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Abstract

Recent work in computability theory has focused on various notions of
asymptotic computability, which capture the idea of a set being “almost
computable.” One potentially upsetting result is that all four notions
of asymptotic computability admit “almost computable” sets in every
Turing degree via coding tricks, contradicting the notion that “almost
computable” sets should be computationally close to the computable sets.
In response, Astor introduced the notion of intrinsic density: a set has
defined intrinsic density if its image under any computable permutation
has the same asymptotic density. Furthermore, introduced various notions
of intrinsic computation in which the standard coding tricks cannot be
used to embed intrinsically computable sets in every Turing degree. Our
goal is to study the sets which are intrinsically small, i.e. those that have
intrinsic density zero. We begin by studying which computable functions
preserve intrinsic smallness. We also show that intrinsic smallness and
hyperimmunity are computationally independent notions of smallness, i.e.
any hyperimmune degree contains a Turing-equivalent hyperimmune set
which is “as large as possible” and therefore not intrinsically small. Our
discussion concludes by relativizing the notion of intrinsic smallness and
discussing intrinsic computability as it relates to our study of intrinsic
smallness.

Keywords: intrinsic computability, intrinsic density, asymptotic computa-
tion, hyperimmunity, weakly computably traceable

1 Introduction

A noteworthy phenomenon in the world of computing is that of problems which
are generally “easy” to compute but have very difficult worst case instances.
This gave rise to the notion of generic computability, studied by Kapovich,
Myasnikov, Schupp, and Shpilrain [9] in the context of computing the word
problems of finitely generated groups. This notion asserts that a set is com-
putable outside of a “small” error set where the algorithm does not answer.
The notion of smallness here is that of having asymptotic density 0:
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Definition 1.1. The partial density of A ⊆ ω at n is

ρn(A) =
|A � n|
n

.

That is, it is the ratio of the number of things less than n that are in A to what
could be in A. The upper (asymptotic) density of A is

ρ(A) = lim sup
n→∞

ρn(A)

and the lower (asymptotic) density of A is

ρ(A) = lim inf
n→∞

ρn(A).

If ρ(A) = ρ(A), we call this limit the (asymptotic) density of A and denote it
by ρ(A).

Recall that We is the domain of the e-th Turing machine ϕe.

Definition 1.2. A set A is generically computable if there is a partial com-
putable function ϕe such that ρ(We) = 1 and if ϕe(n) ↓, then ϕe(n) = A(n). ϕe
is called a generic description of A.

We think of generically computable sets as being computable “almost every-
where,” i.e. there is an algorithm that correctly answers questions on a set of
density 1, but does not answer on a small (density 0) error set. Here the error
set is the set of n on which the description diverges. By changing the behavior
of the generic description from diverging to something else, we obtain the other
three notions of generic computability.

Definition 1.3. A set A is coarsely computable if there is a total computable
function ϕe such that ρ({n : ϕe(n) = A(n)}) = 1. ϕe is called a coarse descrip-
tion of A.

For coarse computability, the description is forced to answer every question,
but is allowed to give the incorrect answer on the error set. That is, the error
set is the set of numbers on which the description and the set disagree.

Definition 1.4. A set A is densely computable if there is a partial computable
function ϕe such that ρ({n : ϕe(n) ↓= A(n)}) = 1. ϕe is called a dense descrip-
tion of A.

For dense computability, the description can both answer questions incor-
rectly and not answer them on the error set. More specifically, the error set is
both the places where the description diverges and the places where it disagrees
with the set.

Definition 1.5. A set A is effectively densely computable if there is a to-
tal computable function ϕe : ω → {0, 1,�} such that ρ(ϕ−1e ({0, 1})) = 1 and
ϕe(n) ∈ {0, 1} implies ϕe(n) = A(n). ( � represents ϕe(n) refusing to answer
whether n is in or out of the set.)

2



Effective dense computability need not answer questions on the error set
much like generic computability, but it must refuse to do so outright rather
than running for infinite time. (That is, the error set, which is the inverse im-
age of � under the description, must be computable.) Note that there are some
immediate implications among these notions. Effective dense computability im-
plies both coarse computability and generic computability, and both of these
imply dense computability. For an overview of the history of these notions,
refer to the first section of [4].

One potentially unsettling feature of all four notions of asymptotic computabil-
ity is that they depend heavily on the way in which information is coded. In
fact, Jockusch and Schupp [8] give a simple argument that can show every Tur-
ing degree contains a set which is effectively densely computable by “hiding”
an entire set of any degree on a small computable set such as the factorial. (As
the other three notions are implied by effective dense computability, the same
is automatically true for every notion of asymptotic computability.)

Proposition 1.6. Let X ⊆ ω. Then there is A ≡T X which is effectively
densely computable.

Proof. Given X, let A = {n! : n ∈ X}. Then A is clearly Turing equivalent to
X, and the function

f(n) =

{
� if n = k!

0 otherwise

witnesses that A is effectively densely computable.

Therefore, these notions of being “almost” computable are heavily dependent
upon how the set is coded: computably re-arranging the elements of a set can
break the property of being “almost computable.” To combat this, Astor [2]
introduced the notion of intrinsic density, a strengthening of asymptotic density.
Let Perm be the index set of computable permutations of ω.

Definition 1.7. The absolute upper density of A ⊆ ω is

P (A) = sup{ρ(π(A)) : π a computable permutation}

and the absolute lower density of A is

P (A) = inf{ρ(π(A)) : π a computable permutation}.

If P (A) = P (A), then we call this limit the intrinsic density of A and denote it
by P (A).

(In particular, if A has intrinsic density 0, then ρ(π(A)) = 0 for every com-
putable permutation. Furthermore, P (A) = 0 is enough to ensure A has intrinsic
density zero.) Of special interest is the property of having intrinsic density 0,
which has been studied extensively by Astor [2],[3] in relation with other notions
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of smallness such as immunity. We will refer to sets that have intrinsic density
0 as intrinsically small to ease notation slightly. Technically finite sets meet
this definition, but from here on we shall use the term to refer to infinite sets as
those are the interesting ones.) We wish to study intrinsically small sets in order
to use them as our error sets in an intrinsic version of asymptotic computability
which we shall discuss in Section 5.

One easy observation about intrinsically small sets is that there are more com-
putable functions f such that ρ(f(A)) = 0 for all intrinsically small sets A than
just the computable permutations. For example, if π is a computable permuta-
tion, then 2·π is not a computable permutation but the image of any intrinsically
small set under it still has density 0. The following definition captures the idea
of classes of functions preserving smallness.

Definition 1.8. For a class F of (partial) computable functions from ω to ω,
we say that A ⊂ ω is small for F if ρ(f(A)) = 0 for every f ∈ F .

Notice that A is intrinsically small if and only if it is small for computable
permutations. In Section 2, we shall explore which classes of functions F have
the property that every intrinsically small set is small for F . This will give rise
to a few questions, which we will study further in Section 3. In Section 4 we
shall describe and explore the relativization of intrinsic smallness.

2 Functions and Intrinsic Density

We first note that not all intrinsically small sets are small for all computable
functions, nor even all total computable functions. To do so, we use the following
lemma:

Lemma 2.1. Let X be a set of natural numbers. Suppose that {Re}e∈ω is a
collection of uniformly X-computable infinite sets. Then there is an intrinsically
small set A ≤ ∅′ ⊕X such that A ∩Re 6= ∅ for all e.

Proof. Note that the index set of injective partial computable functions is ∅′
computable, as the index set of noninjective partial computable functions is Σ0

1.
Therefore there is a ∅′-computable function f such that ϕf(e) is an enumeration
of exactly the injective partial computable functions.

Let A0 = ∅ and r0 = 0. Given As, Rs, define As+1, rs+1 as follows: Using
X as an oracle, find k the least element of Rs with k > rs+1, which exists
because Rs is infinite. Let As+1 = As ∪ {k}. We say e is suitable at stage s
if [0, k] ⊆ dom(ϕf(e)) and [0, 2max(ϕf(e)(As+1)] ⊆ range(ϕf(e)). Notice that ∅′
can compute whether or not e is suitable at stage s uniformly in e and s because
it can ask finitely many questions about convergence. Now let

rs+1 = max{ϕ−1f(e)(i) : e < s suitable at stage s, i ≤ 2max(ϕf(e)(As+1)}+ 1.
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Let A =
⋃
s∈ω As. By construction, A ∩ Rs 6= ∅ because an element of Rs was

added at stage s+ 1. Now let π = ϕf(e) be a computable permutation. Then π
is suitable at every stage because its domain and range are ω. Now let k be the
element added at stage s+2 for some s > e. Then for every i ≤ 2max(π(As+1)),

k > rs+1 > π−1(i).

Therefore π(k) > 2max(π(As+1)). Thus after finitely many elements, each ele-
ment of π(A) is more than double the previous element. It follows immediately
that ρ(π(A)) = 0. As π was an arbitrary computable permutation, A is intrin-
sically small.

We can now show that there is an intrinsically small set which is not small
for total computable functions.

Theorem 2.2. There is a set of intrinsic density 0 which is not small for total
computable functions. That is, there is an intrinsically small set A and a total
computable function f such that ρ(f(A)) > 0.

Proof. As defined by Jockusch and Schupp [8], let Re = {n : 2e|n but 2e+1 6 |n}.
Define f : ω → ω via f(0) = 0 and f(n) = e, where n ∈ Re. (Note that this is
well-defined, as the Re’s form a partition of ω \ {0}.) f is a total computable
function.

By Lemma 2.1, there is an intrinsically small set A such that Re ∩ A 6= ∅
for all e. Then f(A) is cofinite (in fact it is either ω or ω \{0}), and therefore of
intrinsic density 1. (So A catastrophically fails to have density 0 under f .)

We see from this example that the failure of injectivity allowed us to cast a
wide net in search of elements of A and then group them together to create a
set of large density. Below, we shall see that we cannot even limit this to finite
inverse images and preserve the property of being intrinsically small. In fact,
we cannot even limit this to finite inverse images with uniformly computable
size.

We shall need the notion of a hyperimmune set to do this. Recall that a disjoint
strong array is a collection {Df(n)}n∈ω of finite sets coded by a total computable
function f and the canonical indexing of finite sets, where the Df(n)’s are pair-
wise disjoint. A set X is hyperimmune if for every disjoint strong array f , there
exists some n with Df(n) ∩X = ∅.

Theorem 2.3. There is an intrinsically small set which is not small for the
collection of all total computable functions f such that f−1({n}) is finite (and
uniformly computable) for all n. That is, there is an intrinsically small set A
and a total computable function f such that ρ(f(A)) > 0 and a total computable
function g such that g(n) = |f−1({n})| for all n.
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Proof. Astor [3] proved that the Turing degrees which contain an infinite intrin-
sically small set are those which are not weakly computably traceable. Kjos-
Hanssen, Merkle, and Stephan [10] characterized these degrees as those which
are High or DNC.

It is well-known that there is a binary tree for which all paths are of PA degree.
Recall that the PA degrees are exactly the DNC2 degrees. Therefore, by the
hyperimmune-free basis theorem, there is a DNC2 degree that is hyperimmune-
free. (For a review of this information, see Soare [12].) This degree contains a
set A which is intrinsically small by the result of Astor. As A is hyperimmune
free, there exists a disjoint strong array g such that Dg(n) ∩ A 6= ∅ for all n.
Without loss of generality, we can assume that max(Dg(n)) < min(Dg(n+1)) for
all n. (Given a disjoint strong array g, we can construct a new one h as follows:
Dh(0) = Dg(0), and Dh(n+1) is the first cell of the old array whose smallest ele-
ment is larger than the largest element of Dh(n).)

Define f : ω → ω as follows: If n ∈ Dg(k) for some k, let f(n) = 2k. As f is a
disjoint strong array such that max(Dg(n)) < min(Dg(n+1)), this is computable
and well-defined. If n 6∈

⋃
k∈ωDg(k), then let f(n) be the least odd number not

realised as f(m) for some m < n. Therefore f is a total computable function
with |f−1({n})| finite and uniformally computable. (If n = 2k + 1 is odd, then
the inverse image is a singleton. If n = 2k is even, then f−1({2k}) = Dg(k).)
Furthermore, as Dg(n)∩A 6= ∅ for all n, f(A) contains all even numbers. There-

fore ρ(f(A)) ≥ 1
2 .

We see that it is much more difficult for a set to be small for non-injective
classes of functions. However, both examples relied heavily upon the fact that
the functions were not injective. By switching our focus to (mostly) injective
classes of functions, we can describe some classes of functions which any intrin-
sicall small set is small for. First, we provide an easy technical lemma.

Lemma 2.4. Suppose C is an infinite c.e. set. Then there exists an infinite,
computable H ⊆ C with ρ(H) = 0.

Proof. Let {ci}i∈ω be an enumeration of C. Then let {hi}i∈ω be such that
h0 = c0 and given hn, hn+1 = cj , where j is the least index with cj > hn + 2n.
Then H is computable because it is a c.e. set with an increasing enumeration,
and it clearly has density 0.

Theorem 2.5. Suppose that A is an intrinsically small set. Then A is small
for the class of total computable injective functions with computable range.

Proof. We argue by contrapositive: Suppose f is total computable injective
function with computable range, and A is a set with ρ(f(A)) > 0. Then we
construct a computable permutation π such that ρ(π(A)) > 0.

Let H ⊆ range(f) be a computable set of density 0. Now define π : ω → ω
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as follows: If f(n) 6∈ H, π(n) = f(n). If f(n) ∈ H, let π(n) be the least element
of H∪range(f) not realized in the range of π by m < n. Then π is a computable
permutation, and

ρn(π(A)) =
|π(A) � n|

n
≥ |f(A) � n| − |H � n|

n
= ρn(f(A))− ρn(H).

(The inequality comes from the fact that π and f agree on f−1(range(f) \H).)
Therefore, we obtain

ρ(π(A)) ≥ ρ(f(A))− ρ(H) = ρ(f(a)) > 0.

Therefore π is a computable permutation for which ρ(π(A)) > 0, so A is not
intrinsically small.

Note that simpler proofs of Theorem 2.5 exist which do not require us to
create an error set and construct a permutation, however this proof is illustrative
of the techniques we shall use for more difficult proofs.

Corollary 2.6. If A is intrinsically small and f is a total computable injective
function with computable range, then f(A) is intrinsically small.

Proof. This follows from Theorem 2.5 by the fact that π(f(A)) = π ◦ f(A) and
π ◦ f is a total computable injective function with computable range because f
is.

Corollary 2.7. If A and B are intrinsically small, then so is A⊕B.

Proof. If f is the function sending n to 2n, and g is the function sending n
to 2n + 1, then by Corollary 2.6 f(A) and g(B) are both intrinsically small.
It is easy to check that the union of two intrinsically small sets is intrinsically
small, as the permutation of the union is the union of the images under the
permutation. Therefore, A⊕B = f(A) ∪ g(B) is intrinsically small.

We can improve this result. The use of H in the proof allows us to notice that
we can change a subset of density 0 in the range and not suffer any consequences
for preserving intrinsic smallness.

Definition 2.8. A (partial) function f : ω → ω is *-injective, or almost in-
jective, if ρ({n : |f−1({n})| > 1}) = 0. That is, a (partial) function is almost
injective if the subset of the range where injectivity fails has density 0.

Theorem 2.9. Suppose that A is an intrinsically small set. Then A is small
for the class of total computable *-injective functions with computable range.

Proof. We again argue by contrapositive: Suppose f is total computable *-
injective function with computable range, and A is a set with ρ(f(A)) > 0. Then
we construct a total computable injective function g such that ρ(g(A)) > 0 and
invoke Theorem 2.5.
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Let H ⊆ range(f) be infinite, computable, and have density 0. Then define
g(n) = f(n) if f(n) has not been realized in range(g) by some m < n, and to be
the least element of H not realized in range(g) otherwise. Then g is injective,
as g(n) cannot be in range(g � n) for any n by construction. Furthermore,

ρn(g(A)) =
|g(A) � n|

n
≥ |f(A) � n| − |H � n| − |{k : |f−1({k})| > 1} � n|

n
=

ρn(f(A))− ρn(H)− ρn({k : |f−1({k})| > 1)).

This gives

ρ(g(A)) ≥ ρ(f(A))− ρ(H)− ρ({k : |f−1(k)| > 1} = ρ(f(A)) > 0.

Remark. While an intrinsically small set is small for the class of total com-
putable *-injective functions with computable range, the image under such func-
tions is not intrinsically small: Take the set A and function f from the proof
of Theorem 2.3 and let g(n) = 2f(n). Then g is *-injective because its en-
tire image has density zero. However, there is a computable permutation π that
maps image(g) to the non-factorials and the complement to the factorials. Then
π ◦ g(A) is all but finitely many of the non-factorials and is therefore density
one.

To this point, we’ve seen that injectivity almost everywhere has been essen-
tial in allowing all intrinsically small sets to be small for our class of functions.
However, up to this point we’ve also relied heavily on knowing that the range
is computable: if the range is not computable, we may potentially fill in part of
the range that A would have been sent to later. In this case, we’d need to shift
where the elements of A are sent, potentially sending the density to 0 in the
process. As we’ll see below, there are cases in which we can avoid this issue.

Theorem 2.10. Suppose A is a set and f is a *-injective function with ρ(f(A)) =
q > 0 and ρ(range(f)) − ρ(range(f)) < q. Then there is a *-injective function
g with computable range such that ρ(g(A)) > 0.

Proof. As range(f) is c.e., there is a computable subset H of range(f) with
ρ(H) > ρ(range(f))− q by Downey, Jockusch, and Schupp [6]. In particular,

ρ(range(f) \H) ≤ ρ(range(f))− ρ(H) < q.

Define g : ω → ω via g(n) = f(n) if f(n) ∈ H, and g(n) = 0 otherwise. Notice
that g is *-injective, as

{n : |g−1({n})| > 1} ⊆ {n : |f−1({n}| > 1} ∪ {0}.

Furthermore, range(g) = H ∪ {0} is computable. Lastly, notice that

ρn(g(A)) =
|g(A) � n|

n
≥ |f(A) � n| − |{k < n : k 6∈ H and k ∈ f(A)|

n
≥
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|f(A) � n| − |(range(f) \H) � n|
n

= ρn(f(A))− ρn(range(f) \H).

By the above fact that ρ(range(f) \H) ≤ ρ(range(f))− ρ(H) < q,

ρ(g(A)) > ρ(f(A))− q = q − q = 0

That is, ρ(g(A)) > 0.

Corollary 2.11. Suppose that A is an intrinsically small set. Then A is small
for the class of total computable *-injective functions whose range has defined
density.

Proof. We again argue by contrapositive: Suppose f is total computable *-
injective function whose range has defined density, and A is a set with ρ(f(A)) >
0. Then by Theorem 2.10, as ρ(range(f))−ρ(range(f)) = 0, there is a *-injective
function g with computable range such that ρ(g(A)) > 0. The result follows by
Theorem 2.9.

By the remark following the proof of Theorem 2.9, we see that the image of
an intrinsically small set under a total computable *-injective function whose
range has defined density need not be intrinsically small. However if we restrict
ourselves to injective functions, can we recover the analogue of Corollary 2.6?
The same argument does not work, as the image of a c.e. set with defined
density under a computable permutation need not have defined density.

Question 2.1. If A is intrinsically small and f is a total computable injective
function whose range has defined density, then is f(A) intrinsically small?

Additionally, the natural follow-up question to Corollary 2.11 remains open.
This question is closely related to Question 2.1.

Question 2.2. Suppose that A is an intrinsically small set. Is A small for
the class of total computable *-injective functions? Total computable injective
functions?

Notice that if the answer here is yes, then the analogue of Corollary 2.6 for
computable injective functions follows immediately from the same argument.
Therefore a positive answer yields a positive answer to Question 2.1, and a
negative answer to Question 2.1 yields a negative answer to Question 2.2. The
opposite direction also seems closely related, but any implications are not im-
mediately obvious.

Theorems 2.9 and 2.10 help to characterize what must happen in the scenario
where the answer to Question 2.2 is no: The upper and lower density of the
range are relatively far apart, allowing small elements of f(A) to show up at
late stages after any computable process “thinks” range(f) is done enumerating
small elements.

Corollary 2.11 can already be used in conjunction with known results. For
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example, Jockusch (correspondence with Astor) showed that r-maximal sets
have intrinsic density (and therefore density) 1, so the image of any intrinsically
small set under a computable injective function whose range is maximal is small.

3 Hyperimmunity and Intrinsic Smallness

It is important to note that when studying whether or not certain properties
relate to intrinsic smallness, we shall study the sets themselves rather than their
degrees: coding tricks can show that every Turing degree contains a set with
undefined density. In the c.e. degrees, this set can be taken to be c.e.

Lemma 3.1. Every Turing degree contains a set W with ρ(W ) = 0 and ρ(W ) =
1.

Proof. Given C, let D = {n! : n ∈ C} and W = D ∪
⋃
n∈ω((2n)!, (2n + 1)!).

Then W ≡T D ≡T C, and ρ(W ) = 0 because

ρ(2n+2)!(W ) =
|W � (2n+ 2)!|

(2n+ 2)!
≤ (2n+ 1)!

(2n+ 2)!
=

1

2n+ 2
.

Conversely, ρ(W ) = 1 as

ρ(2n+1)!(W ) =
|W � (2n+ 1)!|

(2n+ 1)!
≥ (2n+ 1)!− (2n)!

(2n+ 1)!
= 1− 1

2n+ 1
.

Clearly if C is c.e., then so is W .

We shall see below that additional properties on the starting set C can be
recovered in W by modifying the construction.

We now turn our attention to hyperimmune sets, a competing notion of small-
ness. Astor [2] studied the connection between varying notions of immunity and
intrinsic density thoroughly. In particular, it is known that hyperimmune sets
have intrinsic lower density 0, and therefore that hypersimple sets have intrinsic
upper density 1. (Hypersimple sets are c.e. sets whose complement is hyperim-
mune. Recall that hyperimmune sets are infinite by definition, so hypersimple
sets are co-infinite.) One question left open in [2] (later answered by Astor in
[3] using a degree argument) was whether or not a hypersimple set could have
lower density 0, or at least non-1 lower density. The answer is yes, showing that
hypersimple sets need not have defined density. We give a constructive proof,
showing that every hypersimple set yields a Turing equivalent hypersimple set
which has lower density 0. (That is, every hypersimple set has an equivalent
hypersimple set which is “as small as possible.”)

Theorem 3.2. Let C be a hypersimple set. Then there is a hypersimple set
W ≡T C with ρ(W ) = 0.
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Proof. As C is hypersimple, it has intrinsic upper density (and therefore upper
density) 1. We cannot use the strategy from Lemma 3.1 directly, as the resulting
set will not even be immune, let alone hyperimmune. To avoid this problem,
we shall leave intervals of C intact and introduce gaps between the intervals in
noncomputable fashion. Informally, we first wish to shift portions of C over to
make large gaps, ensuring that the resulting set has lower density 0. We then
leave an even larger interval of C intact (albeit shifted over finitely much) to
ensure that the upper density is 1. (See Figure 3.1.) Formally, we shall define
c.e. sets Hi and gaps [ui, ui + mi] inductively. Let H0 = C. Enumerate H0

until there is a stage s and a number n such that we see ρn(H0) > 1
2 , which

exists because C = H0 has upper density 1. Then let u0 = n and let m0 be the
least natural number such that u0

u0+m0
< 1

2 .

Given He and [ue, ue + me], define He+1 and [ue+1, ue+1 + me+1] as follows:
Define He+1 = (He � ue) ∪ (H≥ue

e + me). (For convenience, here X≥k de-
notes {n ∈ X : n ≥ k}, and X + m = {n + m : n ∈ X}.) Enumerate He+1

until there is a stage s and a number n > ue + me such that ρn(He+1,s) >
1 − 1

e+2 . Then set ue+1 = n and me+1 to be the least natural number such

that ue+1

ue+1+me+1
< 1

e+2 . Finally, let H be the set with characteristic function

H(m) = limn→∞Hn(m). Note, first off, that
⋃
e∈ω[ue, ue + me] is a c.e. set

with increasing enumeration, and hence computable. Furthermore, note that H
itself is c.e., as limn→∞Hn(m) = Hs(m) for any s with us > m. ρ(H) = 0 as

desired, as ρui+mi(H) < 1
i+2 for all i.

H itself will not work as the desired W : The complement contains the com-
putable subset

⋃
e∈ω[ue, ue + me], so it is not even immune, let alone hyper-

immune. Therefore, let W = H ∪
⋃
n∈C [un, un + mn]: that is, enumerate the

n-th gap into W whenever n enters C. Then W is c.e., and we claim that it is
hypersimple.

Recall that the principal function pA : ω → A of a set A = {a0 < a1 < a2 < . . . }
is the function such that pA(n) = an. Also recall that a set is hyperimmune if
and only if its principal function is not computably bounded. Suppose that W
is not hyperimmune. Then it is bounded by some total computable function f .
However, the total computable function g defined via g(n) = f(n + Σi≤nmi)
must bound C: The elements of W are the elements of C shifted up along with
the corresponding gaps. The n-th element of C is smaller than the n-th non-gap
element of W (as the n-th non-gap element of W is the n-th element of C shifted
up by the gaps below it), which is at most the n + Σi≤nmi-th element of M
because a gap in W corresponds to an element of C below the gap.

Thus we have shown that W is a hypersimple set. It is Turing equivalent to C
because

⋃
e∈ω[ue, ue + me] is computable: W can compute C by ignoring the

intervals, and C can clearly compute H and hence W .

By using C as an oracle rather than an enumeration of C, it is clear that

11



0

H≥00 + 0
C = H0

u0

H0 � u0

u0 +m0

H≥u0

0 +m0
H1

u1

H1 � u1

u1 +m1

H≥u1

1 +m1
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Figure 3.1: Visualization of the construction of H in Theorem 3.2

this result also applies to co-hyperimmune sets in general, not just hypersimple
sets.

Perhaps the most useful characterization of the hyperimmune sets is that a set
is hyperimmune if and only if its principle function is not computably bounded.
Recall that the principle function pX of an infinite set X = {x0 < x1 < x2 <
x3 < . . . } is the function such that pX(n) = xn. While Theorem 3.2 shows that
hyperimmunity and intrinsic smallness are unrelated notions of smallness, we
would like to know whether it is possible to provide a simple characterization
of intrinsic smallness using principal functions. Perhaps the most natural can-
didate is that of weak computable traceability from [3], which does provide us
with a useful test for intrinsic smallness:

Lemma 3.3. Suppose that A is not intrinsically small. Then the principle
function pA(n) of A is weakly computably traced, i.e. there are computable
functions g and h with |Dg(n)| ≤ h(n) for all n and pA(n) ∈ Dg(n) for infinitely
many n.

Proof. As A is not intrinsically small, there is a computable permutation π
such that ρ(π(A)) = q > 0. Define functions h = λn(n!) and g such that
Dg(n) = π−1([0, n!)). Then we claim that g and h witness that pA is weakly
computably traced.

To get a contradiction, suppose this is not the case. Then pA(k) ∈ Dg(k) =
π−1([0, k!)) for only finitely many k. In particular, π(n) ≥ n! for all but
finitely many n ∈ A. This clearly implies that ρ(π(A)) = 0, however, as
ρn(π(A)) ≤ s+m+1

m! where s is the number of k for which pA(k) ∈ π−1([0, k!))
and m is the largest number with m! ≤ n. As s+m+1

m! approaches 0 in the limit,
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this contradicts the fact that ρ(π(A)) = q > 0, so g and h must witness that pA
is weakly computably traced.

The contrapositive of Lemma 3.3 tells us that if the principle function of A
is not weakly computably traced, then A is intrinsically small. Unfortunately,
Theorem 2.3 tells us that we cannot hope to reverse this in general. However,
notice that the proof in fact proves a stronger statement: If A is not intrinsically
small, then it is weakly computably traced with witness h = λn(n!). That is, if
pA is not weakly computably traced by h, then A is intrinsically small. If this
can be reversed, that would characterize the intrinsically small sets.

Question 3.1. Is it the case that if A is intrinsically small, then pA is not
weakly computably traced by h = λn(n!)? If it is not the case, is there an
intrinsically small set which does not dominate h? (I.e. pA(n) ≤ n! infinitely
often?)

Of course there are computably dominated intrinsically small sets by Theo-
rem 2.3, however it is not clear if there are any “nice” computable functions (i.e.
something naturally occurring in arithmetic or combinatorics) which dominate
an intrinsically small set, or even which are not dominated by the principal
function of one. Our usual strategy for constructing intrinsically small sets is
no help, as it requires arbitrarily large witnesses.

4 Relative Intrinsic Smallness

The definition of intrinsic density, and by extension the definition of intrinsic
smallness, admits a natural relativization:

Definition 4.1. The X-absolute upper density of A ⊆ ω is

PX(A) = sup{ρ(π(A)) : π an X computable permutation}

and the absolute lower density of A is

PX(A) = inf{ρ(π(A)) : π an X computable permutation}.

If PX(A) = PX(A), then we call this limit the X-intrinsic density of A and
denote it by PX(A).

It is easy to see that no infinite, co-infinite set A is A-intrinsically small, or
in fact has A-intrinsic density. (One way to observe this is to note that the per-
mutation taking A to the set W in deg(A) from Lemma 3.1 is A-computable.)
Furthermore, given a set A, the set of Turing degrees for which A is not intrin-
sically small is closed upwards and contains the cone above A. One may ask if
a set is intrinsically small, is it the case that this set is exactly the cone above
A? The answer is no.

Lemma 4.2. There is an intrinsically small set A and a permutation π 6≥T A
such that ρ(π(A)) > 0.
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Proof. Let B and C be Turing incomparable intrinsically small sets. (These
exist given the result of Astor that the degrees containing intrinsically small
sets are the degrees which are high or DNC.) Then by Corollary 2.7, A = B⊕C
is intrinsically small. Now let π be the B-computable permutation mapping
{2n : n ∈ B} to the non-factorials and the complement to the factorials. Then
π(B ⊕ C) contains the non-factorials, and therefore has density 1.

As a corollary, we see that given an intrinsically small set A, the set of X for
which A is X-intrinsically small need not be the degrees strictly below A: As
B and C in the above proof are Turing incomparable, B ⊕ C is strictly Turing
above B, but is not intrinsically small relative to B. However, it is clear that
given a set A, the collection of Turing degrees of X with A X-intrinsically msall
is closed downwards.. Must it be a Turing ideal? The following lemma shows
the answer is no.

Lemma 4.3. There is an intrinsically small set A and sets B,C with A B-
intrinsically small and C-intrinsically small but not B ⊕ C-intrinsically small.
That is, the set of X for which A is X-intrinsically small is not a Turing ideal.

Proof. By the Sacks Splitting Theorem [11], there are low sets B and C such
that B ⊕ C ≡T ∅′. Therefore a modification of Lemma 2.1 allows us to obtain
a set A ≤ ∅′ which is both B-intrinsically small and C-intrinsically small. (As
B and C are low, B′ ≡T C ′ ≡T ∅′, so ∅′ can enumerate the partial B and C
computable injective functions and determine suitability for them.) However,
A cannot be B ⊕ C-intrinsically small because A ≤T ∅′ ≡T B ⊕ C.

Note that although the set of X for which A is X-intrinsically small need
not be a Turing ideal, Definition 4.1 still makes sense if one considers all I-
computable permutations in a Turing ideal I rather than computable in a set
X.

The following lemma allows us to describe the degrees of X-intrinsically small
sets for certain X.

Lemma 4.4. Let X be an arithmetical set. Then the Turing degrees which
contain an X-intrinsically small set A are the X-high or X-DNC degrees.

Proof. We merely need to check that the proof of Corollary 2.7 from Astor [3]
relativizes. It is straightforward to check that the proof given by Downey and
Hirschfeldt [5] of the result of Kjos-Hanssen, Merkle, and Stephan [10] rela-
tivizes: a set A is X-weakly computably traceable if and only if it is X-high or
X-DNC.

Using this, the rest of the proof of [3] Theorem 2.4 relativizes, and therefore
[3] Corollary 2.5 does as well. [3] Theorem 2.6 also relativizes, which is straight-
forward to check. To obtain [3] Corollary 2.7, Astor employs the following
result of Jockusch [7]: Given some property P of some sets of natural numbers,
if there is an arithmetical set exhibiting P and P is closed under taking subsets,

14



then the collection of Turing degrees which contain a set exhibiting P is closed
upwards. The relativized form of Lemma 2.1 above yields an X ′-computable
X-intrinsically small set A. As X is arithmetical, A is arithmetical, so we
may apply the result of Jockusch to obtain the relativized form of [3] Corollary
2.7.

There is an obvious gap in Lemma 4.4. Specifically, can the arithmetical
requirement on X be dropped? There are certainly sets X for which there are
no arithmeticalX-intrinsically small sets A: IfX = ∅(ω), thenX computes every
arithmetical set and therefore there cannot be an arithmetical X-intrinsically
small set. An important note here is that the relativization of [3] Corollary 2.5
and Theorem 2.6 did not rely on the fact that X was arithmetical, so we already
know that X-weakly computably traced sets are not X-intrinsically small and
that any non-X-weakly computably traced set computes anX-intrinsically small
set for even non-arithmetical X.

Question 4.1. For which non-arithmetical sets X are the degrees containing
an X-intrinsically small set those which are X-high or X-DNC? For which non-
arithmetical X are they upwards closed?

A natural question arises from the appearance of ∅(ω): We say a set A is
arithmetically intrinsically small if it is X-intrinsically small for every arith-
metical set X. Is there an arithmetically intrinsically small set which is not
∅(ω)-intrinsically small? It turns out that the answer is yes, as ∅(ω) can uni-
formly compute all of the arithmetical permutations. Therefore a modification
of Lemma 2.1 allows us to construct a ∅(ω)-computable set which is arithmeti-
cally intrinsically small.

5 Intrinsic Computability

Having studied intrinsically small sets, we now turn our attention to their
use as error sets in “almost computable” settings. Astor [2] first described
four possible variations of “intrinsic” generic computability, that is “intrinsic”
generic descriptions of A which ensure the existence of generic descriptions of
ϕe(A) for all e ∈ Perm. The four notions differ by how uniformly we can
obtain a generic description for a given permutation. We provide the gener-
alizations of each of these notions to the remaining three notions of asymp-
totic computability mentioned in Section 1, which gives us a total of sixteen
separate notions. Throughout this section x will denote an arbitrary element
of {effective dense, generic, coarse, dense}. We shall begin by describing the
strongest of the four notions, which is the most overtly related to our study of
intrinsically small sets.

Definition 5.1. A ⊆ ω is intrinsically x-ly computable if there is an x descrip-
tion of A with an intrinsically small error set.
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Astor originally defined this notion as strongly intrinsically x-ly computable,
however we shorten the definition for the sake of readability.

This is the most natural intrinsic variant of asymptotic computability, as it
is obtained by simply requiring the error set to meet a stronger smallness condi-
tion. As we shall see, the other three notions introduced in [3] are not obtained
by simply modifying the error set, but rather by introducing new restrictions
on the computation.

We should verify that the intrinsically x-ly computable sets are not just the
computable sets: clearly the computable sets meet this definition for any x, but
are there noncomputable examples? It turns out that for the strongest notion,
intrinsically effectively densely computable sets, this is not the case:

Lemma 5.2. Suppose that A is intrinsically effectively densely computable.
Then A is computable.

Proof. By definition, if A is intrinsically effectively densely computable, then
the error set is an intrinsically small computable set. However, no infinite
computable set can be intrinsically small, as there is a computable permutation
that maps it to the nonfactorials and its complement to the factorials. Therefore,
the error set must be finite. As A differs from a computable set by only finitely
much, it must be computable.

Fortunately, the other three do admit noncomputable examples. For generic
computability, as mentioned in [3], any c.e. set with intrinsic density 1, such
as a maximal set, is intrinsically generically computable. Similarly, any set of
intrinsic density 1 or 0 is intrinsically coarsely computable. Notice that any
intrinsically generically computable set with defined intrinsic density must have
intrinsic density 0 or 1 and thus be intrinsically coarsely computable: Let ϕe
be an intrinsic generic description of A. If {n : ϕe(n) ↓= 1} is finite, then A
has intrinsic density 0 because A = {n : ϕe(n) ↓= 1} ∪ (A ∩We) is a union
of a finite set with an intrinsically small set. If this set is not finite, then it
is an infinite c.e. subset of A. Therefore the absolute upper density of A is 1
because every infinite c.e. set has a computable subset, which can be mapped
to the nonfactorials by a computable permutation. As A has defined intrinsic
density and its absolute upper density is 1, it must have intrinsic density 1. In
both cases, A is intrinsically coarsely computable. The following lemma shows
that the intrsincially generically computabile sets and the intrinsically coarsely
computable sets are not the same, however.

Lemma 5.3. There is a intrinsically coarsely computable set which is not in-
trinsically generically computable.

Proof. By Lemma 2.1, there is an intrinsically small set A such that for each
infinite c.e. set We there exists ae ∈ A ∩We with ae < as for e < s. That
is, there is a unique designated element ae of A for each infinite c.e. set We.
∅′ cannot determine if a c.e. set is infinite, but it can ask if there is a large
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enough element of We to continue the construction and put that into A if it ex-
ists. This may designate some elements for finite c.e. sets, but this is acceptable.

Now define B ⊆ A by agreeing with A away from the ae’s and diagonaliz-
ing against the e-th turing machine using B(ae), i.e. B(ae) = 1−ϕe(ae). (Note
that ϕe(ae) ↓ because ae ∈ We.) Then B ⊆ A has intrinsic density 0 and
cannot be intrinsically generically computable because it disagrees with every
turing machine with infinite domain at least once.

The reverse separation remains open: it is easy to ensure that a given Turing
function is not an intrinsic generic description by simply finding one place where
it is wrong. However, to ensure that a given Turing function is not an intrinsic
coarse description, we must force it to disagree on an infinite set which is not
intrinsically small, which is more difficult. The natural strategy is to take an
intrinsic generic description Wi, say a maximal set, and attempt to change it to
diagonalize against the total functions in such a way that the description is still
c.e. and its complement is still intrinsically small. The issue arises from our
not being able to enumerate all of the total functions using computable indices:
there is an enumeration of c.e. indices which contains exactly the computable
sets (given an index e, enumerate We so long as the enumeration is increasing,
but do not enumerate smaller elements), but there is no way to distinguish the
infinite sets from the finite ones. If we know a given c.e. index e yields an infinite
computable set, it is easy to wait for convergence of ϕe and diagonalize against it
on an infinite computable subset of Wi, forcing ϕe to not be a n intrinsic coarse
description. However if We is in fact finite, then we will never see convergence,
and failing to converge for the indices of finite sets will make the complement
of our new enumeration no longer intrinsically small. If we give up waiting for
convergence after some length of time, then there is no guarantee that an infinite
computable set will ever enumerate quickly enough to be diagonalized against.

Question 5.1. Is there an intrinsically generically computable set which is not
intrinsically coarsely computable?

One potentially useful result for this question is the result of Arslanov [1]
that the only c.e. DNC degree is ∅′. As mentioned above, we know from [3] that
the degrees which contain an intrinsically small set are those which are high or
DNC. As the domain of an intrinsic generic description is c.e. and can compute
an intrinsically small set (its complement), its degree must be high or DNC,
and therefore high.

Fortunately, the answer to this question resolves the remaining implications
involving intrinsically densely computable sets:

Lemma 5.4. The intrinsically densely computable sets are exactly the intrin-
sically coarsely computable sets if every intrinsically generically computable set
is intrinsically computable, and the intrinsically densely computable sets strictly
contain all of the intrinsically generically computable sets and intrinsically coarsely
computable sets if this is not the case.
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Proof. By Lemma 5.3 there is a set B which is intrinsically coarsely computable
but not intrinsically generically computable. Let A be a set which is intrinsically
generically computable but not intrinsically coarsely computable. An applica-
tion of Corollary 2.7 tells us that A ⊕ B is intrinsically densely computable,
but it is clear that it cannot be intrinsically coarsely computable or intrinsically
generically computable because any intrinsic coarse/generic description of A⊕B
would necessarily yield an intrinsic coarse/generic description of A/B.

Now suppose that every intrinsically generically computable set is intrinsically
coarsely computable, and let A be intrinsically densely computable with witness
ϕe. Then the set B defined via the characteristic function

χB(n) =

{
ϕe(n) n ∈We

0 n ∈We

is intrinsically generically computable with witness ϕe. Therefore it is intrinsi-
cally coarsely computable via some total witness ϕi. Therefore ϕi witnesses that
A is intrinsically coarsely computable as well because the error set is contained
within the union of two intrinsically small sets (the complement of We and the
error set of ϕi on B) and thus is intrinsically small.

The remaining three generalizations of asymptotic computation to the in-
trinsic setting use a separate idea: Rather than having an intrinsically small
error set that ensures the existence of descriptions, we simply assert that de-
scriptions must exist for any computable permutation. Varying the level of
uniformity for these descriptions is how we reach three separate notions (Recall
that x ∈ {effective dense, generic, coarse, dense}):

Definition 5.5.

• A is weakly intrinsically x-ly computable if ϕe(A) is x-ly computable for
every e ∈ Perm.

• A is uniformly x-ly computable if there is a computable function f(e, n)
such that λn(f(e, n)) is a(n) x description of ϕe(A) when e ∈ Perm.

• A ⊆ ω is oracle x-ly computable if there is a Turing functional Φi such
that ΦXi is a(n) x description of ϕe(A) whenever e ∈ Perm and X =
graph(ϕe).

As in the case of the intrinsically x-computable sets, Astor’s original defi-
nitions were “uniformly intrinsically x-ly computable” and “oracle intrinsically
x-ly computable,” however we shorten these definitions for readability.

It is immediate that all of the straightforward implications from asymptotic
computability apply here in each of the three cases, i.e. uniformly coarsely
computable sets are uniformly densely computable and so on. Furthermore, it
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is easy to see that for all x ∈ {effective dense, generic, coarse, dense}, intrin-
sically x-ly computabile sets are uniformly and oracle x-ly computable, which
both in turn are weakly x-ly computable. Furthermore, albeit slightly less triv-
ial, is the fact that oracle x-ly computable sets are uniformly x-ly computable:
Given a Turing functional Φi which witnesses that A is oracle x-ly computable,

define the partial computable function f(e, n) via f(e, n) = Φ
graph(ϕe)
i (n). Then

the definition of oracle x-ly computable ensures that this function f witnesses
uniformly x-ly computable. This means that for a fixed x, the four notions form
a chain.

As noted in [2], it is unclear at first if these notions are all distinct (i.e. whether
or not the chain collapses), even when restricting ourselves just to the generic
case. Below we shall see that they are not distinct here, although the argument
will not generalize to the coarse and dense settings. However, a slight modifica-
tion of it shall provide a similar but not identical result for the effective dense
setting.

Theorem 5.6. Suppose that A is oracle generically computable. Then A is
intrinsically generically computable.

Proof. Let Φi witness that A is oracle generically computable. Then define
the partial computable function f as follows: Note that the set of finite bi-
nary strings σ which are initial segments of graphs of injective functions is
computable. For σ in this set, let fσ denote the partial injective function
with finite range such that graph(fσ) is the infinite binary string obtained by
adding infinitely many 0’s to σ. Compute f(n) by searching for such a σ with
n ∈ range(fσ) and Φσi (fσ(n)) ↓. If one is found, define f(n) = Φσi (fσ(n)) for
the first such σ. Otherwise, f(n) ↑.

First, note that f(n) ↓ implies f(n) = A(n): If f(n) ↓, then there is some
σ such that Φσi (fσ(n)) ↓. As σ is an initial segment of the graph of an injective
function, σ can be extended to X where X is the graph of some computable
permutation ϕe. Then as Φi witnesses that A is oracle generically computable,
ΦXi is a generic description of ϕe(A), so ΦXi (ϕe(n)) ↓ implies

ΦXi (ϕe(n)) = ϕe(A)(ϕe(n)) = A(n).

In particular,
A(n) = ΦXi (ϕe(n)) = Φσi (fσ(n)) = f(n)

by the finite use principle.

Therefore, it remains to show that the domain of f has intrinsic density 1. No-

tice that if ϕe is a permutation, then ϕe(dom(f)) contains dom(Φ
graph(ϕe)
i ), as

if Φ
graph(ϕe)
i (k) ↓, there is an initial segment σ of graph(ϕe) with k ∈ range(fσ)

that witnesses convergence, and therefore witnesses f(ϕ−1e (k)) ↓. However,

ρ(dom(Φ
graph(ϕe)
i )) = 1 as Φ

graph(ϕe)
i is a generic description of ϕe(A) and
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therefore has density 1. Thus dom(f) has density 1 under every computable
permutation and thus has intrinsic density 1 as desired.

Corollary 5.7. Suppose that A is oracle effective densely computable. Then A
is intrinsically generically computable.

Proof. Construct the description f of A as in the proof of Theorem 5.6, however
instead of searching for convergence, search for convergence to either 0 or 1.

As mentioned above, this argument does not in general apply to oracle
coarsely computable sets and oracle densely computable sets. The issue lies
in the fact that coarse and dense computation allows for mistakes, so we cannot
ensure that any convergent computation is correct.

The remaining implications remain open other than the previously observed
chains. The difficulty in separating these notions lies in the fact that the con-
structed sets cannot be described by building one error set, but rather have a
different error set for each computable permutation. More importantly, these
countably many computable requirements are heavily interlocked: Consider at-
tempting to construct a weakly intrinsically generically computable set which
is not weakly intrinsically coarsely computable. As an example, we may try to
define an error set for the identity permutation. However, this defines the mem-
bership of the constructed set on a given c.e. set We. If we wish to diagonalize
for a given computable permutation π, we may find that π(We) has density 1, in
which case we can’t respect We and also diagonalize on a set of positive density.
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