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Abstract
This paper establishes the global existence and stability of the Navier–Stokes
equations with dissipation acting in the vertical direction and on the vertical
average in one of the horizontal directions. This Navier–Stokes model arises
in various physical contexts such as strongly stratified fluids and anisotropic
turbulence models.
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1. Introduction

This paper examines the following 3D Navier–Stokes model with dissipation acting in the
vertical direction and on the vertical average in the x1-direction

∂tu+ u ·∇u=−∇p+ ν∂2
3u+ ν∂2

1 ū, x ∈ T3, t> 0,

∇· u= 0,

u(x,0) = u0 (x) ,

(1.1)
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where the spatial domain is taken to the 3D periodic box T3 = [0,1]3, u is the velocity filed,
p is the pressure and ν is the viscosity. Here ν∂2

3u is dissipation acting only in the vertical
direction and ν∂2

1 ū is dissipation in the x1 direction applied only to the vertical average of the
velocity field, where ū is defined as

ū(x1,x2) =
1
|T|

ˆ
T
u(x1,x2,x3) dx3.

For simplicity, ∂xi will be written as ∂i.
This type of dissipation structure appears naturally in various physical systems. In strongly

stratified fluids (e.g. oceans, atmospheres), vertical mixing is suppressed, but horizontal dis-
sipation may still act on larger scales, especially on the vertically averaged velocity, as in
large-scale geophysical models (see, e.g. [15, 16]). Some turbulence models use anisotropic
viscosity, where vertical viscosity is higher due to strong stratification, while horizontal mixing
operates at a larger scale (see, e.g. [14]).

A natural and important question is the non-linear stability problem: given small initial data,
does (1.1) admit a unique global solution that remains uniformly small for all time? This is a
non-trivial issue. Mathematically, the dissipation present in (1.1) lies between one-directional
and two-directional dissipation.

To illustrate, consider the 3D Navier–Stokes equations with dissipation in two directions:{
∂tu+ u ·∇u=−∇p+ ν∆hu,

∇· u= 0,

where ∆h denotes the horizontal Laplacian operator. In this setting, the small-data well-
posedness problem has been extensively studied, and global-in-time solutions have been
obtained in various functional frameworks (see, e.g. [2, 6, 7, 10–12]). Broadly speaking, dis-
sipation in two directions, together with the divergence-free condition, is sufficient to control
the non-linearity.

Very recently, new approaches have been developed to better understand the precise large-
time behavior of these global solutions ([7, 17]). Classical methods for studying decay rates
in the Navier–Stokes equations with full dissipation such as the Fourier splitting method are
no longer effective in the anisotropic setting.

However, when the dissipation of the 3D Navier–Stokes is only in a single direction,
that is, {

∂tu+ u ·∇u=−∇p+ ν∂2
3u,

∇· u= 0.

The small data global well-posedness problem in the periodic domain T3 or the whole space
R3 is open. The difficulty is immediate. Dissipation in a single direction is simply not sufficient
to bound the non-linearity.

This paper intends to study the global existence and stability problem on an anisotropic 3D
Navier–Stokes equations. As the spatial domain we use the 3D periodic box T3 = [0,1]3.

The goal is to establish the global existence as well as nonlinear stability of (1.1). As afore-
mentioned, f̄ denotes the vertical average of a function f and f̃ the remainder, namely

f̄(x1,x2) =
ˆ
T
f(x1,x2,x3)dx3, f̃ = f − f̄. (1.2)

We establish the following theorem.
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Theorem 1.1. Consider (1.1) with ν > 0. Assume u0 ∈ H3(T3) with ∇· u0 = 0. There exists a
suitable constant C0 > 0 such that, if

∥u0∥H3 ⩽ C0 ν,

then (1.1) has a unique global solution u ∈ L∞([0,∞);H3(T3)). Furthermore, u remains uni-
formly bounded, for any t> 0,

∥u(·, t)∥H2(T3) ⩽ C0ν.

This result appears to be the first small data global existence, regularity and stability result
on the 3D Navier–Stokes with the least dissipation in the periodic setting. The existing small
data global well-posedness results for the periodic case all require dissipation in two directions.

The proof exploits the control of non-linearity via the vertical dissipation and the dissipation
of the vertical average in the x1-direction. Several useful tools are involved. First, we utilize the
orthogonal decomposition of a function into its vertical average and the remainder part (called
the oscillatory part). The oscillatory part satisfies a strong version of a Poincaré-type inequality,
allowing us to bound the Sobolev norm of a function via the corresponding Sobolev norm of its
vertical derivative. Second, we employ anisotropic Sobolev upper bounds for triple products.
These inequalities enable us to distribute directional derivatives to suitable terms. Additionally,
to make use of the dissipation in the x1-direction of the vertical average, we further decompose
the vertical average into two parts:

ū= ¯̄u+ ˜̄u,
where ¯̄u is the average of ū in the x1-direction. This decomposition allows us to exploit the x1-
directional dissipation of the vertical average effectively. More technical details can be found
in section 3.

The remainder of the paper is organized as follows. Section 2 introduces several technical
lemmas that will be used in the proof of theorem 1.1. In particular, we establish key properties
of the orthogonal decomposition given in (1.2), a strong Poincaré-type inequality for f̃, and
several anisotropic upper bounds for triple products. Section 3 contains the detailed proof of
theorem 1.1.

2. Technical lemmas

This section presents several technical lemmas to be used the proof of theorem 1.1.
The proof of theorem 1.1 makes use of the following orthogonal decomposition

f = f̄ + f̃,

where f̄ denotes the vertical average of f and f̃ denotes the oscillatory part,

f̄ (x1,x2) =
ˆ
T
f(x1,x2,x3) dx3 and f̃ = f − f̄. (2.1)

The advantage of this decomposition is that the oscillatory part f̃ enjoys a strong version of the
Poincare type inequalities, which allows us to control the Sobolev norm of a function by that
of its derivative in x3 direction.

In the process of estimating the non-linearity, we deal with a triple product term involving
all averages by further decomposition the vertical average into two parts,

f̄ =¯̄f+˜̄f,
3
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where ¯̄f denotes the average of f̄ in the x1-direction, namely

¯̄f(x2) =
ˆ
T2

f(x1,x2,x3) dx3dx1, ˜̄f= f̄ −¯̄f.

The following lemma states this fact and some other properties to be used in the proof of
theorem 1.1.

Lemma 2.1. Let f̄ and f̃ be defined as in (2.1). The following properties hold:

(1) The average and oscillation commute with any derivatives, namely

∂i f= ∂i f̄, ∂̃i f= ∂i f̃

As a special consequence, if u is divergence-free, ∇· u= 0, then ū and ũ are also
divergence-free,∇· ū= 0 and∇· ũ= 0.

(2) f̄ and f̃ are orthogonal. More precisely, for f ∈ Hk(T3) with any non-negative integer k, the
inner product of f̄ and f̃ in Hk is zero,

ˆ
T3

∂α f̄(x) ∂α̃f(x) dx= 0

for any multi-index α with |α|⩽ k. As a special consequence,

∥f∥2Ḣk = ∥̄f∥2Ḣk + ∥̃f∥2Ḣk

and

∥̄f∥Hk ⩽ ∥f∥Hk and ∥̃f∥Hk ⩽ ∥f∥Hk .

(3) f̃ satisfies the strong Poincaré type inequality

∥̃f∥L2 ⩽ C∥∂3̃f∥L2 (2.2)

A sharp version of (2.2) needs only fractional derivative in x3-direction, that is, for any
σ> 0

∥̃f∥L2 ⩽ C∥Λσ
3 f̃∥L2 ,

where Λσ
3 f is defined through its Fourier transform |k3|σ f̂(k1,k2,k3).

The proof of this lemma can be found in [3–5].
Throughout the rest of this paper, we will use the following anisotropic Lebesgue space

notation

∥f∥Lpx1Lqx2Lrx3 := ∥∥∥f∥Lpx1 (T)∥Lqx2 (T)∥Lrx3 (T).

The sub-indices x1, x2 and x3 are used to distinguish in which direction the norm is taken. We
will also use ∥f∥Lpx1x2Lqx3 as

∥f∥Lpx1x2Lqx3 := ∥f∥Lpx1Lpx2Lqx3 .

The notation for anisotropic Lebesgue and Sobolev norms should be understood similarly.

4
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The following lemma provides an anisotropic upper bound on the integral of triple products.
It is an extremely useful when we estimate the nonlinear terms of PDEs with anisotropic dis-
sipation. Several different versions of lemma 2.2 for different type of spatial domains can be
found in [1, 3, 8, 13].

Lemma 2.2. Assume that f,∂1f,g,∂2g,h,∂3h are all in L2(T3). Then, for a constant C inde-
pendent of f, g and h,∣∣∣∣ˆ

T3

f(x) g(x) h(x) dx

∣∣∣∣⩽C∥f∥
1
2
L2 (∥f∥L2 + ∥∂1f∥L2)

1
2 ∥g∥

1
2
L2 (∥g∥L2 + ∥∂2g∥L2)

1
2

×∥h∥
1
2
L2 (∥h∥L2 + ∥∂3h∥L2)

1
2 .

As a special consequence, if h just has the vertical oscillatory part, then∣∣∣∣ˆ
T3

f(x) g(x) h̃(x) dx

∣∣∣∣⩽ C∥f∥
1
2
L2 (∥f∥L2 + ∥∂1f∥L2)

1
2 ∥g∥

1
2
L2 (∥g∥L2 + ∥∂2g∥L2)

1
2

×∥h̃∥
1
2
L2∥∂3h̃∥

1
2
L2 . (2.3)

The proof of lemma 2.2 follows from applying Hölder’s inequality in each direction and
invoking the following 1D Sobolev inequality

∥f∥L∞(T) ⩽ C∥f∥H1(T).

We will also use the following 2D version of the anisotropic upper bound.

Lemma 2.3. Assume that f,∂1f,g,∂2g,h are all in L2(T2). Then, for a constant C independent
of f, g and h, ∣∣∣∣ˆ

T2

f(x) g(x) h(x) dx

∣∣∣∣
⩽ C∥f∥

1
2
L2 (∥f∥L2 + ∥∂1f∥L2)

1
2 ∥g∥

1
2
L2 (∥g∥L2 + ∥∂2g∥L2)

1
2 ∥h∥L2 .

3. Proof of theorem 1.1

This section proves theorem 1.1.

Proof of theorem 1.1. We remark that the local-in-time well-posedness of (1.1) in H3 can be
established using similar arguments as those for the Navier–Stokes and Euler equations. Since
the detailed procedure is well documented in the book by Majda and Bertozzi [9], we focus
our attention on deriving global-in-time bounds for u.

We first take the L2-inner product of (1.1) with u to obtain

1
2
d
dt
∥u(t)∥2L2 + ν∥∂3u(t)∥2L2 + ν∥∂1ū∥2L2 = 0, (3.1)

where we have invoked the standard identities due to ∇· u= 0,ˆ
(u ·∇u) · udx= 0,

ˆ
∇p · udx= 0.

In addition, we have also used lemma 2.1 to obtainˆ
∂2
1 ū · udx=

ˆ
∂2
1 ū · (ū+ ũ) dx=

ˆ
∂2
1 ū · ūdx=−∥∂1ū∥2L2 .

5
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Due to the equivalence of the two norms ∥u∥H3 and ∥u∥L2 + ∥D3u∥L2 , we just need to estim-
ate ∥D3u∥L2 . Recalling the norm ∥D3u∥L2 is comparable to ∥∆ω∥L2 , where ω denotes the cor-
responding vorticity ω =∇× u. Taking the curl of (1.1), we find that ω satisfies

∂tω+ u ·∇ω−ω ·∇u− ν∂2
3ω− ν∂2

1 ω̄ = 0. (3.2)

where we have used the fact in lemma 2.1 that, the curl commutes with the average. Applying
∆ to (3.2) and taking the inner product with ∆ω, we have

1
2
d
dt
∥∆ω∥2L2 + ν∥∂3∆ω∥2L2 + ν∥∂1∆ω̄∥2L2 = I1 + I2,

where

I1 =−
ˆ

∆(u ·∇ω) ·∆ωdx,

I2 =
ˆ

∆(ω ·∇u) ·∆ωdx.

Due to ∇· u= 0,

I1 =−
ˆ

∆u ·∇ω ·∆ωdx− 2
ˆ

∇u ·∇∇ω ·∆ωdx := I11 + I12

and

I2 =
ˆ

∆ω ·∇u ·∆ωdx+ 2
ˆ

∇ω ·∇∇u ·∆ωdx+
ˆ

ω ·∇∆u ·∆ωdx

:= I21 + I22 + I23.

We will use the following estimates to bound all these terms.

Lemma 3.1. Assume that f,g,h are all elements of matrix (∂juk)3×3. Then, for a constant C
independent of f, g and h,∣∣∣∣ˆ

T3

f(x) ∂ljg(x) ∂ikh(x) dx
∣∣∣+ ∣∣∣ˆ

T3

∂lf(x) ∂jg(x) ∂ikh(x) dx

∣∣∣∣
⩽ C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
,

as long as ˆ
T3

∂l
¯̄f∂j¯̄g∂ik¯̄hdx2 =

ˆ
T3

¯̄f∂lj¯̄g∂ik¯̄hdx2 = 0.

Proof of lemma 3.1. We first write

f = f̄ + f̃, g= ḡ+ g̃ and h= h̄+ h̃.

The integral can be written

6
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∣∣∣∣ˆ
T3

f(x) ∂ljg(x) ∂ikh(x) dx
∣∣∣+ ∣∣∣ˆ

T3

∂lf(x) ∂jg(x) ∂ikh(x) dx

∣∣∣∣
⩽
ˆ
T3

[|f(x) ∂ljg(x) |+ |∂lf(x) ∂jg(x) |] |∂ikh(x) |dx

⩽ E1 +E2 +E3 +E4 +E51 +E52 +E53 +E54,

where

E1 =

ˆ (
|∂l̃f∂jg̃|+ |̃f∂ljg̃|

)
|∂kih̃|dx, E2 =

ˆ (
|∂l̄f∂jg̃|+ |̄f∂ljg̃|

)
|∂kih̃|dx,

E3 =

ˆ (
|∂l̃f∂jḡ|+ |̃f∂ljḡ|

)
|∂kih̃|dx, E4 =

ˆ (
|∂l̃f∂jg̃|+ |̃f∂ljg̃|

)
|∂kih̄|dx,

E51 =

ˆ (
|∂l̃̄f∂j˜̄g|+ |̃̄f∂lj˜̄g|) |∂ki˜̄h|dx, E52 =

ˆ (
|∂l¯̄f∂j˜̄g|+ |̄̄f∂lj˜̄g|) |∂ki˜̄h|dx,

E53 =

ˆ (
|∂l̃̄f∂j¯̄g|+ |̃̄f∂lj¯̄g|

)
|∂ki˜̄h|dx, E54 =

ˆ (
|∂l̃̄f∂j˜̄g|+ |̃̄f∂lj˜̄g|) |∂ki¯̄h|dx.

We will use lemma 2.2 and then lemma 2.1 to obtain bound for these terms. By (2.3) in lemma
2.2 and Hölder’s inequality,

|E1|⩽C∥∂l̃f∥
1
2
L2∥∂l̃f∥

1
2
H1∥∂jg̃∥

1
2
L2∥∂jg̃∥

1
2
H1∥∂kih̃∥

1
2
L2∥∂3kih̃∥

1
2
L2 +C∥̃f∥L∞∥∂ljg̃∥L2∥∂kih̃∥L2 .

By (2.2) in lemma 2.1,

|E1|⩽C∥∂l̃f∥H1∥∂3jg̃∥H1∥∂3kih̃∥L2 +C∥̃f∥H2∥∂3ljg̃∥L2∥∂3kih̃∥L2 .

Recall the fact that ∥ω∥L2 = ∥∇u∥L2 for ω =∇× uwith∇· u= 0. Since f,g,h are all elements
of matrix (∂juk)3×3,

∥∂l̃f∥H1 ⩽ C∥ω∥H2 , ∥∂3jg̃∥H1 ,∥∂3kih̃∥L2 ⩽ C∥∂3∆ω∥L2 .

Thus,

|E1|⩽C∥ω∥H2∥∂3∆ω∥2L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
.

The estimates of E2 and E3 are very similar to that for E1. More specifically,

|E2|⩽C∥∂l̄f∥
1
2
L2∥∂l̄f∥

1
2
H1∥∂jg̃∥

1
2
L2∥∂jg̃∥

1
2
H1∥∂kih̃∥

1
2
L2∥∂3kih̃∥

1
2
L2 +C∥̄f∥L∞∥∂ljg̃∥L2∥∂kih̃∥L2

⩽C∥∂l̄f∥H1∥∂3jg̃∥H1∥∂3kih̃∥L2 +C∥̄f∥L∞∥∂ljg̃∥L2∥∂kih̃∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
and

|E3|⩽C∥∂l̃f∥
1
2
L2∥∂l̃f∥

1
2
H1∥∂jḡ∥

1
2
L2∥∂jḡ∥

1
2
H1∥∂kih̃∥

1
2
L2∥∂3kih̃∥

1
2
L2 +C∥̃f∥L∞∥∂ljḡ∥L2∥∂kih̃∥L2

⩽C∥∂3l̃f∥H1∥∂jḡ∥H1∥∂3kih̃∥L2 +C∥∂3̃f∥H2∥∂ljḡ∥L2∥∂3kih̃∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
.

7
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The estimate for E4 differs slightly. Using Hölder’s inequality and the Sobolev inequality

∥F∥L4(R3) ⩽ C∥F∥
1
4
L2(R3)

∥∇F∥
3
4
L2(R3)

,

we have, after applying (2.2) in lemma 2.1,

|E4|⩽C∥∂l̃f∥
1
4
L2∥∂l̃f∥

3
4
H1∥∂jg̃∥

1
4
L2∥∂jg̃∥

3
4
H1∥∂kih̄∥L2 +C∥̃f∥L∞∥∂ljg̃∥L2∥∂kih̄∥L2

⩽C∥∂3l̃f∥H1∥∂3jg̃∥H1∥∂kih̄∥L2 +C∥∂3̃f∥H2∥∂3ljg̃∥L2∥∂kih̄∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
.

Since ˜̄f, ˜̄g, and ˜̄h depend only on the two variables x1 and x2, we first apply the triple product
estimate for 2D functions from lemma 2.3, followed by lemma 2.1, to obtain

|E51|⩽C∥∂l̃̄f∥
1
2
L2∥∂l̃̄f∥

1
2
H1∥∂j˜̄g∥ 1

2
L2∥∂j˜̄g∥ 1

2
H1∥∂ki˜̄h∥L2 +C∥̃̄f∥L∞∥∂lj˜̄g∥L2∥∂ki˜̄h∥L2

⩽C∥∂l̃̄f∥H1∥∂1j˜̄g∥H1∥∂1ki
˜̄h∥L2 +C∥̃̄f∥H2∥∂1lj˜̄g∥L2∥∂1ki

˜̄h∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
.

The estimates for E52, E52 and E54 are very similar to that for E51. More specifically,

|E52|⩽C∥∂l¯̄f∥
1
2
L2∥∂l¯̄f∥

1
2
H1∥∂j˜̄g∥ 1

2
L2∥∂j˜̄g∥ 1

2
H1∥∂ki˜̄h∥L2 +C∥̄̄f∥L∞∥∂lj˜̄g∥L2∥∂ki˜̄h∥L2

⩽C∥∂l¯̄f∥H1∥∂1j˜̄g∥H1∥∂1ki
˜̄h∥L2 +C∥̄̄f∥H2∥∂1lj˜̄g∥L2∥∂1ki

˜̄h∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
,

|E53|⩽C∥∂l̃̄f∥
1
2
L2∥∂l̃̄f∥

1
2
H1∥∂j¯̄g∥

1
2
L2∥∂j¯̄g∥

1
2
H1∥∂kih̃∥L2 +C∥̃̄f∥L∞∥∂lj¯̄g∥L2∥∂ki˜̄h∥L2

⩽C∥∂1l̃̄f∥H1∥∂j¯̄g∥H1∥∂1ki
˜̄h∥L2 +C∥∂1̃̄f∥H2∥∂lj¯̄g∥L2∥∂1ki

˜̄h∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
and

|E54|⩽C∥∂l̃̄f∥
1
2
L2∥∂l̃̄f∥

1
2
H1∥∂j˜̄g∥ 1

2
L2∥∂j˜̄g∥ 1

2
H1∥∂ki¯̄h∥L2 +C∥̃f∥L∞∥∂lj˜̄g∥L2∥∂ki¯̄h∥L2

⩽C∥∂1l̃̄f∥H1∥∂1j˜̄g∥H1∥∂ki¯̄h∥L2 +C∥∂1̃̄f∥H2∥∂1lj˜̄g∥L2∥∂ki¯̄h∥L2

⩽C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
.

This completes the proof of lemma 3.1.

Observe that the terms I11, I12, I21, I22, I23 all share the same structural form as the one con-
sidered in lemma 3.1. Consequently, applying lemma 3.1, we obtain the estimate

1
2
d
dt
∥∆ω∥2L2 + ν∥∂3∆ω∥2L2 + ν∥∂1∆ω̄∥2L2

⩽ C∥ω∥H2

(
∥∂3∆ω∥2L2 + ∥∂1∆ω̄∥2L2

)
. (3.3)

Adding (3.1) and (3.3), and then integrating in time, we obtain

∥u(t)∥2H3 +

ˆ t

0
(2ν−C∥u(τ)∥H3)(∥∂3u(τ)∥H3 + ∥∂1ū(τ)∥H3) dτ ⩽ ∥u0∥2H3 .

8
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In particular, if the initial data satisfies

2ν−C∥u0∥H3 ⩽ 0,

then ∥u(t)∥H3 decreases in time, and hence the inequality

2ν−C∥u(t)∥H3 ⩽ 0

holds for all t⩾ 0. This completes the proof of theorem 1.1.
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