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Abstract

This paper intends to understand the long-time existence and stability of solutions to an Euler-like equa
tion. An Euler-like equation is the 2D incompressible Euler equation with an extra singular integral operator 
(SIO) type term. In contrast to the 2D Euler equation, the vorticity to the 2D Euler-like equation is not 
known to be bounded due to the unboundedness of the SIO on the space L∞. As a consequence, classical 
Yudovich theory fails on the Euler-like equation. The global existence, regularity and stability problems on 
the Euler-like equation are generally open. This paper makes progress on an Euler-like equation arising in 
the study of several fluids. We establish a long-time existence and stability result. When the Sobolev size of 
the initial data is of order ε, the solution is shown to live on a time interval of the size 1/ε2. When the initial 
data is restricted to a class with special symmetry, we obtain the global existence and nonlinear stability.
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1. Introduction

An Euler-like equation refers to the incompressible 2D Euler vorticity form with an extra 
term involving a singular integral operator. Attention here is focused on the following Euler-like 
equation {︄

∂tω + u · ∇ω = ν ℛ2
1ω, x ∈T 2,

u = ∇⊥Δ−1ω,
(1.1)

where ν > 0 is a parameter, ℛi = ∂i(−Δ)− 1
2 with i = 1,2 are the Riesz transforms, T 2 =

[− 1
2 , 1

2 ]2 denotes the 2D torus, and ∇⊥ = (−∂2, ∂1). The fractional Laplacian operator is de
fined by the Fourier transform, for any β ∈R,

ˆ︂(−Δ)βf (k) = |k|2β ˆ︁f (k).

For the sake of convenience, we denote

Λ = (−Δ)
1
2 .

(1.1) can be formulated in the following velocity form⎧⎪⎨⎪⎩∂tu + u · ∇u + ∇p +
[︃

0
ν u2

]︃
= 0, x ∈T 2,

∇ · u = 0,

(1.2)

(1.2) represents a partially damped Euler equation. It is easy to check that taking the curl to (1.2)
yields (1.1). Even though the velocity formulation (1.2) appears to be asymmetric in the two 
directions, they can be converted into a symmetric form. Applying the divergence operator ∇· to 
(1.2) yields

p = −ν∂2Δ
−1u2 − Δ−1∇ · (u · ∇u) .

Separating the linear and nonlinear parts, we obtain{︄
∂tu1 − ν∂1∂2Δ

−1u2 = ∂1Δ
−1∇ · (u · ∇u) − u · ∇u1,

∂tu2 + u2 − ν∂2∂2Δ
−1u2 = ∂2Δ

−1∇ · (u · ∇u) − u · ∇u2.
(1.3)

Invoking the divergence-free condition ∇ · u = 0 in (1.3) leads to{︄
∂tu1 = νℛ2

1u1 + ∂1Δ
−1∇ · (u · ∇u) − u · ∇u1,

∂tu2 = νℛ2
1u2 + ∂2Δ

−1∇ · (u · ∇u) − u · ∇u2,
(1.4)

which reveals the symmetric structure due to the coupling and interaction of the two velocity 
components u1 and u2. It is easy to check from (1.4) that the divergence-free condition ∇ ·u = 0
is preserved in time.
2 
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The Euler-like equation arises in many physical applications such as fluid mechanics, general 
relativity, and mathematics biology. They also emerge in the study of several open regular
ity and stability problems on the Boussinesq equations and the magnetohydrodynamic (MHD) 
equations. The reduction of the Boussinesq equations in the zero-Prandtl-number limit to the 
Euler-like models can be found in [8]. The global regularity problem on the 2D MHD equations 
with only magnetic diffusion depends crucially on one of the Euler-like equations in [6,9,10].

Our goal here is to advance our understanding on the fundamental issues. The global-in-time 
existence, regularity and stability problems on this Euler-like equation are extremely challenging. 
The main difficulty is due to the lack of global bound on the vorticity. In the case of the Euler 
equation, namely (1.1) with ν = 0, the vorticity is transported by a divergence-free velocity field 
and is thus bounded uniformly for all time. This boundedness is the essential ingredient of the 
celebrated Yudovich theory on the global existence and uniqueness of weak solutions to the 2D 
incompressible Euler equation [11].

Unfortunately, the situation is different from the Euler-like equation. Due to the appearance 
of the singular integral operator (SIO) and the fact that SIOs are generally not bounded on L∞, 
the vorticity of (1.1) is not known to be bounded for all time. In fact, the work of Masmoudi and 
Elgindi showed that solutions to Euler-like equations can experience normal inflation in the L∞
setting [3,4]. Therefore, we do not expect their solutions to be bounded for all time.

Without the boundedness of the vorticity, it then appears that the global regularity and stabil
ity problems are beyond reach. In fact, very few results are currently available for the Euler-like 
equations. This paper presents two results. The first one assesses the long-time stability of pertur
bations in the Sobolev setting. It says that, when the initial perturbation in a sufficiently regular 
Sobolev space is of the order ε, then (1.2) has a unique solution on a time interval with the length 
of the order ε−2. This solution remains of the size ε.

To give a more precise account of our result, we introduce a few notations. We use f̄ to denote 
the horizontal average of f and ˜︁f the corresponding oscillation part, namely

f̄ ≜
∫︂
T

f (x1, x2)dx1, ˜︁f = f − f̄ .

More details on this decomposition can be found in the following section.

Theorem 1.1. Consider the Euler-like equation (1.2) on the torus T 2. Assume u0 ∈ H 10(T 2)

with ∇ · u0 = 0. Then there exists ε > 0, which can be taken as ε = c0 min{ν, ν− 5 
18 } for some 

universal constant c0 > 0 such that, if

∥u0∥H 10(T 2) ≤ ε,

then (1.2) has a unique solution u(t) ∈ H 10(T 2) on the time interval [0,C0 νε−2] for some 
constant C0 > 0. Moreover, for some constants C1 > 0 and C2 > 0, and any t ∈ [0, C0 νε−2],

∥u(t)∥H 10(T 2) ≤ C1ε

and

∥˜︁u(t)∥H 5(T 2) ≤ C2 ν
5 
18 ε 

5 .

(1 + t) 4

3 
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Since the coefficient ν is typically taken to be small (e.g., ν ≤ 1), the quantity ν− 5 
18 is large. 

Therefore, we may choose ε = c0ν, a suitable multiple of ν. Even though this result doesn’t fully 
resolve the global existence and stability problem, it does reflects the stabilization effort of the 
term involving the SIO. For the 2D incompressible Euler equation, the vorticity gradient and 
more general derivatives can grow rather rapidly in time. More precise growth type results can 
be found in [7] for bounded domains, and in [12] for the periodic setting.

We remark that the time interval is of the order ε−2, much larger than the standard local 
existence time interval ε−1. Therefore, this result is not just a local existence theory.

Our second main theorem presents a global existence and stability result for the case when the 
initial perturbation has some symmetry properties. More precisely, the following theorem holds.

Theorem 1.2. Consider the Euler-like equation (1.2) on the torus T 2. Assume u0 ∈ H 10(T 2)

with ∇ · u0 = 0. In addition, we assume the following symmetries,

u0,1 is odd in x1, and u0,2 is even in x1. (1.5)

Then there exists ε > 0, which can be taken as ε = c0 min{ν, ν− 5 
18 } for some universal constant 

c0 > 0 such that, if

∥u0∥H 10(T 2) ≤ ε,

then (1.2) has a unique global solution u ∈ L∞(0,∞; H 10(T 2)) satisfying

∥u(t)∥2
H 10(T 2)

+ ν

t∫︂
0 

∥u2(τ )∥2
H 10(T 2)

dτ ≤ Cε2,

and for some C > 0,

∥˜︁u(t)∥H 5(T 2) ≤ C ν
5 
18 ε 

(1 + t)
5
4

.

Again, since ν is generally assumed to be small (e.g., ν ≤ 1), we may choose ε = c0ν, where 
c0 > 0 is a suitable constant. Due to the regularity and uniqueness of solutions in the Sobolev 
setting of the theorem, the symmetries specified in (1.5) are preserved in time. Theorem 1.2 states 
the stability and long-time behavior of perturbations restricted to the symmetry class in (1.5).

We briefly explain the difficulties and the main ideas in the proofs of our main results. The 
proof of Theorem 1.1 invokes the bootstrapping argument. We make the ansatz that, for two 
suitable constants C1 > 2 and C0 > 0,

∥u(t)∥H 10(T 2) ≤ C1ε for t ∈ [0,C0νε−2]. (1.6)

We then show that, for t on the same time interval,

∥u(t)∥H 10(T 2) ≤ C1
ε. (1.7)
2 

4 
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The local theory of existence and regularity guarantees that, for t ∈ [0,C2νε−1] with a suitable 
constant C2 > 0,

∥u(t)∥H 10(T 2) ≤ C1ε, (1.8)

when the initial norm is taken to be sufficiently small. To extend (1.8) to the longer-time inter
val [0,C0νε−2], we estimate ∥u(t)∥H 10(T 2) via the vorticity formulation, which eliminates the 
pressure.

It then suffices to obtain suitable a priori bounds on ∥ω∥H 9 due to the equivalence ∥u∥H 10 =
∥u∥L2 + ∥ω∥H 9 . Because of the anisotropic nature of this Euler-like equation, we treat the 
good horizontal derivative differently from the vertical derivative. In addition, quantities are de
composed into their horizontal averages and the corresponding oscillation parts. To bound the 
oscillations parts, the following Poincaré type inequality is used to create the favorable horizon
tal derivative,

∥ ˜︁f ∥L2 ≤ C∥∂1 ˜︁f ∥L2 .

More details on this Poincaré type inequality can be found in Section 2. After implementing 
these two key points and various other suitable inequalities, we obtain the following inequality 
on the Sobolev norm of the vorticity (4.24), for some constant C > 0,

d

dt
∥ω(t)∥2

H 9 + ν∥ℛ1ω∥2
H 9 ≤ C ∥˜︁ω∥H 4∥ω∥2

H 9 + Cν−1∥ω∥4
H 9 . (1.9)

To obtain a suitable upper bound on the norm ∥ω(t)∥2
H 9 , a natural next step is to explore the 

decay property of ∥˜︁ω∥H 4 or ∥˜︁u∥H 5 . We are able to show that

∥˜︁u(t)∥H 5(T 2) ≤ Cν
5 
18 ε 

(1 + t)
5
4

, (1.10)

where C is just a constant independent of ν and ε. Where does this decay come from? It is 
mainly due to the fast L2 decay of the vorticity oscillation part ˜︁ω (see Proposition 3.1). The 
decay estimate in (1.10) is a consequence of the interpolation inequality

∥∇4˜︁ω(t)∥L2 ≤ C∥˜︁ω∥
5
9
L2∥˜︁ω∥

4
9
H 9 ≤ C

(︂
ν

1
2 ε(1 + t)−

9
4

)︂ 5
9
ε

4
9 ≤ Cν

5 
18 ε (1 + t)−

5
4 .

Inserting (1.10) in (1.9), applying Gronwall’s inequality and invoking the ansatz, we find that, 
for t ∈ [0,C0νε−2],

∥u(t)∥H 10(T 2) ≤ ∥u0∥H 10(T 2) e
C3ν

−1ε2t+C4ν
5 
18 ε ≤ C1

2 
ε.

Then the bootstrapping argument implies the desired upper bound for ∥u(t)∥H 10(T 2).
The proof of Theorem 1.2 relies crucially on the symmetries in (1.5). Due to the uniqueness 

of solutions in the regularity class H 10(T 2), it is easy to check that the symmetries in (1.5)
are preserved in time. Making use of these symmetries, we are able to establish the following 
estimate
5 
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d

dt
∥u(t)∥2

H 10 + 2ν∥u2∥2
H 10 ≤ C5∥˜︁u∥H 5∥u∥2

H 10 + C6∥u∥H 10∥u2∥2
H 10,

which yields the desired global stability of Theorem 1.2.
The rest of this paper is divided into four sections. The second section provides the properties 

of the aforementioned orthogonal decomposition and a decay lemma to be used in the proofs of 
theorems. The third section proves the decay property of the lower-order Sobolev norms. The 
fourth section details the proof of Theorem 1.1 while the last section proves Theorem 1.2.

2. Preliminaries

This section presents two tool lemmas to be used in the proofs of our main results. The first 
one states properties related to the orthogonal decomposition of a function into its horizontal 
average and the corresponding oscillation part.

Recall that, for a continuous function f on T 2, the average part of f in x1 is given by

f̄ ≜
∫︂
T

f (x1, x2)dx1, (2.1)

and the corresponding oscillation part

˜︁f = f − f̄ . (2.2)

The following lemma states several properties of this decomposition. These properties and 
their proofs can be found in [1,2,5].

Lemma 2.1. Let f : T 2 → R be a C1 function, and f and ˜︁f be defined as in (2.1) and (2.2).

(1) If f satisfies divergence-free condition, that is ∇ · f = 0, then so do ˜︁f and f , namely

∇ · ˜︁f = 0, ∇ · f = 0.

(2) The following basic properties on ˜︁f and f are used frequently,

∂1f = ∂1f = 0, ∂1f = ∂1 ˜︁f .

(3) For three continuous functions f , g and h from T 2 to R,∫︂
T 2

f˜︁ghdx = 0, (2.3)

and

f ˜︁g = 0. (2.4)
6 
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(4) The following Poincaré inequality holds for ˜︁f ,

∥ ˜︁f ∥L2 ≤ C∥∂1 ˜︁f ∥L2 . (2.5)

A sharper version of (2.5) is given by

∥ ˜︁f ∥L2 ≤ C∥|∂1|γ ˜︁f ∥L2 ,

where γ ≥ 0 and ˆ︂|∂1|γ f = |k1|γ ˆ︁f .

The second lemma deduces a precise decay rate from a differential inequality.

Lemma 2.2. Let g ∈ C1[0,∞) and g ≥ 0 on [0,∞). Assume that for two constants A > 0 and 
r > 1,

∂tg ≤ − g√
t + 1

+ A 
(t + 1)r

for t ∈ [0,∞). Then, for some constant c∗ ≥ 2r + 1 independent of g(0) and A,

g(t) ≤ g(0) + c∗A
(t + 1)r− 1

2

.

Proof of Lemma 2.2. It is easy to see that

∂t

(︂
e2

√
t+1g

)︂
≤ Ae2

√
t+1

(t + 1)r
.

Integrating in time from 0 to t yields

g(t) ≤ e−2
√

t+1e2g(0) + Ae−2
√

t+1

t∫︂
0 

Ae2
√

s+1

(s + 1)r
ds

≤ e−2
√

t+1e2g(0) + Ae−2
√

t+1

⎧⎪⎨⎪⎩
t
2∫︂

0 

e2
√

s+1

(s + 1)r
ds +

t∫︂
t
2

e2
√

s+1

(s + 1)r
ds

⎫⎪⎬⎪⎭
≤ e−2

√
t+1e2g(0) + Ae

2
(︂√︂

t
2 +1−√

t+1
)︂ t

2∫︂
0 

1 
(s + 1)r

ds

+ Ae−2
√

t+1

( t
2 + 1)r

t∫︂
t

e2
√

s+1 ds
2

7 
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≤ e−2
√

t+1e2g(0) + Ae
2
(︂√︂

t
2 +1−√

t+1
)︂
+ Ae−2

√
t+1

( t
2 + 1)r

t∫︂
t
2

e2
√

s+1 ds. (2.6)

Let τ = 2
√

s + 1, then

t∫︂
t
2

e2
√

s+1 ds =
2
√

t+1∫︂
2
√︂

t
2 +1

eτ ×
(︃

1

2
τ

)︃
dτ

= 1

2
×

⎛⎜⎜⎜⎝τeτ

⃓⃓⃓⃓τ=2
√

t+1

τ=2
√︂

t
2 +1

−
2
√

t+1∫︂
2
√︂

t
2 +1

eτ dτ

⎞⎟⎟⎟⎠
≤ √

t + 1 × e2
√

t+1. (2.7)

Inserting (2.7) in (2.6), we get

g(t) ≤ e−2
√

t+1e2g(0) + Ae
2
(︂√︂

t
2 +1−√

t+1
)︂
+ A 

( t
2 + 1)r

× (1 + t)
1
2

≤ e−2
√

t+1e2g(0) + Ae
2
(︂√︂

t
2 +1−√

t+1
)︂
+ 2r × A 

(t + 2)r− 1
2

≤ g(0) 

(t + 1)r− 1
2

+ A 

(t + 1)r− 1
2

+ 2r × A 

(t + 1)r− 1
2

≤ g(0) + c∗A
(t + 1)r− 1

2

for some c∗ ≥ 2r + 1. This finishes the proof of Lemma 2.2. □
3. Decay estimate of ˜︁𝒖

The next two sections are devoted to the proof of Theorem 1.1. As aforementioned in the 
introduction, the proof invokes the bootstrapping argument. The main lines include making the 
ansatz (1.6) and prove (1.7).

This section serves as part of the proof. It shows that, under the bootstrapping ansatz (1.6), 
lower-order norms of the solution decay in time. More precisely, we prove the following propo
sition.

Proposition 3.1. Assume that the solution u of (1.2) satisfies the ansatz (1.6). Then its oscillation 
part ˜︁u satisfies, for some constant C > 0 independent of ν and ε,

∥˜︁u(t)∥H 5(T 2) ≤ Cν
5 
18 ε 

5 for t ∈ [0,C0νε−2]. (3.1)

(1 + t) 4

8 
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Proof of Proposition 3.1. We use the vorticity formulation. The oscillation part of ω satisfies

∂t˜︁ω + ˜︂u · ∇ω = νℛ2
1˜︁ω.

Due to the divergence-free condition ∇ · u0 = ∇ · u = 0, we write

u = ∇⊥ψ = (−∂2ψ,∂1ψ).

As a consequence, ū2 = 0 and

u2∂2ω̄ = u2∂2ω̄ = 0.

Therefore,

˜︂u · ∇ω = ˜︂u · ∇˜︁ω + ˜︂u · ∇ω̄ = ˜︂u · ∇˜︁ω + ˜︂u2∂2ω̄

= ˜︂u · ∇˜︁ω + u2∂2ω̄

and

∂t˜︁ω + ˜︂u · ∇˜︁ω + u2∂2ω̄ = νℛ2
1˜︁ω. (3.2)

Taking the L2-inner product with ˜︁ω in (3.2) yields

1

2

d

dt
∥˜︁ω(t)∥2

L2 = −ν

∫︂
T 2

|ℛ1˜︁ω|2 dx −
∫︂
T 2

˜︂u · ∇˜︁ω˜︁ωdx −
∫︂
T 2

u2∂2ω̄˜︁ωdx

≜ I + J + K.

We first estimate J and K . By integration by parts, ∇ · u = 0 and (2.4),

J = −
∫︂
T 2

˜︂u · ∇˜︁ω˜︁ωdx

= −
∫︂
T 2

u · ∇˜︁ω˜︁ωdx +
∫︂
T 2

u · ∇˜︁ω˜︁ωdx

=
∫︂
T 2

˜︁u1∂1˜︁ω˜︁ωdx +
∫︂
T 2

˜︁u2∂2˜︁ω˜︁ωdx

≜ J1 + J2.

By Lemma 2.1, Hölder’s, Sobolev’s and Poincaré inequalities,
9 
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J1 =
∫︂
T 2

˜︁u1∂1˜︁ω˜︁ωdx =
∫︂
T 2

Λ
(︁˜︁u1∂1˜︁ω)︁

Λ−1˜︁ωdx

≤ ⃦⃦
Λ

(︁˜︁u1∂1˜︁ω)︁⃦⃦
L2

⃦⃦⃦
Λ−1˜︁ω⃦⃦⃦

L2
≤ ⃦⃦

∂2
(︁˜︁u1∂1˜︁ω)︁⃦⃦

L2

⃦⃦⃦
Λ−1∂1˜︁ω⃦⃦⃦

L2

≤ (︁∥∂2˜︁u1∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︁ × ∥ℛ1˜︁ω∥L2

= (︁∥(˜︁ω + ∂1˜︁u2) ∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︁ × ∥ℛ1˜︁ω∥L2

≤ (︁∥˜︁ω∂1˜︁ω∥L2 + ∥∂1˜︁u2∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︁ × ∥ℛ1˜︁ω∥L2

=
(︃

1

2
∥∂1 (˜︁ω)2∥L2 + ∥∂1˜︁u2∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︃
× ∥ℛ1˜︁ω∥L2

= (︁∥∂1˜︁u2∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︁ × ∥ℛ1˜︁ω∥L2

≤ (︁∥∂1˜︁u2∂1˜︁ω∥L2 + ∥˜︁u1∂1∂2˜︁ω∥L2

)︁ × ∥ℛ1˜︁ω∥L2

≤ (︁∥∂1˜︁u2∥L2∥∂1˜︁ω∥L∞ + ∥˜︁u1∥L2∥∂1∂2˜︁ω∥L∞
)︁ × ∥ℛ1˜︁ω∥L2

≤ C∥∂1˜︁u∥L2∥˜︁ω∥H 4∥ℛ1˜︁ω∥L2

≤ C∥˜︁ω∥H 4∥ℛ1˜︁ω∥2
L2 .

Similarly, J2 is bounded by

J2 =
∫︂
T 2

˜︁u2∂2˜︁ω˜︁ωdx =
∫︂
T 2

Λ
(︁˜︁u2∂2˜︁ω)︁

Λ−1˜︁ωdx

≤ ⃦⃦
Λ

(︁˜︁u2∂2˜︁ω)︁⃦⃦
L2

⃦⃦⃦
Λ−1˜︁ω⃦⃦⃦

L2

≤ (︁∥∂2˜︁u2∂2˜︁ω∥L2 + ∥˜︁u2∂2∂2˜︁ω∥L2

)︁ × ∥∂1Λ
−1˜︁ω∥L2

≤ (︁∥∂1˜︁u1∥L2∥∂2˜︁ω∥L∞ + ∥˜︁u2∥L2∥∂2∂2˜︁ω∥L∞
)︁ × ∥ℛ1˜︁ω∥L2

≤ C∥˜︁ω∥H 4∥ℛ1˜︁ω∥2
L2 .

Thus

J ≤ 2∥˜︁ω∥H 4∥ℛ1˜︁ω∥2
L2 .

Applying Hölder’s inequality and Sobolev embedding, we have

K = −
∫︂
T 2

u2∂2ω̄˜︁ωdx = −
∫︂
T 2

Λ(˜︁u2∂2ω̄)Λ−1˜︁ωdx

≤ ∥Λ(˜︁u2∂2ω̄)∥L2∥Λ−1˜︁ω∥L2

≤ C
(︁∥∇˜︁u2∂2ω̄∥L2 + ∥˜︁u2∂2∂2ω̄∥L2

)︁ × ∥ℛ1˜︁ω∥L2

≤ C
(︁∥∇˜︁u2∥L2∥∂2ω̄∥L∞ + ∥˜︁u2∥L2∥∂2∂2ω̄∥L∞

)︁ × ∥ℛ1˜︁ω∥L2

≤ C∥ω∥H 4∥ℛ1˜︁ω∥2
L2 .
10 
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Therefore,

1

2

d

dt
∥˜︁ω(t)∥2

L2 ≤ −ν

∫︂
T 2

|ℛ1˜︁ω|2 dx + 3C∥ω∥H 4 ∥ℛ1˜︁ω∥2
L2 .

By the ansatz (1.6) and the choice of ε, we have

3C∥ω∥H 4 ∥ℛ1˜︁ω∥2
L2 ≤ 3CC1ε∥ℛ1˜︁ω∥2

L2 ≤ 3CC1c0ν∥ℛ1˜︁ω∥2
L2 ≤ 1

2
ν∥ℛ1˜︁ω∥2

L2

and thus

d

dt
∥˜︁ω(t)∥2

L2

≤ −ν

∫︂
T 2

|ℛ1˜︁ω|2 dx

≤ −
∑︂

(n,k)∈Z2,n≠0

νn2

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ −
∑︂

(n,k)∈Z2,n≠0

ν

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ −
∑︂

(n,k)∈Z2,n≠0,n2+k2≤N

ν

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2 −
∑︂

(n,k)∈Z2,n≠0,n2+k2>N

ν

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ − ν

N

∑︂
(n,k)∈Z2,n≠0,n2+k2≤N

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2 −
∑︂

(n,k)∈Z2,n≠0,n2+k2>N

ν

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ − ν

N

⎛⎝∥˜︁ω∥2
L2 −

∑︂
n2+k2>N

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

⎞⎠ −
∑︂

(n,k)∈Z2,n≠0,n2+k2>N

ν

n2 + k2

⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ − ν

N
∥˜︁ω∥2

L2 +
∑︂

n2+k2>N

ν

(︃
1 
N

− 1 
n2 + k2

)︃ ⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

≤ − ν

N
∥˜︁ω∥2

L2 + ν

N

∑︂
n2+k2>N

(︃
n2 + k2

N

)︃9 ⃓⃓ ˆ︃˜︁ωn,k

⃓⃓2

= − ν

N
∥˜︁ω∥2

L2 + ν

N10 ∥˜︁ω∥2
H 9 .

Taking N = (1 + t)1/2 yields

d

dt
∥˜︁ω(t)∥2

L2 ≤ −ν∥˜︁ω∥2
L2√

t + 1
+

ν∥˜︁ω∥2
L∞

t H 9

(t + 1)5
≤ −ν∥˜︁ω∥2

L2√
t + 1

+ νC2
1ε2

(t + 1)5
.

By Lemma 2.2,
11 
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∥˜︁ω(t)∥2
L2 ≤ ν∥ω0∥2

L2 + c∗νC2
1ε2

(t + 1)
9
2

.

By interpolation

∥∇4˜︁ω(t)∥L2 ≤ C∥˜︁ω∥
5
9
L2∥˜︁ω∥

4
9
H 9 ≤ C

(︂
(1 + c∗C2

1)
1
2 ν

1
2 ε(1 + t)−

9
4

)︂ 5
9
(C1ε)

4
9

≤ Cν
5 
18 ε(1 + t)−

5
4 ,

where we have written C for C(1+c∗C2
1)

5 
18 C

4
9
1 . Clearly it is independent of ν and ε. By Poincaré 

inequality stated in Lemma 2.1,

∥˜︁ω(t)∥H 4 ≤ Cν
5 
18 ε(1 + t)−

5
4 .

Therefore,

∥˜︁u(t)∥H 5 ≤ Cν
5 
18 ε(1 + t)−

5
4 ,

This completes the proof of Proposition 3.1. □
4. Proof of Theorem 1.1

With the decay estimate in the previous section at our disposal, this section completes the 
proof of Theorem 1.1. The center piece of the proof is the following estimate.

Proposition 4.1. Assume that u solves (1.2). Then u obeys the a priori differential inequality, for 
any 0 < t ≤ T and some constant ˜︁C > 0,

∥u(t)∥2
H 10 + ν

T∫︂
0 

∥u2(τ )∥2
H 10 dτ

≤ ∥u0∥2
H 10 exp

⎧⎨⎩
T∫︂

0 

˜︁C (︂
∥˜︁u(τ)∥H 5 + ν−1∥u(τ)∥2

H 10

)︂
dτ

⎫⎬⎭ . (4.1)

We first give the proof of Theorem 1.1 with the help of Proposition 4.1. We will then return 
to prove Proposition 4.1.

Proof of Theorem 1.1. The proof invokes the bootstrapping argument. We make the ansatz that, 
for two suitable positive constant C0 and C1,

∥u(t)∥H 10(T 2) ≤ C1ε for t ∈ [0,C0νε−2]. (4.2)

We then show that, for t on the same time interval,
12 
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∥u(t)∥H 10(T 2) ≤ C1

2 
ε.

The local theory of existence and regularity guarantees that, for t ∈ [0,C2νε−1] with a suitable 
constant C2 > 0,

∥u(t)∥H 10(T 2) ≤ C1ε,

when the initial norm is taken to be sufficiently small. To extend (1.8) to the longer-time interval 
[0,C0νε−2], we estimate ∥u(t)∥H 10(T 2). By Proposition 4.1,

∥u(t)∥2
H 10 + ν

T∫︂
0 

∥u2(τ )∥2
H 10 dτ

≤ ∥u0∥2
H 10 exp

⎧⎨⎩
T∫︂

0 

˜︁C (︂
∥˜︁u(τ)∥H 5 + ν−1∥u(τ)∥2

H 10

)︂
dτ

⎫⎬⎭ . (4.3)

Inserting (3.1) and (4.2) in (4.3), for any t ∈ [0,C0νε−2], we obtain

∥u(t)∥2
H 10 ≤ ∥u0∥2

H 10 exp

⎧⎨⎩
T∫︂

0 

˜︁CC ν
5 
18 ε(1 + τ)−

5
4 dτ + ˜︁CC2

1ν−1ε2T

⎫⎬⎭
≤ ∥u0∥2

H 10 × e

(︃˜︁CCν
5 
18 ε+˜︁CC0C

2
1

)︃
,

where T = C0νε−2. By the choice of ε and the fact that C1 > 2,

e

(︃˜︁CCν
5 
18 ε+˜︁CC0C

2
1

)︃
≤ e

(︁
c0˜︁CC+˜︁CC0C

2
1

)︁
≤ C2

1

4 

for suitable c0 > 0 and C0 > 0. Therefore,

∥u(t)∥2
H 10 ≤ C2

1

4 
ε2,

or

∥u(t)∥H 10 ≤ C1

2 
ε.

This completes the proof of the Theorem 1.1. □
The rest of this section proves Proposition 4.1.
13 
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Proof of Proposition 4.1. Taking H 9-inner product with ω in (1.1)1, due to

∥f ∥2
Hs ≈ ∥f ∥2

L2 + ∥f ∥2
Ḣ s ,

and by the divergence-free condition of u, we get

d

dt
∥ω(t)∥2

H 9 + 2ν∥ℛ1ω∥2
H 9

≈ −2
∫︂
T 2

u · ∇ωω dx − 2
∫︂
T 2

∇9 (u · ∇ω)∇9ω dx

= −2
∫︂
T 2

∂9
1 (u · ∇ω)∂9

1 ω dx − 2
∫︂
T 2

∂9
2 (u · ∇ω)∂9

2 ω dx

= −2
∫︂
T 2

∂9
1 (u1∂1ω)∂9

1 ω dx − 2
∫︂
T 2

∂9
1 (u2∂2ω)∂9

1 ω dx

− 2
∫︂
T 2

∂9
2 (u1∂1ω)∂9

2 ω dx − 2
∫︂
T 2

∂9
2 (u2∂2ω)∂9

2ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u2∂2∂

9−i
1 ω∂9

1ω dx

− 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ω∂9

2 ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u2∂2∂

9−i
2 ω∂9

2ω dx

≜ N1 + N2 + N3 + N4. (4.4)

For N1, by Hölder’s inequality and Sobolev embedding, we obtain

N1 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx

= −2
5 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx − 2
9 ∑︂

i=6 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx

≤ 2
5 ∑︂

i=1 
𝒞i

9∥∂1∂
9−i
1 ω∥L2∥∂i

1u1∥L∞∥∂9
1 ω∥L2

+ 2
9 ∑︂

𝒞i
9∥∂1∂

9−i
1 ω∥L∞∥∂i

1u1∥L2∥∂9
1ω∥L2
i=6 

14 
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≤ 2
5 ∑︂

i=1 
𝒞i

9

⃦⃦⃦⃦
∂1

Λ 
Λ∂9−i

1 ω

⃦⃦⃦⃦
L2

∥∂i
1u1∥L∞

⃦⃦⃦⃦
∂1

Λ 
Λ∂8

1 ω

⃦⃦⃦⃦
L2

+ 2
9 ∑︂

i=6 
𝒞i

9∥∂1∂
9−i
1 ω∥L∞

⃦⃦⃦⃦
∂1

Λ 
Λ∂i−1

1 u1

⃦⃦⃦⃦
L2

⃦⃦⃦⃦
∂1

Λ 
Λ∂8

1ω

⃦⃦⃦⃦
L2

≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 .

For N2, we have

N2 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u2∂2∂

9−i
1 ω∂9

1ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1˜︁u2∂2∂

9−i
1 ω∂9

1ω dx

= −2
3 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1˜︁u2∂2∂

9−i
1 ω∂9

1ω dx − 2
9 ∑︂

i=4 
𝒞i

9

∫︂
T 2

∂i
1˜︁u2∂2∂

9−i
1 ω∂9

1ω dx

≤ 2
2 ∑︂

i=1 
𝒞i

9∥∂2∂
9−i
1 ω∥L2∥∂i

1˜︁u2∥L∞∥∂9
1 ω∥L2

+ 2
9 ∑︂

i=3 
𝒞i

9∥∂i
1˜︁u2∥L2∥∂2∂

9−i
1 ω∥L∞∥∂9

1ω∥L2

≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 .

The estimate of N3 is more complex. We split N3 into the following two part

N3 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ω∂9

2ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u1∂1∂

9−i
2 ˜︁ω∂9

2ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx

≜ N31 + N32.

N31 is bounded by

N31 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
2

∂i
2˜︁u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx
T

15 
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≤ 2
6 ∑︂

i=1 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L2∥∂i

2˜︁u1∥L∞∥∂9
2ω∥L2

+ 2
9 ∑︂

i=7 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L∞∥∂i

2˜︁u1∥L2∥∂9
2 ω∥L2

≤ 2
6 ∑︂

i=1 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L2∥∂i

2˜︁u1∥H 2∥∂9
2 ω∥L2

+ 2
9 ∑︂

i=7 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥H 2∥∂i

2˜︁u1∥L2∥∂9
2ω∥L2

≤ 2
6 ∑︂

i=1 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L2∥∂1∂

i
2˜︁u1∥H 2∥∂9

2ω∥L2

+ 2
9 ∑︂

i=7 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥H 2∥∂1∂

i
2˜︁u1∥L2∥∂9

2 ω∥L2

≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 . (4.5)

For N32, we split N32 into two parts and use (2.3) to obtain

N32 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

= −2
∫︂
T 2

∂2u1∂1∂
8
2˜︁ω∂9

2˜︁ωdx − 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

≜ N321 + N322. (4.6)

Integrating by part for N322 and applying Hölder’s inequality and Sobolev embedding, we have

N322 = −2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

= 2
9 ∑︂

i=2 
𝒞i

9

∫︂
2

∂2

(︂
∂i

2u1∂1∂
9−i
2 ˜︁ω)︂

∂8
2˜︁ωdx
T

16 
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= 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2∂
i
2u1∂1∂

9−i
2 ˜︁ω∂8

2˜︁ωdx + 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2u1∂2∂1∂

9−i
2 ˜︁ω∂8

2˜︁ωdx

≤ 2
7 ∑︂

i=2 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L2∥∂2∂

i
2u1∥L∞∥∂8

2˜︁ω∥L2

+ 2
9 ∑︂

i=8 
𝒞i

9∥∂1∂
9−i
2 ˜︁ω∥L∞∥∂2∂

i
2u1∥L2∥∂8

2˜︁ω∥L2

+ 2
3 ∑︂

i=2 
𝒞i

9∥∂2∂1∂
9−i
2 ˜︁ω∥L2∥∂i

2u1∥L∞∥∂8
2˜︁ω∥L2

+ 2
9 ∑︂

i=4 
𝒞i

9∥∂2∂1∂
9−i
2 ˜︁ω∥L∞∥∂i

2u1∥L2∥∂8
2˜︁ω∥L2

≤ C∥ω∥H 9∥∂1˜︁ω∥H 8∥∂1∂
8
2˜︁ω∥L2

≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 . (4.7)

For N321, by Hölder’s inequality, Sobolev embedding and Young’s inequality, we obtain

N321 = −2
∫︂
T 2

∂2u1∂1∂
8
2˜︁ω∂9

2˜︁ωdx

≤ 2∥∂2u1∥L∞∥∂1∂
8
2˜︁ω∥L2∥∂9

2˜︁ω∥L2

≤ C∥ℛ1ω∥H 9∥ω∥2
H 9

≤ ν

2 
∥ℛ1ω∥2

H 9 + Cν−1∥ω∥4
H 9 . (4.8)

Inserting (4.7) and (4.8) into (4.6), N32 is bounded by

N32 ≤ ν

2 
∥ℛ1ω∥2

H 9 + C∥ω∥H 9∥ℛ1ω∥2
H 9 + Cν−1∥ω∥4

H 9 . (4.9)

Furthermore, collecting the bound for N31 in (4.5) and the bound for N32 in (4.9), N3 is bounded 
by

N3 ≤ ν

2 
∥ℛ1ω∥2

H 9 + C∥ω∥H 9∥ℛ1ω∥2
H 9 + Cν−1∥ω∥4

H 9 .

Then we estimate N4. Similar as in N3, N4 can be written as

N4 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
2

∂i
2u2∂2∂

9−i
2 ω∂9

2ω dx
T

17 
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= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ˜︁ω∂9

2˜︁ωdx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ˜︁ω∂9

2 ωdx

− 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2˜︁ωdx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2ωdx

≜ N41 + N42 + N43 + N44. (4.10)

According to (2.3), we get

N44 = 0. (4.11)

Next we estimate N41, N42 and N43 in order. For N41, by Hölder’s inequality, Sobolev embed
ding, we obtain

N41 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

= −2
∫︂
T 2

∂2˜︁u2∂
9
2˜︁ω∂9

2˜︁ωdx − 2
7 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

− 2
9 ∑︂

i=8 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ˜︁ω∂9

2˜︁ωdx

≤ 2∥∂2˜︁u2∥L∞∥∂9
2˜︁ω∥2

L2 + 2
7 ∑︂

i=2 
𝒞i

9∥∂i
2˜︁u2∥L∞∥∂2∂

9−i
2 ˜︁ω∥L2∥∂9

2˜︁ω∥L2

+ 2
9 ∑︂

i=8 
𝒞i

9∥∂2∂
9−i
2 ˜︁ω∥L∞∥∂i

2˜︁u2∥L2∥∂9
2˜︁ω∥L2

≤ C∥˜︁ω∥H 2∥ω∥2
H 9 + C∥ω∥H 9∥˜︁ω∥2

H 8

≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥∂1˜︁ω∥2

H 8

≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9,

that is

N41 ≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9 . (4.12)

Similarly, N42 is bounded by
18 
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N42 ≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9 . (4.13)

For N43, we split it two parts,

N43 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2˜︁ωdx

= −2
∫︂
T 2

∂2˜︁u2∂
9
2 ω∂9

2˜︁ωdx − 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2˜︁ωdx

≜ N431 + N432. (4.14)

N431 is bounded by

N431 = −2
∫︂
T 2

∂2˜︁u2∂
9
2 ω∂9

2˜︁ωdx

≤ 2∥∂2˜︁u2∥L∞∥∂9
2ω∥L2∥∂9

2˜︁ω∥L2

≤ C∥˜︁ω∥H 4∥ω∥2
H 9 . (4.15)

N432 is slightly different, using the integration by parts, we obtain

N432 = −2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂2∂

9−i
2 ω∂9

2˜︁ωdx

= 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2

(︂
∂i

2˜︁u2∂2∂
9−i
2 ω

)︂
∂8

2˜︁ωdx

= 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2∂
i
2˜︁u2∂2∂

9−i
2 ω∂8

2˜︁ωdx + 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂

2
2∂9−i

2 ω∂8
2˜︁ωdx

≜N4321 + N4322. (4.16)

We split N4321 into two parts,

N4321 = 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2∂
i
2˜︁u2∂2∂

9−i
2 ω∂8

2˜︁ωdx

= 2
8 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2∂
i
2˜︁u2∂2∂

9−i
2 ω∂8

2˜︁ωdx + 2
∫︂
T 2

∂2∂
9
2˜︁u2∂2ω∂8

2˜︁ωdx

≜N43211 + N43212. (4.17)
19 
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By Poincaré inequality, we get

N43211 = 2
8 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂2∂
i
2˜︁u2∂2∂

9−i
2 ω∂8

2˜︁ωdx

= 2
∫︂
T 2

∂2∂
2
2˜︁u2∂2∂

7
2 ω∂8

2˜︁ωdx + 2
8 ∑︂

i=3 
𝒞i

9

∫︂
T 2

∂2∂
i
2˜︁u2∂2∂

9−i
2 ω∂8

2˜︁ωdx

≤ 2∥∂2∂
2
2˜︁u2∥L4∥∂2∂

7
2ω∥L4∥∂8

2˜︁ω∥L2

+ 2
8 ∑︂

i=3 
𝒞i

9∥∂2∂
i
2˜︁u2∥L2∥∂2∂

9−i
2 ω∥L∞∥∂8

2˜︁ω∥L2

≤ C∥ω∥H 9∥˜︁ω∥2
H 8 ≤ C∥ω∥H 9∥∂1˜︁ω∥2

H 8 ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 . (4.18)

By integration by parts, the divergence-free condition of u and Poincaré inequality,

N43212 = 2
∫︂
T 2

∂2∂
9
2˜︁u2∂2ω∂8

2˜︁ωdx

= −2
∫︂
T 2

∂1∂
9
2˜︁u1∂2ω∂8

2˜︁ωdx

= 2
∫︂
T 2

∂9
2˜︁u1∂2∂1ω∂8

2˜︁ωdx + 2
∫︂
T 2

∂9
2˜︁u1∂2ω∂1∂

8
2˜︁ωdx

≤ 2∥∂9
2˜︁u1∥L2∥∂2∂1ω∥L∞∥∂8

2˜︁ω∥L2 + 2∥∂9
2˜︁u1∥L2∥∂2ω∥L∞∥∂1∂

8
2˜︁ω∥L2

≤ C∥ω∥H 9∥˜︁ω∥2
H 8 + C∥ω∥H 9∥˜︁ω∥H 8∥∂1˜︁ω∥H 8

≤ C∥ω∥H 9∥∂1˜︁ω∥2
H 8 ≤ C∥ω∥H 9∥ℛ1ω∥2

H 9 . (4.19)

Inserting (4.18) and (4.19) into (4.17), N4321 is bounded by

N4321 ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 . (4.20)

Now we turn to estimate N4322,

N4322 = 2
9 ∑︂

i=2 
𝒞i

9

∫︂
T 2

∂i
2˜︁u2∂

2
2∂9−i

2 ω∂8
2˜︁ωdx

= 2
∫︂

2

∂2
2˜︁u2∂

2
2∂7

2 ω∂8
2˜︁ωdx + 2

8 ∑︂
i=3 

𝒞i
9

∫︂
2

∂i
2˜︁u2∂

2
2 ∂9−i

2 ω∂8
2˜︁ωdx
T T

20 
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+ 2
∫︂
T 2

∂9
2˜︁u2∂

2
2ω∂8

2˜︁ωdx

≤ 2∥∂2
2˜︁u2∥L∞∥∂2

2 ∂7
2ω∥L2∥∂8

2˜︁ω∥L2 + 2
8 ∑︂

i=3 
𝒞i

9∥∂i
2˜︁u2∥L4∥∂2

2∂9−i
2 ω∥L4∥∂8

2˜︁ω∥L2

+ 2∥∂9
2˜︁u2∥L2∥∂2

2ω∥L∞∥∂8
2˜︁ω∥L2

≤ C∥ω∥H 9∥˜︁ω∥H 8 ≤ C∥ω∥H 9∥∂1˜︁ω∥2
H 8 ≤ C∥ω∥H 9∥ℛ1ω∥2

H 9 . (4.21)

Inserting (4.20) and (4.21) into (4.16), N432 is bounded by

N432 ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 . (4.22)

Again, inserting (4.15) and (4.22) into (4.14), N43 can be bounded by

N43 ≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9 . (4.23)

Inserting (4.11), (4.12), (4.13) and (4.23) into (4.10), we obtain

N4 ≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9 .

Collecting the bounds for N1 through N4 and inserting these inequalities in (4.4), we obtain

d

dt
∥ω(t)∥2

H 9 + 2ν∥ℛ1ω∥2
H 9

≤ ν

2 
∥ℛ1ω∥2

H 9 + C∥ω∥H 9∥ℛ1ω∥2
H 9 + Cν−1∥ω∥4

H 9 + C∥˜︁ω∥H 4∥ω∥H 9

≤ ν∥ℛ1ω∥2
H 9 + Cν−1∥ω∥2

H 9∥ℛ1ω∥2
H 9 + Cν−1∥ω∥4

H 9 + C∥˜︁ω∥H 4∥ω∥2
H 9 (4.24)

≤ ν∥ℛ1ω∥2
H 9 + Cν−1∥u∥2

H 10∥u2∥2
H 10 + Cν−1∥u∥4

H 10 + C∥˜︁u∥H 5∥u∥2
H 10 .

Therefore

d

dt
∥ω(t)∥2

H 9 + ν∥ℛ1ω∥2
H 9 ≤ Cν−1∥u∥2

H 10∥u2∥2
H 10 + Cν−1∥u∥4

H 10 + C∥˜︁u∥H 5∥u∥2
H 10

≤ ˜︁Cν−1∥u∥4
H 10 + ˜︁C∥˜︁u∥H 5∥u∥2

H 10, (4.25)

for some constant ˜︁C > 0.
In addition, taking L2-estimate for the velocity u in equation (1.2)1, we get

d

dt
∥u(t)∥2

L2 + 2ν∥u2∥2
L2 = 0. (4.26)

Combining (4.25) with (4.26), we obtain

d

dt
∥u(t)∥2

H 10 + ν∥u2∥2
H 10 ≤ ˜︁Cν−1∥u∥4

H 10 + ˜︁C∥˜︁u∥H 5∥u∥2
H 10 .
21 



J. Wu, X. Xu, Y. Zhong et al. Journal of Differential Equations 444 (2025) 113578 
By Grönwall’s lemma,

∥u(t)∥2
H 10 + ν

T∫︂
0 

∥u2(τ )∥2
H 10 dτ

≤ ∥u0∥2
H 10 exp

⎧⎨⎩
T∫︂

0 

˜︁C (︂
∥˜︁u(τ)∥H 5 + ν−1∥u(τ)∥2

H 10

)︂
dτ

⎫⎬⎭ ,

for some constant ˜︁C > 0. Which verifies (4.1). This completes the proof of Proposition 4.1. □
5. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The symmetry assumptions in (1.5) on 
the initial data allow us to prove a differential inequality that leads to the global stability.

The framework of the proof is still the bootstrapping argument. A crucial part is the energy 
inequality stated in the following proposition.

Proposition 5.1. Assume the initial data satisfies the symmetry conditions of Theorem 1.2. Let u
be the corresponding solution of (1.2). Then u satisfies

d

dt
∥u(t)∥2

H 10 + 2ν∥u2∥2
H 10 ≤ C1∥˜︁u∥H 5∥u∥2

H 10 + C2∥u∥H 10∥u2∥2
H 10 . (5.1)

We first prove Theorem 1.2 making use of Proposition 5.1. Then we verify (5.1).

Proof of Theorem 1.2. The framework of the proof is still the bootstrapping argument. We 
make the ansatz that, for t > 0,

∥u(t)∥H 10 ≤ 4ε,

where ε is sufficiently small such that

4C2ε ≤ ν or ε ≤ 1 
4C2

ν.

Then (5.1) leads to

d

dt
∥u(t)∥2

H 10 + ν∥u2∥2
H 10 ≤ C1∥˜︁u∥H 5∥u∥2

H 10 .

By Grönwall’s Lemma,

∥u(t)∥2
H 10 + ν

t∫︂
0 

∥u2(τ )∥2
H 10 dτ ≤ ∥u0∥2

H 10 exp

⎧⎨⎩C1

t∫︂
0 

∥˜︁u(τ)∥H 5 dτ

⎫⎬⎭ . (5.2)
22 
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Inserting (3.1) in (5.2), one has

∥u(t)∥2
H 10 + ν

t∫︂
0 

∥u2(τ )∥2
H 10 dτ ≤ ∥u0∥2

H 10 exp

⎧⎨⎩C1

t∫︂
0 

∥˜︁u(τ)∥H 5 dτ

⎫⎬⎭
≤ ∥u0∥2

H 10 exp

⎧⎨⎩C1C ν
5 
18

t∫︂
0 

ε(1 + τ)−
5
4 dτ

⎫⎬⎭
≤ ∥u0∥2

H 10 × eC3ν
5 
18 ε

≤ 4∥u0∥2
H 10,

by further requiring ε obey

eC3ν
5 
18 ε ≤ 4 or 0 < ε ≤ C ν− 5 

18

for suitable C > 0. Then

∥u(t)∥H 10 ≤ 2∥u0∥H 10 ≤ 2ε.

This completes the bootstrapping argument and thus the proof of Theorem 1.2. □
The rest of this section is to prove (5.1). We make use of the simple fact that the symmetries 

in (1.5) are preserved in time.

Lemma 5.2. Assume u0 ∈ H 10(T 2) satisfies ∇ · u0 = 0 and the symmetries

u0,1 is odd in x1, and u0,2 is even in x1.

Let u ∈ L∞(0, T ; H 10(T 2)) be the corresponding solution of (1.2) for some T > 0. Then for 
any t ≤ T , u(t) obeys the same symmetries as in (1.5), which are

u1 is odd in x1, u2 and p are even in x1.

Proof of Lemma 5.2. This lemma is a simple consequence of the uniqueness of solutions in the 
Sobolev space H 10. Trivially the solutions to (1.2) are unique in H 10.

If (u,p) = (u1, u2,p) is a solution of (1.2), then (U,P ) with

U1 = −u1(−x1, x2, t), U2 = u2(−x1, x2, t), P = p(−x1, x2, t)

also satisfies the same equation (1.2) with the initial datum U0 = (U0,1,U0,2) given by

U0,1 = −u0,1(−x1, x2), U0,2 = u0,2(−x1, x2).

Due to the symmetries of the initial data, we have
23 
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U0 = u0.

By the uniqueness of solutons to (1.2), we have

(U,P ) = (u,p),

which is

u1(x1, x2, t) = −u1(−x1, x2, t),

u2(x1, x2, t) = u2(−x1, x2, t),

p(x1, x2, t) = p(−x1, x2, t).

Therefore, (u,p) has the desired symmetries. □
Finally we give the proof of (5.1).

Proof of Proposition 5.1. Taking the H 9-inner product with ω in (1.1)1, we obtain, after a sim
ilar process as in (4.4),

d

dt
∥ω(t)∥2

H 9 + 2∥ℛ1ω∥2
H 9

≈ −2
∫︂
T 2

u · ∇ωω dx − 2
∫︂
T 2

∇9 (u · ∇ω)∇9ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u2∂2∂

9−i
1 ω∂9

1ω dx

− 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ω∂9

2 ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u2∂2∂

9−i
2 ω∂9

2ω dx

≜ M1 + M2 + M3 + M4. (5.3)

M1, M2 and M4 can be similarly bounded as N1, N2 and N4, respectively. That is,

M1 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u1∂1∂

9−i
1 ω∂9

1ω dx ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9,

M2 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
1u2∂2∂

9−i
1 ω∂9

1ω dx ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9

and
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M4 = 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u2∂2∂

9−i
2 ω∂9

2ω dx ≤ C∥˜︁ω∥H 4∥ω∥2
H 9 + C∥ω∥H 9∥ℛ1ω∥2

H 9 .

M3 is bounded differently. Splitting u1 into its average part u1 and its corresponding oscillation 
part ˜︁u1, we have

M3 = −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ω∂9

2ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx − 2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx

= −2
9 ∑︂

i=1 
𝒞i

9

∫︂
T 2

∂i
2˜︁u1∂1∂

9−i
2 ˜︁ω∂9

2 ω dx,

where we have used that ∂2u1 = 0 due to u0,1 is odd in x1. In fact, since u0,1 is odd in x1 and 
u0,2 is even in x1, by Corollary 5.2, we get u1 is odd in x1, thus

u1 =
∫︂
T

u1(x1, x2) dx1 = 0

and

∂2u1 = 0.

As in N31, M3 is bounded by

M3 ≤ C∥ω∥H 9∥ℛ1ω∥2
H 9 .

Collecting the bounds for M1, M2, M3, M4 and inserting them in (5.3), we obtain

d

dt
∥ω(t)∥2

H 9 + 2ν∥ℛ1ω∥2
H 9 ≤ C∥˜︁ω∥H 4∥ω∥2

H 9 + C∥ω∥H 9∥ℛ1ω∥2
H 9 . (5.4)

Combining (5.4) and the bound for ∥u∥L2 in (4.26), we have

d

dt
∥u(t)∥2

H 10 + 2ν∥u2∥2
H 10 ≤ C∥˜︁ω∥H 4∥ω∥2

H 9 + C∥ω∥H 9∥ℛ1ω∥2
H 9

≤ C1∥˜︁u∥H 5∥u∥2
H 10 + C2∥u∥H 10∥u2∥2

H 10,

for some constants C1,C2 > 0. This completes the proof of Proposition 5.1. □
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