

For T8, we directly use integrating by parts and Young’s inequality to bound it as
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T8 ≤ κ

2
||∂2∂ku||2L2(L2) + κ

2
||∂2∂kUκ||2L2(L2).

For T9 and T10, we can apply div u = 0, Lemmas 2.5 and 2.6 to obtain

	

T9 ≤ C(||∂2u||2H1 + ||∂1u||2H2 )||∇Ψκ||2L2(L2) + 1
4

||∂kΨκ||2
L2(Ḣ1),

T10 ≤ C||ψ||2
H2(Ḣ1)||U

κ||2H1 + C||ψ||2H2(L2)||∂1Uκ||2H1 + 1
4

||∂kΨκ||2
L2(Ḣ1).

For T11 and T12, after integrating by parts, we can bound them by using Lemmas 2.5, 2.6 
and symmetry of ψ:

	

T11 ≤C(||∂2uκ||2H1 + ||∂1uκ||2H2 )||Ψκ||2H1(L2) + 1
4

||∂kΨκ||2
L2(Ḣ1),

T12 =
∑

r=0,1

�

ΩB

∂1∂r
kUκ

(
R1∂1−r

k ψ∂R1

∂kΨκ

ψ∞
− R2∂1−r

k ψ∂R2

∂kΨκ

ψ∞

)
dR dx

≤C||ψ||2
H2(Ḣ1)||U

κ||2H1 + C||ψ||2H2(L2)||∂1Uκ||2H1 + 1
4

||∂kΨκ||2
L2(Ḣ1).

Inserting the bounds of T6-T12 into (86), we find

	

d
dt

(||∇Uκ||2L2 + ||∇Ψκ||2L2(L2))

≤ −(1 − 2C||ψ||2H2(L2))||∂1∇Uκ||2L2 + κ||∂2∇u||2L2

+ 2C(||∂2(uκ, u)||2H1 + ||∂1(uκ, u)||2H2 + ||ψ||2
H2(Ḣ1))(||∇Uκ||2L2 + ||∇Ψκ||2L2(L2)).

� (87)

Due to the norm equivalence, we can deduce from (85) and (87) that

	

d
dt

(||Uκ||2H1 + ||Ψκ||2H1(L2))

≤ −(1 − 2C||ψ||2H2(L2))||∂1Uκ||2H1 + κ||∂2u||2H1

+ 2C(||∂2(uκ, u)||2H1 + ||∂1(uκ, u)||2H2 + ||ψ||2
H2(Ḣ1))(||U

κ||2H1 + ||Ψκ||2H1(L2)).

Thanks to the stability stated in (8), we can choose ε4 ≤ min{ε3, ε5} small enough such 
that

	 −(1 − 2C||ψ||2H2(L2)) ≤ 0,

and

	

d
dt

(||Uκ||2H1 + ||Ψκ||2H1(L2))

≤ CD(t)(||Uκ||2H1 + ||Ψκ||2H1(L2)) + κD(t),

where
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	 D(t) := ||∂2(uκ, u)(t)||2H1 + ||∂1(uκ, u)(t)||2H2 + ||ψ(t)||2
H2(Ḣ1).

Since Uκ(0) = Ψκ(0) = 0 and D(t) is integrable in time, by Gronwall’s inequality,

	
||Uκ||2H1 + ||Ψκ||2H1(L2) ≤ e

C
∫ t

0
D(s) ds

∫ t

0
κD(s) ds ≤ eCε2

4 Cε2
4κ,

which is exactly (10). � □
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