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Abstract. Intrinsic density was introduced by Astor to study asymptotic
computability. Intrinsically small sets, those of intrinsic density zero, serve as

the basis for generalizing classical asymptotic computability to its permutation-
invariant form. It was already known that intrinsic density corresponds with a

weakening of KL-stochasticity, and we set out to study which intrinsic densi-

ties are possible through the lenses of computability theory and stochasticity.
Computable coding methods cannot be used to change intrinsic density, so we

shall introduce the into and within set operations to create examples of sets

with defined intrinsic density and construct examples of sets with arbitrary
density without simply appealing to randomness. These operations turn out

to be surprisingly useful as a form of noncomputable coding, and shall be our

primary focus. After exploring their applications to intrinsic density, we shall
also find applications to the study of Turing degrees and the classical notions

of Church stochasticity and MWC stochasticity.
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1. Introduction

Intrinsic density originated in an attempt to resolve some objections about clas-
sical asymptotic computability, which uses sets of density zero as error sets in
computations. We briefly recall the notion of (asymptotic) density in the natural
numbers:

Definition 1.1. Let A ⊆ ω.

• The density of A at n is ρn(A) = |A�n|
n , where A � n = A∩{0, 1, 2, . . . , n−1}.

• The upper density of A is ρ(A) = lim supn→∞ ρn(A).
• The lower density of A is ρ(A) = lim infn→∞ ρn(A).
• If ρ(A) = ρ(A) = α, we call α the density of A and denote it by ρ(A).

Remark. We shall follow the convention, unless otherwise stated, that capital
English letters represent sets of natural numbers and the lowercase variant, indexed
by a subscript of natural numbers, represents the elements of the set. As an exam-
ple, if E is the set of even numbers, then en = 2n. If F is the set of factorials, then
fn = (n+ 1)!. (fn is not n! because 0! = 1! = 1.) Recall that the principal function
for a set A, pA, is defined via pA(n) = an.
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Using this representation, it is not hard to see the following characterization of
upper and lower density:

Lemma 1.2. Let A ⊆ ω be {a0 < a1 < a2 < . . . }. Then

• ρ(A) = lim supn→∞
n+1
an+1

• ρ(A) = lim infn→∞
n
an

Proof. Note that if A � n+ 1 has a 0 in the final bit, then

ρn(A) =
|A � n|
n

>
|A � n|
n+ 1

= ρn+1(A)

Therefore, to compute the upper density it suffices to check only those numbers n
for which A � n has a 1 as its last bit. Those numbers are exactly an + 1 by the
definition of an, and |A � an+ 1| = n+ 1. Therefore { n+1

an+1}n∈ω is a subsequence of

{ρn(A)}n∈ω which dominates the original sequence, so ρ(A) = lim supn→∞ ρn(A) =
lim supn→∞

n+1
an+1 .

Similarly, to compute the lower density it suffices to check only the numbers n
such that the final digit of A � n is a 0, but the final digit of A � n+ 1 is a 1. (That
is, if there is a consecutive block of zeroes in the characteristic function of A, we
only need to check the density at the end of the block when computing lower den-
sity, as each intermediate point of the zero block has a higher density than the end.)
These numbers are exactly an by definition, and |A � an| = n. Therefore { nan }n∈ω
is a subsequence of {ρn(A)}n∈ω which is dominated by the original sequence, so
ρ(A) = lim infn→∞ ρn(A) = lim infn→∞

n
an

. �

One potential objection with using sets of density 0 as error sets is that there
are many computable sets of density zero, so one is able to make any information
that one desires be “almost” computable by hiding it within a small computable
set. To combat this, Astor [2] introduced intrinsic density, which requires that sets
have the same asymptotic density under any computable permutation:

Definition 1.3. • The absolute upper density of A is

P (A) = sup{ρ(π(A)) : π a computable permutation}
• The absolute lower density of A is

P (A) = inf{ρ(π(A)) : π a computable permutation}

• If P (A) = P (A) = α, we call α the intrinsic density of A and denote it by
P (A).

Interestingly, this turns out to be a robust measure of lack of information. If
a set X has intrinsic density, then we cannot computably shrink or enlarge parts
of it with a permutation to change the density. If we knew where elements of X
could be found, then we could build a permutation that sent them to a set of den-
sity 1 or 0. This intuition has a formal counterpart: Astor [3] proved that any set
which has intrinsic density must be of high or DNC degree, i.e. must be sufficiently
noncomputable. Sets of intrinsic density 0, also known as intrinsically small sets,
were explored by Astor in [2] and [3] and the author in [15]. Exploring intrinsic
smallness inherently explores sets of intrinsic density 1 because intrinsic density is
preserved by complementation.
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As seen in Lemma 1.12 below, appealing to randomness will yield intrinsic den-
sity r for any r ∈ (0, 1). However, as intrinsic density is itself a poor notion of
randomness (for example if P (A) = r, then P (A ⊕ A) = r), we wish to study
the achievable intrinsic densities through the lens of computability theory without
solely appealing to randomness. Our goal is to combine sets with intrinsic density in
such a fashion that the resulting set has a different intrinsic density. Unfortunately,
computable coding methods cannot do this, which we will formalize in Section 2.
This motivates our development of new tools for noncomputable coding, the into

and within operations on sets, which we shall introduce in Section 3. These oper-
ations shall turn out to be highly effective at coding sets in noncomputable fashion
and are central to our results. We shall additionally study their applications to
Turing degrees in Section 3 and other notions of density in Section 5. First, how-
ever, we shall review the necessary concepts.

As hinted above, intrinsic densities between 0 and 1 are linked to stochasticity
and randomness. Here we shall provide a brief review of these from the perspective
of computability theory. Stochasticity and randomness are closely related notions
which also measure lack of information (i.e. how much information an observer
lacks), and turn out to have strong ties to intrinsic density. Stochasticity repre-
sents the idea that we cannot select bits from an infinite sequence of 0’s and 1’s in
such a way that the ratio of 1’s to the number of bits is not the same as the ratio
for the original sequence.

One can think of this as having an infinite sequence X of 0-1-valued coins, where we
also think ofX as a set under the identificationX = {n : The n-th coin is 1-valued}.
X has some asymptotic density r ∈ [0, 1] We try to use some selection process to
pick coins from X to build a new sequence of coins Y with ρ(Y ) 6= r. If we are
successful, then X is not stochastic. Changing the ways we are allowed to select
coins gives us different notions of stochasticity. We review the noteworthy notions
of stochasticity from the literature.

A monotone selection function is a partial function f : 2<ω → {0, 1}. That is,
f looks at a finite binary string and decides if it wants to select (i.e. return 1) the
following bit or not based on the previous bits. Given a selection function f , it

induces a map f̂ : 2ω → 2ω that is defined via f̂(A) = {n : f(A � n) ↓= 1} for all
A. (We shall abuse notation and allow f to represent both a monotone selection

function and the induced map f̂ on Cantor space.) We say A is von Mises-Wald-
Church stochastic for r if ρ({n : pf(A)(n) ∈ A}) = r for all computable monotone
selection functions. If we restrict this to only the total f , then the corresponding
notion is called Church stochasticity. In both cases, we may use the results of the
first n bits to computably determine whether or not we want to select the n+ 1-st
bit, but all of the bits we select must be counted in order.

Using our coin analogy, for Church stochasticity, all of the coins have been cov-
ered by cups. We must choose whether or not to add the first coin to our new
sequence before looking under any cups. Then we look under the first cup and
check the value, and we use this information moving forward. Having revealed the
first n coins, we must choose whether or not to select the n+1st coin (i.e. determine
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if we think it is 1-valued) prior to revealing it.

For MWC stochasticity, at each step we provide a program that will decide whether
or not to select the n+ 1st coin based on the results of the first n coins. We then
run the program and look under the cup. We do not need to wait for the program
to halt (and it may never halt) before continuing on to the next coin, but we can
never go back and feed the program more information or change it any way. Even
though our selection process for the n-th coin may halt after the value of the n-
th coin is known, it could not have had access to that information in its calculation.

Another historically important notion of stochasticity is KL-stochasticity, or Kolmogorov-
Loveland stochasticity. This notion is similar to MWC-stochasticity, however we
are allowed to select bits out of order rather than being forced to choose whether
or not to select the n-th bit only after seeing the first n bits. One particularly im-
portant weakening of KL-stochasticity for our study of intrinsic density is injection
stochasticity. A set A is injection stochastic for r if ρ(f−1(A)) = r for all total com-
putable injective f . Permutation stochasticity, as expected, is the subclass where
f is required to be a permutation. Using this definition, Astor first observed the
following:

Lemma 1.4 (Astor [2] Lemma 4.2). A set A is r-injection stochastic if and only
if it is r-permutation stochastic.

Proof. If A is r-injection stochastic, it is trivially r-permutation stochastic.

Suppose that A is r-permutation stochastic. Then ρ(π(A)) = r for every com-
putable permutation π. Let f be a total computable injective function and let
F = {n! : n ∈ ω}. Define πf via πf (n) = f(n) if n 6∈ F and f(n) is not in
πf ([0, n)), and the least element of the complement of πf ([0, n)) otherwise. As πf
is a computable permutation, so is π−1f and thus ρ(π−1f (A)) = r.

Now notice that π−1f (A) � n differs from f−1(A) � n by at most 2|F � n|, as

there can only be disagreement on F and f−1(πf (F )). In fact, there are two types
of disagreement. In the first, we specifically mapped πf (n!) to something other
than f(n!), which can only happen within F . In the second, k is not a factorial
but f(k) ∈ πf ([0, k)) because of some n! < k. Thus the set of disagreements has
density zero because F does, so

ρ(f−1(A)) = ρ(π−1f (A)) = r

�

Remark. In his version of the proof, Astor used the squares instead of the factori-
als. In general for all of our arguments which use a computable density 0 set, any
set with such properties will suffice. We shall endeavor to use the factorials in all
such proofs for clarity.

It is immediate from the definition that r-permutation stochasticity is exactly
intrinsic density r. Therefore, this lemma shows that r-injection stochasticity also
corresponds to intrinsic density r. Unlike stochasticity, intrinsic density is defined
without fixing r ahead of time. Motivated by this, we shall use C-density r to mean
C stochasticity for r.
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Remark. While computability theory most commonly studies stochasticity with re-
gards to 1

2 , stochasticity with regards to parameters other than 1
2 has been studied

before. For example, see Kjos-Janssen, Taveneaux, and Thapen [12]. However, our
use of the term density as opposed to stochasticity is to differentiate our intentions:
stochasticity is generally studied by fixing some r ∈ [0, 1] and a notion of stochas-
ticity and then studying the class of sets which are stochastic for r. (In the context
of randomness, this corresponds to fixing a measure from the outset.) Density, on
the other hand, does not fix r and studies the class of sets which are stochastic for
some r. This is a larger class that often has its own interesting properties. While
the same sets appear in both settings, we are really studying the class containing
these sets.

We shall develop our tools of study in Section 3 to tackle intrinsic (injection-)
densities, and we shall apply those tools to MWC- and Church-densities in Section
5. One important trait of Church-density is that if A has Church-density α, then
ρ(A) = α because the selection function 1̂ which selects every bit is a total com-
putable monotone selection function. (It follows immediately from the fact that
MWC-density is defined for a larger class of selection functions that the same is
true of MWC-density.)

Closely related, Randomness is well-studied and more well-known than stochas-
ticity, so we shall only provide a cursory overview. (For a more in-depth review
of randomness as well as stochasticity, see Downey-Hirschfeldt [6].) While there
are many notions of randomness, we shall only need 1-Randomness, also known
as Martin-Löf Randomness, for our purposes. There are many equivalent ways of
defining randomness, and we shall recall two. In computability theory most ran-
domness is studied with respect to the Lebesgue measure, so we shall start with
the more familiar form before generalizing the definitions to arbitrary measures.

Definition 1.5. A martingale is a function m : 2<ω → R≥0 such that

m(σ) =
1

2
m(σ0) +

1

2
m(σ1)

for all σ. A supermartingale is a function s : 2<ω → R≥0 with

s(σ) ≥ 1

2
s(σ0) +

1

2
s(σ1)

for all σ. A (super)martingale m succeeds on a set X if lim supn→∞m(X � n) =∞.
X is 1-Random if no computably enumerable supermartingale succeeds on it.

Martingales capture the unpredictability of random sets: we could not win arbi-
trarily large amounts of money betting on the bits of X in any c.e. or computable
way. An alternative yet equivalent formulation of randomness is the measure-
theoretic approach, which is based upon the intuition that if a set is random then
it should avoid all small sets which can be described with computable approxima-
tions.

Definition 1.6. A Martin-Löf (ML) test is a sequence {Ui}i∈ω of uniformly Σ0
1

classes with µ(Ui) ≤ 2−i for all i. (Here µ is the usual Lebesgue measure on Cantor
space.) A set X passes {Ui}i∈ω if X 6∈

⋂
i∈ω U〉. X is 1-Random if it passes every

Martin-Löf test.
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While historically the study of algorithmic randomness began with respect to
the Lebesgue or “fair coin” measure, much work has focused on studying random-
ness with respect to other measures. It is not difficult to see how Definition 1.6
generalizes to an arbitrary computable measure.

Definition 1.7. Let ν be a computable measure on Cantor space. A ν-Martin-Löf
test is a sequence {Ui}i∈ω of uniformly Σ0

1 classes with ν(Ui) ≤ 2−i for all i. A
set X passes {Ui}i∈ω if X 6∈

⋂
i∈ω U〉. X is 1-Random with respect to ν if it passes

every ν-Martin-Löf test.

Note that effectivity concerns are all that keeps one from generalizing this to
arbitrary measures. Investigating ways to address this problem has proven to be a
rich area of study. Given an arbitrary measure µ, Reimann and Slaman [17] defined
randomness with respect to µ as being random with respect to some representation
of µ. Conversely, Levin [13], Gács [7], and Hoyrup and Rojas [8] utilized the notion
of uniform tests to give an alternate definition. Day and Miller [5] proved that
these approaches are in fact the same.

One can generalize the equivalence of Definition 1.5 and Definition 1.6 to obtain a
definition for randomness with respect to a measure for martingales to match 1.7.

Definition 1.8. Let µ be a computable measure. Given a finite binary string σ,
[σ] ⊆ 2ω represents the basic open set of extensions of σ, and µ(σ) = µ([σ]). A
µ-martingale is a function m : 2<ω → R≥0 such that

µ(σ)m(σ) = µ(σ0)m(σ0) + µ(σ1)m(σ1)

for all σ. A µ-supermartingale is a function s : 2<ω → R≥0 with

µ(σ)s(σ) ≥ µ(σ0)s(σ0) + µ(σ1)s(σ1)

for all σ. A µ-(super)martingale m succeeds on a set X if lim supn→∞m(X �
n) = ∞. A set X is µ-1-Random if no computably enumerable µ-supermartingale
succeeds on it.

As in the case of definition 1.7, there are some effectivity concerns in regards to
non-computable measures, but they will not affect our work.

We are primarily concerned with the following special class of measures.

Definition 1.9. Let 0 < r < 1 be a real number. The Bernoulli measure with
parameter r, µr, is the measure on Cantor space such that for any σ ∈ 2<ω,

µr(σ) = r|{n<|σ|:σ(n)=1}|(1− r)|{n<|σ|:σ(n)=0}|

We say X is r-1-Random if it is µr-1-Random.

Note that µ 1
2

is the usual Lebesgue measure. More generally, µr is the r-biased

“coin flip” measure, or the measure induced by the Bernoulli probability with pa-
rameter r. As we are only working with Bernoulli measures, we shall use the
Reimann-Slaman definition of randomness for noncomputable measures and rely
only on the fact that every representation of µr can compute r, i.e. [17] Proposi-
tions 2.2 and 2.3.

Remark. Stochasticity and randomness are closely related. Cholak asked the in-
teresting question if they can be viewed as the same, i.e. is there a natural notion
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C of stochasticity for which C-density r corresponds to µr-Randomness? Bienvenu
pointed out that this is essentially answered by a result of Vovk [21] (With related
work done by Bienvenu [4] proving the same for weaker notions of randomness) in
the negative for any reasonably natural notion: If {pi}i∈ω is a sequence of reals,
then the generalized Bernoulli measure ν for this sequence is given by

ν(σ) = Π
σ(i)=1

pi · Π
σ(i)=0

(1− pi)

If this sequence converges to 1
2 with Σ∞i=0(pi − 1

2 )2 = ∞, then the ν-random sets
and the Martin-Löf-Random sets are disjoint. Thus under any natural notion of
stochasticity C the selected bits will be given by independent random variables of
probability arbitrarily close to probability 1

2 for all but finitely many. Therefore both

Martin-Löf -randoms and ν-randoms would have C-density 1
2 .

As a quick side note, it is possible that one could avoid representations alto-
gether: By a result of Kjos-Hanssen [11], the so-called Hippocratic r-Random sets,
defined via Hippocratic ML-tests (essentially ML-tests which can be accessed with-
out seeing information about r and µr), are exactly the r-1-Random sets. However,
it is not known if Hippocratic r-Random sets defined via Hippocratic martingales
are the same as the Hippocratic r-Random sets defined via Hippocratic ML-tests.
The standard argument for transforming an ML-test into a martingale and vice
versa does not go through in the Hippocratic case: we need access to r. Fur-
ther evidence suggests Hippocratic martingales may give rise to a separate notion:
Kjos-Hanssen, Taveneaux, and Thapen [12] showed that Hippocratic r-computably
random sets, formulated using Hippocratic martingales, are not the same as the
r-computably random sets. Because of this uncertainty, we stick to the implicit
use of representations in our work as we shall use both ML-tests and martingales
for convenience and rely on the fact that these yield the same notion of randomness.

A slight modification of the standard proof that randomness for (super)martingales
is the same as randomness for Martin-Löf tests (as found in Downey-Hirschfeldt
[6] Section 6.3.1, referencing work of Ville [20] and Schnorr [18]) shows that 1-
Randomness with respect to µ is equivalent to µ-1-Randomness. (We shall give the
argument for the computable case, and the non-computable case will follow from
proper relativization.)

Theorem 1.10 (Essentially Ville [20]). Let µ be a computable measure. Let m be
a µ-(super)martingale.

• If σ ∈ 2<ω and S is a prefix-free set of extensions of σ, then

Σ
τ∈S

µ(τ)m(τ) ≤ µ(σ)m(σ)

• Let Rn = {X : ∃k m(X � k) ≥ n}. Then µ(Rn) ≤ m(∅)
n .

Proof. • Note that it suffices to only consider finite sets S, as if S is infinite
and Στ∈S µ(τ)m(τ) > µ(σ)m(σ), there is some finite subset of S also ex-
hibiting this property.

We argue by induction on |S|. For |S| = 1, let τ � σ, i.e. τ = σγ for some
γ ∈ 2<ω. Note by induction and the definition of a µ-(super)martingale
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that µ(γ)m(τ) ≤ m(σ). Therefore

µ(τ)m(τ) = µ(σ)µ(γ)m(τ) ≤ µ(σ)m(σ)

Now suppose |S| = k + 1 and the induction hypothesis holds for all i ≤ k.
Let γ � σ be maximal such that τ � γ for all τ ∈ S. Then let S0 ⊆ S be the
set of all τ ∈ S with τ � γ0 and let S1 = S \ S0. (Note that for all τ ∈ S1,
τ � γ1.) Therefore, as γ is maximal such that all τ ∈ S are extensions of
γ, both |S0| ≤ k and |S1| ≤ k. Therefore, the induction hypothesis implies
that

Σ
τ∈S0

µ(τ)m(τ) ≤ µ(γ0)m(γ0)

and

Σ
τ∈S1

µ(τ)m(τ) ≤ µ(γ1)m(γ1)

Therefore

Σ
τ∈S

µ(τ)m(τ) = Σ
τ∈S0

µ(τ)m(τ) + Σ
τ∈S1

µ(τ)m(τ) ≤ µ(γ0)m(γ0) + µ(γ1)m(γ1)

By the properties of a µ-(super)martingale we have

µ(γ0)m(γ0) + µ(γ1)m(γ1) ≤ µ(γ)m(γ)

and therefore

Σ
τ∈S

µ(τ)m(τ) ≤ µ(γ)m(γ)

The base case proved that µ(γ)m(γ) ≤ µ(σ)m(σ), so this concludes the
induction.
• Let S be a prefix-free set which induces the Σ0

1-class Rn with all τ ∈ S
satisfying m(τ) ≥ n. By definition,

µ(Rn) = Σ
τ∈S

µ(τ)

As each τ ∈ S satisfies m(τ) ≥ n,

Σ
τ∈S

µ(τ) ≤ Σ
τ∈S

m(τ)

n
µ(τ)

Finally, we may apply the first part with σ = ∅ to obtain

Σ
τ∈S

m(τ)

n
µ(τ) ≤ µ(∅)m(∅)

n
=
m(∅)
n

�

Theorem 1.11 (Essentially Schnorr [18]). X is µ-1-Random if and only if it is
1-Random with respect to µ.

Proof. Let m be a c.e. µ-(super)martingale. Without loss of generality, assume
m(∅) = 1. Let Un = {X : ∃k m(X � k) ≥ 2n}. This is a µ-Martin-Löf test by
Theorem 1.10, and it is immediate that X ∈

⋂
n∈ω Un if and only if m succeeds on

X.

Let {Un}n∈ω be a µ-Martin-Löf test with {Sn}n∈ω the uniform sequence of c.e.
prefix-free finite binary strings which induces {Un}n∈ω. We shall define c.e. µ-
martingales mn via the following procedure: If we see σ enter Sn at some stage,

then add 1 to mn(τ) for all τ � σ. For γ ≺ σ, add µ(σ)
µ(γ) to mn(γ) if µ(γ) is nonzero,
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and 0 otherwise. Then it is immediate from this definition that me : 2<ω → R≥0 is
a c.e. function. Furthermore, note that it is a µ-martingale: let σ ∈ 2<ω. We must
show that µ(σ)mn(σ) = µ(σ1)mn(σ1) + µ(σ0)mn(σ1).

As Sn is prefix-free, if σ � τ ∈ Sn, then

µ(σ1)mn(σ1) + µ(σ0)mn(σ0) = µ(σ1) + µ(σ0) = µ(σ) = µ(σ)mn(σ)

by construction. Otherwise, if µ(τ) = 0 for some τ � σ, then µ(σ) = µ(σ0) =
µ(σ1) = 0 and we are done. Therefore, we may assume µ(τ) > 0 for all τ � σ.
Then

mn(σ) = Σ
τ∈Sn,τ�σ

µ(τ)

µ(σ)
=

1

µ(σ)
Σ

τ∈Sn,τ�σ
µ(τ)

by definition. Note that for i = 0, 1,

mn(σi) = Σ
τ∈Sn,τ�σi

µ(τ)

µ(σi)

as if σi ∈ Sn then mn(σi) = 1 = µ(σi)
µ(σi) . Therefore

µ(σ1)mn(σ1) + µ(σ0)mn(σ0) = µ(σ1)( Σ
τ∈Sn,τ�σ1

µ(τ)

µ(σ1)
) + µ(σ0)( Σ

τ∈Sn,τ�σ0

µ(τ)

µ(σ0)
)

Factoring out the denominators, we get

µ(σ1)

µ(σ1)
( Σ
τ∈Sn,τ�σ1

µ(τ)) +
µ(σ0)

µ(σ0)
( Σ
τ∈Sn,τ�σ0

µ(τ))

( Σ
τ∈Sn,τ�σ1

µ(τ)) + ( Σ
τ∈Sn,τ�σ0

µ(τ)) = Σ
τ∈Sn,τ�σ

µ(τ)

Thus,
µ(σ)

µ(σ)
Σ

τ∈Sn,τ�σ1
µ(τ) = µ(σ) Σ

τ∈Sn,τ�σ

µ(τ)

µ(σ)
= µ(σ)mn(σ)

Thus mn is a µ-martingale, and {mn}n∈ω is a uniformly c.e. collection of µ-
martingales. Furthermore, mn(∅) = Στ∈Sn µ(τ) ≤ 2−n, so m = Σn∈ωmn is a c.e.
µ-martingale by a slight modification of Proposition 6.3.2 of Downey-Hirschfeldt
[6]. Finally, it follows that m succeeds on X if and only if X ∈

⋂
n∈ω Un. �

Astor [2] proved that 1-Random sets have density 1
2 by referring to Propositions

3.2.13 and 3.2.16 of Nies [16], which state that 1-Randoms must have density 1
2

and that they are closed under permutations. In fact the more general result that
r-1-Randoms have intrinsic density r is true, and we provide a simple proof here
for convenience. The techniques are simple modifications to those found in Nies
[16] and Downey-Hirschfeldt [6].

Lemma 1.12. Let r ∈ (0, 1). If X is r-1-Random, then X has intrinsic density r.

Proof. We shall first show that r-random sets must have density r. This is natural
when one considers the martingale approach to randomness: If we expect the ratio
of ones to be larger than r, then we shall bet more of our capital on ones. If we
do so carefully, then our betting strategy will succeed on sets with sufficiently large
upper density. Prior work has been done studying the relationship between (mar-
tin)gales and the density of a set, especially relating to dimension. For example, see
Lutz [14]. We shall give a straightforward calculus proof that is sufficient for our
purposes. If r is not computable, then we will implicitly work relative to a given
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representation of µr, which can compute r.

Formally, we define a family of martingales such that at least one will succeed
on any set with upper density greater than r. Let 0 < α < 1 − r be rational and
consider the martingale Mα : 2<ω → Q defined via:

• Mα(∅) = 1
• Mα(σ0) = (1− α

1−r )Mα(σ)

• Mα(σ1) = (1 + α
r )Mα(σ)

It is immediate that Mα is a computable r-martingale from definition. If nσ =
|{k < |σ| : σ(k) = 1}|,

Mα(σ) = (1 +
α

r
)nσ (1− α

1− r
)|σ|−nσ

Let r < ε ≤ 1. If ρ|σ|(σ) ≥ ε, then nσ ≥ ε|σ| and

Mα(σ) ≥ (1 +
α

r
)ε|σ|(1− α

1− r
)(1−ε)|σ| = ((1 +

α

r
)ε(1− α

1− r
)1−ε)|σ|

Notice that for a fixed ε, an exercise in calculus shows that α can be chosen such
that (1 + α

r )ε(1 − α
1−r )1−ε > 1: As α < 1 − r, 1 − α

1−r > 0, so we can take the

logarithm. (1 + α
r )ε(1− α

1−r )1−ε > 1 if and only if

ε log(1 +
α

r
) + (1− ε) log(1− α

1− r
) > 0

Rearranging, this occurs if and only if

log(1− α

1− r
) > ε(log(1− α

1− r
)− log(1 +

α

r
))

As 1− α
1−r < 1 and 1 + α

r > 1,

log(1− α

1− r
)− log(1 +

α

r
) < 0

and the previous expression can be rearranged to obtain

log(1− α
1−r )

log(1− α
1−r )− log(1 + α

r )
< ε

By L’Hôpital’s Rule, the limit of the left hand side as α approaches 0 is r. As
ε > r, there is α close enough to 0 such that this is true, and thus such that
(1 + α

r )ε(1− α
1−r )1−ε > 1 is true.

For such an α, Mα succeeds on any set X whose upper density is greater than
ε, as this implies that there are infinitely many n such that Mα(X � n) ≥ ((1 +
α)ε(1 − α)1−ε)n. Therefore, for any X with ρ(X) > R, there is an ε > R with
ρ(X) ≥ ε. The corresponding Mα thus succeeds on X. Additionally, for any set
X with lower density less than R, the same analysis can be applied to the comple-
ment. By switching the roles of (1 + α

R ) and (1− α
1−R ) in the construction of Mα,

we obtain an r-martingale which succeeds on X. Therefore any r-1-Random set
must have density r.

Now we shall show that r-1-Random sets are also closed under permutation, com-
pleting the proof. Here the classical notion of martingales does not work as well, as
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permutations do not select bits monotonically in general like martingales do. How-
ever, it is not difficult to see that permutations preserve µr, so we shall prove this
result using the measure notion of randomness, which is enough due to Theorem
1.11.

Given σ ∈ 2<ω, consider [σ] = {X ∈ 2ω : σ � X}. For π a computable per-
mutation, let

[π(σ)] = {X ∈ 2ω : X(π(n)) = σ(n) for all n < |σ|}

Notice that [π(σ)] is open. Furthermore, let k = maxn<|σ|{π(n)}. Then

Pσ = {τ ∈ 2k+1 : τ(π(n)) = σ(n) for all n < |σ|}

is a prefix-free set which defines [π(σ)]. Then for all σ it follows from the definition
of [π(σ)] that

µr([π(σ)]) = Σ
τ∈Pσ

µr(τ) = µr(σ) Σ
γ∈2k+1−|σ|

µr(γ) = µr([σ])

If {Ui}i∈ω is a µr-Martin-Löf test, then let Vi be defined via

Vi =
⋃
σ∈Ui

[π(σ)]

By the above, µr(Vi) = µr(Ui), so {Vi}i∈ω is also a µr-Martin-Löf test because π
is computable. X passes {Ui}i∈ω if and only if π(X) passes {Vi}i∈ω by definition.
Therefore if Y is not r-1-Random, then π−1(Y ) is not r-1-Random either. Thus
the r-1-Randoms are closed under computable permutation as desired. �

Remark. The previous lemma also holds for computable and Schnorr randomness,
however the proofs are more complex and outside our purview for this paper. The
above proof that r-1-Random sets have density r proves the same for computably
r-Random sets as Mα is computable, however proving that computable randoms
are closed under computable permutations is more difficult. For such a proof, see
Nies [16] 7.6.24. Our proof of closure under computable permutations applies to
Schnorr randoms without modification, however proving that r-Schnorr randoms
have density r is more difficult: see 3.5.21 of Nies [16].

We therefore obtain every real in the unit interval as the intrinsic density of
some set. However, as we shall see, there is a large gap between intrinsic density
and randomness. We would like to construct or find sets with arbitrary intrinsic
density without needing to appeal to full randomness to better understand them.
(We shall still use some randomness, but only regular Martin-Löf randomness, and
only for convenience.) To achieve this, we shall introduce the into and within op-
erations in Section 3 to develop new sets with defined intrinsic density from old ones.

We would like to take a set A of intrinsic density α and a set B of intrinsic density
β and somehow code B and A in such a way that we are left with a set which
has new intrinsic density obtained as some function of α and β. However, we shall
show in Section 2 that we cannot hope to code things in a nice computable way
that allows us to recover the original sets, as intrinsic density was defined with the
intention of blocking computable coding in the setting of asymptotic computability.
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Our main technique will involve proving that two sets A and B cannot have differ-
ent intrinsic densities by creating a computable permutation which sends A to B
modulo a set of density zero. The following lemma shows that if we can do this,
then the density of the image of A is the same as the density of B, and therefore
that they cannot have different intrinsic densities.

Lemma 1.13. If ρ(H) = 0, then ρ(X \H) = ρ(X ∪H) = ρ(X) and ρ(X \H) =
ρ(X ∪H) = ρ(X).

Proof. Notice that
ρn(X) = ρn(X \H) + ρn(X ∩H)

By definition. Therefore

ρ(X) = lim sup
n→∞

ρn(X) = lim sup
n→∞

ρn(X \H) + ρn(X ∩H)

By subadditivity of the limit superior,

ρ(X) ≤ lim sup
n→∞

ρn(X \H) + lim sup
n→∞

ρn(X ∩H)

As ρ(H) = 0 and X ∩H ⊆ H,

ρ(X) ≤ lim sup
n→∞

ρn(X \H) = ρ(X \H)

However, ρ(X \H) ≤ ρ(X) because X \H ⊆ X, so ρ(X) = ρ(X \H) as desired.

The argument for the union and the argument for lower density are functionally
identical. (For the union we use X ∪H, X, and H \X in place of X, X \H, and
X ∩H respectively.) �

We begin by illustrating why the classical operations for combining two sets fail
to yield new intrinsic densities in Section 2, motivating the creation of new tools.
Section 3 will introduce the two key operations, into and within, for obtaining
sets with defined intrinsic densities and use them to construct a set of arbitrary
intrinsic density r ∈ (0, 1) from any Martin-Löf random and r. Section 3 shall also
provide some applications for these tools in the study of Turing degrees, including
answering an open question of the author from [15]. We shall close some natural
gaps that arise in Sections 2 and 3 in Section 4, then we will conclude in Section 5
by applying our techniques from Section 3 to study MWC and Church density.

2. The Failure of Classical Coding

2.1. The Join. As mentioned previously, we would like to find some operation
that takes sets A and B of intrinsic density α and β respectively and outputs a
new set with intrinsic density which is given as a function of α and β. The most
common operation for combining two sets in computability theory is the join. It is
easy to show that if A has density α and B has density β, then A⊕B has density
α+β
2 . However, this is not so simple in the case of intrinsic density.

Lemma 2.1. If P (A) 6= P (B), then A⊕B does not have intrinsic density.

Proof. We shall proceed by showing that there is a computable permutation which
sends A⊕ B to A modulo a set of density 0, and similarly for B. Then the upper
(and lower) density of A⊕B under these permutations will match that of A and B
respectively. Therefore if these densities are different, the density of A ⊕ B is not
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invariant under computable permutation.

Let F = {n! : n ∈ ω} and G = F . For any fixed computable permutation π,
there is another computable permutation π̂ defined via enumerating the odds onto
the factorials in order and enumerating the evens onto the nonfactorials according
to the ordering induced by π. That is, π̂(2n+ 1) = fn and π̂(2n) = gπ(n).

Then as F has density 0, Lemma 1.13 shows

ρ(π̂(A⊕B)) = ρ(π̂(A⊕B) \ F )

As the image of the odds under π̂ is a subset of F ,

π̂(A⊕B) \ F = π̂(A⊕ ∅)
and

ρ(π̂(A⊕B)) = ρ(π̂(A⊕ ∅))
Notice that π̂(A⊕ ∅) is just π(A) with each element n increased by |F � n|. Thus

ρn(π(A)) ≥ ρn(π̂(A⊕ ∅)) ≥ |π(A) � n| − |F � n|
n

As F is the factorials, the final expression tends to ρn(π(A)) in the limit, so we see
that

ρ(π̂(A⊕ ∅)) = ρ(π(A))

and

ρ(π̂(A⊕B)) = ρ(π̂(A⊕ ∅)) = ρ(π(A))

ρ(π̂(A⊕B)) = ρ(π(A)) by a nearly identical argument.

In particular, P (A ⊕ B) ≥ P (A) and P (A ⊕ B) ≤ P (A) because we are tak-
ing the limit superior and inferior over all computable permutations, of which
π̂ is but one. (Basically, π̂ sends A ⊕ B to π(A) modulo a set of density zero,
so the intrinsic upper (lower) density of A ⊕ B cannot be smaller (larger) than
the intrinsic upper (lower) density of A.) Reversing the use of the evens and the
odds in the definition of π̂, we get that the same is true for B in place of A, so
P (A ⊕ B) ≤ min(P (A), P (B)) and P (A ⊕ B) ≥ max(P (A), P (B)). Therefore if
P (A) 6= P (B), P (A⊕B) 6= P (A⊕B). �

2.2. The Cartesian Product. Another classical candidate would be the Carte-
sian product A × B. However, this is even less reliable than the join. Whether or
not A×B even has asymptotic density related to the density of A and the density
of B can depend on the selected pairing function. For example, if 〈, 〉 : ω2 → ω is a
pairing function, consider the function f : ω2 → ω defined via

f(i, n) = 〈i− 1, n〉!
for i > 0 and

f(0, n) = sn

where S is the set of nonfactorials. Then f has all of the properties we desire in a
pairing function, i.e. it is a computable bijection with computable inverse between
ω2 and ω. Using f as a pairing function, A × B (as a set of codes for pairs 〈a, b〉,
a ∈ A and b ∈ B) would have density equal to that of B if 0 ∈ A and density 0
otherwise. Removing or adding a single element from A never changes the density,
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let alone the intrinsic density, but we could toggle the upper density of A× B be-
tween 0 and ρ(B) by toggling whether or not 0 is in A.

Even if we fix a pairing function 〈, 〉 which does respect the density of A and
B, the above f shows that this will not extend to intrinsic density: As f and 〈, 〉
are both computable and have computable inverse, there is a permutation π such
that π(〈n,m〉) = f(n,m). Then π(A×B) will be as in the previous paragraph, so
A×B cannot have intrinsic density determined by the intrinsic densities of A and B.

These methods seem like they should generalize to any attempt at “nicely” coding
A and B into computable sets in such a way that we can easily recover them. This
intuition will be formalized in Theorem 3.3.

3. Into, Within, and Intrinsic Density

We already know that every real in the unit interval is achieved as an intrinsic
density by finding a set with the correct type of randomness. (For intrinsic density
0 and 1, randomness will only give the trivial examples ∅ and ω. However, non-
trivial examples are known to exist from the work in [2], [3], and [15].) However,
the reliance on randomness here is not ideal: intrinsic density is itself not a good
notion of randomness as there are sets with defined intrinsic density which can be
computed by arbitrarily small subsets: Let A be 1-Random and let X0 = A and
Xn+1 = Xn ⊕ Xn. By Lemma 1.12 and Theorem 4.1 below, Xk will be a set of
intrinsic density 1

2 , but {n : 2kn ∈ Xk} = A, so there is a subset with density 1
2k+1

which computes all of Xk. Therefore our goal is to create tools for working with
intrinsic density that work solely at the level of intrinsic density rather than the
stronger level of randomness.

The methods of Section 2 illustrate why coding methods that enumerate a set
onto a computable one are insufficient for our purposes. As long as we computably
know where one of our sets A is being coded, there is a permutation which can
make the resulting set look like A modulo a set of density 0, so the best case sce-
nario is that the resulting set can have the same intrinsic density as the original
sets. We therefore must use a coding method which is not inherently computable
to achieve our goals of changing the density. For example, Astor [2] proved that if
A has intrinsic density α and B is 1-Random relative to A, then A∩B has intrinsic
density α

2 . We shall generalize this approach and prove that it works with a much
weaker requirement of relative intrinsic density rather than relative randomness.

The following coding methods are natural and computable in A and B, but do
not allow us to recover A or B easily, and so do not fall prey to the methods of the
previous section. The remainder of the paper shall be dedicated to their study. We
shall show in this section that these tools generalize the previous known results and
do not require appeals to randomness. We shall then apply them to achieve every
real in the unit interval. (This part will use randomness, but only as a convenience
to obtain sets with the right properties: the core theorems are stated without need
for randomness.)

Definition 3.1. Let A and B be sets of natural numbers.
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• B . A, or B into A, is

{ab0 < ab1 < ab2 < . . . }

That is, B . A is the subset of A obtained by taking the “B-th elements of
A.”
• B / A, or B within A, is

{n : an ∈ B}

That is, B / A is the set X such that X . A = A ∩B.

With A . B, we are simply thinking of A as a copy of ω as a well-order and
B . A is the subset corresponding to B under the order preserving isomorphism
between A and ω. The intuition for why this might work for our purposes is that if
a computable permutation on ω could change the size of a copy of B living inside
A, then it must have been able to change the size of B or A to begin with. We shall
see below that this intuition is correct and B .A will work elegantly with intrinsic
density, multiplying the intrinsic densities of A and B so long as some conditions
are met.

We first make a few elementary observations:

• For all A, A = A . ω = ω . A = A / ω.
• For all A and B and any i, ai is either in B or B. Therefore i is either in
B / A or B / A respectively, so (B / A) t (B / A) = ω.
• If A is intrinsically small, then so is X .A for any X, as intrinsic smallness

is closed under subsets. The same is not true for X / A, as in general it is
not necessarily a subset of A or X.
• If B∩C = ∅, then (B.A)∩(C.A) = ∅. Furthermore, A = (X.A)t(X.A).
• A set A has MWC-density r if ρ(A / f(A)) = r for all partial computable

monotone selection functions f .
• . is associative, i.e. B . (A . C) = (B . A) . C: By definition, (A . C) =
{ca0 < ca1 < ca2 < . . . } and thus

B . (A . C) = {cab0 < cab1 < cab2 < . . . }

Similarly, (B . A) = {ab0 < ab1 < ab2 < . . . }, and therefore by definition

(B . A) . C = {cab0 < cab1 < cab2 < . . . }

• / is not associative: Consider the set of evens E, the set of odds O, and the
set N of evens which are not multiples of 4. Then

(O / N) / E = ∅ / N = ∅

However,

O / (N / E) = O / O = ω

• . and / do not associate with each other in general:

B . (A / (B . A)) = B . ω = B

but

(B . A) / (B . A) = ω

Similarly, B / (A . B) = ω, but (B / A) . B is a subset of B.
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The following theorem is quite intuitive and allows us to use a single set with
defined intrinsic density to find new ones, however these new sets will have the
same intrinsic density as the original set. We shall first prove a technical lemma to
aid in our proofs.

Lemma 3.2. Let f0, f1, . . . , fk be a finite collection of injective computable func-
tions and let C be a computable set. Then there is a computable set H ⊆ C such
that ρ(fi(H)) = 0 for all i.

Proof. Let h0 = c0. Then given hn, define hn+1 to be the least element c of C with
fi(c) ≥ hn! for all i. Set H = {h0 < h1 < h2 < . . . }. Then ρ(fi(H)) = 0 for all i
because |fi(H) � n| ≤ |{n! : n ∈ ω} � n|. �

Theorem 3.3. Let C be computable and P (A) = α. Then P (A / C) = α.

Proof. Under the map which takes cn to n, A ∩ C is mapped to A / C. However
unless C is ω, this is not a permutation. Using Lemma 3.2, we are able to massage
this map into a permutation which takes cn to n modulo a set of density 0. Then
under this permutation, A ∩ C (and A) goes to A / C modulo a set of density 0.
Therefore if A/C did not have intrinsic density α, A could not either by Lemma 1.13.

Formally, assume P (A / C) 6= α. Suppose π is a computable permutation with
ρ(π(A/C)) > α. Let f : C → ω be defined via f(cn) = n. Then f(A∩C) = A/C:

A ∩ C A / C π(A / C)
f π

By Lemma 3.2, there is H ⊆ C computable with ρ(π(f(H))) = 0. Define
πf : ω → ω via πf (n) = f(n) for n ∈ C \H, and for n ∈ C tH define πf (n) to be
the least element of f(H) not equal to πf (j) for some j < n. As f agrees with πf
on C \H,

πf ((A ∩ C) \H) = f(A ∩ C) \ f(H) = (A / C) \ f(H)

Therefore by applying π,

π(πf ((A ∩ C) \H)) = π((A / C) \ f(H)) = π(A / C) \ π(f(H))

Using the above equality,

ρ(π(πf ((A ∩ C) \H))) = ρ(π(A / C) \ π(f(H)))

As ρ(π(f(H))) = 0, we can apply Lemma 1.13 and see

ρ(π(A / C) \ π(f(H))) = ρ(π(A / C))

As (A ∩ C) \H ⊆ A,

ρ(π(πf (A))) ≥ ρ(π(πf ((A ∩ C) \H))) = ρ(π(A / C))

However, we assumed that ρ(π(A / C)) > α, so ρ(π(πf (A))) > α. As π ◦ πf is a
computable permutation, this implies P (A) 6= α.

This proves that if π is a computable permutation with ρ(π(A / C)) > α, then
P (A) 6= α. If there is no such permutation, there must be a computable permu-
tation π with ρ(π(A / C)) < α because we assumed that P (A / C) 6= α. Then
because

(π(A / C)) t (π(A / C)) = π((A / C) t (A / C)) = π(ω) = ω
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we have ρn(π(A / C)) = 1 − ρn(π(A / C)) for all n. Therefore by the subtraction
properties of the limit superior,

ρ(π(A / C)) ≥ 1− ρ(π(A / C))

As we assumed ρ(π(A / C)) < α,

1− ρ(π(A / C)) > 1− α

Thus ρ(π(A/C)) > 1−α. We now apply the previous case to get that P (A) 6= 1−α,
which automatically implies P (A) 6= α. �

We obtain an alternate proof of Lemma 2.1 as a corollary of this result.

Corollary 3.4. (Lemma 2.1) If P (A) 6= P (B), then A⊕B does not have intrinsic
density.

Proof. Suppose A ⊕ B has intrinsic density γ. Let E be the set of even numbers
and O the set of odd numbers. By Theorem 3.3,

P ((A⊕B) / E) = P ((A⊕B) / O) = γ

However (A⊕B) / E = A and (A⊕B) / O = B, so P (A) = P (B) = γ. �

In addition to giving a much simpler proof of Lemma 2.1, this result is confirming
what we might suspect given the results of Section 2: we cannot achieve sets of new
intrinsic density by enumerating sets of intrinsic density along computable sets, as
the resulting set must have the same intrinsic density if it has intrinsic density at
all. Therefore we need to turn our attention to coding within noncomputable sets.

We now make an observation about the asymptotic density of B .A, which will be
critical for investigating its intrinsic density.

Lemma 3.5.

• ρ(B . A) ≤ ρ(B)ρ(A).
• ρ(B . A) ≥ ρ(B)ρ(A).

Proof. By Lemma 1.2,

ρ(B . A) = lim sup
n→∞

n+ 1

abn + 1
= lim sup

n→∞

n+ 1

abn + 1
· 1 = lim sup

n→∞

n+ 1

abn + 1
· bn + 1

bn + 1

By the submultiplicativity of the limit superior,

ρ(B . A) ≤ (lim sup
n→∞

bn + 1

abn + 1
)(lim sup

n→∞

n+ 1

bn + 1
) = (lim sup

n→∞

bn + 1

abn + 1
)ρ(B)

Now { bn+1
abn+1}n∈ω is a subsequence of { n+1

an+1}n∈ω, so

lim sup
n→∞

bn + 1

abn + 1
≤ lim sup

n→∞

n+ 1

an + 1
= ρ(A)

Therefore ρ(B . A) ≤ ρ(B)ρ(A) as desired.

The case for the limit inferior is nearly identical, reversing ≤ to ≥ and using super-
multiplicativity along with the corresponding identity from Lemma 1.2. �

Corollary 3.6. If ρ(A) = α and ρ(B) = β, then ρ(B . A) = αβ.
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Therefore, if B.A has intrinsic density, its intrinsic density must be the product
of the densities of A and B. Our next goal is to prove that B . A does indeed
have defined intrinsic density with sufficient assumptions on A and B. Recall that
a set X has Y -intrinsic density, or intrinsic density relative to Y , if its density is
invariant under all Y -computable permutations as opposed to just the computable
ones. We use PY (X) to denote the Y -intrinsic density of X if it exists.

Theorem 3.7. If P (A) = α and PA(B) = β, then P (B . A) = αβ.

Proof. The proof is very similar to the proof of Theorem 3.3, however we shall
present it fully here without referring to techniques from that proof, as it is quite
technical. Here the idea is that for any fixed computable permutation π, there is
an A-computable permutation which sends B to π(B . A) / π(A) modulo a set of
density 0. Therefore if π witnesses that B . A does not have intrinsic density αβ,
i.e. π(B . A) does not have density αβ, and A has intrinsic density α, Lemma 3.5
will show that π(B . A) / π(A) does not have density β, and thus B does not have
A-intrinsic density β.

Formally, assume P (A) = α. Assume that P (B . A) 6= αβ. We shall show that
PA(B) 6= β. First suppose that there is some computable permutation π such that
ρ(π(B.A)) > αβ. We shall let π(A) = {p0 < p1 < p2 < . . . }. Let f : A→ ω be de-
fined via f(an) = n and g : π(A)→ ω via g(pn) = n, i.e. f maps A to its indices and
g maps π(A) to its indices. Then f(B .A) = B and g(π(B .A)) = π(B .A)/π(A):

B . A π(B . A)

B π(B . A) / π(A)

π

f g

Note by Lemma 3.5 that ρ(π(B . A) / π(A)) > β: From the definition,

(π(B . A) / π(A)) . π(A)) = π(B . A)

and ρ(B . A) > αβ by assumption. ρ(π(A)) = α because P (A) = α, so ρ(π(B .
A) / π(A)) ≤ β would contradict Lemma 3.5.

From this point forward we shall let

X = π(B . A) / π(A)

for the sake of readability.

By Lemma 3.2 relativized to A and applied to g ◦ π, there is an A-computable
set H ⊆ A such that:

ρ(g(π(H))) = 0

We shall now define permutations which preserve the properties of f and g out-
side of H. Define πf : ω → ω via πf (k) = f(k) for k ∈ A \H, and for k ∈ A tH,
let πf (k) be the least element of f(H) not equal to πf (m) for some m < k. Define
πg : ω → ω similarly using π(A), π(H), and g(π(H)) in place of A, H, and f(H)
respectively. Then πf and πg are A-computable because H, f , and g are, and it is
a permutation because f and g are bijections (from A and π(A) to ω respectively)
which have been modified to be total without violating injectivity or surjectivity.
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Now we shall compute πg(π(π−1f (B \ f(H)))). As f(B . A) = B and f agrees

with πf on H,

π−1f (B \ f(H)) = (B . A) \H
Furthermore

π((B . A) \H) = π(B . A) \ π(H)

As g(π(B . A)) = X and πg agrees with g on π(H),

πg(π(B . A) \ π(H)) = g(π(B . A)) \ g(π(H)) = X \ g(π(H))

Thus πg(π(π−1f (B \ f(H)))) = X \ g(π(H)). As ρ(g(π(H)) = 0, Lemma 1.13 shows

ρ(X \ g(π(H))) = ρ(X)

By the definition of X,
ρ(X) = ρ(π(B . A) / π(A))

which is greater than β by the above. As B \ f(H) ⊆ B,

πg(π(π−1f (B \ f(H)))) ⊆ πg(π(π−1f (B)))

and thus
ρ(πg(π(π−1f (B)))) ≥ ρ(πg(π(π−1f (B \ f(H)))))

Therefore
ρ(πg(π(π−1f (B)))) ≥ ρ(π(B . A) / π(A)) > β

As πg ◦ π ◦ π−1f is an A-computable permutation, PA(B) 6= β.

Therefore we have proved that if there is some computable permutation π such
that ρ(π(B . A)) > αβ, then PA(B) 6= β. If there is no such permutation, then
there must be a computable permutation π such that ρ(π(B.A)) < αβ because we

assumed P (B . A) 6= αβ. As A = (B . A) t (B . A), π(A) = π(B . A) t π(B . A).
Therefore

ρ(π(B . A)) = ρ(π(A) \ π(B . A))

The fact that ρn(π(A)) = ρn(π(B . A)) + ρn(π(A) \ π(B . A)) combined with the
properties of the limit superior with regards to subtraction implies

ρ(π(A) \ π(B . A)) ≥ ρ(π(A))− ρ(π(B . A))

We know that ρ(π(A)) = α because P (A) = α. As we assumed that ρ(π(B .A)) <
αβ,

ρ(π(α))− ρ(π(B . A)) > α− αβ = α(1− β)

Bringing this together,
ρ(π(B . A)) > α(1− β)

Thus we can apply the first case of the proof to show that PA(B) 6= 1 − β, which
automatically implies PA(B) 6= β, so we are done. �

Notice that the previous two theorems prove a more general form of Astor’s
result:

Corollary 3.8. If P (A) = α and PA(B) = β, then P (A ∩B) = αβ.

Remark. Astor [2] proved this for the special case when A has intrinsic density α
and B is 1-Random relative to A, which by Lemma 1.12 implies B has A-intrinsic
density 1

2 .
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Proof. By definition,

A ∩B = (B / A) . A

As PA(B) = β, Theorem 3.3 relativized to A shows that PA(B /A) = β. Therefore
we can apply Theorem 3.7 to A and B / A to get that

P ((B / A) . A) = P (A ∩B) = αβ

�

With these tools in hand, we may now look towards constructing a set of arbitrary
intrinsic density. To do this, we would like to have a countable collection of sets
which all have intrinsic density relative to each other so that we may apply Theorem
3.7 repeatedly.

Lemma 3.9. There is a countable, disjoint sequence of sets {Ai}i∈ω such that
P (Ai) = 1

2i+1 . Furthermore, limn→∞ P (
⊔
i>nAi) = 0.

Proof. Recall that given a set X, X [i] denotes the i-th column of X, i.e. {n :
〈i, n〉 ∈ X}. Let X ⊆ ω be 1-Random. Then for all i, X [i] is 1-Random relative
to

⊕
j 6=iX

[j]. (Essentially Van Lambalgen [19], Downey-Hirschfeldt [6] Corollary

6.9.6) Note that the proof of Lemma 1.12 relativizes to the fact that Z-1-Randoms
have Z-intrinsic density 1

2 easily. In particular, taking a single 1-Random automat-
ically gives us infinitely many mutually 1-Random sets. Using these together with
Theorem 3.7, we can construct the desired sequence, where the mutual randomness
ensures us that the conditions of the theorem are met.

Let B0 = ω. Given Bn, let

An = X [n] . Bn

and

Bn+1 = X [n] . Bn

Note that for all i, Bi+1 ⊆ Bi and Ai ∩ Bi+1 = ∅, as Bi+1 = X [i] . Bi and

Ai = X [i] . Bi. Then for i < j, Ai ∩ Aj = ∅ because Aj ⊆ Bj ⊆ Bi+1. Thus
{Ai}i∈ω is disjoint. We now verify that P (Ai) = 1

2i+1 and P (Bi) = 1
2i by induction.

P (B0) = P (ω) = 1, and B0 is computable. Suppose that Bi is
⊕

j<iX
[j]-

computable and that P (Bi) = 1
2i . Then Bi+1 = X [i] . Bi is Bi ⊕X [i]-computable,

and therefore
⊕

j<i+1X
[j]-computable. Then by the above, both X [i] and X [i] are

1-Random relative to Bi. Therefore PBi(X
[i]) = PBi(X

[i]) = 1
2 by the relativization

of Lemma 1.12. Thus by Theorem 3.7,

P (Ai) = P (X [i] . Bi) = P (X [i])P (Bi) =
1

2
· 1

2i
=

1

2i+1

A nearly identical argument for P (Bi+1) verifies P (Bi+1) = 1
2i+1 , which completes

the induction.

Finally, note that limn→∞ P (
⊔
i>nAi) = 0 must be true for any such collection

of sets, as limn→∞ P (
⊔
i≤nAi) = 1. �



NONCOMPUTABLE CODING, DENSITY, AND STOCHASTICITY 21

Jockusch and Schupp [10] proved that asymptotic density enjoys a restricted
form of countable additivity: if there is a countable sequence {Si}i∈ω of disjoint
sets such that ρ(Si) exists for all i and

lim
n→∞

ρ(
⊔
i>n

Si) = 0

then

ρ(
⊔
i∈ω

Si) =
∞
Σ
i=0

ρ(Si)

The intrinsic density analog of this results follows immediately from the fact that
permutations preserve disjoint unions. That is, if there is a countable sequence
{Si}i∈ω of disjoint sets such that P (Si) exists for all i and

lim
n→∞

P (
⊔
i>n

Si) = 0

then

P (
⊔
i∈ω

Si) =
∞
Σ
i=0

P (Si)

This together with the previous lemma allows us to construct a set with intrinsic
density r for any r ∈ (0, 1).

Corollary 3.10. Every real in (0, 1) is realized as the intrinsic density of some set
of natural numbers.

Proof. Let r ∈ (0, 1). Let Br ⊆ ω be the set whose characteristic function is
identified with the binary expansion that gives r, i.e. the set of all n such that the
n-th bit in the binary expansion for r is a one. Now let {Ai}i∈ω be as in Lemma
3.9. Let Xr =

⊔
n∈Br An. Note that

lim
n→∞

P (
⊔

i∈Br,i>n
Ai) = 0

Because
⊔
i∈Br,i>nAi ⊆

⊔
i>nAi and limn→∞ P (

⊔
i>nAi) = 0. By the fact that

countable unions sum intrinsic densities and the definition of Xr,

P (Xr) = Σ
n∈Br

P (An) = Σ
n∈Br

1

2n+1

By the definition of the binary expansion,

P (Xr) = Σ
n∈Br

1

2n+1
= r

�

Notice that Corollary 3.10 can be relativized to a fixed oracle Y . Lemma 1.12
and Van Lambalgen’s theorem both relativize, so Lemma 3.9 does as well. This
suffices to relativize Corollary 3.10: in general, Br cannot be taken to have any
special relationship with Y , as it is unique for a fixed r. However, whether or
not Br is computable from the oracle has no basis on Xr because each An has
Y -intrinsic density.
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3.1. Noncomputable Coding and the Turing Degrees. One downside of the
into operation is that the degree of A . B is not necessarily equal to the degree of
A⊕B. This is because A.B cannot necessarily compute A or B. However, given B
as an oracle, A.B can easily compute A = {n : bn ∈ A.B}. Therefore, combining
the into operation with the join allows us to prove results about Turing degrees.

Lemma 3.11. Suppose P ⊆ 2ω is closed under subsets and closed under self join,
i.e. if X ∈ P then X ⊕X ∈ P also. Then the P -degrees are closed upwards.

Proof. Suppose A computes B, with B ∈ P . Then B ⊕ B ∈ P as P is closed
under self join. Furthermore, B ⊕ (A . B) ∈ P because it is a subset of B ⊕ B.
Furthermore, B⊕ (A.B) ≡T A as A computes B and thus computes B⊕ (A.B),
which in turn computes A as above. Therefore (B ⊕ (A . B) witnesses that the
degree of A is a P -degree. �

An example of the application of this result is an easy proof of the classic fact
that the hyperimmune degrees are closed upwards: Hyperimmune sets are closed
under subsets (As the principal function of a subset is greater than the principal
function of the original set, so if the former is computably dominated then so is the
latter) and are closed under self join (if f(n) computably dominates p(B ⊕ B)(n),
then f(2n) dominates pB(n).)

More interestingly, this answers Question 4.1 from [15].

Corollary 3.12. For any X, the Turing degrees of X-intrinsically small (i.e. in-
trinsic density 0) sets are exactly the X-high or X-DNC degrees.

Proof. As noted in [3], if noncomputable A is not X-high or X-DNC, then A does
not have X-intrinsic density at all. Furthermore, Astor also proved that every high
or DNC set computes an intrinsically small set, and this proof relativizes as noted
in [15]. Thus every X-high or X-DNC degree computes an X-intrinsically small
set. Therefore it suffices to show that the degrees of X-intrinsically small sets are
closed upwards.

By the relativized form of [15] Corollary 2.7 or Theorem 4.1 below, theX-intrinsically
small sets are closed under self join. They are clearly closed under subsets by the
definition of intrinsic smallness. Therefore these degrees are closed upwards by
Lemma 3.11, completing the proof. �

It is interesting to revisit what was known about this question prior. Astor proved
the non-relativized version in [3], however he relied upon the result of Jockusch [9]
that any collection of sets which is closed under subsets and contains an arithmeti-
cal set is closed upwards in the Turing degrees. As noted in [15] there are X for
which there is no arithmetical X-intrinsically small set (for example, ∅(ω)), so for
these X the proof does not relativize. Using the above result, though, this difficulty
can be avoided.

An important note about Lemma 3.11 is that it is not a strengthening of Jockusch’s
result: In fact, Jockusch proved this theorem to show that the cohesive degrees are
closed upwards, and cohesive sets are quite easily seen to not be closed under self
join. In practice, it is likely that most natural phenomena being studied will have
an arithmetical example, and thus Jockusch’s result will apply. Therefore it is
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likely that Lemma 3.11 will mostly be useful in the same manner as above: to
prove the relativized version of a theorem where the relativization ensures there is
no arithmetical example.

4. Filling the Gaps for Intrinsic Density

Our work in the previous two sections left some gaps, which we address here
using the into and within operations.

We showed in Section 2 that if the join of two sets has intrinsic density, then
each set has the same intrinsic density. We now have the machinery to prove the
converse.

Theorem 4.1. Suppose P (A) = P (B) = α. Then P (A⊕B) = α.

Proof. We shall use a technical lemma to complete the proof. Let E represent the
even numbers, and let O represent the odd numbers. Lemma 4.1.1 will prove that,
for any computable permutation π,

ρ(π(A⊕B) / π(E)) = ρ(π(A⊕B) / π(O)) = α

To show this we shall give a computable permutation which sends A to π(A ⊕
B) / π(E) modulo a set of density zero. We will do this by first showing there
is an obvious computable injective function which takes A to π(A ⊕ B) / π(E),
then use the techniques from Section 3 to massage it into a suitable permutation.
We can use the same method to send B to π(A⊕B)/π(O) modulo a set of density 0.

From there, we will use Lemma 4.1.1 to show that ρ(π(A ⊕ B)) = α, proving the
theorem. Note that we cannot use Theorem 3.3 to obtain the above facts because
we are trying to prove that A⊕B has intrinsic density α.

Lemma 4.1.1. Let π be a computable permutation and let A and B be as in the
statement of Theorem 4.1. Then

ρ(π(A⊕B) / π(E)) = ρ(π(A⊕B) / π(O)) = α

Proof. Let h : π(E)→ ω send the n-th element of π(E) to n (i.e. the inverse of the
principal function), and let d : ω → E be defined via d(n) = 2n. Then notice that
d(A) = A⊕ ∅. Furthermore, observe that for any X ⊆ π(E), h(X) = X / π(E) by
the definition of h and the within operation. Therefore

h(π(d(A))) = h(π(A⊕ ∅)) = π(A⊕ ∅) / π(E)

As π(A⊕B) ∩ π(E) ⊆ π(A⊕ ∅),

π(A⊕ ∅) / π(E) = π(A⊕B) / π(E)

Thus h(π(d(A))) = π(A⊕B) / π(E). We shall now use the techniques of Section 3
to change h and d into permutations which preserve the relevant densities.

By Lemma 3.2, there is a computable set H ⊆ π(E) with ρ(h(H)) = 0. Now
define the computable permutation πh via πh(n) = h(n) for n ∈ π(E) \ H, and
have πh enumerate π(O)tH onto h(H) in order. Similarly, define the computable
permutation πd via πd(n) = d(n) for n ∈ ω \ d−1(π−1(H)), and have πd enumerate
d−1(π−1(H)) onto O t π−1(H).
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As πd agrees with d on d−1(π−1(H)), we now see that

πd(A \ π−1d (π−1(H))) = (A⊕ ∅) \ π−1(H)

Furthermore, applying π shows that

π(πd(A \ π−1d (π−1(H)))) = π((A⊕ ∅) \ π−1(H)) = π(A⊕ ∅) \H

As πh agrees with h on π(E) \H and h(π(A⊕ ∅)) = π(A⊕B) / π(E), we have

πh(π(A⊕ ∅) \H) = (π(A⊕B) / π(E)) \ h(H)

Therefore (π(A ⊕ B) / π(E)) \ h(H) ⊆ πh(π(πd(A))) and πh(π(πd(A))) ⊆ (π(A ⊕
B) / π(E)) ∪ h(H).

By choice of H, ρ(h(H)) = 0, so Lemma 1.13 shows that

ρ(πh(π(πd(A)))) = ρ((π(A⊕B) / π(E)) \ h(H)) = ρ(π(A⊕B) / π(E))

and

ρ(πh(π(πd(A)))) = ρ((π(A⊕B) / π(E)) \ h(H)) = ρ(π(A⊕B) / π(E))

Therefore, as P (A) = α and πh ◦ π ◦ πd is a computable permutation,

ρ(π(A⊕B) / π(E)) = α

A nearly identical argument with O in place of E and B in place of A shows similarly
that

ρ(π(A⊕B) / π(O)) = α

�

We shall now show that this implies that ρ(π(A⊕B)) = α. Consider ρn(π(A⊕
B)). By definition,

ρn(π(A⊕B)) =
|π(A⊕B) � n|

n
As ω = π(E) t π(O),

|π(A⊕B) � n|
n

=
|π(A⊕B) ∩ π(E) � n|+ |π(A⊕B) ∩ π(O) � n|

n

The latter expression can be rewritten as

|π(E) � n|
|π(E) � n|

· |π(A⊕B) ∩ π(E) � n|
n

+
|π(O) � n|
|π(O) � n|

· |π(A⊕B) ∩ π(O) � n|
n

Let m be the largest number such that the m-th element of π(E) is less than n,
and let k be the analogous number for π(O). Now notice that

|π(A⊕B) ∩ π(E) � n|
|π(E) � n|

= ρm(π(A⊕B) / π(E))

and
|π(A⊕B) ∩ π(O) � n|

|π(O) � n|
= ρk(π(A⊕B) / π(O))

by the definition of the within operation. Therefore, we can rewrite ρn(π(A⊕B))
as

ρm(π(A⊕B) / π(E)) · ρn(π(E)) + ρk(π(A⊕B) / π(O)) · ρn(π(O))
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Using the fact that ρn(π(E)) + ρn(π(O)) = 1,

ρn(π(A⊕B)) = ρm(π(A⊕B)/π(E))·ρn(π(E))+ρk(π(A⊕B)/π(O))·(1−ρn(π(E)))

Rearranging, this is equal to

ρk(π(A⊕B) / π(O)) + ρn(π(E)) · (ρm(π(A⊕B) / π(E))− ρk(π(A⊕B) / π(O)))

Taking the limit as n goes to infinity, m and k both go to infinity. Thus

ρm(π(A⊕B) / π(E))− ρk(π(A⊕B) / π(O))

goes to 0 by Lemma 4.1.1. As ρn(π(E)) is bounded between 0 and 1 by definition,
the second term vanishes. Therefore

lim
n→∞

ρn(π(A⊕B)) = lim
n→∞

ρk(π(A⊕B) / π(O)) = ρ(π(A⊕B) / π(O)) = α

as desired. �

Lemma 2.1 and Theorem 4.1 can easily be generalized.

Definition 4.2. Let H be a computable, infinite, co-infinite set. Then the H-join
of A and B, denoted by A⊕H B, is

(A . H) t (B . H)

Notice that A⊕B = A⊕E B. Furthermore, there is a computable permutation
π that sends E to H and O to H in order. Therefore π(A⊕B) = A⊕H B, so the
generalizations of Lemma 2.1 and Theorem 4.1 follow without needing to rework
the proofs.

Recall that Theorem 3.7 says if P (A) = α and PA(B) = β, then P (B . A) = αβ.
Whether or not either of these conditions can be weakened or dropped is a natural
question. It is immediate that we cannot drop the requirement that A has intrinsic
density: PA(ω) = 1 for any A, so ω always satisfies the requirements on B, but
ω . A = A, so A must have intrinsic density. Similarly, B . ω = B for any B, so B
must have intrinsic density. Therefore the only possible weakening of Theorem 3.7
would be to require P (B) = β as opposed to PA(B) = β. However, this fails in a
strong way.

Lemma 4.3. Let P (A) = 1
2 . Then P (A ⊕ A) = 1

2 but A . (A ⊕ A) does not have
intrinsic density.

Proof. Note that A⊕A has intrinsic density 1
2 by Theorem 4.1 as P (A) = 1

2 implies

P (A) = 1
2 .

Let E represent the set of even numbers. Notice that A ⊕ A contains exactly
one of 2k or 2k+1 for all k ∈ ω. Therefore the n-th element of A⊕A is 2n if n ∈ A
and 2n+ 1 if n 6∈ A. Thus

E / (A⊕A) = A

by definition. By the properties of the within operation,

A . (A⊕A) = (E / (A⊕A)) . (A⊕A) = E ∩ (A⊕A) = A⊕ ∅

By Lemma 2.1, however, A⊕ ∅ does not have intrinsic density. �
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Note that we cannot generalize this result to A ⊕H A in general, specifically it
is not always true that H / (A ⊕H A) = A: consider H the set of naturals con-
gruent to 2 modulo 3, and let A be a set containing 0 but not containing 1. Then
0 6∈ H / (A⊕H A) because pA⊕HA(0) = 1 and 1 6∈ H. Thus H / (A⊕H A) 6= A as
witnessed by 0.

Recall that Theorem 3.3 says that if P (A) = α and C is computable, then A / C
also has intrinsic density α. It is natural to wonder if this is symmetric: does
C / A have intrinsic density? The proof of Lemma 4.3 shows that it is possible for
C / A to have intrinsic density. However, this is not true in general, as C / ω = C.
It is not obvious what can be said, if anything, about when C / A has intrinsic
density. Future work exploring this may reveal something interesting about the
structure of sets with intrinsic density: let P (A) > 0, C be coinfinite, computable
with P (C / A) > 0. Such sets would witness the failure of the weak version of
Theorem 3.7, as (C / A) . A = C ∩ A and no subset of a computable set can have
intrinsic density greater than zero.

5. Applications to Classical stochasticity

We shall now apply the tools of Section 3 to MWC-density and Church-density.
It turns out that the into and within operations behave similarly for MWC and
Church densities as they do for intrinsic density, however other operations are less
well behaved. As per the remark following Definition 3.1, we need to measure
A/f(A) for all computable monotone selection functions f to check MWC-density,
and the total such f to check Church-density. (Recall that f(A) = {n : f(A �
n) ↓= 1}.) Throughout this section, we shall focus on MWC-density, however, all
of our results will go through for Church-density as well: we will often be given a
monotone selection function and need to modify it to suit our needs. Our modifi-
cation will never make a total monotone selection function not total, so the result
will hold in the Church-density case as well.

From a general perspective, as argued by Bienvenu [Personal Communication], we
can see from simply computing measures that sets with Church-density r must exist
for r ∈ (0, 1), as the set of all such sets has measure 1. He also noted that this
argument relativizes to ∅′, which implies the same is true for MWC-density r sets.

From a computability theory perspective, we can make this very explicit. As in
the intrinsic density case, sets sufficiently random with respect to µr will have
MWC-density r. (As in Lemma 1.12, this was previously known and follows from
standard arguments. We provide a proof for convenience.)

Lemma 5.1. Let r ∈ (0, 1). If X is r-1-Random, then X has MWC-density r.

Proof. We shall argue by contrapositive. Let f be a monotone selection function
and suppose that ρ(X/f(X)) > ε > r for some rational ε. It is sufficient to consider
this case, as if ρ(X / f(X)) < r then ρ(X / f(X)) > 1 − r, where f is the mono-
tone selection function obtained by flipping the bits then applying f . Additionally,
without loss of generality we may assume in the partial case that f(X � n) ↓ for all
n: given f , we know that infinitely often ρn(X / f(X)) > ε. Therefore whenever
we have some σ witnessing this fact by stage s, we may force f(τ) to converge to 0
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for all τ � σ which have not converged by stage s. As in Lemma 1.11, if r is non-
computable then we are implicitly working relative to an arbitrary representation
for µr, which can compute r.

We shall construct an r-(super)martingale which succeeds on X using f . Let α be
as in the proof of Lemma 1.12 for r and ε, i.e. such that (1 + α

r )ε(1− α
1−r )1−ε > 1.

Define m : 2<ω → {0, 1} as follows:

• m(∅) = 1.
• If f(σ) = 1, let m(σ1) = (1 + α

r )m(σ) and m(σ0) = (1− α
1−r )m(σ).

• If f(σ) = 0, let m(σ1) = m(σ0) = m(σ).
• If f(σ) ↑, let m(σ1) = m(σ0) = 0.

Note that m is a c.e. r-(super)martingale. Furthermore, as f(X � k) ↓ for all k,
m(X � n) 6= 0 for all n. Thus

m(X � n) = (1 +
α

r
)|X�n|(1− α

1− r
)n−|X�n|

If ρs(X / f(X)) > ε, then let n = pf(X)(s), the s-th element of f(X). Then

|(X / f(X)) � s| = |{k < n : f(X � k) = 1 and k ∈ X}| ≥ εs
so it follows that

m(X � n) ≥ (1 +
α

r
)εs(1− α

1− r
)(1−ε)s = ((1 +

α

r
)ε(1− α

1− r
)1−ε)s

By choice of α, (1 + α
r )ε(1 − α

1−r )1−ε > 1, so supn→∞m(X � n) = ∞ because
there are infinitely many such s. Thus m succeeds on X and therefore X is not
r-1-Random. �

Remark. If f is a total computable selection function, then the above m is a
computable r-martingale and therefore this shows that computable randoms have
Church density r. Ambos-Spies [1] exhibited a computable random which is not
MWC stochastic, so in general m may be properly c.e. Wang [22] showed that
Schnorr randoms need not be Church stochastic, so obviously the above result does
not extend to r-Schnorr randoms.

This shows that every real in the interior of the unit interval is achieved. ω and
∅ technically complete the whole unit interval, albeit trivially. However, nontrivial
sets of MWC-density 0 should exist simply by being “small enough” to appear small
under countably many selection functions. We shall address this before turning back
to the into and within operations.

Lemma 5.2. There exists an infinite set A ≤T ∅′ such that A has MWC-density
(and therefore Church-density) 0.

Proof. The construction is similar in principle to the jump strategy for constructing
intrinsically small sets from [15]. However, the details are more technical due to
the fact that monotone selection rules can change their behavior on different inputs
whereas permutations cannot. We cannot simply choose large enough elements to
enter our set, as a given monotone selection rule may refuse to act until it sees an
element enter the set. We utilize the power of the jump to determine if, for a given
monotone selection function f , it is possible to force a large gap into A / f(A) and
ensure the density is small. If it is not possible, then we do not allow anything into
A / f(A) at all until a large gap appears naturally. If no such gap appears, then
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A / f(A) will be finite and we succeed.

Formally, let fi be an enumeration of the partial computable monotone selection
functions. The basic module for ensuring that ρ(A / fi(A)) = 0 for this specific fi
is as follows: After seeing the n-th 1 enter A/fi(A) at σs, we do not allow another
1 to enter until we see n2 0’s enter. (Notice that convergence is not an issue, as the
jump can determine if fi(σ) ↓ uniformly in σ and i.) We will attempt to achieve
this by picking some m such that fi(σs0

k) = 1 for n2 k’s less than m and setting
σs+1 = σs0

m10. The jump can determine if such an m exists.

Suppose we have defined σ � A and there is no m such that fi(σ0m) = 1. Then
we cannot force anything into A / fi(A) without adding extra 1’s to A, potentially
adding some 1’s to fj(A) for some j 6= i. To fix this issue, we say fi is paused
for σ if there does not exist an m such that fi(σ0m) = 1. As mentioned above,
∅′ can determine if fi is paused for σ. When determining how to extend σs to
σs+1 = σs0

m10, if fi(σs0
m1) = 1, then σs+1 puts a 0 into A / fi(A). If not, then

nothing changes. In both cases, no 1’s are added to A / fi(A) by σs. We continue
and ask if fi is paused for σs+1. Either we will eventually see enough 0’s enter
A / fi(A) after some number of stages and be allowed to add a 1, or this will not
happen and fi(A) will be finite. We succeed in both cases.

We say fi is almost paused for σ if there is some k such that fi is paused for
σ0k and σ0k does not put enough zeroes into A / fi(A). Here, to say fi is paused
means we cannot force another 0 into A / fi(A) by only adding 0’s to A. To say fi
is almost paused means we may be able to force some zeroes into A/fi(A), but we
cannot force enough zeroes into A / fi(A). (Being almost paused resembles a Σ0

2

question, but the bound on the number of zeroes necessary reduces it to a question
the jump can answer: we can ask if fi is paused for σs: If so, then it is almost
paused. If not, then extend to σs0

k, where k witnesses that fi is not paused for
σs. This adds a zero to A / fi(A). Now ask if fi is paused for σs0

k and repeat.
Eventually we will either reach a point where it is paused or we will put enough
zeroes into A / fi(A).)

Finally, we describe the construction using this module on all i simultaneously:
at stage s, we consider only the i ≤ s. Using the jump, determine those i which are
almost paused at stage s and ignore them. For the remaining i, we may choose m
large enough such that σs+1 = σs0

m10 puts enough zeroes into A/ fi(A) to ensure
n2 zeroes are enumerated before the n + 1-st 1, where n is the current number of
ones in A / fi(A). As we are ignoring all of the almost paused selection functions,
we can always extend to σs+1 and thus A is infinite. Furthermore, ρ(A/fi(A)) = 0
for all i as either fi(A) is finite or ρn(A/fi(A)) ≤ k+1

k2+k+1 for increasing k. (If there

are k+ 1 ones in |A / fi(A) � n|, then there are at least k2 zeroes between the final
two.) �

This still leaves open MWC-density 1, as it is not a priori obvious that MWC-
density behaves with complements as intrinsic density does. We can easily prove
that it does, however, thus obtaining a non-trivial example of an MWC-density 1
set.
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Lemma 5.3. Let A have MWC-density α. Then A has MWC-density 1− α.

Proof. Let f be a computable monotone selection function. Define f : 2<ω → {0, 1}
via f(σ) = f(1 − σ), where 1 − σ = τ ∈ 2|σ| with τ(n) = 1 − σ(n) for all n < |σ|.
Then f(A � n) = f(A � n). As A has MWC-density α and f is a computable
monotone selection function, either f(A) is finite or ρ(A/f(A)) = α. If the former,
then f(A) is also finite. If the latter, then

A / f(A) = A / f(A) = A / f(A)

Therefore
ρ(A / f(A)) = ρ(A / f(A)) = 1− ρ(A / f(A)) = 1− α

as desired. �

Having obtained the whole unit interval in nontrivial fashion, we now turn to
investigating MWC-density analogs of results from Section 3. The into and within

operations perform in nearly the same fashion.

Lemma 5.4. Suppose C is computable and A has MWC-density α. Then A / C
has MWC-density α.

Proof. Let f be a computable monotone selection function. Define Ĉ : 2<ω → 2<ω

via Ĉ(σ) = τ with τ ∈ 2max(n:cn<|σ|)+1 and τ(i) = σ(ci) for all i < |τ |. Notice that

Ĉ(X � cn) = (X / C) � n by definition.

Now define fC : 2<ω → {0, 1} via fC(σ) = 1 if and only if |σ| = ci for some i and

f(Ĉ(σ)) = 1. As C is computable, Ĉ is computable and thus fC is a computable
monotone selection function. We now show that A / fC(A) = (A / C) / f(A / C).

We shall show that (A / C) / f(A / C) ⊆ A / fC(A) with a sequence of if and
only ifs, therefore proving the reverse as well. n is in (A/C) / f(A/C) if and only
if the n-th element of f(A / C) is in A / C, i.e. the n-th k with f((A / C) � k) = 1
is in A / C. This occurs if and only if ck ∈ A. Now note that fC(A) is the set of

all ci such that f(Ĉ(A � ci)) = f((A / C) � i) = 1, so k is as above if and only if
ck ∈ fC(A) and ck ∈ A. Note that ck must be the n-th element of fC(A) because
k was the n-th number with f((A / C) � k) = 1, so n ∈ A / fC(A).

As A has MWC-density α,

ρ((A / C) / f(A / C)) = ρ(A / fC(A)) = α

As f was arbitrary, A / C also has MWC-density α. �

To prove the analog of Theorem 3.7 for MWC-density, we require more relativiza-
tion. We shall see that this is a theme with MWC-density compared to intrinsic
density. Unlike intrinsic density, where the selection and interpretation functions
act independently of the input set, MWC-density can change the selected bits based
on finitely much of the input set. This means that if B is related to A in some
predictable fashion, then a monotone selection rule may be able to use information
from B to predict bits of A. Assuming the sets have MWC-density relative to each
other will avoid this issue as using B as an oracle will allow us to simulate an in-
put set involving B, and vice versa for A. We shall see some consequences of this
distinction after Theorem 5.6. To prove this theorem, however, we shall require
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the following technical observation. The proof is merely obtained by unraveling
definitions, but we provide it for clarity as the definitions can be cumbersome.

Lemma 5.5. Let A, B and C be sets. Then

(A / C) / (B / C) = A / (B ∩ C)

Proof. By definition,

A / (B ∩ C) = {n : pB∩C(n) ∈ A}
That is, it is the set of all n such that the n-th element of B ∩ C is in A.

Similarly, by definition

(A / C) / (B / C) = {n : pB/C(n) ∈ A / C}
That is, it is the set of all n such that the n-th element of B / C is in A / C.
However, if k ∈ A / C for some k, this by definition means ck ∈ A. Therefore if
n ∈ (A / C) / (B / C), this translates to cpB/C(n) ∈ A. As pB/C(n) is the n-th
element of B / C, cpB/C(n) is the n-th element of C which is in B. Another way to
phrase this is that cpB/C(n) is the n-th element of B ∩ C. This confirms that the
sets are identical. �

It is worth noting a corollary of this lemma which we will not need yet is not
obvious at first glance: As intersection is symmetric,

A / (B ∩ C) = A / (C ∩B)

Therefore applying Lemma 5.5 once on each side tells us that

(A / C) / (B / C) = (A / B) / (C / B)

Now we are ready to prove the analog of Theorem 3.7.

Theorem 5.6. Suppose that A has MWC-density α relative to B and B has MWC-
density β relative to A. Then B . A has MWC-density αβ.

Proof. The proof is similar to the proof of Theorem 3.7, however there is an extra
consideration for MWC-density because the selected bits can depend on the input.
In Theorem 3.7, π(B . A) is a subset of π(A), so we send B to π(B . A) / π(A)
(modulo a set of density zero) and apply Lemma 3.5. However, we don’t know in
general if A/f(A) contains (B.A)/f(B.A) because f(B.A) need not be a subset
of f(A), so we first construct a B-computable monotone selection function fB such
that fB(A) = f(B .A) and therefore A/ fB(A) is a superset of (B .A) / f(B .A).
Then because A has MWC-density α relative to B, A / fB(A) will have density
α. From there we shall borrow the proof idea of Theorem 3.7, namely we shall
construct an A-computable monotone selection function fA such that

B / fA(B) = ((B . A) / f(B . A)) / (A / fB(A))

Again, as B has MWC-density β with respect to A, B / fA(B) will have density β.
We may then apply Lemma 3.5 to show that (B . A) / f(B . A) has density αβ as
desired.

Formally, let f be a computable monotone selection function. If f(B.A) is finite or
undefined, we are done. If not, define fB : 2<ω → {0, 1} via fB(σ) = f(B.σ), where
B.σ ∈ 2|σ| is defined as one might expect: B.σ(n) = 1 if and only if σ(n) = 1 and
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n is the bi’th m such that σ(m) = 1 for some i ∈ ω. As (X . Y ) � n = X . (Y � n),
it is immediate that

fB(A) = {n : fB(A � n) = 1} = {n : f(B . (A � n)) = 1} =

{n : f((B . A) � n) = 1} = f(B . A)

Therefore, as B . A ⊆ A,

(B . A) / f(B . A) = (B . A) / fB(A) ⊆ A / fB(A)

Let

X = ((B . A) / f(B . A)) / (A / f(B . A))

We shall construct an A-computable monotone selection function fA such that
B / fA(B) = X via Lemma 5.5.

Let fA : 2<ω → {0, 1} be defined via fA(σ) = f(σ . A), where σ . A = τ ∈ 2a|σ| is
defined via τ(n) = 1 if and only if n = am and σ(m) = 1 for some m < |σ|. We
now claim that B / fA(B) = (B . A) / (A ∩ f(B . A)).

If n ∈ (B / A) / (A ∩ f(B . A)), then the n-th element of A ∩ f(B . A) is in
B . A by the definition of the within operation. This implies it is of the form am
for m ∈ B, where m is the n-th number k such that ak ∈ A ∩ f(B . A). As am is
in f(B . A), by the definition of fA this implies that m is the n-th number with

f((B . A) � am) = f((B � m) . A) = fA(B � m) = 1

Thus m is the n-th element of fA(B), and it lies in B, so m = pfA(B)(n) ∈ B.
Therefore n ∈ B / fA(B). As n was arbitrary,

(B / A) / (A ∩ f(B . A)) ⊆ B / fA(B)

This argument reverses, so B = (B . A) / (A ∩ f(B . A)).

Therefore,

X = ((B . A) / f(B . A)) / (A / f(B . A)) = (B . A) / (A ∩ f(B . A)) = B / fA(B)

The first equality is by definition, the second is by Lemma 5.5, and the final is from
the previous paragraph. This implies

X . (A / fB(A)) = (B / fA(B)) . (A / fB(A))

As A has MWC-density α with respect to B and fB(A) = f(B.A), ρ(A/f(B.A)) =
α. As B has MWC-density β with respect to A, ρ(B / fA(B)) = β. Therefore by
Lemma 3.5,

ρ((B / fA(B)) . (A / f(B . A))) = ρ(B / fA(B))ρ(A / f(B . A)) = αβ

Finally, recall from the definition of X that X . (A/f(B .A)) = (B .A)/f(B .A).
Therefore

ρ((B . A) / f(B . A)) = ρ(X . (A / f(B . A))) = αβ

as desired. �
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Following Theorem 3.7, we were able to obtain as an easy corollary that if A
has intrinsic density α and B has intrinsic density β relative to A, then A ∩B has
intrinsic density αβ. The proof simply observed that B / A had intrinsic density
β relative to A via the relativized form of Theorem 3.3 and then applied Theorem
3.7 because (B / A) . A = A ∩B.

Unfortunately, the same proof is not guaranteed to work in the MWC-density case.
Theorem 5.6 requires relativization in both directions, and while the relativized
form of Theorem 5.4 ensures that B / A has MWC-density β relative to A, it does
not ensure that A has MWC-density α relative to B / A, so we cannot apply The-
orem 5.6 as we wish. This remains an open question which we shall state fully in
Question 6.4.

Fortunately, we can recover the intersection property for relatively MWC-dense
sets using an alternate proof.

Lemma 5.7. If A has MWC-density α relative to B and B has MWC-density β
relative to A, then A ∩B has MWC-density αβ.

Proof. Let f be a computable monotone selection function. If f(A ∩ B) is finite,
then we are done. Otherwise, consider (A∩B)/f(A∩B). Define the B-computable
monotone selection function fB : 2<ω → {0, 1} via fB(σ) = 1 if and only if f(σ ∩
B) = 1, where σ ∩ B = τ ∈ 2|σ| is given by τ(n) = 1 if and only if σ(n) = 1 and
B(n) = 1. Then clearly fB(A) = f(A∩B), so A/fB(A) = A/f(A∩B). As A has
MWC-density α relative to B,

ρ(A / fB(A)) = ρ(A / f(A ∩B)) = α

We shall now construct an A-computable monotone selection function fA such that

B / fA(B) = (B / f(A ∩B)) / (A / f(A ∩B))

via Lemma 5.5.

Define fA : 2<ω → {0, 1} via fA(σ) = 1 if and only if f(A ∩ σ) = 1 and |σ| ∈ A,
where A ∩ σ is defined similarly to σ ∩ B in the obvious way. Then it follows
immediately that fA(B) = A ∩ f(A ∩B), so

B / fA(B) = B / (A ∩ f(A ∩B)

By Lemma 5.5,

B / (A ∩ f(A ∩B) = (B / f(A ∩B)) / (A / f(A ∩B))

Therefore by the properties of the within operation we have that

(B / fA(B)) . (A / fB(A)) = (B / f(A ∩B)) / (A / f(A ∩B)) . (A / f(A ∩B)) =

(B / f(A ∩B)) ∩ (A / f(A ∩B)) = (A ∩B) / f(A ∩B)

By Lemma 3.5,

ρ((B / fA(B)) . (A / fB(A)) = ρ((A ∩B) / f(A ∩B)) = αβ

As f was arbitrary, A ∩B has MWC-density αβ. �
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As we have seen, the into and within operations behave similarly for both
MWC-density and intrinsic density. However, this seems to be a statement on the
usefulness of these tools rather than a statement about the similarities between the
two types of density. Below we shall see that more common set operations behave
quite differently between the two notions.

Where Lemma 4.1 says that in a specific sense intrinsic density is ignorant of (com-
putable) internal structure, the opposite is true of MWC-density. In fact, the analog
of Lemma 4.1 for MWC-density fails in very strong fashion.

Lemma 5.8. Suppose that A has MWC-density α for 0 ≤ α < 1. Then A⊕A does
not have MWC-density.

Proof. Let E be the set of even numbers and let O be the set of odd numbers.
Define f : 2<ω → {0, 1} via f(σ) = 1 if |σ| ∈ O and σ(|σ| − 1) = 1 and f(σ) = 0
otherwise. Then for any A, f(A⊕A) = A . O. Therefore

(A⊕A) / f(A⊕A) = (A⊕A) / (A . O) = ω

so

ρ((A⊕A) / f(A⊕A)) = 1

However as A has MWC-density α < 1, it has density α and A ⊕ A has density
α. Therefore A⊕ A cannot have MWC-density as its asymptotic density does not
match the density of (A⊕A) / f(A⊕A). �

Not only does the join fail to behave for MWC-density, but we shall in fact see
that the union does not behave either. The difficulty lies in the fact that the bits
selected by f on A t B need not be the union of the bits selected by f on A and
the bits selected by f on B in general. On one hand, it is not difficult to prove
that if A has MWC-density α relative to B and B has MWC-density β relative to
A with A and B disjoint, then A t B has MWC-density α + β: given a monotone
selection function f , there is a B-computable monotone selection function fB such
that fB(A) = f(AtB) and similarly there is an A-computable monotone selection
function fA such that fA(B) = f(A tB). Then

(AtB) / f(AtB) = (A/ f(AtB))t (B / f(AtB)) = (A/ fB(A))t (B / fA(B))

by the properties of the within operation. Therefore

ρ((A tB) / f(A tB)) = ρ(A / fB(A)) + ρ(B / fA(B)) = α+ β

However, Lemma 5.7 ensures that A∩B = ∅ implies that one of A or B has MWC-
density 0 under these assumptions, so this result cannot be used to obtain new
MWC-densities as the disjoint unions of sets with others.

One may think to drop the requirements that A and B have MWC-density rel-
ative to one another, therefore disallowing the use of Lemma 5.7 and avoiding this
problem. However, the union still need not have MWC-density. The following
lemmas will allow us to construct such an example.

Lemma 5.9. If A has MWC-density 0 and g is an increasing, total, computable
function, then B = {an + g(n) : n ∈ ω} also has MWC-density 0.
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Proof. We argue by contrapositive. Let f be a monotone selection function such

that ρ(B / f(B)) > 0. We shall construct a monotone selection function f̂ such

that ρ(A / f̂(A)) ≥ ρ(B / f(B)) > 0.

Given σ ∈ 2<ω, let σ0 < σ1 < · · · < σk represent all indices on which σ is 1.
Define g(σ) to be τ ∈ 2|σ|+g(k+1) with τ(i) = 1 if and only if i = σj + g(j) for some

j ≤ k. Finally, define f̂ : 2<ω → {0, 1} via f̂(σ) = 1 if and only if f(g(σ)) = 1.
Suppose that n ∈ B /f(B). Then pf(B)(n) = ak + g(k) for some k ∈ ω. In particu-
lar, f(B � ak + g(k)) = 1. Therefore, as g(A � ak) = B � ak + g(k) by the definition
of g(σ), we have

f̂(A � ak) = f(g(A � ak)) = f(B � ak + g(k)) = 1

Finally, notice that the m such that pf̂(A)(m) = ak must be less than or equal to n

because each element of f̂(A) corresponds to an element of f(B) but not necessarily

vice versa. It follows that ρ(A / f̂(A)) ≥ ρ(B / f(B)), as each element of B / f(B)

corresponds to an element of A / f̂(A) which is no larger. As ρ(B / f(B)) > 0, we
are done. �

Lemma 5.10. There exists a set A such that A and A.A both have MWC-density,
but A t (A . A) does not.

Proof. By Lemma 5.2, there is an infinite set X with MWC-density 0. By Lemma
5.9, A = {xn + n2 : n ∈ ω} also has MWC-density 0. Notice that

an+1 − an = xn+1 + (n+ 1)2 − xn − n2 = xn+1 − xn + 2n+ 1 > 2n+ 1

It follows that the an-th element of A is an + n+ 1. (The only way this could not
be the case is if an+1 ≤ an + n+ 1.) Therefore A . A = {an + n+ 1 : n ∈ ω}, so it
has MWC-density 0 by Lemma 5.9.

Let f : 2<ω → {0, 1} be defined via f(σ) = 1 if and only if m < |σ| is the largest
number with σ(m) = 1, σ has 2k+1 1’s, and |σ| = m+k+1. It is immediate that f
is a total monotone selection function, and furthermore f(At (A.A)) = A.A: by
the above, At (A.A) alternates between elements of A and elements of A.A. The
elements of A signal where elements of A . A will sit, allowing f to select exactly
those elements. Therefore

(A t (A . A)) / f(A t (A . A)) = (A t (A . A)) / (A . A) = ω

Thus A t (A . A) does not have MWC-density 0. However, it has density 0 as the
union of two sets of density 0, so it does not have MWC-density. �

This shows that disjoint unions in general need not sum MWC-densities. How-
ever, our example is of two sets with MWC-density 0, and rely on the fact that they
are spread out nontrivially. Is it possible to find an example with sets of positive
MWC-density? It turns out that the answer is yes. Bienvenu [Personal Communi-
cation] shared the following argument: We shall construct disjoint A and B with
both having MWC-density 1

2 but AtB does not have MWC-density 1. With prob-

ability 1
n , keep both 2n and 2n + 1 out of both A and B. For all naturals m not

explicitly excluded, with independent probability 1
2 put m into A and put it into B

if it does not enter A. Then with probability 1, A and B both have MWC-density 1
2

but A tB does not have MWC-density 1 because the monotone selection function
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which selects any bit following to bits that appear as why 10 will always select a
0. (This will be infinite by the effective version of the second Borel-Cantelli lemma.)

Another potential solution to the problem of misbehaving unions is to remove the re-
quirement that the sets be disjoint: if A has MWC-density α relative to B and B has
MWC-density β relative to A, then must A∪B have MWC-density α+β−αβ? (The
inclusion-exclusion principle implies that ρn(A∪B) = ρn(A) + ρn(B)− ρn(A∩B).
Together with Lemma 5.7, this suggests that the MWC-density of A ∪ B must be
α+ β − αβ if it has MWC-density at all.) It turns out that this is true.

Lemma 5.11. Suppose A has MWC-density α relative to B and B has MWC-
density β relative to A. Then A ∪B has MWC-density α+ β − αβ.

Proof. Let f be a computable monotone selection function. If f(A ∪ B) is finite,
we are done. Otherwise, consider (A ∪B) / f(A ∪B). By definition,

ρ((A ∪B) / f(A ∪B)) = lim
n→∞

ρn((A ∪B) / f(A ∪B))

By the inclusion-exclusion principle and the properties of the within operation,

ρn((A∪B)/f(A∪B)) = ρn(A/f(A∪B))+ρn(B/f(A∪B))−ρn((A∩B)/f(A∪B))

Let fA : 2<ω → {0, 1} be defined via f(σ) = 1 if and only if f(σ ∪ A) = 1, where
σ ∪ A = τ ∈ 2|σ| with τ(n) = 1 if and only if σ(n) = 1 or A(n) = 1. Let fB be
defined similarly for B in place of A.

As A has MWC-density α relative to B and B has MWC-density β relative to
A,

ρ(A / fB(A)) = ρ(A / f(A ∪B)) = lim
n→∞

ρn(A / f(A ∪B)) = α

and
ρ(B / fA(B)) = ρ(B / f(A ∪B)) = lim

n→∞
ρn(B / f(A ∪B)) = β

Therefore, what remains is to use an argument similar to that for Lemma 5.7 to
handle the intersection.

Define f̂A : 2<ω → {0, 1} via f̂A(σ) = 1 if and only if fA(σ) = 1 and |σ| ∈ A.
Then it follows immediately that

f̂A(B) = A ∩ fA(B) = A ∩ f(A ∪B)

so
B / f̂A(B) = B / (A ∩ f(A ∪B)

By Lemma 5.5,

B / (A ∩ f(A ∪B) = (B / f(A ∪B)) / (A / f(A ∪B))

Therefore by the same argument as in Lemma 5.7 we have

ρ((B / fA(B)) . (A / fB(A)) = ρ((A ∩B) / f(A ∪B)) = αβ

Thus we have limn→∞ ρn((A ∩B) / f(A ∪B)) = αβ, and it follows that

ρ((A ∪B) / f(A ∪B)) =

lim
n→∞

ρn(A/f(A∪B))+ lim
n→∞

ρn(B/f(A∪B))− lim
n→∞

ρn((A∩B)/f(A∪B)) = α+β−αβ

as desired. As f was arbitrary, A ∪B has MWC-density α+ β − αβ. �
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In addition to the general union, we can show that a specific type of disjoint
union combines MWC-densities in the same way. The format and disjointness of
this special form is more useful for our attempts to translate the proof of Corollary
3.10 to MWC-density. While Lemma 5.1 showed that MWC-density achieves every
real in the unit interval, we would still like to be able to generalize Corollary 3.10.
We shall discuss the attempts to translate this proof into the MWC-density case
and why they fall short. We start by introducing our special case of disjoint union.

Lemma 5.12. Suppose that A has MWC-density α relative to B and B has MWC-
density β relative to A. Then At(B.A) has MWC-density α+β(1−α) = α+β−αβ.

Proof. Let f be a monotone selection function. We wish to show that

ρ((A t (B . A) / f(A t (B . A))) = α+ β − αβ

By the properties of the within operation,

(A t (B . A) / f(A t (B . A)) = (A / f(A t (B . A))) t ((B . A) / f(A t (B . A)))

so

ρ((At(B.A)/f(At(B.A))) = ρ((A/f(At(B.A))))+ρ(((B.A)/f(At(B.A))))

Therefore, we shall first construct a B-computable monotone selection function fB
such that fB(A) = f(A t (B . A)). Then

A / f(A t (B . A)) = A / fB(A)

and therefore because A has MWC-density α with respect to B, we have

ρ(A / f(A t (B . A))) = ρ(A / fB(A)) = α

Define fB : 2<ω → {0, 1} via fB(σ) = 1 if and only if f(σ t (B . σ)) = 1, where
σt(B.σ) is defined to be τ ∈ 2|σ| with τ(k) = 1 if and only if σ(k) = 1 or k is the bi-
th 0 in σ for some i. From this definition, it is immediate that fB(A) = f(At(B.A))
as desired.

It remains to show that

ρ((B . A) / f(A t (B . A))) = β(1− α) = β − βα

We would like to use Theorem 5.6 here, however we cannot because B.A w not have
MWC-density relative to A. To fix this, we will mimic the proof of Theorem 5.6,
that is we shall construct a B-computable monotone selection function gB such that
gB(A) = f(At(B.A)). Then A/gB(A) will be a superset of (B.A)/f(At(B.A))
with density 1−α because A has MWC-density α relative to B. Then there is some
X such that

X . (A / gB(A)) = (B . A) / f(A t (B . A))

Finally, it suffices to construct an A-computable monotone selection function gA
such that B / gA(B) = X: X will then have density β due to the fact that B has
MWC-density β relative to A and Lemma 3.5 will ensure that

ρ((B . A) / f(A t (B . A))) = ρ(X . (A / gB(A))) = β(1− α)

as desired.
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Define gB : 2<ω → {0, 1} via gB(σ) = 1 if and only if fB(σ) = 1, where σ is
defined to be τ ∈ 2|σ| with τ(k) = 1 if and only if σ(k) = 0. Then

gB(A) = fB(A) = f(A t (B . A))

Let gA : 2<ω → {0, 1} be defined via gA(σ) = f(A t (σ . A), where A t (σ . A) =
τ ∈ 2pA(|σ|) is defined via τ(n) = 1 if and only if n ∈ A or n = pA(k) for some
k < |σ| and σ(k) = 1. We now claim that B / gA(B) = X.

Recall that X is

((B . A) / f(A t (B . A))) / (A / gB(A))

As mentioned above, gB(A) = f(A t (B . A)), so we may apply Lemma 5.5 to
obtain

X = (B . A) / (A ∩ f(A t (B . A)))

Suppose n ∈ X. By the definition of X,

pA∩f(At(B.A))(n) ∈ B . A

That is, the n-th element of A ∩ f(A t (B . A)) is in B . A. Therefore, it is
of the form pA(bk) for some k. Furthermore, pA(bk) ∈ f(A t (B . A)), so by

definition f((A t (B . A)) � pA(bk)) = 1. This then implies, by the definition of

gA, that gA(B � bk) = 1. Therefore bk ∈ gA(B), and p−1gA(B)(bk) ∈ B / fA(B).

Finally, note that p−1gA(B)(bk) = n because every element of gA(B) is an element of

A∩f(At(B.A)) by definition, and bk corresponds to the n-th such one. Therefore
n ∈ B / gA(B). This argument reverses, so B / gA(B) = X. �

Note that if A has MWC-density α relative to B and B /A (whether this latter
relativization is implied by the other conditions is essentially Question 6.4) and B
has MWC-density β relative to A, then Lemma 5.11 can be obtained as an easy
corollary of Lemma 5.12:

A ∪B = A t (B ∩A) = A t ((B / A) . A)

Lemma 5.1 relativizes in straightforward fashion. As a result, the proof of Lemma
3.9 immediately lifts to prove an analog for MWC-density: There is a disjoint se-
quence of sets {Ai}i∈ω such that each Ai has MWC-density 1

2i+1 relative to the
others which can be obtained using the into operation and Van Lambalgen’s The-
orem. (Theorem 5.6 requires more relativization than Theorem 3.7, but the fact
that Theorem 5.6 itself relativizes ensures that the same proof technique applies.)

Unfortunately, the fact that unions do not preserve MWC-density in general means
that given a real r, we do not know that the infinite union of the Ai’s corresponding
to the binary expansion of r will have MWC-Density. In the finite case, however,
Lemma 5.12 will ensure the union has the desired MWC-density.

Lemma 5.13. Let X be 1-Random and let {Ai}i∈ω be constructed from X as in
Lemma 3.9. If D is a finite set of natural numbers, then

⊔
i∈D Ai is X-computable

and has MWC-density Σi∈D
1

2i+1 .

Proof. Essentially, each
⊔
i∈D Ai is composed of finitely many unions of the form

found in Lemma 5.12 and finitely many applications of the into operation. Van
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Lambalgen’s theorem will ensure we have all of the necessary relativizations neces-
sary to use Lemma 5.12 and Theorem 5.6 to reduce the number of unions by one.
Combined with induction on the size of the union, this will prove the result.

Recall that we defined A0 = X [0] and

Ai = X [i] . X [i−1] . . . . . X [0]

for i > 0. Therefore ⊔
i∈D

Ai =
⊔
i∈D

X [i] . X [i−1] . . . . . X [0]

(If i = 0 or i = 1 then we take X [i−1] . . . . . X [0] to mean ω and X [0] respectively
to ensure that this does indeed match the definition of Ai from Lemma 3.9.)

We argue by induction on the size of D. If D is a singleton, then its member is of

the form X [i].X [i−1].. . ..X [0] for some i. By Van Lambalgen’s Theorem, each X [j]

is 1-Random relative to the join of the others, and therefore by Lemma 5.1 each

has MWC-density 1
2 relative to the join of the others. Thus X [i] .X [i−1] . . . . .X [0]

has MWC-density 1
2i+1 by Theorem 5.6. This concludes the base case.

Now suppose it holds that for any 1-Random X and any finite set D of size
less than or equal to n,

⊔
i∈D Ai has MWC-density Σi∈D

1
2i+1 . Now suppose D

has size n + 1. First consider the case when 0 ∈ D. Then using the fact that
(A tB) . C = (A . C) t (B . C) and the associativity of the into operation,⊔

i∈D
Ai = X [0] t (

⊔
i∈D,i>0

X [i] . X [i−1] . . . . . X [0]) =

X [0] t ((
⊔

i∈D,i>0

X [i] . X [i−1] . . . .X [1]) . X [0])

Let Y be defined via Y [i] = X [i+1]. Y is 1-Random relative to X [0] by Van Lam-
balgen’s Theorem. Thus by the relativized induction hypothesis,⊔

i∈D,i>0

X [i] . X [i−1] . . . .X [1] =
⊔

i∈D,i>0

Y [i−1] . Y [i−2] . . . . Y [0]

has MWC-density Σi∈D,i>0
1
2i relative to X [0]. Finally, Lemma 5.12 then implies

that

X [0] t ((
⊔

i∈D,i>0

X [i] . X [i−1] . . . .X [1]) . X [0])

has MWC-density

1

2
+ ( Σ

i∈D,i>0

1

2i
)(1− 1

2
) =

1

2
+ ( Σ

i∈D,i>0

1

2i+1
) = Σ

i∈D

1

2i+1

as desired.

Now suppose that j > 0 is the least element of D. Then we have⊔
i∈D

Ai = (X [j] . X [j−1] . . . . . X [0]) t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [0]) =
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(X [j] .(X [j−1] .. . ..X [0]))t(
⊔

i∈D,i>j
(X [i] .X [i−1] .. . ..X [j]).(X [j−1] .. . ..X [0])) =

(X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j])) . (X [j−1] . . . . . X [0])

Let Y be defined via Y [i] = Y [i+j] and D̂ = {n− j : n ∈ D}. Then Y is 1-Random

by Van Lambalgen’s Theorem and D̂ is a set of size n which contains 0. Therefore
we can apply the relativized version of the previous case to see that

X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j]) = Y [0] t (

⊔
i∈D̂,i>0

Y [i] . Y [i−1] . . . . . Y [0])

has MWC-density

Σ
i∈D̂

1

2i+1
= Σ
i∈D

1

2i+1−j = Σ
i∈D

2j

2i+1

relative to X [j−1] . . . . .X [0]. As X [j−1] . . . . .X [0] has MWC-density 1
2j relative to

X [j]t(
⊔
i∈D,i>j X

[i] .X [i−1] .. . ..X [j]) by Van Lambalgen’s Theorem and multiple
iterations of the relativized form of Theorem 5.6, it follows that

(X [j] t (
⊔

i∈D,i>j
X [i] . X [i−1] . . . . . X [j])) . (X [j−1] . . . . . X [0])

has MWC-density

( Σ
i∈D

2j

2i+1
)

1

2j
= Σ
i∈D

1

2i+1

as desired. This completes the induction. �

Unfortunately, it remains open whether or not this can be extended to infinite
unions of this form, which is Question 6.5 below. The difficulty lies once again in
the fact that the input set can change which bits are and are not selected. In theory,
given any 0 < r < 1 and the set coding its binary expansion Br as in Corollary
3.10, for any ε > 0 there exists an N such that

⊔
n∈Br,n<N An / f(

⊔
n∈Br,n<N An)

has MWC-density within ε of r. If we could impose a nice enough uniformity
condition on the An’s, then we may be able to assert that the change from adding
the remaining An’s is no more than ε. In practice, however, elements of Ak may
change which bits are selected by f in non-uniform fashion so that the density
of

⊔
n∈Br,n<N An / f(

⊔
n∈Br,n<N An) is meaningless compared to the density of⊔

n∈Br An / f(
⊔
n∈Br An).

6. Closing Remarks and Questions

We set out to study which reals in the unit interval could be achieved as the
intrinsic density of some set without appealing to the stronger property of random-
ness. To study this, we introduced the into and within operations. These turned
out to be useful tools for coding sets in noncomputable fashion. They formed a
calculus of sorts for intrinsic density, which allowed us to construct sets of arbi-
trary intrinsic density from any 1-Random. We were also able to prove that the
same tools apply to MWC-density and Church-density with slightly stronger re-
quirements, where more common notions like the join and union failed to behave
as we would like. The into operation also showed potential as a tool for studying
classes of Turing degrees.
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We believe there is significant room for future work. We did not investigate full
KL-density in this paper. The methods used for studying MWC-density may work
there as well, although a priori the non-monotonic nature of KL-density requires
more care. Additionally, it is unknown if the into and within operations work
for randomness: i.e. if A is µr-random relative to B and B is µs-random relative
to A, is B . A µrs-random? So far we have exploited the fact that stochasticity
is determined by analyzing i(A) / s(A) and being able to utilize the connection
between the into and within operations. Different methods seem to be necessary
to study how the into operation interacts with martingales and/or ML-tests.

There is a notable open question based on our results. In subsection 3.1, we proved
that the Turing degrees of X-intrinsically small sets (and thus sets of intrinsic den-
sity 1) are closed upwards for all X, and therefore that they coincide with the
X-DNC or X-high degrees. However, it is not clear what the case is for the degrees
of sets with intrinsic density r for r ∈ (0, 1) even in the non-relativized case. To
begin with, the proof that every high or DNC set computes an intrinsically small
set does not generalize to intrinsic density r.

Additionally, we cannot use Lemma 3.11 to show that the degrees are closed up-
wards as sets of intrinsic density r are not closed under subsets for r > 0. How-
ever, there is a similar argument that shows potential. Suppose B ≥T A and
P (A) = r ∈ (0, 1). Then A is of high or DNC degree as it has defined intrinsic den-

sity, so B is also of high or DNC degree. Therefore there is B̂ ≡T B with P (B̂) = 1.

If PA(B̂) = 1, then P (B̂ . A) = r by Theorem 3.7. Therefore A ⊕ (B̂ . A) ≡T B

as in Lemma 3.11, and P (A ⊕ (B̂ . A)) = r by Theorem 4.1. In other words, if
B is sufficiently powerful (high or DNC) relative to a set of intrinsic density r it
computes, then it is Turing equivalent to a set of intrinsic density r. However, for
any B ≥T A not A-high and not A-DNC, we know that B̂ has P (B̂) = 1 but that
PA(B) does not exist. Therefore we cannot apply Theorem 3.7. This motivates the
following open question.

Question 6.1. Suppose P (A) = r and P (B) = 1. Is it the case that P (B.A) = r?

This a weak version of Theorem 3.7. The counterexample to the general weak
form shown in Lemma 4.3 had P (A) = 1

2 , so it does not apply to this special case.
If this is true, then we could apply it in place of Theorem 3.7 to complete the above
argument.

Alternatively, we can formulate this question differently: If P (A) = r and B is
intrinsically small, is B . A intrinsically small? It is worthwhile to note that we
cannot hope for this to be true for arbitrary A: there is an intrinsically small set B
of hyperimmune free degree. Therefore there is total computable f which dominates
pB . Define cn = Σi≤n f(i). Now define

A = [0, b0) ∪ {c0} ∪
⋃
i≥0

(ci, ci + (bi+1 − bi)) ∪ {ci+1}

Then we will have B . A = C is not intrinsically small. Thus there must be some
requirement on A for this to be true.

We close by stating some open questions of a more technical nature relating to
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our various results.

For intrinsic density, we proved that P (A/C) = α if C is computable and P (A) = α.
It is known that C /A does not necessarily have intrinsic density in general as wit-
nessed by A = ω, which leads to the following question.

Question 6.2. Are there conditions on A such that, for computable C, C / A has
intrinsic density?

For a discussion on the applications of this question, see the end of Section 4.

In proving Theorem 5.6, we used more relativization than was necessary in the
intrinsic density analog Theorem 3.7. However, it is not known whether this is
necessary or merely useful.

Question 6.3. Is the relativization optimal in Theorem 5.6? That is, are there sets
A and B such that B has MWC-density β relative to A and A has MWC-density
α but B . A does not have MWC-density αβ?

The same proof that showed the relativization used in Theorem 3.7 is optimal
will not work for Theorem 5.6 because A⊕A will not have MWC-density.

We could not directly lift the proof that the intersection of two intrinsically dense
sets multiplied the intrinsic densities of the sets to the case of MWC-density due to
different relativization requirements between Theorem 3.7 and its analog Theorem
5.6. A positive resolution to the following question would allow us to do this.

Question 6.4. If A has MWC-density α and C is computable, does A have MWC-
density α relative to C / A? If so, does this relativize? If this is not true, is it
at least the case that whenever A has MWC-density α relative to B and B has
MWC-density relative to A, does A have MWC-density α relative to B / A?

Our usual techniques do not suffice to answer this question, as they are focused on
using oracles, or relativized information, to answer questions about non-relativized
MWC-density. This question requires us to answer a question about MWC-density
relative to a specific set using non-relativized information.

If this is true and relativizes, or the weaker formulation is true, then whenever
A has MWC-density α relative to B and B has MWC-density β relative to A,
A∩B would have MWC-density αβ as a corollary of Theorem 5.6 and A∪B would
have MWC-density α+ β − αβ as a corollary of Lemma 5.12. (Recall that both of
these facts are true, but they required separate proofs.)

At the end of Section 5, we discussed the difficulty in translating the proof of
Corollary 3.10 into the intrinsic density case.

Question 6.5. Given a sequence {An}n∈ω as constructed in Lemma 3.9, let 0 <
r < 1 and let Br be the set representing its binary sequence. Does

⊔
n∈Br An have

MWC-density r? If not in general, are there additional requirements we can put on
the sequence to force this to be true?

We say X is range sotchastic for r if fρ(f(A) / range(f)) = r for all total
computable injective functions f .
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Question 6.6. Is it the case that every set of intrinsic density α has range-density
α? That is, for any set A with intrinsic density α, is it the case that f(A)/range(f)
has density α for all total computable injective functions f?

Note that this is similar to a question asked by the author in [15]: is it the case
that for every intrinsically small set A and total computable injective function f ,
f(A) is intrinsically small?
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