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Abstract Whether or not classical solutions to the hyperbolic Navier—Stokes
equations (NSE) can develop finite-time singularities remains a challenging open
problem. For general data without smallness condition, even the L?-norm of
solutions is not known to be globally bounded in time. This paper presents
a systematic approach to the global existence and stability problem by exam-
ining the difference between a general hyperbolic NSE and its corresponding
Navier—Stokes counterpart. We make use of the integral representations. The
functional setting is taken to be critical Sobolev spaces for the NSE. As a special
consequence, any d-dimensional (d > 2) hyperbolic NSE with general fractional
dissipation is shown to possess a unique global solution if the coefficient of the
double-time derivative and the initial data obey a suitable constraint.
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1 Introduction

This paper intends to develop an effective approach to the global existence and
stability problem on the following general incompressible hyperbolic Navier—
Stokes equations (NSE) in R?,
YOuu 4+ n(—A)ou + v(=A)*u+u-Vu+Vp=0, ze€R t>0,
V-u=0, zeRt>0, (1.1)
u(z,0) = ug(z), Owu(z,0) =ui(z), xR,
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where d > 2 is an integer, v > 0, 5 > 0, 8 > 0, a > 0 and v > 0 are
real parameters, u = u(z,t) : R x Rt — R? denotes the velocity field and
p = p(x,t) : R? x Rt — R the pressure. The fractional Laplacian operator
(—A)? is defined in terms of the Fourier transform

(CA)F(E) = 1€ Fle).

1

For notational convenience, we use A = (—A)z. Our attention will be most-
ly focused on the case when § = 0 and n = 1, namely the incompressible
hyperbolic NSE with fractional dissipation

YOuu + O+ v(=A)*u4u-Vu+Vp=0, z€RIt>0,
V-u=0, zecRYt>0, (1.2)
u(z,0) = ug(z), Ou(x,0) =ui(r), =xcR™L

The hyperbolic NSE (1.2) is a natural modification of the corresponding NSE

ou+v(—A)u+u-Vu+Vp=0, zcRYt>0,
V-u=0, zeRyt>0, (1.3)
u(z,0) = ug(z), z¢€R%

To make the propagation speed of heat transfer finite, Cattaneo [6,7] and Ver-
notte [22] originally proposed replacing the heat operator dyu — vAu by the
damped wave operator y0uu + 0qu — vAu. This idea was later extended to
fluid-dynamics by Carrassi and Morro and others (see [5]). The hyperbolic
NSE can be derived from the NSE by replacing the the Fourier law by the
law proposed by Cattaneo. One advantage of the hyperbolic NSE is that it
no longer has infinite propagation speed. The paper of Coulaud, Hachicha and
Raugel [9] contains a very nice description on the physical background of the
hyperbolic NSE.

A general fractional Laplacian operator (—A)* in (1.2) and (1.3) is con-
sidered here for two reasons. The first is physical. The fractional diffusion
operators can model the so-called anomalous diffusion, a much studied topic in
physics, probability and finance (see, e.g., [1,12]). Especially, (1.2) and (1.3)
allow us to study long-range diffusive interactions. The second is mathemati-
cal. When « is a general fractional power, (1.2) and (1.3) allow us to examine
families of equations simultaneously and the process is certainly more efficient
than that with a = 1 fixed. The study of (1.2) also helps reveal the criticality of
certain fractional powers. For the fractional NSE (1.3), extensive investigations
on the global regularity problem have identified o = % + % as the critical index
(see [13-16,18,21,23]). Recent extraordinary non-uniqueness results on weak
solutions obtained via convex integration also revealed the criticality of certain
fractional indices [4,8,10,17].
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Many fundamental issues on the hyperbolic NSE are far from being un-
derstood. Attention here is focused on two problems. The first is the global
existence and stability problem. Whether or not solutions to the hyperbolic
NSE can develop finite-time singularities is an outstanding open problem. For
general data without any constraint, even the L?-norm of solutions to the hy-
perbolic NSE is not known to be globally bounded in time. Furthermore, we
are also interested in the global nonlinear stability. The second problem is to
understand the difference between solutions to the hyperbolic NSE and the cor-
responding ones to the NSE. In particular, we solve the singular limit problem
when v — 0.

We first give a simple explanation on why the global existence problem on
hyperbolic NSE (1.2) is hard. Due to the presence of the term vy0uu in (1.2),
direct energy estimates do not lead to any global a priori bound on solutions

o0 (1.2). In fact, we do not even know if the L?-norm is bounded for all time in
the two-dimensional case. If we perform the standard energy estimate on (1.2),
we obtain

|

1
3 (lullfz +2v{u, 0u)) + vIIAul|F2 — v dpull7. = 0, (1.4)

U

t

where (f,g) denotes the L2-inner product. To eliminate the bad term
—7||8sul2,, we take the L?-inner product of (1.2) with dyu to obtain

1d

537 (N0l + vIIVullz) + 1072 = = (O, u- V). (1.5)
Multiplying (1.5) by 2 and adding to (1.4), we find
1d o
5 7 (lullZe +2v(u, 0w) + 2920l + 29w ([ VullZz) + vIIA 72 + v]1 00l 72
= —27v(0wu, u - Vu). (1.6)
Trivially,

lullZ2 + 29(u, Ou) + 29*[10pull 72 = [lu + yOeullZe + 9?1 Orul72 > 0.

It then suffices to bound the right-hand side. Unfortunately, we need to control
some higher-order derivatives in order to bound the term on the right-hand side
of (1.6). As a consequence, we do not even know if the L2-norm is global in
time for general solutions.

The lack of global L?-bound suggests that we should not expect general
large-data global well-posedness for the hyperbolic NSE even in the 2D case.
In addition, the process described above also reveals that the approach of energy
estimates treats v0uu as a bad term and thus leads to the involvement of higher
derivatives. A more natural idea is to treat the damped wave part in (1.2),
namely

yOpu + Opu + v(—A)*u
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as a whole, and solve the damped wave equation to represent (1.2) in an integral
form. This is exactly the motivation behind the approach presented in this
paper.

As our first step, we solve the general linearized wave equation and convert
(1.1) into an integral form. As presented in Lemma 2.1 and Corollary 2.1, (1.1)
can be recast as

u(t) = <K0 + g(—A)BIﬁ)uo + vKjuy — /0 t Ki(t—1)P(u-Vu)(r)dr, (1.7)

where Ky and K; are Fourier multiplier operators defined in (2.3) and (2.4).
Setting 8 = 0 in (1.7) yields the representation of (1.2),

uy(t) = <K0 + ;K1> uo + vKjup — /0 Ki(t —s)P(u, - Vuy)(s)ds. (1.8)

Instead of working with the integral representation of the hyperbolic NSE
(1.2) alone, we study the evolution of the difference between the hyperbolic
NSE and the corresponding NSE counterpart (1.3). This practice would allow
us to simultaneously tackle the global existence problem on (1.2) and assess
the closeness between (1.2) and (1.3). We invert the fractional heat operator
to write the NSE (1.3) in the integral form

t
u(t) = e VA Ty, — / e VRS Py - V) (s) ds. (1.9)
0

Taking the difference of (1.8) and (1.9) yields
Uy — U= <K0 + %fﬁ - €_V(_A)at> uo + yKyuy
- /O (Fa(t — 5) — N NP - Vu)(s) ds
_ /Ot Ki(t— )V - (g —0) ®uy + u® (uy —w)(s)ds.  (1.10)
We evaluate this difference in the space-time space
X = LY0, T; He 1 732(RY).

X is a critical space for the fractional NSE in the sense that any natural rescaling
in the solution does not change the norm in X.

A few preparations are made to help facilitate the evaluation of u, — u in
X. We first provide pointwise estimates for Ko(¢,t) and K1 (£, t), the kernel
functions in frequency space. Ko(€,t) and K (&,t) are shown to admit different
upper bounds for ¢ in different frequency ranges. A precise statement is given in
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Proposition 3.1. Next we assess the boundedness of the fractional heat operator
200

e V(=A% Ko(t) and K (t) on the space-time space LP(0,T; H*" % (R%)) with
T>0,2<p<ooand s €R. The upper bounds are presented in Propositions
4.1, 4.2 and 4.3. These bounds reveal a remarkable fact that the heat operator
e 7(=2)"t and the kernel function K from the wave equation actually share
almost identical upper bounds.

To evaluate (1.10) in X, we take advantage of the preparations made above
to derive an explicit upper bound for the difference between the fractional heat
solution and the solution to the wave equation, for any s € R and 2 < ¢ < oo,

1 a
H <K0 + §K1 — e V(A t) up + yKiug

La(o, 73 (Re))
1 _1
< Cyalluoll gspproragay + Crv o lluall g gay- (1.11)
Note that the upper bound is explicit in v and the initial data. A detailed
derivation of (1.11) is given in the proof of Proposition 5.1. With all these

preparations at our disposal, we are able to evaluate the nonlinear parts in
(1.10) to obtain the following upper bound

1
luy —ullx < Cyifluoll,

_1
H%+1—2amH%+l—a + C’YV 4 Hu1||H%+1—2a

1, _ 1 _1
+C~i(v 1+74y Q)HUOHZ%“*Q“OH%“*“

_3 _3
+ O v fullx uy = ullx + Crv™1 uy — % (1.12)

All constants in (1.12) are independent of 7', v and v. Our idea is to mount a
bootstrapping argument on (1.12). The presence of the linear term

_3
v flullx fluy — ullx
makes the process a little bit more involved. By decomposing the time interval
[0,T) into a finite number of sub-intervals [0,T4), [T1,2T1),..., [koT1,T) for
an integer kg > 0, and making use of the fact that the norm of u is small on

each sub-interval, we obtain the following upper bound after going through an
iterative process,

1
luy —ullx < Cv7 H(uo,u1) (1.13)
if, for some sufficiently small Cj,
~i H(ug, uy) < Co. (1.14)

Here H (ug,u1) is explicitly given by
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H(ug,u1) == |luol| .

3 _1
géri-2andti-a +yiv 4 HUIHH%H%a

_ 11
+ (V ! + yav 2)||UOH2%+1—2QQH%+1—C¥‘

(1.13) and (1.14) assert that, when 7 and the initial norms of ug and u; obey
the constraint (1.14), then the solution u, to the hyperbolic NSE (1.2) and the
solution u to (1.3) remain close in the sense of (1.13). This conclusion, together
with the global existence result on the fractional NSE stated in Proposition 6.1,
allows us to obtain the global result on the hyperbolic NSE (1.2).

Theorem 1.1. Let d > 2 be an integer. Assume that v > 0 and « is in the

range

2 _, 2.4
345373

Consider the hyperbolic NSE (1.2) with
ug € H%—f—l—Qa(Rd) N H%—l—l—a(Rd)’ uyp € H%+1—2a(Rd)

and V -ug =V -up = 0. Define

3 _1
H(“Oaul) ::HUOHH%H—QQ di1-a +vaiv 4||U1HH%+1—20L

NH
_ 11
+ (v

d . d .
§+172amH§+1704

Assume that v and the norms of ug and w1 obey the following constraint, for
sufficiently small constant Cy > 0,

YT H(ug, u1) < Co. (1.15)
For % <a< % + %, we further assume
||UOHH%+172Q < Cyv. (116)

Then (1.2) has a unique global solution u., satisfying

o0
wy € () LP(0,00; HETI7204 5 (RY) 1 ([0, 00); HEH-2(RY).
p=2

Furthermore, the difference between u., and the corresponding solution u to the
NSE (1.3) satisfies

1
[uy — ull < O~y H(ug,uy).

. d 3
LA(0,00; HH 217 2%(RY))

As a consequence, u~, admits the following uniform upper bound,
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1
||u’7||L4(0700;H%+17%Q(Rd)) < 0’74 H(UO,Ul) + 2C) v,

which yields the global nonlinear stability.

The smallness condition (1.16) imposed for the index range 2 < a < T+dis
to ensure the global existence of solutions to the NSE (1.3). A precise statement
of this fact and more is presented in Proposition 6.1 in Section 6. For a >
% + il, the NSE (1.3) always possesses global solutions without the smallness
condition (1.16), due to a well-known fact for the fractional NSE (1.3) (see,
e.g., [13-16,18,21,23]). We include below a lemma stating this simple fact.

Lemma 1.1. Letd > 2 and o > § + %. Then any initial data vy € L?(R%)
leads to a unique global solution u € L>(0,00; L2(R%)) to (1.3). In addition,
u = u(x,t) is infinitely smooth for any x € R? and t > 0.

To place our result in a proper perspective, we describe a few related works
on the well-posedness of hyperbolic Navier—Stokes type equations. The hyper-
bolic NSE with standard Laplacian dissipation, namely (1.2) with o = 1, has
been studied by a number of authors. Brenier, Natalini and Puel [3] considered a
2D system of Euler equations in the 2D periodic box T2, which can be converted
to a hyperbolic NSE in the leading order. They proved its global existence and
convergence to the 2D NSE in the functional setting H? x H!. Based on a refine-
ment of the energy method in [3], Hachicha [11] obtained the global existence
and uniqueness of the hyperbolic NSE with a large class of initial data and the
convergence to the corresponding NSE. The papers of Racke and Saal [19,20]
established the local existence and uniqueness of 2D and 3D hyperbolic Navier—
Stokes type equations in C(0, T; H™2(R%)) for m > %, and the global existence
for initial data (ug,u1) € (H™T2 N Lt N Wm™t6r) » (™LA L 0 Wwmitse)
withmy >3, m>mi+9and p < %. A very recent work of Coulaud, Hachicha
and Raugel [9] shows that a 2D hyperbolic quasilinear NSE always have a
unique global solution when the initial data (ug,u1) € H?T"(R?) x H'*(R?)
with 0 < n < 1. The list of results described here is by no means exhaustive.

The rest of this paper is divided into seven sections. Section 2 solves a
general linear damped wave equation and derives an integral representation for
(1.1). Section 3 provides pointwise upper bounds for the kernel functions Kj
and K7 representing the solution of the linear damped wave equation in the
frequency space. Section 4 shows that the fractional heat operator, K; and
K5 are bounded on the space LP(0,T; HS+27a) for any o > 0, 2 < p < o©
and s € R, and explicit upper bounds are presented. Section 5 estimates the
difference between the fractional heat equation and the linear damped wave
equation. Section 6 states the global well-posedness result for the generalized
NSE. Section 7 proves the existence part of Theorem 1.1. Section 8 proves the
uniqueness part of Theorem 1.1 via the integral representation in the functional
setting L4(0, T; 2 +1-2o(R)).
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2 Solution Representation

This section represents the solution of the general hyperbolic Navier—Stokes
equations (1.1) in an integral form. To serve this purpose, we first solve a
nonhomogeneous linear wave equation. Let v > 0, n > 0, v > 0, « > 0 and
B > 0 be real numbers. Consider

{fy(“)fu + (=AY 4+ v(—=A) = f(x,t), xR t>0, 2.1)

v(z,0) = vo(x), v(x,0)=v1(x).
(2.1) can be solved explicitly, as stated in the following lemma.

Lemma 2.1. Lety>0,7n>0,v >0, a>0 and 8 > 0 be real numbers. The
solution of (2.1) is given by

v(t) = (Ko(t) + g(—A)BIﬁ)vo + K (t)vr + /Ot Ki(t—7)f(r)dr (2.2)

where Ky and K1 are Fourier multiplier operators defined by

—~ 1
Ky = 5(6)‘+t + e, (2.3)
- 1 e)u,_t _ e)\_t e)\+t _ e/\_t
1= S — — (2.4)
T A=A PEP — A

with Ay and A_ being the roots of the quadratic equation

VA2 €PN+ vlgfP =0 (2.5)
or
_ 26 4 2|¢148 — 4 200
N = S E VIS — dqviePe (2.6)
2y
In addition, the operators Ky and Ky satisfy
Ko(0)=1, K;(0)=0, (2.7)
n B 1
0t Ko(0) 27( )7, 0K (0) 5 (2.8)
with I being the identity operator, and
U UN
o) =~ -V Ko(0) + (LA - (-8 ) i), (29)
1
QK (1) =~ Kolt) - %(—A)%(t) (2.10)
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Proof. We first solve (2.1) in the special case when f = 0. Taking the Fourier
transform of (2.1) gives

{wafm nfEPPT + vIEPeD = 0, 2.11)

B(E,0) =B0(€),  D(&,0) = B(&),
For any fixed ¢ € R?, (2.11) is a second-order ODE of ¢. The corresponding

characteristic equation is (2.5) with its roots explicitly given by (2.6). In terms
of A4, the solution of (2.11) can be explicitly written as

)\+e/\,t _ )\_6A+t,\ e)\ft _ 6)\+t,\

v(&,t) = v+ ——01.
(&) PV U WIS W
For the conciseness of the representation, we write
N 1 6)\7t _ e)\+t
Kl -
Y )\+ — A

and it is easy to check that

Apert—A_eMt 1 Apt | At M s128 7 7> n 7%
= (e D+ JPP K = Ko+ = |¢)*P K.
W 5 (e ) + [T KL = Ko + S €] Ky

Therefore,
v, t) = (f(o + 7275‘2,5’[?1)% + v K10y,

which can be identified with (2.2) when f = 0. When f is not identically zero,
we use Duhamel’s principle to obtain (2.2). For the sake of clarity, we give an
explanation on how Duhamel’s principle is applied here. Duhamel’s principle
states that the solution of

v0?v + n(=A)Pow +v(=A) v =f, xR t>0, (2.12)
v(z,0) =0, Jw(x,0)=0 '
can be obtained by taking the time integral of the solution
yO2u1 + (=20 +v(—A)v =0, xRt >0, (2.13)
vi(z,7) =0, Owi(z,7)= %f(l‘,T) ‘

According to the solution formula for the case when f = 0, the solution of
(2.13) is

0 (t) = 7K1 (t = 7) (if(x,ﬂ) .

Therefore, the solution of (2.12) is given by

v(l‘,t):/o Ki(t—7)f(x,7)dr.
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The supposition principle allows us to obtain the complete formula (2.2). Fi-
nally we verify the equations (2.7), (2.8), (2.9) and (2.10). Setting ¢t = 0 in
(2.2) and comparing with v(0) = vy yield (2.7). Differentiating (2.2) in time
and setting ¢t = 0 lead to (2.8). (2.9) and (2.10) can be checked directly. This
completes the proof of Lemma 2.1. O

We apply the solution formula in Lemma 2.1 to provide the integral repre-
sentation of (1.1), namely

yO?u + (=20 + v(—=A)*u+u-Vu+Vp=0, zcRLt>0,
u(z,0) = up(z), Owu(x,0)=ui(z),
(2.14)
where u denotes the velocity and p the pressure, and the parameters v > 0,
n>0,v>0,a>0and 8 >0. Applying the Leray projection operator

P=1-VA'V.

to (2.14) yields

{yﬁfu +1(=A)Pou + v(—=A)u = —P(u - Vu), z€R% t>0, (2.15)

u(z,0) = up(z), Owu(x,0)=ui(z).

Applying Lemma 2.1 to (2.15) allows us to obtain an integral representation of
the general hyperbolic NSE stated in the following corollary.

Corollary 2.1. The solution of (2.14) can be represented in the following
integral form

u(t) = (KO + g(—A)BIﬁ)uo +vKiuy — /Ot Ki(t —7)P(u-Vu)(r)dr,

where Ko and K, are defined in (2.3) and (2.4).

3 Upper Bounds for Ko and K;

The kernels I?O and K 1 behave quite differently for low and high frequencies.
This section provides precise upper bounds for Ky and K; in the frequency
space, as stated in the following proposition.

Proposition 3.1. Lety>0,n>0,v>0,a>0and > 0. Assume o > 20.

Let
VTP E VPRI — Ay
+ >
and
f(\()zl((f)u'_t—i—e/\—t)’ I/{\lzleJr—e _ eMt _ e |
2 1A e - e



General Hyperbolic Navier—Stokes Equations 1017

Define, for a > 20,

2\ 715
:{eeRd.waza e or\§|>(3") }

16vyv
Sy =R4\ Sy.
We consider three cases:
(1) a=2p:
1
Ay = <—2”7 + %\/w — 47;/) €%, Reli <0,

|Ko(&,1)] < e P for cog > 0,
[RL(E, )] < Cym b |28 emoR I,
(2) > 2B and € € Si:
Red < —gHJef?, Res < — L,
Ro(et) < Ce B Rie )] < g P e B 3

Alternatively, for & € Sy,

\2Bt

|Bi(6t)] < Cry2vs fg|7oe 5l (3.2)
or more generally, for any 0 <0 <1,
[Rie.t)] < Oy 8umd g e S, (3.3)
(3) > 28 and § € So:
A<, a s I Ve
€2 + /g — dyvf] 1
and
Ro(,1)] < € (7 BIFT 4 =l
Br(,6)] < O] (e emilei )
Furthermore, for € € So,
[Big 0] <oy dubjgree #ET Lot 2 T g

We remark that the alternative upper bound for I?l is a sharper estimate
and allows us to gain one derivative. This fact is very useful in the proof of our
main results.
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Proof. The case o = 20 follows directly from the definition of AL. We now
focus on the case when o > 2.

For £ € S1, ReX_ < —%\5 |/ follows directly from the definition of A_.
Using the fact that, for £ € S,

1
Re \/n2l€]? — dywigf2e < Slgl??,

we have

_ —nl€l?? + Re nP[E]* — dyvfgPe e
2y 4y ’

Re A_A,_

Then
|[Ro(€,1)| < Ce €7

To prove the bound for |K1(,t)|, we consider two cases:

3
(a) dyvIgP > aPg*, - (b) Jllel™ < 4leP < m?lel™.

In the first case (a), v/n2[€[*¥ — 4qv|¢]2 is imaginary and

R At oAt
K1(¢,t) =
VP[E[ — g2
_ e,%mwt 2sint\/471/\§|20‘ — 772’§|4’3
Vayv[€)Pe —np?l¢*e
<2t ¢~ B IE*t
_ o g)28
< Oy e B (3:5)

where we have used |sin (| < |¢| for any ¢ € R. In the second case (b), we use
the mean-value theorem to obtain, for A_ <c¢ < Ay,

K - B
Kl(f,t) = 2te < 0777_1|£|_2/3€ 47;|f‘2 t’

which yields (3.1). To obtain the alternative estimate (3.2), we consider two
cases:

3
dylg* = 27, el < dqwlel < 207l

When 4dyv|€[2 > 2n2|€|*#, the quantity /n2|¢]%F — 4yv[¢]2* is imaginary and
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Ry(€,1)] = e B16 2|sint/4yv[€? —n?[¢[*]
V4wl — n2lg]*)
< el !

V2oWIEP® + 2P — el
< OnyivE g e AT
For 3n2(€|%f < 4yv|¢)?* < 2n2|¢[*P, we have
V3 1 o 1 9 1
YTz T < T —28 <
R €7 <mlEl ol

It then follows from the bound in (3.5) that

e

o~ nie28 s
|K1(§,t)’ < 0777_1|£|_256 42'6‘2 t < C’Y%V_% ‘€| o, 47‘&2 t

We now deal with the case (3), @ > 28 and & € Sy. For £ € Sy or 4yv|€]?™ >
3n?1€1%8, we have

1
VIPIER — dyvge > Snle.

Clearly, A < —32[¢[?°.

1
M =5 (n1€P? = et — dnolep)

1 ( dyvgf )
€128 + /2 [E]4F — dyv[EPe

1% _
< —— ¢,

Then,

[Ko¢. 0l < C (e 2P e ),

(Br(,6)] < O] 720 (eI emiler ) (3.6)
(3.4) is a consequence of (3.6) and the fact 4yv|¢[2* > 3n2[¢|%8 for € € Sp. This
completes the proof of Proposition 3.1. 0

4 e v(=28)% K, and K; Acting on Sobolev Functions

This section presents upper bounds on the operators e *(=2)% K and K
when they act on Sobolev functions. These bounds reflect how much space-
time regularization these operators provide. In addition, a maximal regularity
estimate is obtained for Kj.

We start with a regularization estimate of the heat operator on Sobolev
functions.
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Proposition'4.1. Letv >0, >0, s €R and vy € HS(Rd). Let T > 0 and
f e L*0,T; H~*(R%)). Then, for any 2 < p < oo,

le= =2 g

In addition,

o < —1lvollpe
LP(O,T;HS+2?(Rd)) = 2 )l HUOHHs(Rd),

V)P
t
/ eV £ (1) dr

0

1

< I £l 2207 Frs—a(may -
L0, 5 (YY) Lits L2(0,T;He=~(R%))

t
e V(=R gy / e VRN £(7) dr e O([0, T); HE(RY)).
0

Proof. We first consider the two special cases p = 2 and p = co. The general
case 2 < p < oo can be shown via interpolation. When p = 2,

T
—v(=A)® sta) —2ut|€2Y |~
e =& tUOHi2(O’T;Hs+a(Rd)) :/0 /Rd |§’2( o) g 2tle] |U0’2d€dt

T
:/ ‘§|2(s+a) ‘@\0|2/ 6—2ut|§\2°‘dtd£
Rd 0

1 9(sta)— 1
< (sto)—2a |75 12 — 2
<o [ B0l d€ = o_[foolle g
or
—v(=A)*t < 1
le voll L2 (0,7 Frora(rayy < W”UO”HS(R%'
When p = oo,

-v(=A —ut|g]?2e~

He 'UOHHs(Rd) < HUOHHs(Rd)-

(e
00| oo (0,7, 115 ) = e Ie

By the interpolation inequality,

2

—V(—A)O‘t,u | < ”e—u(—A)"‘tUOH7 He—u(—A)"‘t

He 22(07T;Hs+a)

2
1 P 1—-2
< (gymatli )" (hwlle)'?
1
:W||UOHHS~

0 HLP(D7T;HS+2TQ

This establishes the first inequality. To prove the second one, we start with the
case when p = 2. By Young’s inequality for the time convolution,
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¢
‘ / e_”(_A)a(t_T)f(T) dr
0

L2(0,T;Hs+)

t
: H/ e DI v e, 7) dr
0 L2(R4) L2(0,T)
t
= H / e DI gre fle ) dr
£2(0,7) Il L2 (R%)
< —ut|¢]2e s+a
< e 6 s oy B NFE D200 | g
< %a €[t F e, ) z20,1)
|§‘ L2 Rd)
= eI OMzz0m | oy = Moo

For p = 0o, by Minkowski’s inequality and Young’s inequality,

t
/ V=TI £(1) 47

0 Lo (0,T;H*)
t
- H | e g fe ryar
0 LQ(R2) LOO(U,T)
t o~
< H | e fie ryar
° £20.7) || f2(re)
—v 2a P
< e 4 ey EFIFE Dl 20 | 1 e
1 —~
D | [— o L Jt
= (21/)1/2|f|0‘ ISMIFASS )”LQ(O,T) o)
_ 1 s—a|| 7 . 1
- G =7 e Do g = oy oo

It then follows from an interpolation inequality that

t
/ e_”(_A)a(t_T)f(T) dr .
0 Lr(0,T;H" 7))

1 VA -3
< ;Hf”L?(o,T;Hs—a) W”JCHL?(O,T;HS—Q)

1
= o1 M leemaee)
22 pp2t

The continuity in time

SIS

t
VAt / e VA (1) dr € ([0, T); H)
0
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follows from the dominated convergence theorem. This completes the proof of
Proposition 4.1. ]

The next proposition shows how much space-time regularity we gain when
Ky and K, act on Sobolev functions.

Proposition 4.2. Letv >0, v >0 and s € R. ' '
(1) There is a constant C' > 0 such that, for any vo € H* N H5T®,

1-2/ 1 2 _1 2
1Bovoll, o os22) < C ool (37 o0l 07 o0l

1 _1
< Cv7 [[voll rspyprsva + C v P llvoll s (4.1)
(2) There is a constant C > 0 such that, for any vo € H?,
_1
1Kol , o o er2ey < CV P llvoll e (4.2)
Proof. We first consider two special cases, p = oo and p = 2, and the general

case follows from an interpolation inequality. For p = oo, by the uniform upper
bound for Ky in Proposition 3.1,

HKOUOHLOO(QT;Hs) = HH’§|SKO,6\DHL2(Rd) L°0(0,T)
S/\ i SA )

= HHM Kool 2s,) + €1 Kot s, L>(0,T)
< Clllgl 00l L2may = C llvoll -

For p = 2, by the upper bound on Kj in Proposition 3.1,

2 T =~ |?
1 Kool 0 e = /0 /R i+ Rom aear
T — |2 T —~ 2
[ ] Jierreram| deaer [ [ et rGa] e

0 S1 0 So

T
5/ / €[2CT e 5" 5o |? dedt
0 S1

T
+/ €260 (et 4 VISR 5, 2 deat
0 Sa

< CllvollFera + C v woll..

2.
H5+o¢
Therefore,
1 1
[ Eovoll 20 1, frs+ay < CY2 [[v0ll rora + C v 2 |vo]l -

(4.1) then follows from interpolation.
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The proof of (4.2) is similar. For p = oo,

1100l oo 0,175y < € llvoll s+

For p =2,

HKlUOHiQ(Q7T;Hs+C¥)

T
<Cy v / s €l 2w Gy 2 dgt
0 1

T 3 @
L e e R R TR
0 S
< CvHwoll%,
Therefore,
_1
||K1/UO”L2(O,T;HS+O‘) S CV 2Hf00||]’—[S

(4.2) then follows from interpolation. This completes the proof of Proposition
4.2. ]

The following proposition assesses the maximal regularity on Kj.

Proposition 4.3. Lety>0,v >0, a >0, s € R and 2 < p < oo. Then there
is a constant C' > 0 such that, for any T > 0 and f € L*(0,T; H5~%),

t
C
[ Ee-ni@ar| < sy
0 Lp(0,T;H? ) p2'p
Proof. We start with the special case p = oo,
t
‘ / Ki(t—7) f(r)dr
0 Lo (0,T;H*)
t
= ‘/ |EI°K1(t —7)f(&T)dr
0 L2(R%) Lo°(0,T)
t —_ ~
< ‘ | lerR - D nar
0 LOO(O,T) LQ(SI)
t —_ ~
g H] [ 16 -t r)ar
0 L=(0,7) {[72(g,)
< | IR O 200 17 D200 | 1

~ ‘

+ |EFIR O 20 ) 1 FE Dl 20,79

: 4.3
L2(5) (4.3)
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We apply the upper bounds in Proposition 3.1. For £ € 5,
— _1 1o —Ly _1_
K1 (D)l z207) < Cy2v 2 [€]7le 37 | 20,y < Cvmz[€] "
For £ € Sy, by (3.4),
K| < Oy auslg[ e st 4 e

and thus )
[ K1 ()| 20,y < Cv 2l

Inserting these upper bounds in (4.3), we obtain

In addition, for p = 2,

_1
. <Cvz HfHLZ(O,T;HS*O‘)'
Lo (0,T;H%)

/t Ki(t— 1) f(r) dr
0

t
/0 Ki(t—7) f(r)dr

L2(0,T;Hs+e)

t
_ gwg/xm—ﬂﬂﬂm
0 L2®RN || L2(0,1)
t e ~
- /mwma~mwﬂﬂﬂw
0 L2RY || £2(0,1)
t
< /ngm—ﬂm*%vmf
0 L2(0,T) L2(R%)
< H’f‘QaKl(t_T)HL1(07T)H|€’sjaf(7-)HL2(O,T) L2(R4)
206/\ S_Oé/\
< ||lli€] Kl(t_T)HLl(o,ﬂHLoo(Rd) W§| f(T)H”(OvT)’L?(Rd)
t _
< /|€|2a\K1(t—T)!dT £ 1 220,750 - (44)
0 Lo (R4)

To estimate fg |€ |2°“If(\1(t — 7)|dr < €, we divide our consideration into two
cases:

(1) dqwfefP* > g, (2) dwlelPe < oPlgl.
For the case (1),

_ —nlEPP £ VPlEY — dyvfge

A
+ 2

=mxni (m<0, n>0),



General Hyperbolic Navier—Stokes Equations 1025

and

Agt At

— e nt __

&
VA[€2e — n2|E[4Fi

2¢™ sin nt

Vayr[ePe —iPleii

mt(e efint)

‘Xl(gat” = ‘

e
‘\/471/\&2“ — ?[€[*Pi
e™ sin nt

ny |

Then,

t —~
/0 €| Rt — 7)|dr

|§|2a t |§|2a o)
= / ™| sinnt|dr < / e | sinnt|dr
ny - Jo Yy Jo

0o (2k+1)m (2k+2)7

2c n n
= ™ Z [/ ™| sinnt|dr +/ e Sinm'|dT]
k (2k+1)m

n
v k=0

o
3

n

(2k+1)7 (2k+2)7

200 X S s
= €] Z e sinnrdr — e sinnrdr
ny (2k+1)7

k=0 L/ "
¢ |2
(m? 4+ n?)y

€[>
(m? +n?)y

o
>
3

NE

(2k+1)mm 2kmm (2k+2)7m
|: n — e n —|— e n :|

e
Il

0

Q

o

_ Col€[*
[+ (P

2y

= (4.5)

. (2k+1)mm 2kTm (2k+2)mm
where the series Y 7° [e n  —e n +e n ] converges to Cp, and we

also have used the fact that

e (msinnT — ncosnr)
m? + n?

t
/ e sinnrdr =
0

For the case (2) 4yv|¢|?* < n?|¢|*#, we apply the upper bounds in Proposition
3.1,

3n

K —321e?P _vig|2a—283
[Ri(€,1)] < Oy v g e w0 g ot 20 e

and thus
C

t —~
/ €12 | Ky (t — 7)]dr < —. (4.6)
0 v
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Inserting these upper bounds in (4.4), (4.5) and (4.6), we obtain

/0 Ki(t—r7) f(r)dr g

. HfHLE!(O,T;Hs—a)'
L2(0,T;Hs+e)

The general case is obtained via interpolation. This proves Proposition 4.3. [

5 Difference Between the Linearized Equations

This section bounds the difference between the solution of the generalized heat
equation and the corresponding solution of the damped wave equation. This
upper bound is explicit in terms of the coefficient of the double time derivative
term.

Proposition 5.1. Let v > 0, v > 0 and a > 0. Let s € R. Assume that
vg € HS N H*T(RY) and v1 € H*(R?). Let v, be the solution of the damped
wave equation

YOy + Opvy + V(—=A)*v, =0, z € R?, t >0,

vy(z,0) = vo(z), (9vy)(x,0) =vi(z), z€R™L

Let v be the solution of the generalized heat equation

o +v(—A)*v =0, xRy t>0,
v(x,0) = vo(z), z¢€R%

Let 2 < g < oo. Then there exists a constant C > 0 independent of v and v
such that, for any T > 0,

”v'}’ - v‘|Lq(O,T;Hs+2Ta (Rd))

1 o
= H (Ko + §K1 — e_V(_A) t>1)0 + Kl(’yvl)

Cep 20

La(0,T;H™" 4 (R))
1 _1

< Cra ”U0||HsmHs+a(Rd) +Cryv ||1)1”H8(Rd)-

Proof. Let A := v, —wv be the difference. By Plancherel’s theorem and Minkows-
ki’s inequality, for 2 < ¢ < oo,

14| = e+ 14ce. v Lo

’5|S+%H‘Z(§»t)“1:q(o,T)
sH2a)

= |£| " HA(g’t)HL‘?(O,T)‘ L2(S1)

1% 1A 0|

. 2
La(0,T; 7)) L2

IN

L2 (R4)

: 1
L3(50) (5.1)
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To estimate ||A(E,t)]| £a(0,1), We divide our consideration into two cases: £ € S1
and £ € So. Here S7 and Sy are defined in Proposition 3.1. Setting = 0 and
n =1 in Proposition 3.1, we have, for £ € S; (the high frequency case),

3 16
dyv|E)Pe > T oo v He2e < 37

We take advantage of the explicit representation formula for A,
1 a
A= (KO + §K1 — e_”(_A) t> Vg + Kl(yvl).
There is no need to reply on the difference in this case. By Proposition 3.1,

[30(6)] + I K1ll Lago.r 11 ()]

. 1. )
[AE O ooy < HKO + 5K - evlErPet
L9(0,T)

< (
La(0,T)

+ YK Lo, 151()]
_ 1 _ulel2e ~
<C (le™ sy + Il ooz ) 1B (€)]

- 1~
K0+§K1

—v 2 ~
T e 5'Wm@ﬂ>@d@

i 1 2 1 —~
+Cyy v alg] e e oo, [01(6)] (5-2)
1 _1 _2a ~ 1 2a
<C(yi+valgl 7 ) [Bo(©) + Cwalel T [ (€)]
1 _1,, 2
< Cyi [l + Cwalel 7 [Bi(©)) (5.3)

where (5.2) follows from the upper bound (3.3) with n =1 and 8 = 0.
We now turn to the case when £ € Sy. We make use of the equation that A
satisfies

{VattA + A+ v(—A)*A = =0y, (5.4)

A(z,0) =0, (0:A)(z,0) =v1 — (Ow)(z,0).
Taking the Fourier transform of (5.4) and noticing that

~ _ 2004 _ 2004 —~ —~
B0 (€, 1) = Ou(e ™1™ 1Tg) = v2|¢| eI T, 8,0(¢,0) = —v|€[**To,

we obtain

{w%ﬁ+@ﬁ+ma%2=—wﬂahaﬂ“%%, (5.5)

A(£,0) =0, BA(0) = By + v[E[2T.

According to Lemma 2.1, the solution of (5.5) can be represented as

t
A&, 1) = K1(& ) (y01 +v€[**To) — 2™ / Ki(&,t =) e "5y dr.
0
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Taking the L?-norm in time and applying Young’s inequality to the second term
yield

HA &t HLq(OT (’Y\Ul’+7V\§’2a’1)0\)”K1HLq 0,T)
+ 2 lE N K| ooy || €167 | . B0l
= ([51] + 29vI€[*[To] ) 1K1 || oo - (5.6)

For ¢ € S5, according to Proposition 3.1,
i — a5t —vjg[2et
K i<Ce & +Ce .

Thus L
1K1l e,y < Crya + C (v[E)*)

and, for £ € Sy or 4yv|¢|?>* < %,
20| 17 1 on1—1 1
W Kl ooy < Cye +yW[El) « < Cya. (5.7)

In addition, by 4yv|£]?* < % again,
~ 1 _1,  _2 _1, . _2
YKl L) < Cyye +Cyval] e <Cryvaf¢] o (5.8)
Inserting (5.7) and (5.8) in (5.6) yields
-~ 1 -1 -2
A ) a2y < €150l + v o] 1. (5.9)
Therefore, (5.3) and (5.9) together imply that, for any ¢ € R9,
~ Lo =1 -2
VA ) pago.zy < €150l + Cyv ol % 3. (5.10)

Inserting (5.10) in (5.1) yields

_1 ~
141, g ey < O T ol + € 73 el oul22

_1
= Cyilloollfrangesa + C w1 on] o
This completes the proof of Proposition 5.1. O

Lemma 5.1. Letvy >0 andv > 0. Let 2 < q < o0o. There is a constant C' > 0
independent of v and v such that, for any € € R and any 0 < T < oo,

1
< Cra.

HIAﬁ (& 1) — 6_V|£|2atHLq(07T)
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Proof. For high frequencies, say £ € S1, we do not need to make use of the
difference since each part can be bounded suitably. For £ € Sy,

=5 _ 2a =5 _ 2
[K1(8.t) —e Vel tHLtJ(O,T) S HKl(fvt)HLq(o,T) +|le Ve tHLq(o,T)
,Lt _ 2at
< Clle™® HLq(o,T)+ e Ve HLq(o,T)
1 1 1
< Ovya 4+ C (v|¢)**) 1 < Crys.
Now we consider the low frequency case £ € Sy,
3
dyvl€Pe < =,
W <4
We make use of the equation of
H=K —e 8% o H= IAQ — emvleret,
H satisfies
VOuH + O H + v[eP " H = —y [ e ™,

1

H(E,0) =1, 8,H(,0) 7+v\£|20‘.

Solving this equation yields
73 > 1 7> 2a 21 ¢14a L —v|¢|2er
H = Ko+ K1 )(=1) + Ki(1+v[¢]™) — 7] Kyt —7)e dr
0
L= % 20 7> 2| ¢4 b —v|¢|2er
= (351~ Ro) +wlePeRy - il [ Rale - r)e o ar,
0
Therefore,

+ 07V|§|2a||f(1||Lq(o,T),

. ls
1 | ooy < H2K1 ~f L3(0,T)

where we used Young’s inequality in the estimate of the last part

t
el [ Rate = me e ar
0

L9(0,T)

~ _ 20 ~
< AR oo™ s 0.y < WIEP IR a0
For ¢ € S5, according to Proposition 3.1,
I?l < Ce_%t + C eVt

Thus R ) )
1K1l zaory < Crya + C (v[E)*)a
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and, for £ € Sy or 4yv|¢|>* < %,

= 1 1-1 1
e Killzaor) < Oy +y(w|E**) "7 < Oy,

Recall that
1~ ~ 1 1
—K, — Ky = (6)\+t _ eA,t) _ 5(e)urt + e/\,t)

2 2¢/1 — dvyv|E]2
= 1<1 — 1> Mt 1<1 + 1> At
2\ /1 — dyv[¢[?e 2\ /1 —dyv[¢]2e

For £ € S5,
3 1
T i A S—
4 /1= dyrfg]Pe
and thus
1 1 2|2
( - 1) _ ’YV‘§| < 4’7”‘§|2a-
2\ \/T= dwle e VI= TP (1 + /1 b fePe)
Therefore, if we use the upper bounds for Ay and A_ in Proposition 3.1, we
have
11 2u|€[2
e T
2y 2y 1+ /1 — 4yv|€2
—
=79
Thus
';fﬁ — Ko| < 4ywlefoe et 4 ;e_%t
and
lr <C 20(, | ¢|20 1 ~1+1 1
S K1 — Ko S Ol (wlg)™) a + Cyi <Cyy e+ Cre
2 L1(0,T)
< Crr.
This completes the proof of Lemma 5.1. O

6 Solutions to the Generalized Navier—Stokes Equations

For the purpose of comparing with the solution of the hyperbolic Navier—Stokes
equations, this section provides a global existence and uniqueness result for the
fractional Navier—Stokes equations (1.3) in the functional setting suitable for
our purpose.
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Let v > 0 and « > 0 be real parameters. Consider the fractional Navier—
Stokes equations in (1.3), namely
ou+u-Vu+Vp=—v(—=A)u, zcRt>0,
V-ou=0, (6.1)
u(x,0) = ug(x).

For a > % + %, any L? data leads to a unique global solution of (6.1).

Lemma 6.1. Letd > 2 and oo > %—i— %. Then any initial data ug € L? leads to
a unique global solution u € L>(0,00; L?). In addition, u = u(x,t) is infinitely
smooth for any © € R% and t > 0.

The following proposition asserts the global existence, uniqueness and sta-
bility of solutions to (6.1).

Proposition 6.1. Let d > 2 be an integer. Assume that v > 0 and « in the

range

2 2 d
— — 4+ —. .2
3<a<3-i-3 (6)

Consider (6.1) with uy € H%H*Qa(Rd) and V -ug = 0. For a < % + %l’ we
assume that ug satisfies, for a constant C' > 0 independent of v,

HU’O”H%jqf%‘ <Cuv. (63)

Then (6.1) has a unique global solution u satisfying

¢
N v+ [ T, g < ol
Furthermore, if ug is in the space
wo € HEF=22 0 i

and (6.3) holds for a suitable constant C > 0, then the solution u further
satisfies

t
2 2 2
O g2 [ T, g0 < ol (6.4)
We note that H%H_Q“(Rd) is a critical space for (6.1). If (u, p) is a solution
of (6.1), then (uy,py) with
un(z,t) = N2 u(da, M%), pa(z,t) = N2 Dy (z, A2)

is also a solution of (6.1) with the initial data ugy(z) = A2*~lug(Ax). The space
HgH*ZO‘(Rd) is critical in the sense that

2 _
Hu(a)‘ at)HH%+1—2a(Rd) - Hu)\('vt)HH%+1—2a(Rd)'
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More generally, for any 2 < p < oo,

lul,, (0,001 317204 5 (ay) ol (0,003 317204 ()

The range requirement on « in (6.2) is originated from the controlling of
the nonlinear term to form a closed inequality.

Proof. The proof for the global existence and uniqueness of solutions to (6.1) is
similar to that for the standard Navier-Stokes equations (see [2]). The details
are thus omitted. We shall only provide the proof for the high regularity esti-

mate in (6.4). Applying AsHl-a g (6.1) and then taking the L2-inner product
with A%‘H_O‘, we obtain
%%HA%H_(}“H; + VHAgHuHiQ =— /Agﬂ_o‘(u -Vu) CAZTIoy dy

< ARl AT (- V)|

< O [A%ul o A2y fullzoo

< C||A | o [[AF | [[AZ 2,
where pg > 2 and ¢qg > 2 are given by

1 1 2a-1 1 200 — 1

Po - 2 d ’ qo d '
Therefore,
L atnen?, 4 (v - A A <00 65)

If (6.3) is satisfied with constant C' > 0 obeying

14

diq_
ClAH ], < 3, (6.6)
then (6.5) implies that the solution u also satisfies (6.6) for all time. We then
obtain (6.4). This completes the proof of Proposition 6.1. O

7 Global Existence

This section establishes the global existence part of Theorem 1.1 for the hyper-
bolic NSE (1.2). As described in the introduction, our idea is to examine the
difference w, — u between the solution u, of (1.2) and u of the corresponding
NSE (1.3). We make use of the integral representation. We prove via the boot-
strapping argument that this difference is bounded globally in time. Since the
solution u of the NSE is bounded for all time, we obtain a global bound for w.,.

The following lemma will be used to bound a product of two functions in
Sobolev spaces (see [2]).
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Lemma 7.1. Letd > 2 be an integer. For any s1,ss € (—%, g) and s1+s > 0,
there exists a constant C > 0 such that

<O i ety N9 o ey (7.1)

1) pysmat g

. _d
where B;l;rsg > denotes a homogeneous Besov space. Due to the embedding

BSlJrS?*g r51+s2— 3 ; ; ;
2.1 — H 2z, (7.1) especially implies
|’ngHsl+5‘2—%(Rd) < C ||f||Hs1 (R9) HgHHSQ(Rd)
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. The solution u to the NSE

ou+u-Vu+v(—A)*u=—-Vp, zcRYt>0,
V.-u=0,
u(x,0) = ug(z)

can be represented as

t
u(t) = e V(8 My — / e VA IS Py - V) (s) ds. (7.2)
0

By Corollary 2.1, the solution u, to the fractional hyperbolic NSE (1.2)

Y0Py + Optiy + V(—A)%uy = —P(uy - Vu,), x € R ¢>0,
uy(2,0) = ug(x), Ouy(x,0)=ui(x)

can be written as
uy(t) = (Ko + ;K1> uo +vKjup — /Ot Ki(t —s)P(u, - Vuy)(s)ds. (7.3)
Taking the difference between (7.2) and (7.3) yields
Uy —u = (Ko + %Kl - 6_”(_A)at> ug + v K1ug

- /t (Ki(t—s) — efy(fA)a(tfs))IF’(u -Vu)(s)ds
0

— /OtKl(t —5)V - ((uy —u) @ uy +u ® (uy —u))(s)ds
=:Jy + Jo + Js. (7.4)
We now estimate w, — u in the functional space
X = LAH 50 = [A(0, T; He P17 39(RY)).

Taking the norm of J; in X, applying Proposition 5.1 with ¢ = 4 and s =
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%+1—2a, we have

1 o
A H (Ko g e ) o + 1 Kvin

X

_1
< Cviuol| g +COwTiull g 0e (T:5)

H2+1 2amH2+l @

The estimate of the second term on the right-hand side of (7.4) is very involved,
so we estimate the last term first. By Proposition 4.3 and Lemma 7.1,

_3
|J3]|lx < Cv 4|V - ((uy —u) @uy)|

L%H%‘Flf&x
_3
+Cr T (w® (i~ )l s

_3 _3
=Cv 1 H(U’Y - ’LL) ® u’YHLQ H%+2—3a +Cva Hu ® (u'y - U)HLQTH%-»-Q—M

_3
< Ov iy =l pgnga (Il g ga ¥ Il s )
(7.6)
We remark that the constraint on the range of «,
2 1
- <a<z(2+4+4d) (7.7)

3 3

is originated from the application of Lemma 7.1. In fact, we applied Lemma

7.1 with
d + 1 3
§1 = 89 = — - =
1 2 204
and the requirement sq, s9 € ( g, 2) and s; + sg > 0 yields (7.7).

We now turn to the second term on the right-hand side of (7.4).

12|l x = H/O (K1 (t — s) — e VA NPy - Vu)(s) ds

X

The estimate of this term is very involved. The goal here is to obtain a bound
with 7 to a positive power so that this term can be made small for small v > 0.
We divide our consideration into the high frequency case and the low frequency
case. They are handled differently. We split the spatial integral into two parts,

t
[ J2llx = HHmSHSa/ (Rt — 5) — e P (e @ uds
0 L2 L‘%
< K1t—s) e =9NER (g 5250 G ds
LA 2

= Ml + M27
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where M; and M, are given by

t
M, = H ‘ / (Ki(t—s) — e_”(t_s)mQ)\§|%+2_%°‘u/®\uds ,
0 L3 11L2(sy)

t
My = H ‘ / (Ki(t—s) — e M=9)IE) |61 24220 G ds .
0 L3 11L2(S2)

Recall that

3 for any &£ € Sy,

3 for any £ € Ss.

According to (3.2) with n = 1 and 5 = 0 in Proposition 3.1, for £ € 57,
- 11 g —kt
[K1(§1)] < Cymzvmefg e s

By Young’s inequality for convolution,

R e PS |3 e g P
7 L} RIFEIEN
1

3 3 3 d 3 —_—
<C | Evtigmend 4o ig i) g e el

L2(51)
11 3,01 1., dig 3, ——0
< |hvt g + vt edybigre gt b al,

L%(S1)

5 e

< CytvTs || i u @l

L2(8y)

€122 50 @ al|

< C'ﬁv_%

L2(R4)
< Oty 3| AR (u @ u) 0
1 1 d 5
< CVZV_§||A§+2_§QU||L2TLP1 vl ge Lan
11
<Criv 2 HUHL%H%Hﬂx HUHLNH%H—%a

1 _1
< 0741/ 2 ”uHLQTH%+1—a HUHL%—?(H%-‘(-l—QQmH%-‘—l—Q)’

where p; and ¢; are taken to be
1 1 1/3 1 1/3 1 1 1

—=—-——=-|za-1), —==(=za-1), —4+—=-. 7.8

p 2 d(2 ) Q d(2 ) proq 2 78)

By Young’s inequality, Lemma 5.1 and the fact that |£|* < @fféyfé for any
£ € Sy, we have
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e _ t£2a g+27§ —
M; < HH&@)—@ S P e T

T LQ(SQ)
<Cvr |lg2t auu/@w
Ly L2(S2)
1 —
<Cryz ||[¢]2 3+2- aHu®U”L2(Rd) 4
LT
— O AT (w@ ) 2| 4
L3
< Cy2 |[[IATF27 5% o [ful| g || 4
L3
1
< Cn2 ”U‘H‘dJrlHu”HQH LQ%
1
< Cv2

L2 H2+1 H HL4 H2+1——a7

where p; and g; are given by (7.8). In summary, we have obtained

1 _1
| J2llx < Cryiv2 HUHL%H%“*O‘ HUHL%?(H%+172QOH%+170¢)

+CA7 |ul (7.9)

LQTH%H HUHL%H%Hf%a'
Inserting (7.5), (7.6) and (7.9) in (7.4), we obtain

_1
luy = ullx <Cvilluol g +Cwlull gy s

H2+1 2anH2+1 @

+Cv iy —ul g (Il g ga ¥ Tl pgse)

1 _1
+Criv2 HUHL%H%Hfa HUHL%O(H%H*%WH%“*O‘)
1
+ O Nl g Ty e (7.10)
Trivially,
HUVHL%H%JAf%a < HUV - uHL4 H2+17§a + HUHL4H2+1**

According to Proposition 6.1, the solution u of the Navier—Stokes equations
obeys the following bounds

H ||L°°H2+1 20 HUOH 441200 HUHL%H%Hﬂx <v 2”“0” 441200
||u||L4 H%+1—%a < V71||UOHH%+1_2017 Hu||LooH%+1—a < HUOHH%-H—M
T
_1
HuHLg H%'H <v 2 HUOHH%-H—a'
T
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Then (7.10) is reduced to

1 _1
luy = ullx <Cylluoll, dia FOWTHur]l g s,

d .
7+172o¢mH

1 1 1
+Cya (vt +yiv72) |ug? y

H%-H—QaﬂHg-o-l—a

3 3
+Cr v ullx fluy = ullx + Crv77 [Juy — k. (7.11)

Here (' is a constant independent of v and v. We apply the bootstrapping
argument to establish a uniform global bound for ||u, — u|x. Due to the
presence of the linear term in (7.11)

_3
Crv7d flullx [luy — vl x,

we need to implement this process on a finite number of sub-intervals of (0, co).
We recall a basic fact from real analysis.

Lemma 7.2. Let (X,B,u) be a complete measure space. Let f be integrable
with respect to the measure p. Then, for any & > 0, there is a d > 0 such that,
if A€ B and p(A) <90, then

[ 15@lduta) <=
A

Since the solution u of the Navier—Stokes equation satisfies

[Jullx == [ull ga < 00,

. d
4 +l-5a
L:H?2 2

there is T3 > 0 such that, for any p > 0, ||ull is small. In

L (pp+ Ty S T3
particular, we choose T7 > 0 such that

3 1
_3 -1
G ”uHL“(p,erTuH%“_%a) -2 (7.12)
In addition, there is T5 > 0 such that
3 1
_3 . 1
Civ 4 ||U”L4(T2,OO;H%+1—%Q) =95

Obviously, there is a positive integer ky > 0 such that
koTy > Ts.

We first apply the bootstrapping argument on [0, 7] and then repeat this pro-
cess on the time intervals [T1, 211], [2T7,3Th], ..., [(ko — 1)T1, koT1] and [T, c0)
to obtain a global bound. Inserting (7.12) in (7.11) yields

1 _3
S Cl 74H(UO,U1) + Cl v 4 Hupy - uHi‘l(O Tl'H%+17%a)’

(7.13)

||u'7 - UHL4(O7T1;H%+17%Q)
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where we have written

3 _1
H(u0>u1> = HUOHH%HfzamH%Hfa +yiv 4 HU’IHH%+172O¢

1 1
+ (v v 2) ul? 4

H%-}—I—QamHg-Q—l—a'

We make the ansatz that

lluy — ul| < (o, (7.14)

Lo dt-de) =

where Cy satisfies

]

Ci1Corv~ 1 <

N | =

Inserting (7.14) in the right-hand side of (7.13) yields

1
[y — ull < 2C1 4 H(ug, u1).

L4(0,Ty; 813

For ~y satisfying (1.15) in Theorem 1.1, namely
1

vt H(ug,u1) < Co

for sufficiently small Cp, we have

1 Cy
”u"/ - uHL4(O7T1;H%+17%o¢) S 201 74H(u07u1) S 7

The bootstrapping argument then yields the desired bound on [0,77]. Repeat-
ing this process on the time intervals [T, 2T4], [2T4,3T4], ..., [(ko — 1)T1, koT1]
and [T%,00) allows us to obtain a global bound on [0,00). Combining with

the global bound for ||uHL4(0 PERSEE I yields the desired global bound for
7m;

HU7HL4(O’OO;H%+17%Q)-
- d
The solution u., is obtained in L* (0, oo; H §+1_%°‘). We can actually show

that

o0

. d 2« .
uy € () LP(0,00; H2 72457 0 ([0, 00); Hat-20),
p=2

Recall that u, € L4(0, oo; Hgﬂ_%o‘) obeys the integral representation

uy(t) = <K0 + ;K}) uo + vKjup — /Ot Ki(t —s)P(uy - Vuy)(s)ds. (7.15)

Since
. d . d - d
up € Hzt1722n H5+1_°‘, u] € H§+1_2O‘,
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an application of Proposition 4.2 with s = % 4+ 1 — 2« implies that

1 x cdq_ 2a
(Ko + 2K1> uo +yKiuy € () LP(0,00; H2F172005),
p=2

Since u,, € L4(0, oo; HgH*%O‘), Lemma 7.1 and Hoélder’s inequality show that

Uy DUy € LQ(O, 00; H%+2_30‘), Uy Vg = V- (uy @uy) € L (0, oo; H%H_ga).

Because of the boundedness of the Leray projection P on H gﬂf‘o’o‘, we have
P(u, - Vuy) € L*(0, 003 Hngl_?’o‘).

Applying Proposition 4.3 with s = % 4+ 1 — 2« implies

t
/ Ki(t — s)P(uy - Vuy)(s) ds € LP(0, oo; Hg+1_2a+27).
0
The representation in (7.15) then yields

oo
Uy € ﬂ Lp(O,oo;Hg+1_2a+27a).
p=2

We further show that u, € C([0, 00); H%H*M). The linear part
1 .
(Ko + 2K1> up + vKiu1 € C([0, 00); H%“—?a)

oL . . S . . ..
follows from writing its norm in H27'72% in Fourier space, the continuity of

K o(t, &) and K1 (t,€) in ¢ and the dominated convergence theorem. To show the
time continuity of the nonlinear part

t
N(t) = / Ki(t— 5) P, - Vo )(s) ds,

0

we take its Fourier transform

Net = [ Rilet=s) Pl Vu) (€9 ds

For almost every & € R¢, N (&,t) is a continuous function of ¢, and, by Young’s
inequality for convolution

sup [N (&) < K& o [Py T )€ )| o

0<r<t
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making use of the upper bounds for K 1 in Proposition 3.1, we can easily show
that )
HK1(57 )HLg < Cvz ’5‘_a7

where C' > 0 is a constant independent of v. Therefore,

_ =5 2
sup NG, )2 g1y < / e gup | N(e ) e
0<T<t Hz Rd 0<7<t

S Bl [ e o
< V71H||u,y . VU*\/”H%+173Q Hi?

< V_1H||U’Y ® u’YHH%-&-?—&XHi?

—1 4
S v HU'YHL;}H%_‘J_%O/

It then follows from the dominated convergence theorem that N () is continuous

in FI5+172% This completes the proof of the global existence part in Theorem
1.1. O

8 Uniqueness

The section proves the uniqueness part of Theorem 1.1. It is clearly a conse-
quence of the following proposition.
Proposition 8.1. Letd > 2, v > 0 and « satisfies

2 1

s <a< Z(2+4d).

3 5(2+4d)

Consider the generalized hyperbolic Navier—Stokes equations with two different
sets of initial data

Let ugl) and ug) be the corresponding solutions. Then the difference satisfies,
for any T >0 and X7 := L*(0,T; Hg“—%a),

2 1 2 1
1 = uPxp < CO) (Il = ugirsa ygarmat o8 = uil g )
_3
+ v (Il + 6Pl ) I =Dl (82)

Proof of Proposition 8.1. We use the integral form, for i =1, 2,
; 1 i i t A .
uld(t) = <Ko + 2K1> ul? + yKul) — / Ky (t— s) P(u® - Vuld)(s)ds.
0

Their difference satisfies
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1
W — V) = (Ko + 2K1> (u — u)) + Ky () — uf?)

+ / t Ki(t — ) (P(u? - Vul?)(s) — P(ull) - VulD)(s))ds.
0

We estimate the norm in Xy := L*(0, T} Hgﬂ_%“). By Proposition 4.2,

1
H <Ko + 2K1> (UBQ) - Uél)) + ’YKl(ng) - “gl))’

Xr

2 1 2 1
< COrw) (I8 = w1l girsa e + 18 = a1 a0 )-

The nonlinear part can be estimated in (7.6) of Section 7,

/ Kt = 5) (P - Vu®)(s) — P - vaD)(s)) ds
0

¥ o
_3
< O (Iuf ey + 6 lxy ) 1u® = ux.
This completes the proof of Proposition 8.1. O

Proof for the Uniqueness Part of Theorem 1.1. According to Lemma 7.2, we
can take T > 0 to be sufficiently small such that

DN | =

_3
Cvi (a0 + 6Pl ) <
It then follows from (8.1) that
u® — D],

<20(7,v) (lu? - uf’ + fuf? - uf”

”H%+1*2(10H%+17& ”H%+172a)‘

In particular, if

u(()z) _ u(()1), u(12) _ ugn’
then, on [0,77,
u® = o),

Repeating this process on the time intervals [T, 277, [2T,3T] and so on yields
the desired uniqueness on any time interval. This finishes the proof for the
uniqueness part. ]
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