Presented PCML paper in USC Workshop on Research Challenges at the interface of Machine Learning and Uncertainty Quantification

Presented a paper entitled of Surrogate Modeling for Fluid Flows Based on Physics-Constrained, Label-Free Deep Learning at USC Workshop on Research Challenges at the interface of Machine Learning and Uncertainty Quantification. Please check out http://hyperion.usc.edu/MLUQ/agenda.html

Welcome to Jian-Xun Wang’s Research Group

Dr. Wang’s current research focuses on data-enabled, physics-based computational modeling for a number of physical systems, including cardiovascular/cerebrovascular flows, intracranial system, turbulent flows, and other computational-mechanics problems. The main idea is to develop accurate physics-based computational models by leveraging available data from high-fidelity simulations, experiments, and clinical measurements using advanced data assimilation and machine learning techniques. Moreover, he is also interested in quantifying and reducing uncertainties associated with the developed computational models.