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Abstract
A new iterative projection method is proposed to solve the unsteady Navier–Stokes
equations with high Reynolds numbers. The convectional projection method attempts
to project the intermediate velocity to the divergence-free space only once per time
step. However, such a velocity is not genuinely divergence-free in general practice,
which can yield large errors when the Reynolds number is high. The new method has
several important features: the BDF2 time discretization, the skew-symmetric convec-
tion in a semi-implicit form, two modulating parameters, and the iterative projections
in each time step. A major difficulty in the proof of iteration convergence is the non-
linear convection.We solve this problem by first analyzing the non-convective scheme
with a focus on the spectral properties of the iterative matrix and then employing a del-
icate perturbation analysis for the convective scheme. The work achieves the weakly
divergence-free velocity (strongly divergence-free for divergence-free finite element
spaces) and the rigorous stability and error analysis when the iterations converge The
three-dimensional numerical tests confirm that this new method can effectively treat
high Reynolds numbers with only a few iterations per time, where the convectional
projection method and the iterative projection method with the explicit convection
would fail.

Keywords Navier–Stokes equations · High Reynolds numbers · Iterative projection
method · Divergence free velocity · Skew-symmetric convection · Implicit scheme
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1 Introduction

The incompressible Navier–Stokes equations are predominant in viscous fluid dynam-
ics, including problems with high Reynolds numbers such as turbulence flows.
However, it is extremely challenging to design efficient and robust numerical schemes
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for these problems. A major difficulty is the treatment of the incompressibility con-
straint, or the divergence-free condition, which couples the velocity and pressure.
Consider a bounded three-dimensional domain � and the Navier–Stokes equations

ut − ν�u + NL(u, u) + ∇ p = f , (1)

∇ · u = 0, (2)

with the nonlinear convection NL(u, v) = (u · ∇)v, the Dirichlet boundary condition
u|∂� = 0, where u = (u1, u2, u3) is the velocity, p is the kinematic pressure, ν is
the kinematic viscosity, and f is the force. There are various equivalent forms of the
convection term (e.g., see [7]), and this work focuses on the skew-symmetric form

NL(u, v) = (u · ∇)v + 1

2
(∇ · u)v. (3)

The projection method is a classic and popular method to solve the Navier–Stokes
equations first developed in [8, 30] in 1968, where a systematic review can be found
in [15]. Its crucial operation is projecting the intermediate velocity, which is not
divergence-free, to the divergence-free space in a certain sense. One of themost recom-
mended projection schemes in [15] can be put as follows, when the BDF2 (backward
differentiation formula 2) time integration is employed,

(1.5 − kν�)un+1,∗ + kNL(wn+1, un+1,∗) = −k∇ p̃n+1 + Fn+1, (4)

−�φn+1 = −1

k
∇ · un+1,∗, (5)

pn+1 = p̃n+1 + 1.5φn+1 − ν∇ · un+1,∗, (6)

un+1 = un+1,∗ − k∇φn+1, (7)

where wn+1 = 2un − un−1, p̃n+1 = 2pn − pn−1, Fn+1 = 2un − 0.5un−1 + k f n+1,

un+1,∗|∂� = 0, ∂φn+1

∂n

∣
∣
∣
∂�

= 0. The variable φn+1 is from the Hodge decomposition

un+1,∗ = un+1+k∇φn+1, where un+1 is supposed to be divergence-free. This method
was first proposed in [32] in 1996, and a similar one was introduced in [6]. We call
this method “rotational projection method” in this paper. Another popular projection
scheme replaces the pressure update (6) with

pn+1 = p̃n+1 + 1.5φn+1. (8)

We call it “standard projection method” in this work. This one is also widely used
in literature, such as [14] and [2].

The main strength of the projection method lies in its simplicity and efficiency. It
decouples the velocity and pressure fields in theNavier–Stokes equations and splits the
original system into two smaller standard problems: one advection–diffusion equation
for un+1,∗ and one Poisson equation for φn+1, followed by two updates to get the
end-of-step velocity and pressure. Therefore, its computational cost is far less than
that of any iterative methods including the Uzawa and Newton methods. However,
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it has some serious defects. First, the velocity field obtained is not divergence-free
even in the weak sense in the mixed finite element implementations (see [16, Remark
3.5] and Appendix 6.1) and even when the finite element method admits divergence-
free velocity field (see Definition1 and [28]). This would induce mass loss when the
velocity is used to transport a density function. Second, the stability proof for the
BDF2 schemes is not available. But we note that a recent work [23] obtains stability
with a general second-order BDF scheme and a generalized scalar auxiliary variable
approach. Third, this scheme is unable to treat high Reynolds numbers due to the
violation of the divergence-free condition (see Sect. 4.1.2).

We propose the following iterative projection method, with the iteration index
s = 0, 1, · · · ,
(1.5 − kν�)un+1,s + kNL(un+1,s−1, un+1,s) = −k∇ pn+1,s + Fn+1, (9)

−�φn+1,s = −1

k
∇ · un+1,s, (10)

pn+1,s+1 = pn+1,s + αφn+1,s − ρ∇ · un+1,s,

(11)

with un+1,−1 = 2un − un−1, pn+1,0 = 2pn − pn−1, and boundary conditions

un+1,s |∂� = 0 and ∂φn+1,s

∂n

∣
∣
∣
∂�

= 0. The control parameters α and ρ are used to

optimize the convergence speed. Note when α = 1.5 and ρ = ν, it is the iteration
of the rotational projection scheme. When α = 1.5 and ρ = 0, it is the iteration
of the standard projection scheme. When α = 0, it is the Uzawa method (see [12,
Chapter 2]). When the iterations converge, the limit (un+1, pn+1) is the solution of
the following nonlinear coupled scheme:

(1.5 − kν�)un+1 + kNL(un+1, un+1) + k∇ pn+1 = Fn+1, (12)

∇ · un+1 = 0. (13)

The iterative projection approachwith the fully explicit convection has been utilized
in some previous work including [3, 11, 33]. In [33], it was found that the repeated
projections can reduce the spurious errors generated from the singular surface tension
forces in the free boundary problems. In [11], the iterative projections provide accurate
velocity fields in the stratification of temperature in the Boussinesq flows. In [3], it is
found that iterations could improve splitting errors of projectionmethod. However, the
numerical test in Sect. 4.1.2 shows the iterative projections with explicit convection
is not so stable as the implicit treatment. It is worth noting that [3] briefly mentioned
an iterative projection method, (64b) in [3], without providing analysis or simulation.
Thismethod employs the original form of convection, (un+1,s−1 ·∇)un+1,s , rather than
the skew-symmetric form, NL(un+1,s−1, un+1,s), in (9). The skew-symmetric form
significantly simplifies the stability and error estimation proofs for the limit scheme,
as the L2 inner product (NL(w, v), v) vanishes when w, v ∈ H1

0 (�). In contrast, the
original convection form lacks this advantage.

In Sect. 2, the convergence of the proposed iterative projection method to the limit
scheme (12) and (13) at each individual time step is presented through the normal
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mode and finite element analysis. Note the convection term in the iterative method
(9), NL(un+1,s−1, un+1,s), is explicit on the first component and implicit on the sec-
ond, while the convection in the limit scheme (12) is fully implicit. These implicit
convection terms cause the main challenge in analysis. We first analyze the case with-
out convection through the eigenvalue study of the iterative matrix for the pressure.
The convective case is then regarded as a perturbed system of the non-convective
system, where the time step size k is the perturbation parameter. A delicate induction
process is implemented to establish the iteration convergence.

In Sect. 3, we provide the stability and error analysis results of the limit scheme in
the context of the mixed finite element method, along with a brief literature review
of the stability and error analysis of the fully implicit schemes with Galerkin finite
element method for the Navier–Stokes equations. In Sect. 4, we test the proposed
scheme with three-dimensional finite element method and high Reynolds numbers.
The conclusions and discussions are given in Sect. 5.

2 Convergence of projection iterations at a single time step

This section is devoted to the study of the convergence of the iterative projection
method (9), (10), (11) to (12) and (13) when s goes to infinity. To simplify notations,
we delete the time step superscript (n + 1) in this section.

2.1 Normal mode analysis without convection

To perform the normal mode analysis, we neglect the convection term and assume the
solution is smooth and periodic in the region� = [0, 2π ]3. Note that the intermediate
value φs in (10) can be written as φs = − 1

k (−�)−1(∇ · us), where (−�)−1 refers to
the inverse operator of the Neumann problem (10). So the iterative scheme (9), (10),
(11) when the convection is removed can be simplified to, for s = 0, 1, · · · ,

1.5us − kν�us + k∇ ps = F, us |∂� = 0, (14)

ps+1 = ps − (

ρ + α

k
(−�)−1)(∇ · us). (15)

Consider the solution (u, p) satisfying (12) and (13) without the convection, and
the sequence (us, ps) of (14) and (15). Let ūs = us − u and p̄s = ps − p. Then,

1.5ūs − kν�ūs + k∇ p̄s = 0, (16)

p̄s+1 = p̄s − (

ρ + α

k
(−�)−1)(∇ · ūs). (17)

Denote ūs = (ūs1, ū
s
2, ū

s
3), the multi-wavenumber ξ = (ξ1, ξ2, ξ3) ∈ Z

3,
ξ · x = ξ1x1 + ξ2x2 + ξ3x3. Denote the Fourier series of ūsj and p̄s as ūsj (x) =
∑

ξ∈Z3 ̂̄usj (ξ)eiξ ·x , j = 1, 2, 3, p̄s(x) = ∑

ξ∈Z3 ̂̄ps(ξ)eiξ ·x , where i = √−1. Then,
(16) and (17) become

1.5 ̂̄usj (ξ) + kν|ξ |2 ̂̄usj (ξ) + kiξ j ̂̄ps(ξ) = 0, j = 1, 2, 3; (18)
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̂̄ps+1(ξ) = ̂̄ps(ξ) −
(

ρ + α

k|ξ |2
) 3

∑

j=1

iξ j ̂̄usj (ξ). (19)

It can be calculated from (18) that ̂̄usj (ξ) = −kiξ j ̂̄ps

1.5+kν|ξ |2 , which is substituted into
(19) to achieve

̂̄ps+1(ξ) = (1.5 − α) + k(ν − ρ)|ξ |2
1.5 + kν|ξ |2 · ̂̄ps(ξ) � C(α, ρ, ξ) · ̂̄ps(ξ). (20)

For the sequence ̂̄ps to converge to zero, it is equivalent to set |C(α, ρ, ξ)| < 1.
Note the optimal convergence occurs when α = 1.5 and ρ = ν, that is, the constant
C(α, ρ, ξ) = 0. This corresponds to the iterative rotational projection method. There-
fore, this method obtains the exact solution in just one iteration. However, this analysis
is based on the smooth solutions and without convection, which is not the case for the
full Navier–Stokes equations with the convection term and the finite element solutions
of limited regularity.

If α = 1.5, then |C(α, ρ, ξ)| < 1 leads to − 1.5
k|ξ |2 < ρ < 2ν + 1.5

k|ξ |2 . For these
inequalities to hold for all ξ ∈ Z

3, it is equivalent to have 0 ≤ ρ ≤ 2ν. If α = 1.5
and ρ = 0, that is, when the iterative standard projection method is used, then

C(1.5, 0, ξ) = kν|ξ |2
1.5+kν|ξ |2 . In this case, the iteration always converges, but the con-

vergent constant C is close to 0 when kν|ξ |2 is small, and approaching 1 when kν|ξ |2
is large. Thus, this iterative scheme is preferred only when ν is sufficiently small. If
α = 0, then this scheme reduces to the Uzawa scheme, and the convergence constant

is Cu(ρ, ξ) = 1.5+k(ν−ρ)|ξ |2
1.5+kν|ξ |2 . The convergence requires 0 < ρ ≤ 2ν. It is easy to see

that |Cu | → 1 when ν → 0. Thus, the Uzawa iterations would be applicable only
when ν is sufficiently large. This is consistent with the fact that the Uzawa method is
mainly used for the Stokes equations whose viscosity is considerably large. The above
analysis is summarized in Table1.

Table 1 Normal mode analysis when the convection is neglected

Method Parameters Convergence
constant

Parameter range for
convergence

Notes

Iterative rotational
projection

α = 1.5, ρ = ν 0 Always convergent Super-convergence

Iterative standard
projection

α = 1.5, ρ = 0 kν|ξ |2
1.5+kν|ξ |2 Always convergent Convergence is fast

when ν is small

Uzawa α = 0 1.5+k(ν−ρ)|ξ |2
1.5+kν|ξ |2 0 < ρ ≤ 2ν Convergence is fast

when ν is large

The pressure update is ps+1 = ps − (ρ + α
k (−�)−1)(∇ · us )
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2.2 Iteration analysis withmixed finite element method

The paper [3] has proved the convergence of iterative projections when there is no
convection or the convection term is treated utterly explicitly and there are no freely
chosen parameters. In contrast, our scheme handles the convection implicitly and has
two parameters α and ρ that can be modulated to obtain optimal convergence.

We denote L2(�) as the Lebesgue space of square integrable functions with inner
product (u, v) = ∫

�
u(x)v(x)dx , and the L2 norm as ‖u‖L2(�) = √

(u, u). Denote

H1
0 (�) = { f : f , ∂ f

∂xi
∈ L2(�), i = 1, 2, 3, f |∂� = 0}. We introduce

V = {u = (u1, u2, u3) : ui ∈ H1
0 (�), i = 1, 2, 3}, (21)

Q = L2(�)/R = {q ∈ L2(�) : 1

|�|
∫

�

q(x)dx = 0}, (22)

with the norm |u|1 = (
∫

�
|∇u(x)|2dx)1/2, where |∇u|2 = ∑3

i, j=1 | ∂ui
∂x j

|2 and
1

|�|
∫

�
q(x)dx is the average of q over �. Let Vh ⊂ V and Qh ⊂ Q be a pair of

conforming mixed finite element spaces, which satisfies the inf-sup condition (a.k.a.
the Ladyzhenskaya-Babuka-Brezzi (LBB) condition, see, e.g., [12]), i.e.,

inf
q∈Qh

sup
v∈Vh

(∇ · v, q)

‖q‖L2(�)/R|v|1 > 0. (23)

Denote the basis of Vh aswi , i = 1, · · · , l and the basis of Qh as q j , j = 1, · · · ,m.

Definition 1 A velocity field uh ∈ Vh is weakly divergence-free if (∇ · uh, qh) = 0
for all qh ∈ Qh and strongly divergence-free if ∇ · uh is almost everywhere zero
in �. A pair of mixed finite element spaces Vh and Qh is called divergence-free if
∇ · Vh ⊂ Qh , where ∇ · Vh is the range of the divergence of Vh . Furthermore, a finite
element method with a pair of divergence-free finite element spaces is called a div-free
FEM, and otherwise a non-div-free FEM.

In thiswork,weuse aweak incompressibilitymeasure (133) (a strong incompressib-
lity measure (134)) to check whether a velocity is weakly (strongly) divergence-free.
A weakly divergence-free velocity may be not pointwise divergence-free, as seen
in Sect. 4.1.1. However, under a pair of divergence-free FEM spaces, a weakly
divergence-free velocity is also strongly divergence-free. Indeed, if uh satisfies
(∇ · uh, qh) = 0 for all qh ∈ Qh and ∇ · Vh ⊂ Qh , then ‖∇ · uh‖L2(�) = 0 by
choosing qh = ∇ · uh , which suggests ∇ · uh is zero almost everywhere in �. One
popular example of divergence-free elements is the Scott–Vogelius pair [29]. However,
many H1-conforming, inf-sup stable mixed finite elements pairs are not divergence-
free, including the very popular Tayor-Hood elements.
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2.2.1 Iteration analysis without convection

Without convection, the finite element solution (us, φs, ps) ∈ Vh × Qh × Qh of (9),
(10) and (11) satisfies, after dropping time step index (n + 1),

1.5(us, wi ) + kν(∇us,∇wi ) − k(∇ · wi , p
s) = (F, wi ), ∀ i = 1, · · · , l, (24)

(∇φs,∇qi ) = −1

k
(∇ · us, qi ), ∀ i = 1, · · · ,m, (25)

(ps+1, qi ) = (ps, qi ) + α(φs, qi ) − ρ(∇ · us, qi ), ∀ i = 1, · · · ,m. (26)

The matrices Al×l , Bm×l , Gm×m , and Mm×m are introduced as follows: Ai j =
1.5(wi , w j ) + kν(∇wi ,∇w j ), i, j = 1, · · · , l; Bi j = −(qi ,∇ · w j ), i =
1, · · · ,m, j = 1, · · · , l; Gi j = (∇qi ,∇q j ), Mi j = (q j , q j ), i, j = 1, · · · ,m.

The transpose of B is written as BT . Let the vector �f = (

(F, w1) . . . (F, wl)
)T .

We express us = ∑l
i=1 u

s
i wi , φs = ∑m

i=1 φs
i qi , p

s = ∑m
i=1 p

s
i qi and denote the

corresponding vector forms as �us = (

us1 . . . usl
)T , �φs = (

φs
1 . . . φs

m

)T , �p s =
(

ps1 . . . psm
)T

. Thereafter, the conversion between the function and vector forms
of a quantity will be used this way. Thus, the numerical scheme, (24), (25), and (26),
turns into the following matrix–vector form,

A�us + kBt �p s = �f , G �φs = 1

k
B �us, M �p s+1 = M �p s + αM �φs + ρB �us . (27)

Without the convection, the weak solution of (12) and (13) (u, p) ∈ Vh × Qh

satisfies

1.5(u, wi ) + kν(∇u,∇wi ) − k(∇ · wi , p) = (F, wi ), ∀ i = 1, · · · , l, (28)

(∇ · u, qi ) = 0, ∀ i = 1, · · · ,m. (29)

The corresponding vector form can be written as

A�u + kBt �p = �f , G �φ = 1

k
B �u, M �p = M �p + αM �φ + ρB �u. (30)

The last two equations in (30) can be reduced to
(

G + α
kρ M

) �φ = 0,whose solution

is �φ = 0, since both G and M are symmetric and positive definite. Thus, the last two
equations in (30) are equivalent to B �u = �0.

Denote the errors in the function form as ūs = us − u, φ̄s = φs −φ, p̄s = ps − p,

and the respective vector forms as �̄us , �̄φs
, �̄p s

. The subtractions of the equations,
(27)-(30), give rise to

A �̄us + kBt �̄p s = 0, G �̄φs = 1

k
B �̄us, M �̄p s+1 = M �̄p s + αM �̄φs + ρB �̄us . (31)
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From (31), we get �̄us = −k A−1Bt �̄p s
and �̄φs = −G−1BA−1Bt �̄p s

. Let D =
BA−1Bt , which is the negative Schur complement of A (e.g., see [4]), then

�̄p s+1 = (I − (αG−1 + ρkM−1)D) �̄p s � (I − K ) �̄p s
, (32)

where
Km×m = (αG−1 + ρkM−1)D. (33)

To study the convergence, we analyze the eigenvalues of the matrix K . First, we
introduce the following lemmas:

Lemma 1 Let S and T be symmetric matrices. If S is positive definite, then S−1T is
diagonalizable.

Proof Since S is symmetric and positive definite (SPD), its inverse S−1 is also SPD.
Denote its square root as S−1/2. Then, S1/2S−1T S−1/2 = S−1/2T S−1/2, where the
latter is symmetric because T and S−1/2 are both symmetric. Therefore, S−1T is
similar to a symmetric matrix and hence diagonalizable. �

Lemma 2 All the eigenvalues of K are positive and K has a set of linearly independent
eigenvectors that span R

m, which is called an eigenbasis of K .

Proof First, note that without the convection term, the matrix A is SPD. The inf-sup
condition guarantees B has the full row rank, and then the matrix D is also SPD. In
addition, the matrices G and M are also SPD.

Suppose λ is an eigenvalue of K and �ξ ∈ R
m is an associated eigenvector, i.e.,

K �ξ = λ�ξ . Left-multiplying both sides by �ξ t D leads to

α�ξ t DG−1D�ξ + ρk�ξ t DM−1D�ξ = λ�ξ t D�ξ . (34)

Since the quantities α, ρ, k, �ξ t DG−1D�ξ , �ξ t DM−1D�ξ , �ξ t D�ξ are all positive, the
value of λ must be positive.

Furthermore, a matrix is diagonalizable if and only if there is a set of eigenbasis of
this matrix (e.g., [22] Theorem 1.3.7, p. 59). In the matrix K , the left factor (αG−1 +
ρkM−1) is SPD and the right factor D is symmetric. According to Lemma1, K has
an eigenbasis. �


Denote an eigenbasis of K as {�ξ1, · · · , �ξm} and the corresponding eigenvalues as
λ j , j = 1, · · · ,m. Let ρ(I − K ) be the spectral radius of I − K , that is, ρ(I − K ) =
max j=1,··· ,m |1−λ j |. Because all the eigenvalues are positive according to Lemma2,
it is easy to deduce that

Lemma 3 ρ(I − K ) < 1 if and only if λmax < 2.

The next lemma gives an upper bound of the largest eigenvalue K dependent on
the parameters in the numerical scheme.
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Lemma 4 Let λmax be the largest eigenvalue of K , then

λmax ≤ max
( α

1.5
,
ρ

ν

)

. (35)

Proof Let λ be an eigenvalue of K and �ξ be an associated eigenvector. According to
(34),

λ = α〈G−1D�ξ, D�ξ 〉 + ρk〈M−1D�ξ, D�ξ 〉
〈D�ξ, �ξ 〉 , (36)

where the notation 〈�ξ, �q〉 � �ξ t �q for any two vectors in the same Euclidean space R
m

or R
l . Denote �v = A−1Bt �ξ , i.e., A�v = Bt �ξ or D�ξ = B�v. Then, (36) becomes

λ = α〈G−1B�v, B�v〉 + ρk〈M−1B�v, B�v〉
〈�v, A�v〉 = α〈G−1B�v, B�v〉 + ρk〈M−1B�v, B�v〉

1.5‖v‖2
L2(�)

+ νk‖∇v‖2
L2(�)

� R(�v).

(37)

This equates the eigenvalues to the stationary values of the Rayleigh quotient R(�v)

defined in (37). To estimate the two numerator terms in (37), let �φ = G−1B�v,
then G �φ = B�v. Using the connection between the vector and function forms:
�φ = (φ1 · · · φm)t and φ = ∑m

i=1 φi qi , �v = (v1 · · · vl)t and v = ∑l
i=1 viwi , we

obtain
〈G−1B�v, B�v〉 = 〈 �φ, B�v〉 = −

∫

�

φ(∇ · v)dx . (38)

Similarly, we observe that G �φ = B�v is equivalent to
∫

�

∇φ · ∇ηdx = −
∫

�

(∇ · v)ηdx, ∀η ∈ Qh . (39)

Using η = φ in (39), integration by parts, andYoung’s inequality, we get ‖∇φ‖2
L2(�)

=
− ∫

�
φ(∇ · v)dx = ∫

�
v · ∇φdx ≤ 1

2

(‖v‖2
L2(�)

+ ‖∇φ‖2
L2(�)

)

, which further gives

‖∇φ‖2
L2(�)

≤ ‖v‖2
L2(�)

. Therefore, (38) becomes

〈G−1B�v, B�v〉 = ‖∇φ‖2L2(�)
≤ ‖v‖2L2(�)

. (40)

To study 〈M−1B�v, B�v〉, we let �y = M−1B�v, i.e., M �y = B�v. Suppose �y =
(y1 · · · ym)t and the corresponding function y = ∑m

i=1 yiqi . Then, M �y = B�v can be
rewritten as

∫

�
yηdx = − ∫

�
(∇ · v)ηdx,∀η ∈ Qh . Letting η = y, then ‖y‖2

L2(�)
=

− ∫

�
(∇·v)ydx ≤ 1

2

(‖∇·v‖2
L2(�)

+‖y‖2
L2(�)

)

.This results in‖y‖L2(�) ≤ ‖∇·v‖L2(�).

It is also known that for any v ∈ [H1
0 (�)]3, for example, [31] p. 93,

‖∇ · v‖L2(�) ≤ ‖∇v‖L2(�). (41)

All these operations sum to
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〈M−1B�v, B�v〉=〈�y, B�v〉=−
∫

�

(∇ ·v)ydx=‖y‖2L2(�)
≤ ‖∇ ·v‖2L2(�)

≤ ‖∇v‖2L2(�)
.

(42)
Inserting (40) and (42) to (37), we obtain

λmax ≤
α‖v‖2

L2(�)
+ ρk‖∇v‖2

L2(�)

1.5‖v‖2
L2(�)

+ νk‖∇v‖2
L2(�)

≤ max
( α

1.5
,
ρ

ν

)

. (43)

�

We introduce the maximum vector norm with respect to the eigenbasis {�ξi }mi=1 of

K , that is,

‖�q‖K ,∞ = max
1≤ j≤m

|qK , j | when �q =
m

∑

j=1

qK , j �ξ j . (44)

Theorem 1 (Iteration convergence without convection) The pressure solution error
�̄p s

between the scheme (27) and the system (30) satisfies

‖�̄p s+1‖K ,∞ ≤ ρ(I − K )‖�̄p s‖K ,∞. (45)

Furthermore, ifmax
(

α
1.5 ,

ρ
ν

)

< 2, then the iterative solution (us , p s) of (24), (25),
(26) converges linearly to the solution (u, p) of (28), (29).

Proof Denote �̄p s = ∑m
j=1 p̄

s
K , j

�ξ j . Then, (32) becomes
∑m

j=1 p̄
s+1
K , j

�ξ j = ∑m
j=1(1 −

λ j ) p̄sK , j
�ξ j . Due to the linear independency of {�ξ j }mj=1, we arrive at p̄s+1

K , j = (1 −
λ j ) p̄sK , j , j = 1, · · · ,m. Taking the maximum magnitudes on both sides yields (45).

By Lemma3 and Lemma4, if max
(

α
1.5 ,

ρ
ν

)

< 2, then ρ(I − K ) < 1 and the conver-
gence follows. �


2.2.2 Iteration analysis with implicit convection

The finite element solution (us, ps) of the iterative projection method (9), (10), (11)
satisfies, after dropping time step index (n + 1),

1.5(us, wi ) + kν(∇us,∇wi ) + k(NL(us−1, us), wi )

− k(ps,∇ · wi ) = (F, wi ), i = 1, · · · , l, (46)

along with (25) and (26). Here, (u−1, p0) is the initial guess. We introduce the fol-
lowing the matrices:

N (w)i j = (NL(w,w j ), wi ), ∀ i, j = 1, · · · , l, (47)

AN (w) = A + kN (w), (48)

KN (w) = (αG−1 + ρkM−1)BA−1
N (w)BT . (49)
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Then, the matrix form of (46), (25), (26) is

AN (us−1)�us + kBT �p s = �f , G �φs = 1

k
B �us, M �p s+1 = M �p s + αM �φs + ρB �us .

(50)

The finite element solution of the limit scheme (12) and (13) (u, p) ∈ Vh × Qh

satisfies

1.5(u, wi ) + kν(∇u, ∇wi ) + k(NL(u, u), wi ) − k(∇ · wi , p) = (F, wi ), ∀ i = 1, · · · , l,
(51)

(∇ · u, qi ) = 0, ∀ i = 1, · · · ,m.

(52)

With the same argument for (30), the corresponding matrix form can be written as

AN (u)�u + kBT �p = �f , G �φ = 1

k
B �u, M �p = M �p + αM �φ + ρB �u. (53)

The proof of iteration convergence with the implicit convection is by writing the
system as a perturbation with the perturbation parameter k of the non-convective
system (32). This is reflected in (85) along with (82). The perturbation terms with the
coefficient k depend on the matrices N (w), A−1

N (w), and I −KN (w), whose estimates
are given in Lemma5 and 6. In this analysis, we adopt the spectral matrix norm |||·|||2
for square matrices, which is induced by the Euclidean metric in R

l . For more details
of this norm, see, e.g., [22, Section 5.6].

Lemma 5 There exists a constant C only dependent on h and the basis of Vh such that

|(NL(u, v), w)| ≤ C‖u‖L2(�)‖v‖L2(�)‖w‖L2(�), ∀u, v, w ∈ Vh, (54)

|||N (w)|||2 ≤ C‖w‖L2(�), ∀w ∈ Vh . (55)

Proof Using [22, Theorem 5.4.17 and Theorem 5.6.2], |||N (w)|||2 = max‖�ξ‖2=‖�η‖2=1
�ξ T N (w)�η, where �ξ, �η ∈ R

l . Using the connection between the vector and function
forms: �ξ = (ξ1 · · · ξl)T , ξ = ∑l

i=1 ξiwi , �η = (η1 · · · ηl)t , η = ∑l
i=1 ηiwi , we obtain

�ξ T N (w)�η = ((w · ∇)η, ξ) + 1
2 ((∇ · w)η, ξ). Hence,

|||N (w)|||2 = max
‖�ξ‖2=‖�η‖2=1

((w · ∇)ξ, η) + 1

2
((∇ · w)η, ξ). (56)

Note that

|((w · ∇)η, ξ)| ≤ ‖w‖L4(�)‖ξ‖L4(�)‖∇η‖L2(�) (57)

≤ 2‖w‖
1
4
L2(�)

‖∇w‖
3
4
L2(�)

‖ξ‖
1
4
L2(�)

‖∇ξ‖
3
4
L2(�)

‖∇η‖L2(�), (58)
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where (57) is obtained by Hölder’s inequality and (58) by Ladyzhenskaya’s inequality
in three-dimensional case, ‖v‖L4(�) ≤ √

2‖v‖1/4
L2(�)

‖∇v‖3/4
L2(�)

, ∀v ∈ V (see, e.g.,
[31, Lemma 3.5, p. 200]). Next, by applying the inverse inequality ‖∇v‖L2(�) ≤
Ch−1‖v‖L2(�) for any v ∈ Vh (e.g., [5, Theorem 4.5.11, p. 112]), where C only
depends on �, the above estimates continue as

|((w · ∇)η, ξ)| ≤ 2‖w‖
1
4
L2(�)

(Ch−1)
3
4 ‖w‖

3
4
L2(�)

‖ξ‖
1
4
L2(�)

(Ch−1)
3
4 ‖ξ‖

3
4
L2(�)

Ch−1‖η‖L2(�)

= C‖w‖L2(�)‖ξ‖L2(�)‖η‖L2(�), (59)

where the lastC absorbs h−2.5 in the previous step. Similarly, the term 1
2 ((∇ ·w)η, ξ)

can be shown to have the same upper bound. Note the inequality (59) also holds for
any ξ, η ∈ Vh , which leads to (54).

Note ‖ξ‖2
L2(�)

= (
∑l

i=1 ξiwi ,
∑l

j=1 ξ jw j ) = ∑l
i, j=1 ξiξ j (wi , w j ) = �ξ T A0�ξ ,

where A0 is the mass matrix of Vh with (A0)i j = (wi , w j ). Clearly, A0 is symmetric
and positive definite. Since ‖�ξ‖2 = 1, �ξ T A0�ξ ≤ ρ(A0), the spectral radius of A0.
Thus, ‖ξ‖L2(�) ≤ √

ρ(A0) and similarly ‖η‖L2(�) ≤ √
ρ(A0). Therefore,

∣
∣
∣
∣
((w · ∇)η, ξ) + 1

2
((∇ · w)η, ξ)

∣
∣
∣
∣
≤ Cρ(A0)‖w‖L2(�) ≤ C‖w‖L2(�), (60)

where Cρ(A0) is denoted as a new C in the final step, which only depends on h and
the basis of Vh . Finally, (55) is achieved from (56) and (60). �


The following lemma reveals that I−KN (w)used in (84) is afirst-order perturbation
of I − K .

Lemma 6 For each w ∈ Vh, there exists a constant kw > 0, such that when 0 < k <

min(kw, 1), the matrix AN (w) is invertible,

∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

N (w)

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

≤ C(1 + k‖w‖L2(�)), (61)

and
I − KN (w) = I − K − k AN2(w), (62)

where AN2(w) is a matrix satisfying

|||AN2(w)|||2 ≤ C‖w‖L2(�). (63)

Here, the constant C is independent of w, but depends on h and bases of Vh and Qh.

Proof Note AN (w) = A+kN (w) = A(I +k A−1N (w)). Whenw and the basis of Vh
are fixed, the matrices A and N (w) are also fixed. Note AN is invertible if and only if
(I + k A−1N (w)) is invertible. According to [22, Corollary 5.6.16], (I + k A−1N (w))

being invertible is equivalent to k
∣
∣
∣
∣
∣
∣A−1N (w)

∣
∣
∣
∣
∣
∣
2 < 1.

Let

kw = 0.5

C
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2‖w‖L2(�)

, (64)
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where the value of C is the one used in (55). If 0 < k < kw, then k
∣
∣
∣
∣
∣
∣A−1N (w)

∣
∣
∣
∣
∣
∣
2 ≤

k
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2|||N (w)|||2 ≤ kC

∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2‖w‖L2(�) < 0.5. Thus, the matrix (I +

k A−1N (w)) is invertible and (I +k A−1N (w))−1 = I +k AN1(w), where AN1(w) �
∑∞

j=1(−1) j k j−1(A−1N (w)) j and

|||AN1(w)|||2 ≤
∣
∣
∣
∣
∣
∣A−1N (w)

∣
∣
∣
∣
∣
∣
2

1 − k
∣
∣
∣
∣
∣
∣A−1N (w)

∣
∣
∣
∣
∣
∣
2

≤ 2
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
|||N (w)|||2. (65)

Thus, when 0 < k < kw, AN (w) is invertible and

A−1
N (w) = (I + k AN1(w))A−1 = A−1 + k AN1(w)A−1. (66)

Furthermore,
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

N (w)

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

=
∣
∣
∣

∣
∣
∣

∣
∣
∣(I + k AN1(w))A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
(1 + k|||AN1(w)|||2) (67)

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
(1 + 2k

∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
|||N (w)|||2) (68)

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
(1 + 2Ck

∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
‖w‖L2(�)) (69)

≤ C ′(1 + k‖w‖L2(�)), (70)

where (65) is used in (67) to get (68), and (55) is applied in (68) to get (69). The C ′ in
(70) is C ′ = max(

∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2, 2C

∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2
2) from (69). Changing C ′ to a new C results

in (61).
Then, (49) and (66) lead to

I−KN (w)= I−(αG−1+ρkM−1)BA−1Bt−k(αG−1+ρkM−1)BAN1(w)A−1Bt

(71)

� I − K − k AN2(w), (72)

where K is defined in (33) and AN2(w) � (αG−1+ρkM−1)BAN1(w)A−1Bt . Then,

|||AN2(w)|||2 ≤ (α

∣
∣
∣

∣
∣
∣

∣
∣
∣G−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
+ ρk

∣
∣
∣

∣
∣
∣

∣
∣
∣M−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
)|||B|||2

∣
∣
∣
∣
∣
∣Bt

∣
∣
∣
∣
∣
∣
2

∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
|||AN1(w)|||2

(73)

≤ (α

∣
∣
∣

∣
∣
∣

∣
∣
∣G−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
+ ρ

∣
∣
∣

∣
∣
∣

∣
∣
∣M−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
)|||B|||2

∣
∣
∣
∣
∣
∣Bt

∣
∣
∣
∣
∣
∣
2 · 2

∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

2
|||N (w)|||2

(74)

= C1|||N (w)|||2 ≤ C‖w‖L2(�), (75)

where we have used 0 < k < 1 and (65) to get (74) and Lemma5 to obtain (75).
The constant C1 in (75) denotes the product of all terms in front of |||N (w)|||2 in (74),
which only depends on the bases of Vh and Qh . The identity (72) and estimate (75)
conclude this lemma. �
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Theorem 2 (Iteration convergence of iterative projection method at a single time step)
If ρ(I−K ) < 1 and the time step size k is sufficiently small, then there exists a constant
0 < γ < 1 such that for any s ≥ 0, the pressure and velocity errors between (50) and
(53) satisfy

‖�̄p s‖K ,∞ ≤ (‖�̄p 0‖K ,∞ + ‖�̄u−1‖2)γ s, ‖�̄u s‖2 ≤ √
k(‖�̄p 0‖K ,∞ + ‖�̄u−1‖2)γ s+1.

(76)

Thus, the solution (us, ps) ∈ Vh × Qh of (46), (25), and (26) converges linearly to
the solution (u, p) ∈ Vh × Qh of (51) and (52).

Proof Step 1. Derive the relations (96) and (97). Subtracting (51) from (46)
gives, for each i = 1, · · · , l,

1.5(ūs, wi ) + kν(∇ūs,∇wi ) + k(NL(us−1, ūs), wi )

+ k(NL(ūs−1, u), wi ) − k( p̄s,∇ · wi ) = 0. (77)

This results in, by using the notations of vectors �us , �φs , �p s and errors �̄us , �̄φs
, �̄p s

from Sect. 2.2.1,

(A + kN (us−1))�̄us + kBT �̄p s = −k Ad(u)�̄us−1
, (78)

where the matrix Ad is defined as

(Ad)i j � (NL(w j , u), wi ), i, j = 1, · · · , l. (79)

According to Lemma5,
∣
∣
∣
∣
∣
∣N (us−1)

∣
∣
∣
∣
∣
∣
2 ≤ C‖us−1‖L2(�). According to Lemma6,

for us−1, there exists kus−1 > 0 that depends on the norm ‖us−1‖L2(�) (see (64))
such that when 0 < k < min(kus−1 , 1), AN (us−1) = A + kN (us−1) is invertible.
Thus, we solve (78) to get

�̄us = −k A−1
N (us−1)(Bt �̄p s + Ad �̄us−1

). (80)

According to Lemma5 and (54), |||Ad |||2 ≤ C‖u‖L2(�). We take C‖u‖L2(�) as a
new C , which yields

|||Ad |||2 ≤ C . (81)

Applying (61) and (81) on (80) gives

‖�̄us‖2 ≤ k
∣
∣
∣

∣
∣
∣

∣
∣
∣A−1

N (us−1)

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
(
∣
∣
∣
∣
∣
∣Bt

∣
∣
∣
∣
∣
∣
2‖�̄p s‖2 + |||Ad |||2‖�̄us−1‖2)

≤ kC(1 + k‖us−1‖L2(�))(‖�̄p s‖K ,∞ + ‖�̄us−1‖2). (82)

123



An iterative projection method for unsteady... Page 15 of 38    44 

From the difference between (50) and (53), we obtain

�̄p s+1 = �̄p s +
(

α

k
G−1 + ρM−1

)

B �̄u s

= �̄p s − (

αG−1 + ρkM−1)BA−1
N (us−1)(Bt �̄p s + Ad �̄us−1

) (83)

= (I − KN (us−1)) �̄p s − (αG−1 + ρkM−1)A−1
N (us−1)Ad �̄us−1

(84)

= (I − K − k AN2(u
s−1)) �̄p s − B1(u

s−1)�̄us−1
, (85)

where the definition KN (us−1) in (49) is used in (83) to obtain (84), the formula
(62) is employed to go from (84) to (85), and B1(us−1) is defined as

B1(u
s−1) � (αG−1 + ρkM−1)A−1

N (us−1)Ad . (86)

Applying (61) and (81) on B1(us−1) yields

∣
∣
∣

∣
∣
∣

∣
∣
∣B1(u

s−1)

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

≤ (α

∣
∣
∣

∣
∣
∣

∣
∣
∣G−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
+ ρk

∣
∣
∣

∣
∣
∣

∣
∣
∣M−1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
)

∣
∣
∣

∣
∣
∣

∣
∣
∣(A−1

N (us−1)

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
|||Ad |||2

≤ C(1 + k‖us−1‖L2(�)). (87)

We express AN2(us−1) �̄p s
and B1(us−1)�̄us−1

in (85) with the eigenbasis {�ξ j }mj=1
of the matrix K :

AN2(u
s−1) �̄p s =

m
∑

j=1

ηK , j �ξ j = �η, B1(u
s−1)�̄us−1 =

m
∑

j=1

θK , j �ξ j = �θ. (88)

It is easy to tell that

‖�η‖K ,∞ ≤ C‖AN2(u
s−1) �̄p s‖2 ≤ C

∣
∣
∣
∣
∣
∣AN2(u

s−1)
∣
∣
∣
∣
∣
∣
2‖�̄p s‖K ,∞ ≤ C‖us−1‖L2(�)‖�̄p s‖K ,∞,

(89)

where (63) is used in the last step. Similarly,

‖�θ‖K ,∞ ≤ C‖B1(u
s−1)�̄us−1‖2 ≤ C

∣
∣
∣
∣
∣
∣B1(u

s−1)
∣
∣
∣
∣
∣
∣
2‖�̄us−1‖2 ≤ C(1 + k‖us−1‖L2(�))‖�̄us−1‖2.

(90)

From (85) and (88), we obtain

�̄p s+1 = (I − K ) �̄p s − k �η − �θ. (91)
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This implies

‖�̄p s+1‖K ,∞ ≤ ρ(I − K )‖�̄p s‖K ,∞ + k‖�η‖K ,∞ + ‖�θ‖K ,∞

≤ (ρ(I − K ) + kC‖us−1‖L2(�))‖�̄p s‖K ,∞ + C(1 + k‖us−1‖L2(�))‖�̄us−1‖2
(92)

= as−1‖�̄p s‖K ,∞ + bs−1‖�̄us−1‖2, (93)

where for s = −1, 0, · · · ,

as = ρ(I − K ) + kC‖us‖L2(�) ≤ ρ(I − K ) + kC(‖�̄us‖2 + ‖u‖L2(�)), (94)

bs = C(1 + k‖us‖L2(�)) ≤ C(1 + k(‖�̄us‖2 + ‖u‖L2(�))). (95)

Therefore, using these two quantities, (82) and (93) become, for s = 0, 1, · · · ,

‖�̄p s+1‖K ,∞ ≤ as−1‖�̄p s‖K ,∞ + bs−1‖�̄us−1‖2, (96)

‖�̄us‖2 ≤ kbs−1(‖�̄p s‖K ,∞ + ‖�̄us−1‖2). (97)

Step 2. prove (76) by induction. Fix C as the maximum of one and all C’s that
appear in Step 1 (this enforces C ≥ 1), which only depends on u, h and bases of
Vh and Qh . Let

C1 = ‖�̄p 0‖K ,∞ + ‖�̄u−1‖2, (98)

C2 = max(‖u−1‖L2(�),CC1 + ‖u‖L2(�), (99)

P1 = ρ(I − K ) + C
√
k + kC(1 + √

k)(
√
kC1 + ‖u‖L2(�)), (100)

P2 = √
k(1 + √

k)C(1 + k
√
k)(

√
kC1 + ‖u‖L2(�)), (101)

P3 = √
kC(1 + k‖u−1‖L2(�)). (102)

If ρ(I − K ) < 1, then there exists k0 > 0 such that when 0 < k < k0,
max(P1, P2, P3) < 1. We fix a value k such that

0 < k < min

(

1, k0,
0.5

CC2
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2

)

. (103)

The value of γ is chosen satisfying

max(P1, P2, P3) < γ < 1. (104)

In the induction, we need to prove (76) and show AN (us) is invertible at each

step s ≥ −1. In the initial step, we show AN (u−1) is invertible, ‖�̄p 0‖K ,∞ ≤ C1,

‖�̄u 0‖2 ≤ √
kC1γ , and AN (u0) is invertible. First, (103) implies k < 0.5

CC2|||A−1|||2 ,
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which in turn suggests k < 0.5
C|||A−1|||2‖u−1‖L2(�)

due to (99). According to Lemma5

and (64), AN (u−1) is invertible. When s = 0, the inequality for ‖�̄p 0‖K ,∞ in (76)
is trivially true due to the definition of C1 in (98). From (97),

‖�̄u 0‖2 ≤ kb−1(‖�̄p 0‖K ,∞ + ‖�̄u−1‖2) = kC(1 + k‖u−1‖L2(�))C1 = √
kP3C1 ≤ √

kC1γ.

(105)

Next, we show AN (u0) is invertible. Note

‖u0‖L2(�) ≤ ‖ū0‖L2(�) + ‖u‖L2(�) ≤ C‖�̄u0‖2 + ‖u‖L2(�)

≤ C
√
kC1γ + ‖u‖L2(�) ≤ CC1 + ‖u‖L2(�), (106)

where 0 < k < 1 and 0 < γ < 1 are used in the last step. According to (103),
(99), and (106),

k <
0.5

CC2
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2

≤ 0.5

C
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2(CC1 + ‖u‖L2(�))

≤ 0.5

C
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2‖u0‖L2(�)

= ku0 .

(107)

Due to Lemma6 and (64), AN (u0) is invertible.
Second, assume the inequalities in (76) hold and AN (us) is invertible for s ≤ s0,
where s0 ≥ 0. Then, (96) implies

‖�̄p s0+1‖K ,∞ ≤ as0−1‖�̄p s0‖K ,∞ + bs0−1‖�̄us0−1‖2
≤ [ρ(I − K ) + kC(‖�̄us0−1‖2 + ‖u‖L2(�))]‖ �̄p s0‖K ,∞

+ C[1 + k(‖�̄us0−1‖2 + ‖u‖L2(�))]‖�̄us0−1‖2 (108)

≤ [ρ(I − K ) + kC(
√
kC1γ

s0 + ‖u‖L2(�))]C1γ
s0

+ C[1 + k(
√
kC1γ

s0 + ‖u‖L2(�))]
√
kC1γ

s0 (109)

=C1γ
s0

[

ρ(I − k)+√
kC+kC(1+√

k)(
√
kC1γ

s0 + ‖u‖L2(�))

]

(110)

< C1γ
s0

[

ρ(I − k) + √
kC + kC(1 + √

k)(
√
kC1 + ‖u‖L2(�))

]

(111)

= C1γ
s0 P1 ≤ C1γ

s0+1, (112)

where the inequalities in (94) and (95) are used in attaining (108), the inductions
at s0 − 1 and s0 and the C1 notation in (98) are applied to obtain (109), 0 < γ < 1
are applied from(110) to (111), the definition P1 in (100) is employed to go from
(111) to (112), and the relation (104) is utilized in (112).
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Furthermore, (97) implies

‖�̄us0+1‖2 ≤ kbs0(‖�̄ps0+1‖K ,∞ + ‖�̄us0‖2)
≤ kC[1 + k(‖�̄us0‖2 + ‖u‖L2(�))] · (‖�̄ps0+1‖K ,∞ + ‖�̄us0‖2) (113)

≤ kC[1 + k(
√
kC1γ

s0+1 + ‖u‖L2(�))] · (C1γ
s0+1 + √

kC1γ
s0+1)

(114)

= √
kC1γ

s0+1
[√

k(1 + √
k)C(1 + k(

√
kC1γ

s0+1 + ‖u‖L2(�))

]

<
√
kC1γ

s0+1
[√

k(1 + √
k)C(1 + k(

√
kC1 + ‖u‖L2(�))

]

(115)

= √
kC1γ

s0+1P2 ≤ √
kC1γ

s0+2, (116)

where the inequality (95) is used in achieving (113), the inductions of �̄us0 and
(112) are applied to get (114), 0 < γ < 1 is used in obtaining (115), the definition
P2 in (101) is employed from (115) to (116), and the relation (104) is utilized in
(116).
Finally, following the same process as we prove that AN (u0) is invertible, we can

prove AN (us0+1) is invertible. The induction proof is completed. �


3 Stability and error analysis of the limit scheme

From here, we denote the solution at time step n with iteration number s in the finite
element space Vh × Qh as (un,s

h , pn,s
h ). Thus, the finite element formulation of the

iterative scheme (9)–(11) is, at the time tn , seeking un+1,s
h ∈ Vh , pn+1,s

h ∈ Qh ,

φ
n+1,s
h ∈ Qh , s = 0, 1, · · · , such that for any vh ∈ Vh , qh ∈ Qh ,

1.5(un+1,s
h , vh) + kν(∇un+1,s

h , ∇vh) + k(NL(un+1,s−1
h , un+1,s

h ), vh) − k(∇ · vh, p
n+1,s
h )

= (2unh − 0.5un−1
h , vh) + k( f n+1, vh), (117)

(∇φ
n+1,s
h , ∇qh) = −1

k
(∇ · un+1,s

h , qh), (118)

(pn+1,s+1
h , qh) = (pn+1,s

h + αφ
n+1,s
h − ρ(∇ · un+1,s

h ), qh), (119)

where un+1,−1
h = 2unh − un−1

h , pn+1,0
h = 2pnh − pn−1

h . When the conditions in

Theorem2 are satisfied, the iterative solution (un+1,s
h , pn+1,s

h ) converges linearly to
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(un+1
h , pn+1

h ) of the following system:

1.5(un+1
h , vh) + kν(∇un+1

h ,∇vh) + k(NL(un+1
h , un+1

h ), vh) − k(∇ · vh, p
n+1
h )

= (2unh − 0.5un−1
h , vh) + k( f n+1, vh), ∀vh ∈ Vh, (120)

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh . (121)

Definition 2 A scheme is robust if there is no negative power of viscosity in the L2

error bound of velocity, and not robust otherwise.

The stability and error analysis of fully implicit schemes for the Navier–Stokes
equations with the Galerkin finite element method has been extensively studied,
notably in a series of seminal works by Heywood and Rannacher [18–21]. In particu-
lar, rigorous error estimates for the fully implicit Crank-Nicolson scheme are provided
in [21]. Note the viscosity ν = 1 in these works. According to [13, Section 4.1.1], the
analysis developed in [21] does not lead to a robust upper bound for small viscosity
values. The fully implicit BDF2 scheme with mixed finite element method is studied
with error analysis in [10], but the viscosity is also set as ν = 1. The existing error anal-
ysis results that directly account for viscosity in the upper bound can be found in [13]
(for general FEMs, discussed loosely between Theorem 4.3 and Example 4.4), [28,
Theorem 4.7] (for divergence-free FEMs), and [25, Theorem 3.1] (for general FEMs).
However, none of the error estimates in [13, 25, 28] incorporate time discretization.

On the other hand, various stability results are available in some of the papers
mentioned above such as [19, Prop. 3.3], [21, Prop. 3.1−3.3], [13, Theorem4.3], and
[28, Lemma3.1], but these stability estimates are either for a backward Euler scheme
or for the semi-discrete, continuous-in-time approximation. As for the BDF2-type
time discretizations, one stability result is given in [1], which analyzes a widely used
linearly extrapolated BDF2 scheme with a convection term that is not fully implicit.
Therefore, to the best of our knowledge, there are no available stability or error analysis
results for the fully implicit BDF2 scheme (120) and (121). The primary challenge
of the BDF2 scheme lies in establishing the recursive relationships for the quantities
of interest across multiple time steps, which is solved by using the identity (141). We
provide the stability and error analysis for (120) and (121) below and include their
proofs in the Appendix.

To simplify notations, we denote Hm
x = Hm(�), m ∈ N, L2

x = L2(�), L∞
x =

L∞(�), L2
t = L2(0, T ), L∞

t = L∞(0, T ), L∞
t L2

x = L∞(0, T ; L2(�)), L∞
t Hm

x =
L∞(0, T ; Hm(�)), and so on.

Theorem 3 Suppose either the non-div-free or div-free FEM is used. If 0 < k < 1,
then the velocity solution of the scheme (120) and (121) satisfies for a given final time
T > 0, at any time step 2 ≤ n ≤ � T

k �,

‖unh‖2L2
x
+‖2unh−un−1

h ‖2L2
x

≤ exp
( T

1 − k

)

·
(

‖u1h‖2L2
x
+‖2u1h−u0h‖2L2

x
+4k

n
∑

j=2

‖ f j‖2L2
x

)

.

(122)
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Theorem 4 (Error estimate for iterative projectionmethod) Suppose u, ut ∈ L∞
t Hr+1

x
with r ≥ 2, uttt ∈ L∞

t L2
x , and p ∈ L∞

t Hr
x . Let the time step size k < 1 and the spatial

mesh size h < 1. Then, for any 2 ≤ n ≤ � T
k �, there exists a constant C independent

of the solution (u, p) and the discretization parameters k and h, such that the velocity
solution of the scheme (120) and (121) satisfies,

(i) With non-div-free FEMs,

‖un − unh‖2L2
x
+ kν

2
‖∇(un − unh)‖2L2

x
≤ Ch2r (h2 + νk)‖u‖2

L∞
t Hr+1

x

+ exp
( T M1

1 − kM1

)

·
(

‖φ1
h‖2L2

x
+ ‖2φ1

h − φ0
h‖2L2

x
+ kν

2
‖∇φ1

h‖2L2
x
+ CM2

2

M1

)

,

(123)

where φ0
h and φ1

h are defined in (153).
(ii) With div-free FEMs, the estimate (123) with M1 and M2 replaced with Mdiv0

1 and
Mdiv0

2 , respectively.

The constants M1, Mdiv0
1 , M2, and Mdiv0

2 are defined below:

M1 =Mdiv0
1 + C

ν
‖u‖2

L∞
t Hr+1

x
, Mdiv0

1 = 1 + C‖u‖L∞
t Hr+1

x
, (124)

M2 = hr+1‖ut‖L∞
t Hr+1

x
+ hr√

ν
‖p‖L∞

t Hr
x

+ hr‖u‖2
L∞
t Hr+1

x
+ k2‖uttt‖L∞

t L2
x

(125)

Mdiv0
2 = hr+1‖ut‖L∞

t Hr+1
x

+ hr+1‖u‖2
L∞
t Hr+1

x
+ k2‖uttt‖L∞

t L2
x
. (126)

Remark 1 InCase (i) ofTheorem4, if all the normsofu and p are bounded, kM1 < 0.5,
and φ1

h = φ0
h = 0, then when ν → 0+,

‖un − unh‖L2
x
=O(hr+1+hr

√
kν)+exp

(

O
(1

ν

))

· O(

hr+1√ν+hr +k2
√

ν)
)

,

(127)

‖∇(un − unh)‖L2
x

= O

(
hr+1

√
kν

+ hr
)

+ exp
(

O
(1

ν

))

· O
(

hr√
kν

+ hr√
k

+ k1.5
)

.

(128)

The spatial accuracy order of both the L2 and H1 errors of velocity is r . On the other
hand, when h = 0, the accuracy order in time step size for the velocity in H1 norm
is 1.5, the same as that for the rotational projection method [17], where the error is
achieved without spatial discretizations.
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Remark 2 In Case (ii) of Theorem4, if all the norms of u and p are bounded, kM1 <

0.5, and φ1
h = φ0

h = 0, then when ν → 0+,

‖un − unh‖L2
x

= O(hr+1 + √
kνhr + k2), ‖∇(un − unh)‖L2

x
= 1√

kν
O(hr+1 + √

kνhr + k2).

(129)

Since the L2 error of velocity does not contain the negative power of ν, this method
with the div-free FEMs is robust.

4 Numerical tests

Twoproblems are used to test the performance of the proposedmethod,where Problem
1 has the exact and smooth solution and Problem 2 is a classic lid-driven cavity flow
problem. The finite element space is chosen as the P2/P1 Taylor-Hood pair. The
numerical integration uses a 24-point quadrature rule in [24], which is exact for 6th
degree polynomials in a tetrahedron. The non-symmetric matrix equation (117) is
solved by the ILUT preconditioned GMRES method [26, 27]. The stopping criterion
of the iteration (117) and (118), (119) is set as

(‖pn+1,s+1
h − pn+1,s

h ‖max < ε and ‖pn+1,s+1
h − pn+1,s

h ‖L2
x

< ε) or s ≥ IterMax.

(130)

In practice, we use ε = 10−2 and IterMax = 50.

4.1 Problem 1: exact solution is given and smooth

In Problem 1, the spatial domain is [0, 1]3. The Reynolds number is Re = LU
ν
, where

the length scale L = 1, the velocity scaleU is the maximum velocity magnitude. The
kinematic viscosity ν is modulated to give various values of Re. The exact solution of
the test problem is

u1 = cos(t)g(x)g′(y)g′(z), u2 = cos(t)g′(x)g(y)g′(z), (131)

u3 = −2 cos(t)g′(x)g′(y)g(z), p = cos(3t) sin(2πx) sin(2π y)z3, (132)

where g(x) = 10x2(1 − x)2. In this problem, U = 4.6 and Re = 4.6
ν
. The regular

tetrahedral meshes are used to discretize� used with N subdivisions in each direction.

4.1.1 Numerical tests of iteration convergence at a single time step

This group of tests examines the convergence of the projection iterations in one single
time step of the scheme (117), (118), and (119) of the test problem. This is done by
finding the velocity and pressure at t2, where their values at t0 and t1 are chosen as the
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Fig. 1 Weak and strong measures of velocity divergence over iterations of Problem 1. First row: weak measure. Second
row: strong measure

exact solutions. To track the divergence of the numerical velocity through iterations,
we adopt two measures. The first is a weak measure,

|weak div|max = |πh(∇ · ush)|max = max
q is a basis function of Qh

|(∇ · ush, q)|, (133)

where πh is the L2 projection from Vh to Qh . The second measure is the strong
measure,

|strong div|max = max
x∈�

|∇ · ush(x)|. (134)

The mesh resolution is chosen as N = 80, and the time step size is k = 10−3. The
computational results shown in Fig. 1 agree with the normal mode analysis. That is,
the Uzawa iterations give the fast decay of the weak measure only for large viscosity
values (ν ≥ 10−2)). The standard projection iterations converge fast only for small
viscosity is small values (ν ≤ 10−2). The rotational projection iterations converge fast
for all the viscosity values. The strong measure tends to a nonzero steady state in all
these simulations, which implies the limit velocity is not pointwise divergence-free.
This is because the Taylor-Hood FEMs are not divergence-free.

Based on extensive numerical tests, we find that the optimal parameter values for
achieving the fastest iteration convergence are problem-dependent, which are typically
found not at α = 1.5 and ρ = ν, but rather within the range α ∈ (1.5, 3) and
ρ ∈ (ν, 2ν). It is recommended to test the optimal values at the initial time step with
a coarse mesh before running a long-time evolution.

4.1.2 Numerical tests on accuracy of the iterative projection method

This group of tests investigates the stability and accuracy of the full scheme (117),
(118), and (119). The simulations run from t = 0 to t = 0.5 with various Reynolds
numbers starting from Re = 920, where the error is evaluated at time t = 0.5. All the
simulations in this section use α = 1.5, ρ = ν, and k = 0.001.
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Table 2 Errors at t = 0.5 when iteration=1

N ‖uh − u‖H1 rate |ph − p|L2 rate N ‖uh − u‖H1 rate |ph − p|L2 rate

60 0.20 × 10−1 1.86 0.15 × 10−4 2.01 60 0.12 × 10+3 11 0.31 × 10+1 6

70 0.15 × 10−1 2.32 0.11 × 10−4 2.11 70 0.42 × 10+2 33 0.12 × 10+1 35

80 0.11 × 10−1 1.89 0.83 × 10−5 2.08 80 0.51 × 100 33 0.10 × 10−1 62

90 0.88 × 10−2 2.04 0.65 × 10−5 2.12 90 0.94 × 10−2 2.14 0.66 × 10−5 1.90

100 0.71 × 10−2 0.52 × 10−5 100 0.75 × 10−2 0.54 × 10−5

Left: Re = 920. Right: Re = 2300

(1) Re = 920: one iteration attains accurate solutions

When Re = 920 and only one iteration is used per time step, the numerical solutions
show the optimal convergence (see Table2 (left)): second-order accuracy of both the
velocity (in H1 norm) and the pressure (in L2 norm).

(2) Re = 2300: iterations reduce/remove spurious solutions

The simulations with only one projection per time step lead to large errors when
N = 60, 70, 80, but accurate solutions when N = 90, 100 (see Table2 (right)). These
errors coincidewith sizes of theweak and strong incompressibilitymeasures, as shown
in Fig. 2: when N = 60, 70, 80, the measures grow exponentially in time and then
stay at high values, but when N = 90, 100, the measures are small (less than 0.1).
This implies that the violation of the divergence-free condition causes the failure of
the conventional projection method.

To see the effects of iterative projections, we focus on the mesh N = 60 with a
fixed number of iterations per time step: iteration=1, 2, 4, or 6. Based on Table3 (left),
the errors decrease when more iterations are used, and when iteration=6, the errors are
optimal in the given time and spatial discretizations. The plottings of the numerical
solutions in Fig. 3 reveal that there are strongly unphysical oscillations when only
one iteration is used, but the oscillations reduce when more iterations are added and
completely vanish when iteration=6.

We then use the stopping criterion (130) with ε = 10−2 and re-run the simulations
with Re = 2300. The optimal convergence is recovered as shown in Table3 (right).
Note the iterative scheme spends 36h in the mesh with N = 60 to obtain a solution

Fig. 2 Weak (a) and strong (b) incompressibility measures when Re = 2300, iteration=1
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Table 3 Errors at t = 0.5 when Re = 2300

Re N iter ‖uh − u‖H1 |ph − p|L2 CPU time N ‖uh − u‖H1 |ph − p|L2 average iter CPU time

2300 60 1 0.12 × 10+3 0.31 × 10+1 25 h 60 0.23 × 10−1 0.15 × 10−4 5.2 36 h

2300 60 2 0.43 × 10+2 0.13 × 10+1 26 h 70 0.16 × 10−1 0.11 × 10−4 3.5 60 h

2300 60 4 0.29 × 10+1 0.26 × 10−1 57 h 80 0.12 × 10−1 0.83 × 10−5 1.7 66 h

2300 60 6 0.23 × 10−1 0.15 × 10−4 58 h 90 0.94 × 10−2 0.66 × 10−5 1 78 h

100 0.75 × 10−2 0.53 × 10−5 1 102 h

Left: a fixed number of iterations per time step. Right: stopping criterion is (130) with ε = 10−2

with ‖uh − u‖H1 = 0.23 × 10−1. In contrast, the convectional projection method
needs to use a mesh with at least N = 90 and 78h to achieve the same or better
accuracy, through the comparison between Table2 (right) and Table3 (right). This
highlights the advantage of the iterative scheme in efficiently achieving reasonably
accurate solutions while significantly reducing CPU time.

(3) Some higher Reynolds numbers

This set of simulations applies the iterative projection method to handle some high
Reynolds numbers Re = 5×103, 1×104, 2×104, 4×104, and the stopping criterion
is (130) with ε = 10−2. The computational results are shown in Fig. 4. Both the
L2 and H1 errors of velocity are optimal and increase when the Reynolds number
is larger, which is consistent with the non-robust error estimates of this non-div-free
FEM. The average iterations per time step also increase with the Reynolds numbers
and are below 9 in these simulations.

(4) Comparison with iterative projections with explicit convection.

Following [3], we use a BDF2-IMEX schemewhere the convection is fully explicit.
The only difference with the method proposed in this work ((117), (118), and (119))
is that the equation (117) is replaced with

1.5(un+1,s
h , vh) + kν(∇un+1,s

h ,∇vh) − k(∇ · vh, p
n+1,s
h )

= (2unh − 0.5un−1
h , vh) + k( f n+1, vh) − k((wn+1

h · ∇)wn+1
h , vh),

(135)

where wn+1
h = 2unh − un−1

h . The numerical simulations suggest this iterative IMEX
projection scheme is not so stable as the proposed scheme ((117), (118), and (119)).
When Re = 920 and k = 0.001, this scheme blows up around t = 0.1 (see Fig. 5). In

Fig. 3 Numerical solution u3 on the plane z = 59
60 at t=0.5 when Re = 2300 and N = 60. Iteration=1 in a, 2 in b, 4 in c,

6 in d
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Fig. 4 Simulation results for some high Reynolds numbers. a, b L2 and H1 errors of velocity. c Average
iteration numbers

contrast, the proposed scheme obtains the optimal convergence with just one iteration
in each time step according to Sect. 4.1.2.

4.2 Problem 2: Lid-driven cavity flow

Problem 2 is a classic lid-driven cavity problem. The domain is � = (−0.5, 0.5)3,
and the boundary velocity is u = (0, 1, 0) on the sliding wall x = −0.5 and zero
on the other walls for all time. The initial velocity is set as zero everywhere in the
domain. The meshes use Gauss-Lobatto points (e.g., [2]), where xi = 0.5 cos( iπN ),

y j = 0.5 cos( jπ
N ), zl = lπ

N − 0.5, i, j, l = 0, · · · , N , where N is the number of
subdivisions in each direction. The Reynolds number of this problem is Re = 1

ν
. In

this section, the iterative projection scheme uses α = 2, ρ = ν, and k = 0.001.

4.2.1 Convergence of iterations at one single time step

Similar to Section,4.1.1, we first test the convergence of iterations at the time step
t2 for various values of the viscosity. Since the exact solution is not available, the
solution at t1 is taken the same as t0 = 0. The solution at t2 is obtained by running
the scheme until convergence. We choose the number of subdivisions N = 40 in
this test. As shown in Fig. 6, the Uzawa iterations show roughly the same behavior
of weak divergence for all the viscosity values, which decrease only moderately.
The standard projection iterations perform excellently for small viscosity values but
poorly for large viscosity values. The rotational projection iterations perform best.
As for the strong measure of velocity divergence, both the Uzawa and rotational
projection iterations exhibit roughly the same decay rates to the equilibrium states,
but the standard projection iterations give very slow convergence for large viscosity
values. Because of the singularity of this problem, both the weak and strong measures
of the divergence are much larger than those for Problem 1 (compare Figs. 1 and 6).

Fig. 5 Blowup of the iterative
IMEX method with Re = 920 and
k = 0.001. The stopping criterion is
(130) with ε = 10−7
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Fig. 6 Problem 2: Weak and strong measures of velocity divergence over iterations of problem 2. First row:
weak measure. Second row: strong measure

4.2.2 Steady-state solution when Re = 1000

When ν = 0.001 or Re = 1000, we run two sets of simulations: one with the
conventional rotational projection method and the other with the iterative scheme
by using the stopping criterion (130) with ε = 10−2. With this stopping criterion
and N = 20 or 40, the average iteration number is 2 for the iterative scheme. When
N = 40, the conventional projection method shows very chaotic velocity and pressure
fields at t = 20, as shown in Fig. 7. But with the iterative scheme, the velocity field is
very smooth (Fig. 8).

The accuracy of the numerical solution is confirmed by comparing the steady-state
solution, achieved roughly around t = 20, with the result of [2]. The comparisons
are shown in Fig. 9 when the mesh is refined from N = 20 to N = 40. In [2], the
standard projection scheme with the BDF2 scheme in time and a spectral method in
space is used. More importantly, they construct a special solution uc addressing the
edge singularity to accompany the numerical solution. Therefore, without introducing

Fig. 7 Velocity (a) and pressure (b) on the x-y plane of z = 0 at time t = 20. Re = 1000, max speed=22.79. Produced
by the conventional projection method
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Fig. 8 Velocity (a) and pressure (b) on the x-y plane of z = 0 at time t = 20. Re = 1000, max speed=1. Produced by the
iterative scheme

the prescribed singular solution, the proposed iterative projection method obtains the
correct solution with averagely two projections in each time step.

5 Concluding remarks

This work studies a novel iterative projection method for the Navier–Stokes equations,
whose methodology is to iterate the projections to the divergence-free space in every
time step. To guarantee stability and convergence, a semi-implicit skew-symmetric
convection form and two tuning parameters are utilized. The benefits are signifi-
cant. First, it produces the weakly divergence-free velocity (pointwise divergence-free
velocity on div-free FEMs) when it is fully convergent. In contrast, the traditional pro-
jection method cannot produce weakly divergence-free velocity. Second, the stability
and error estimates for the limit scheme, which is the fully implicit BDF2 scheme
in time discretization, are theoretically established. Third, this iterative projection
method can handle high Reynolds numbers, while the traditional projection method
would fall short. Numerical experiments demonstrate that the desired stability and
accuracy can be attained with just a few iterations per time step, without requiring full
convergence.

There are many ways this work can be improved and extended. First, the scheme
proposed in this work does not use any stabilization techniques mentioned in [13]. A
simple and appealing stabilization is the grad-div method as mentioned in [9], which

Fig. 9 Comparison of normalized velocities, v/2 (red) and u/2 (blue) on the center lines (x, 0, 0) and (0, y, 0) on the x-y
plane z = 0. The whole velocity vector is (u, v, w). The square symbols are extracted from figures of [2]. The solid lines
are from the iterative projection method of this work. a N = 20. b N = 40. Re = 1000, t = 20
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has been shown to achieve robust error estimates for non-div-free FEMs. Second, there
are many other forms of the convection term as shown in [7], whose theoretical and
computational properties can be studied. Third, the convergence rate of the projection
iterations for (12) and (13) is first order, and its comparison in efficiencywithNewton’s
method with GMRES approach of solving the nonlinear system as in [7] will be an
interesting future work. Fourth, a general BDF2-type formula proposed in [23] may
lift the temporal accuracy to second order theoretically.

Appendix

One-step projection does not produce divergence-free velocity

Using the matrix and vector notations in Sect. 2.2.1, the equations (5) and (7) can be
written as

G �φn+1 = 1

k
B �u∗, (136)

A0 �un+1 = A0�u∗ − kBT �φn+1. (137)

where A0 is the mass matrix of Vh . That is, (A0)i j = (wi , w j ), i, j = 1, · · · , l. These
two equations yield

B �un+1 = (I − BA−1
0 BTG−1)(B �u∗). (138)

In general, BA−1
0 BT = G does not hold for mixed finite element spaces. Thus,

I − BA−1
0 BTG−1 �= 0 and B �un+1 �= 0. This implies un+1 is not weakly divergence-

free in the one-step projection method.

Proof of Theorem 3

Proof It is easy to derive that for any w, v ∈ V ,

(NL(w, v), v) = 0. (139)

Thus, letting vh = un+1
h in (120) and qh = pn+1

h in (121) eliminates the convection
term and k(∇ · un+1

h , pn+1
h ), and we obtain

(un+1
h , 1.5un+1

h − 2unh + 0.5un−1
h ) + kν‖∇un+1

h ‖2L2
x

= k( f n+1, un+1
h ). (140)

Applying the following algebraic identity for real numbers an+1, an, an−1 (e.g.,
(4.7) in [17]),

an+1 · (1.5an+1 − 2an + 0.5an−1) = 1

4

(|an+1|2 + |2an+1 − an |2 + |an+1 − 2an + an−1|2

− |an |2 − |2an − an−1|2) (141)
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on the first term in (140), we obtain

‖un+1
h ‖2L2

x
+ ‖2un+1

h − unh‖2L2
x
+ ‖un+1

h − 2unh + un−1
h ‖2L2

x
+ 4kν‖∇un+1

h ‖2L2
x

= ‖unh‖2L2
x
+ ‖2unh − un−1

h ‖2L2
x
+ 4k( f n+1, un+1

h ). (142)

Dropping the third and fourth terms on the left and replacing the last term on the
right by the upper bound in Young’s inequality |4k( f n+1, un+1

h )| ≤ 4k‖ f n+1‖2
L2
x

+
k‖un+1‖2

L2
x
, we obtain

(1 − k)‖un+1
h ‖2L2

x
+ ‖2un+1

h − unh‖2L2
x

≤ ‖unh‖2L2
x
+ ‖2unh − un−1

h ‖2L2
x
+ 4k‖ f n+1‖2L2

x
.

(143)

Denoting An = ‖unh‖2L2
x
+ ‖2unh − un−1

h ‖2
L2
x
, then (143) yields An+1 ≤ 1

1−k A
n +

4k
1−k ‖ f n+1‖2

L2
x
. Repeating this inequality backward leads to An+1 ≤ 1

(1−k)n A
1 +

4k
∑n+1

j=2
1

(1−k)n+2− j ‖ f j‖2
L2
x
.Using a basic inequality (1+ x) j ≤ exp( j x) for x > −1

and j ∈ N, we get 1
(1−k) j

=
(

1 + k
1−k

) j ≤ exp
(

jk
1−k

)

≤ exp
(

nk
1−k

)

, j = 1, · · · , n.

Therefore, An+1 ≤ exp
(

nk
1−k

)

·
(

A1 + 4k
∑n+1

j=2 ‖ f j‖2
L2
x

)

. At any time step 1 < n ≤
� T
k �, one has nk ≤ T and thus the estimate (122) follows. �


Proof of Theorem4

In the error analysis, we adopt the approach from [13] to treat the spatial terms. Let
πs : V → V div

h be the Stokes projection with

V div
h = {vh ∈ Vh : (∇ · vh, qh) = 0, ∀ qh ∈ Qh} (144)

satisfying
(∇πs(u),∇vh) = (∇u,∇vh), ∀ vh ∈ V div

h . (145)

In addition, let the L2-projection πQ : Q → Qh be

(πQ(p), q) = (p, q), ∀ q ∈ Qh . (146)
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Suppose the degrees of local finite element polynomials in Vh and Qh are r and
r − 1, respectively, where r ≥ 2. There exist the following estimates according to
[13],

‖u − πs(u)‖Hm
x

≤ Chr+1−m‖u‖Hr+1
x

, m = 0, 1, (147)

‖πs(u)‖L∞
x

≤ C‖u‖H2
x
, (148)

‖∇πs(u)‖L∞
x

≤ C‖∇u‖L∞
x

, (149)

‖∇πs(u)‖L p
x

≤ C‖∇u‖L p
x
, ∀ p ∈ [2,∞), (150)

‖p − πQ(p)‖Hm
x

≤ Chr−m‖p‖Hr
x
, m = 0, 1. (151)

Furthermore, the followings hold, where the first one is Agmon’s inequality,

‖u‖L∞
x

≤ (‖u‖H1
x
‖u‖H2

x
)1/2 ≤ ‖u‖H2

x
. (152)

Denote snh = πs(un) and the error as

en = un − unh = (un − snh ) − (unh − snh ) � ηn − φn
h . (153)

The following lemma is used in the proof of Theorem4.

Lemma 7 When ut ∈ L∞
t Hr+1

x , then ‖ηn+1 − ηn‖L2
x

≤ Ckhr+1‖ut‖L∞
t Hr+1

x
.

Proof Denote u(t) = u(t, x) as a map from [0, T ] to V . Note

ηn+1 − ηn =(un+1 − πs(u
n+1)) − (un − πs(u

n)) = (I − πs)(u(tn+1) − u(tn))

=
∫ tn+1

tn
∂t (I − πs)u(t)dt =

∫ tn+1

tn
(I − πs)ut (t)dt .

Thus,

‖ηn+1 − ηn‖2L2
x

=
∫

�

∣
∣
∣
∣

∫ tn+1

tn
(I − πs)ut (t)dt

∣
∣
∣
∣

2

dx ≤
∫

�

k
∫ tn+1

tn
|(I − πs)ut (t)|2dtdx (154)

= k
∫ tn+1

tn

∫

�

|(I − πs)ut (t)|2dxdt ≤ k
∫ tn+1

tn
‖(I − πs)ut (t)‖2L2

x
dt (155)

≤ k2Ch2r+2‖ut (t)‖2L∞
t Hr+1

x
(156)

where the Cauchy-Schwarz inequality is used in the last step of (154), Fubini’s
theorem in the first step of (155) to switch the integration order, and the estimate
(147) is applied in the last step. �

Proof In the proof, we use C to denote a generic constant, which is independent of
u, p, k, h, but may depend on the domain and the terminal time T . The value of the
constant may vary line by line according to the context.
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Step 1. Derivation of the error equation (167). We rewrite (120) and (121) as

(1.5un+1
h −2unh+0.5un−1

h

k
, vh

)

+ν(∇un+1
h , ∇vh)+(NL(un+1

h , un+1
h ), vh) − (∇ · vh, pn+1

h )

= ( f n+1, vh), ∀ vh ∈ Vh, (157)

(∇ · un+1
h , qh) = 0, ∀ qh ∈ Qh . (158)

Consider the Navier–Stokes equations in the following weak form:

(1.5un+1 − 2un + 0.5un−1

k
, v

)

+ ν(∇un+1, ∇v) + (NL(un+1, un+1), v) − (∇ · v, pn+1)

= ( f n+1, v) + (Rn+1(k), v), ∀ v ∈ V , (159)

(∇ · un+1, q) = 0, ∀ q ∈ Q, (160)

where

Rn+1(k) = 1.5un+1 − 2un + 0.5un−1

k
− un+1

t (161)

is the truncation term from the time discretization. Subtracting (157) from
(159) with v = vh in (159), we obtain

(1.5en+1 − 2en + 0.5en−1

k
, vh

)

+ ν(∇en+1,∇vh) − (∇ · vh, p
n+1 − pn+1

h )

= B(vh) + (Rn+1(k), vh), ∀ vh ∈ Vh, (162)

where

B(vh) = (NL(un+1
h , un+1

h ), vh) − (NL(un+1, un+1), vh). (163)

Using the notations in (153), the above equation becomes

(1.5φn+1
h − 2φn

h + 0.5φn−1
h

k
, vh

)

+ ν(∇φn+1
h , ∇vh) + (∇ · vh, pn+1 − pn+1

h ) + B(vh)

=
(1.5ηn+1 − 2ηn + 0.5ηn−1

k
, vh

)

+ ν(∇ηn+1, ∇vh) − (Rn+1(k), vh), ∀ vh ∈ Vh .

(164)

Letting vh = φn+1
h in (164), we get

1

k
(1.5φn+1

h − 2φn
h + 0.5φn−1

h , φn+1
h ) + ν‖∇φn+1

h ‖2L2
x
+ B(φn+1

h )

+ (∇ · φn+1
h , pn+1 − πQ(pn+1)) + (∇ · φn+1

h , πQ(pn+1) − pn+1
h )
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= 1

k
(1.5ηn+1 − 2ηn + 0.5ηn−1, φn+1

h ) + ν(∇ηn+1,∇φn+1
h ) − (Rn+1(k), φn+1

h ).

(165)

Note that (∇ · φn+1
h , πQ(pn+1) − pn+1

h ) = 0 because φn+1
h ∈ V div

h and
πQ(pn+1) − pn+1

h ∈ Qh . In addition, (∇ηn+1,∇φn+1
h ) = 0 because ηn+1 =

un+1 − sn+1
h and (∇un+1,∇φn+1

h ) = (∇sn+1
h ,∇φn+1

h ) by Stokes projection
with φn+1

h ∈ V div
h . Thus, (165) becomes

1

k
(1.5φn+1

h − 2φn
h + 0.5φn−1

h , φn+1
h ) + ν‖∇φn+1

h ‖2L2
x

= 1

k
(1.5ηn+1 − 2ηn + 0.5ηn−1, φn+1

h ) − (∇ · φn+1
h , pn+1 − πQ(pn+1)) − B(φn+1

h ) − (Rn+1(k), φn+1
h ).

(166)

Applying the identity (141) on the first term on the left of (166) leads to

1

k

(‖φn+1
h ‖2L2

x
+ ‖2φn+1

h − φn
h‖2L2

x
+‖φn+1

h −2φn
h + φn−1

h ‖2L2
x

) + ν‖∇φn+1
h ‖2L2

x

= 1

k

(‖φn
h‖2L2

x
+ ‖2φn

h − φn−1
h ‖2L2

x

) + 1

k
(1.5ηn+1 − 2ηn + 0.5ηn−1, φn+1

h )

− (∇ · φn+1
h , pn+1 − πQ(pn+1)) − (Rn+1(k), φn+1

h ) − B(φn+1
h ). (167)

Step 2. Estimation of some terms in (167). This refers to the last four terms on the
right of (167).

(1) As for the second term on the right of (167), we have

1

k

∣
∣(1.5ηn+1 − 2ηn + 0.5ηn−1, φn+1

h )
∣
∣ = 1

k
|(1.5(ηn+1 − ηn) − 0.5(ηn − ηn−1), φn+1)

∣
∣

≤ 1

k
(1.5‖ηn+1 − ηn‖L2

x
+ 0.5‖ηn − ηn−1‖L2

x
)‖φn+1

h ‖L2
x

(168)

≤Chr+1‖ut‖L∞
t Hr+1

x
‖φn+1

h ‖L2
x

≤ 1

10
‖φn+1

h ‖2L2
x
+ Ch2r+2‖ut‖2L∞

t Hr+1
x

, (169)

where Lemma7 is used in (168) and Young’s inequality is used to earn (169).
(2) As for the third term on the right of (167), we can get

∣
∣(∇ · φn+1

h , pn+1 − πQ(pn+1))
∣
∣ ≤ ‖∇ · φn+1

h ‖L2
x
‖pn+1 − πQ(pn+1)‖L2

x
(170)

≤ ‖∇φn+1
h ‖L2

x
Chr‖p‖L∞

t Hr
x

(171)

≤ ν

4
‖∇φn+1

h ‖2L2
x
+

Ch2r‖p‖2L∞
t Hr

x

ν
, (172)

where the inequality (41) and the estimate (151) with m = 0 are applied to get
(171) and Young’s inequality is used in the last step. One way to avoid negative
powers of ν is throwing derivatives to the pressure; thus, we can get

∣
∣(∇ · φn+1

h , pn+1 − πQ(pn+1))
∣
∣ = ∣

∣(φn+1
h ,∇(pn+1 − πQ(pn+1)))

∣
∣
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≤‖φn+1
h ‖L2

x
‖∇(pn+1 − πQ(pn+1))‖L2

x
≤ ‖φn+1

h ‖L2
x
Chr−1‖p‖L∞

t Hr
x

(173)

≤ 1

10
‖φn+1

h ‖2L2
x
+ Ch2r−2‖p‖2L∞

t Hr
x
, (174)

where the estimate (151) is used in (173).
Note if a divergence-free FE pair is used, then ∇ · φn+1

h = 0 in L2 sense and
(∇ · φn+1

h , pn+1 − πQ(pn+1)) = 0.
(3) As for the fourth term on the right of (167), due to the general formula

∫ b

a
(a− s)2uttt (s)ds = (a−b)2utt (b)+2(a−b)ut (b)+2u(b)−2u(a), (175)

we obtain from (161) that

Rn+1(k) = 1

k

∫ tn+1

tn
(tn − s)2uttt (s)ds − 1

4k

∫ tn+1

tn−1
(tn−1 − s)2uttt (s)ds. (176)

Thus, we can derive, by using the Cauchy-Schwarz inequality on the integrals on

s, the values of
∫ tn+1

tn (tn − s)4ds and
∫ tn+1

tn−1 (tn−1 − s)4ds, and Fubini’s Theorem
to switch the integrals on s and x ,

‖Rn+1(k)‖2L2
x

≤ Ck3
[
∫ tn+1

tn

∫

�

|uttt (s, x)|2dxds +
∫ tn+1

tn−1

∫

�

|uttt (s, x)|2dxds
]

(177)

≤ Ck4‖uttt‖L∞
t L2

x
. (178)

This leads to the following estimate by applying Young’s inequality:

∣
∣(Rn+1(k), φn+1

h )
∣
∣ ≤ 1

10
‖φn+1

h ‖2L2
x
+ Ck4‖uttt‖2L∞

t L2
x
. (179)

Step 3. In B(φn+1
h ), we replace u j

h with u
j − η j + φ

j
h for j = n + 1, n, n − 1 and

obtain

B(φn+1
h ) = − (NL(un+1, ηn+1), φn+1

h ) − (NL(ηn+1, sn+1
h ), φn+1

h ) + (NL(sn+1
h , φn+1

h ), φn+1
h )

+ (NL(φn+1
h , sn+1

h ), φn+1
h ) + (NL(φn+1

h , φn+1
h ), φn+1

h ). (180)

Below is the estimate of the 5 terms on the right of (180).

(3A) Estimate of (NL(un+1, ηn+1), φn+1
h ). Because un+1 is exact solution, ∇ ·

(un+1) = 0 almost everywhere in �. Thus, NL(un+1, ηn+1) = (un+1 · ∇)ηn+1.
Therefore,

|(NL(−un+1, ηn+1), φn+1
h )| ≤ ‖un+1‖L∞

x
‖∇ηn+1‖L2

x
‖φn+1

h ‖L2
x

≤‖u‖L∞
t H2

x
Chr‖u‖L∞

t Hr+1
x

‖φn+1
h ‖L2

x
≤ 1

10
‖φn+1

h ‖2L2
x
+ Ch2r‖u‖4

L∞
t Hr+1

x
,

(181)

123



   44 Page 34 of 38 X. Zheng et al.

where (152) is used to obtain ‖un+1‖L∞
x

≤ ‖u‖L∞
t H2

x
, the estimate (147) to get

‖∇ηn+1‖L2
x

≤ Chr‖u‖L∞
t Hr+1

x
, and r ≥ 2 and Young’s inequality are used in

the last step.
(3B) Estimate of (NL(ηn+1, sn+1

h ), φn+1
h ).

∣
∣(NL(ηn+1, sn+1

h ), φn+1
h )

∣
∣ = ∣

∣((ηn+1 · ∇)sn+1
h , φn+1

h ) + 1

2
((∇ · ηn+1)sn+1

h , φn+1
h )

∣
∣

(182)

≤ ‖∇sn+1
h ‖L∞

x
‖ηn+1‖L2

x
‖φn+1

h ‖L2
x
+ 1

2
‖sn+1

h ‖L∞
x

‖∇ · ηn+1‖L2
x
‖φn+1

h ‖L2
x

≤ (

Chr+1‖u‖L∞
t H3

x
‖u‖L∞

t Hr+1
x

+ Chr‖u‖L∞
t H2

x
‖u‖L∞

t Hr+1
x

)‖φn+1
h ‖L2

x
(183)

≤Chr‖u‖2
L∞
t Hr+1

x
‖φn+1

h ‖L2
x

(184)

≤ 1

10
‖φn+1

h ‖2L2
x
+ Ch2r‖u‖4

L∞
t Hr+1

x
. (185)

To achieve (183), we have used ‖∇sn+1
h ‖L∞

x
≤ C‖∇u‖L∞

t L∞
x

≤ C‖u‖L∞
t H3

x

due to (149) and (152), ‖ηn+1‖L2
x

≤ Chr+1‖u‖L∞
t Hr+1

x
and ‖∇ · ηn+1‖L2

x
≤

Chr‖u‖L∞
t Hr+1

x
due to (147), and ‖sn+1

h ‖L∞
x

≤ C‖u‖L∞
t H2

x
due to (148). To

get (184), we have used ‖u‖L∞
t H2

x
≤ ‖u‖L∞

t H3
x

≤ ‖u‖L∞
t Hr+1

x
when r ≥ 2 and

h < 1. In the step (185), Young’s inequality is applied.
In the div-free FEMs, the second term in (182) vanishes because ∇ · ηn+1 = 0
and the final upper bound in (185) becomes 1

10‖φn+1
h ‖2

L2
x
+Ch2r+2‖u‖4

L∞
t Hr+1

x
.

(3C) (NL(sn+1
h , φn+1

h ), φn+1
h ) = 0.

(3D) Estimate of (NL(φn+1
h , sn+1

h ), φn+1
h ).

∣
∣(NL(φn+1

h , sn+1
h ), φn+1

h )
∣
∣ = ∣

∣((φn+1
h · ∇)sn+1

h , φn+1
h ) + 1

2
((∇ · φn+1

h )sn+1, φn+1
h )

∣
∣

≤ ‖∇sn+1
h ‖L∞

x
‖φn+1

h ‖2L2
x
+ 1

2
‖sn+1

h ‖L∞
x

‖∇ · φn+1
h ‖L2

x
‖φn+1

h ‖L2
x

(186)

≤C‖u‖L∞
t Hr+1

x
‖φn+1

h ‖2L2
x
+ C‖u‖L∞

t Hr+1
x

‖∇φn+1
h ‖L2

x
‖φn+1

h ‖L2
x

(187)

≤C

(

‖u‖L∞
t Hr+1

x
+

‖u‖2
L∞
t Hr+1

x

ν

)

‖φn+1
h ‖2L2

x
+ ν

4
‖∇φn+1

h ‖2L2
x
. (188)

From (186) to (187) then to (188), the estimates (149) and (152) are employed
to obtain ‖∇sn+1

h ‖L∞
x

≤ C‖∇u‖L∞
t L∞

x
≤ C‖u‖L∞

t H3
x

≤ C‖u‖L∞
t Hr+1

x
when

r ≥ 2, and (148) is used to obtain ‖sn+1
h ‖L∞

x
≤ ‖u‖L∞

t H2
x

≤ ‖u‖L∞
t Hr+1

x
.

Young’s inequality is applied from (187) to (188).
Note for the div-free FEMs, the viscosity terms on the right of (188) vanish
because ∇ · φn+1

h = 0.
(3E) (NL(φn+1

h , φn+1
h ), φn+1

h ) = 0.
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Step 4. Dropping ‖φn+1
h − 2φn

h + φn−1
h ‖2

L2
x
on the left of (167) and replacing the

last four terms by their upper bounds in (169), (172), (179), (181), (185), (188), we
obtain for the non-divergence-free FEMs

1

k

(‖φn+1
h ‖2L2

x
+‖2φn+1

h −φn
h‖2L2

x

)+ν‖∇φn+1
h ‖2L2

x
≤ 1

k

(‖φn
h‖2L2

x
+ ‖2φn

h − φn−1
h ‖2L2

x

)

+ ν

2
‖∇φn+1

h ‖2L2
x
+

(

1 + C
(

‖u‖L∞
t Hr+1

x
+ 1

ν
‖u‖2

L∞
t Hr+1

x

))

‖φn+1
h ‖2L2

x

+ C
(

h2r+2‖ut‖2L∞
t Hr+1

x
+

h2r‖p‖2L∞
t Hr

x

ν
+ h2r‖u‖4

L∞
t Hr+1

x
+ k4‖uttt‖2L∞

t L2
x

)

.

(189)

According to the inequality
∑m

i=1 x
2
i ≤ (∑m

i=1 xi
)2 for any positive integer m and

positive real numbers xi , i = 1, · · · ,m, the sum of the four terms in the last pair of
parentheses on the right of (189) is bounded above by M2

2 , where M2 is defined in
(125). Then, by multiplying k on both sides and rearranging terms, we can rewrite
(189) as

(1 − kM1)‖φn+1
h ‖2L2

x
+ ‖2φn+1

h − φn
h‖2L2

x
+ kν

2
‖∇φn+1

h ‖2L2
x

≤ ‖φn
h‖2L2

x
+ ‖2φn

h − φn−1
h ‖2L2

x
+ kCM2

2 , (190)

where M1 is defined in (124).
We further denote

an � ‖φn
h‖2L2

x
+ ‖2φn

h − φn−1
h ‖2L2

x
+ kν

2
‖∇φn

h‖2L2
x
. (191)

It is easy to check that when k < 1/M1, the left side of (190) is bounded below by
(1 − kM1)an+1, and the right side of (190) is bounded above by an + kCM2

2 . Then,

(190) can be thrown into a recursive relation an+1 ≤ βan + α, where α = kCM2
2

1−kM1

and β = 1
1−kM1

. This relation ultimately generates an ≤ en(β−1)
(

a1 + α
β−1

)

, which

corresponds to an ≤ exp( nkM1
1−k ) · (a1 + CM2

2
M1

). By using nk ≤ T for n ≤ � T
k � and

dropping ‖2φn
h − φn−1

h ‖2
L2
x
in an , we obtain

‖φn
h‖2L2

x
+ kν

2
‖∇φn

h‖2L2
x

≤ exp
( T M1

1 − kM1

)

·
(

a1 + CM2
2

M1

)

. (192)

As for the full error un − unh = (un − snh ) + φn
h , we have

‖un − unh‖2L2
x
+ kν

2
‖∇(un − unh)‖2L2

x

≤ ‖φn
h‖2L2

x
+ kν

2
‖∇φn

h‖2L2
x
+ ‖un − snh‖2L2

x
+ kν

2
‖∇(un − snh )‖2L2

x
(193)

≤ ‖φn
h‖2L2

x
+ kν

2
‖∇φn

h‖2L2
x
+ Ch2r+2‖u‖2

L∞
t Hr+1

x
+ Cνkh2r‖u‖2

L∞
t Hr+1

x
(194)
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where the inequality (147) is applied in the last step. Finally, the error estimate (123)
is obtained by combining (192) and (194).

In the case of the div-free FEMs, some terms in (189) are changed or deleted based
on the analysis in Step 3, but the same estimate (190) holds with M1 and M2 replaced
with Mdiv0

1 defined in (124) and Mdiv0
2 in (126), respectively. The analysis after (190)

is the same as the case with the non-div-free FEMs. �
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