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Asymptotic Computability

Recent work in computability has introduced the idea of
asymptotically computable sets, where a set A might not be
computable, but there may be a computable function which
computes A correctly “almost everywhere.” That is, the
asymptotic density of the error set is 0.

Definition
ρ(A) = limn→∞

|A�n|
n is the (asymptotic) density of A if it exists,

where ρ(A) (ρ(A)) denotes the upper (lower) density of A and
is simply the limsup (liminf) of this sequence.



Types of Asymptotic Computability

By formally defining what is allowed to occur in the error set,
we obtain the four notions of asymptotic computability.
• With effective dense computability, the function converges

but refuses to answer.
• With generic computability, the function may diverge on

the error set.
• With coarse computability, the function must be total but is

incorrect on the error set.
• With dense computability, the function may diverge or be

incorrect on the error set.



Potential Objection

It is natural to think of asymptotic computability as meaning
“almost computable.” However, there is a potentially troubling
side effect with this line of thinking:

Theorem
(Jockusch and Schupp) Every Turing degree contains a set which is
asymptotically computable.

Proof.
Let A ⊆ ω. Then FA = {n! : n ∈ A} has density 0, and FA ≡T A.
However, FA has asymptotic density 0, so the constant 0
function witnesses that FA is asymptotically computable.



Avoiding Coding

This is suggesting that our error sets, computable ones in
particular, may still be too large. Intrinsic density,
permutation-invariant asymptotic density, was introduced to
block these coding tricks.

Definition
Let A ⊆ ω.
• ρ(A) = lim supπ ρ(π(A)), where π ranges over all

computable permutations, is the absolute upper density of
A. By taking the liminf of the lower densities, we get ρ(A),
the absolute lower density of A.
• If ρ(A) = ρ(A), then we call this value ρ(A), the intrinsic

density of A. If ρ(A) = 0, then we say A is intrinsically
small.



Examples and Non-Examples

Examples

• (Jockusch) r-cohesive (and therefore cohesive) sets are
intrinsically small
• Given a collection of infinite sets {Ri}i∈ω, ∅′′ together with

the join of all Ri’s can compute an intrinsically small set
which is not disjoint from any Ri.
• Sufficiently random sets have intrinsic density 1

2

Non-Examples
• 1-generics never have (intrinsic) density
• Infinite, co-infinite computable sets



Intrinsic Computability

Definition
(Astor) A set X is strongly intrinsically (asymptotically)
computable if it is asymptotically computable with an
intrinsically small error set.

Examples

• Computable sets (The error set is ∅)
• Maximal sets



Does this work?

Lemma
Any strongly intrinsically effectively densely computable set A is
computable.

Proof.
Recall that in effective dense computability, the computable
approximation converges to a special symbol that signifies
refusal to answer. Therefore, the error set is just the inverse
image of this symbol, which is computable.

Thus the error set is finite, so A is computable.



A Less Trivial Example

Fortunately, we are not in general just providing a new
definition of the computable sets.

Theorem
The high or DNC degrees are exactly the noncomputable degrees
which contain a strong intrinsic coarsely computable set.

Theorem (Astor)
The Turing degrees which contain intrinsically small sets are exactly
the high or DNC degrees.



Studying the Intrinsically Small Sets

The intrinsically small sets are closed under permutation by
definition. They are also closed under unions and subsets.
What about the join? What about other computable functions?

There are clearly more computable functions which preserve
intrinsic smallness: For example, if X is intrinsically small, then
{2n : n ∈ X} is also intrinsically small. We’d like to understand
how one might go about finding new intrinsically small sets
from old ones.



Not All Computable Functions Work

Theorem
There is a total computable function f and an intrinsically small set X
such that f (X) does not have density 0.
The proof relies heavily on the fact that the inverse image of n
under f has positive density for each n. This is not needed,
though.

Theorem
There are total computable functions f and g such that
|f−1(n)| < g(n) for all n, and an intrinsically small set X such that
f (X) does not have density 0.



Outline of the Proof

There is an intrinsically small set of hyperimmune-free degree.

Therefore there is a disjoint strong array which X fails to avoid.
After a slight modification, the map which sends the elements
of each cell to their index will be a suitable f for the theorem.



Some Functions Which Preserve Intrinsic Smallness

We can, however, describe some classes of functions which
preserve intrinsic smallness.

Theorem
Let f be a computable, injective function with computable range. Then
for any intrinsically small set X, f (X) is also intrinsically small.

Corollary
If A and B are intrinsically small, then so is A⊕ B.

Proof.
Let e(n) = 2n and o(n) = 2n + 1. Then if A and B are
intrinsically small, e(A) and o(B) are intrinsically small, as is
e(A) ∪ o(B). Therefore A⊕ B = e(A) ∪ o(B) is intrinsically
small.



An Improvement

We naturally would like to know if the computable range
requirement can be removed. There is an improvement we can
make.

Theorem
If f is a computable, injective function whose range has defined
asymptotic density, then ρ(f (X)) = 0 for any intrinsically small set
X



Open Questions

Question
If f is a computable, injective function whose range has defined
asymptotic density, is f (X) intrinsically small for every intrinsically
small set X?

Question
If f is a computable, injective function, is ρ(f (X)) = 0 for every
intrinsically small set X?



Intrinsic Smallness vs Hyperimmunity

Astor studied the relationship between intrinsic smallness and
notions of immunity. Hyperimmune sets in particular always
have intrinsic lower density 0, but in general hyperimmune
sets are not intrinsically small and vice versa. This is true in
every degree.

Theorem
Let X be a hyperimmune set. Then there is a hyperimmune set Y with
Y ≡T X and Y is as large as possible, i.e. ρ(Y) = 1. If X is
co-hypersimple, then so is Y.



Proof Sketch

Let X be hypersimple. Introduce infinitely many gaps
computably such that the density at the start of the gaps
approaches 1, but the density at the end of the gaps approaches
0. Now this set is not even immune, let alone hyperimmune.

However, if we enumerate the n-th gap into Y for n ∈ X, then
we can show that a computable bound on Y allows a
computable bound on X. Therefore Y is hyperimmune.



Current and Future Work

There are plenty of remaining open questions about intrinsic
density. Very little work has been done investigating Astor’s
other three notions of intrinsic computability. (These do not
relate directly to intrinsically small sets like the strong variant
does.)

Current work is being done investigating the relationship of
intrinsic density to randomness and stochastity. A tangentially
related interesting result is the following:

Theorem
(In Preparation) Every real in the unit interval is achieved as the
intrinsic density of some set.


