Within 0000

Noncomputable Coding, Density, and Stochasticity

Justin Miller

November 8th, 2020

NERDS Fall 2020

https://sites.nd.edu/justin-d-miller/talks/

・ロト・日本・日本・日本・日本・日本

Within 0000

Asymptotic Density

Recall that the (asymptotic) density of *X* is

$$\rho(X) = \lim_{n \to \infty} \frac{|X \upharpoonright n|}{n}$$

if this limit exists. $\overline{\rho}(X)$ and $\underline{\rho}(X)$, the upper and lower density, are the limit superior and limit inferior respectively.

Intrinsic Density

Intrinsic Density is the computable permutation invariant form of asymptotic density, that is *A* has intrinsic density α if $\rho(\pi(A)) = \alpha$ for all computable permutations π . We denote it by P(A) if it exists. *A* is intrinsically small if P(A) = 0.

The absolute upper density, $\overline{P}(A)$, is the limit superior of $\rho(\pi(A))$ over all computable permutations π . The absolute lower density, $\underline{P}(A)$, is the limit inferior.

Randomness

What values of $r \in [0, 1]$ are achieved as the intrinsic density of a set?

The short answer is everything: 0 and 1 are well known. If μ_r is the Bernoulli measure with parameter r (i.e. the r-biased coin flip measure), then standard arguments show that every μ_r -1-random set has intrinsic density r. (It also holds for Schnorr randomness, but the proof takes more work.)

Can we use sets of a given intrinsic density to understand those of a different one?

As we shall see, sets with intrinsic density r are a strict super set of the μ_r -randoms and have fundamentally different closure properties as a class. (The join preserves intrinsic density.) We shall introduce noncomputable coding methods, the into and within operations, to change intrinsic densities and construct an example for every real $r \in (0, 1)$ without appealing to μ_r -randomness.

Changing Density via Noncomputable Coding

To understand intrinsic density, we set out to find some method of combining sets *A* and *B* such that the intrinsic density of the resulting set is some function of the intrinsic densities of *A* and *B*. Classical operations, notably the join, do not work. Therefore we turn to the into operation.

Into •000000000 Within 0000

The Into Operation

Definition Given two sets

$$A = \{a_0 < a_1 < a_2 < \dots\}$$

and

$$B = \{b_0 < b_1 < b_2 < \dots\}$$

we define the set $B \triangleright A$, or "*B* into *A*," to be

$$\{a_{b_0} < a_{b_1} < a_{b_2} < \dots\}$$

This will be a fundamental tool for changing densities.

・ロト・日本・山田・山田・山口・

Into 000000000

Examples

• If *E* is the set of evens, then $E \triangleright E$ is the set of multiples of 4: $e_n = 2n$, so

$$e_{e_n} = e_{2n} = 2(2n) = 4n$$

• If *O* is the set of odds, then $E \triangleright O$ is the set of naturals congruent to 1 mod 4: $o_n = 2n + 1$ and $e_n = 2n$, so

$$o_{e_n} = o_{2n} = 2(2n) + 1 = 4n + 1$$

• For any *A* and *B*,

 $A \oplus B = (A \triangleright E) \sqcup (B \triangleright O)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

Into 000000000 Within 0000

Basic Properties

- $A = A \triangleright \omega$
- $A = \omega \triangleright A$
- $B \triangleright A \subseteq A$
- $(B \triangleright A) \sqcup (\overline{B} \triangleright A) = A$
- ▷ is associative

Into 0000000000 Within 0000

Into and Asymptotic Density

Lemma

- $\overline{\rho}(B \triangleright A) \leq \overline{\rho}(A)\overline{\rho}(B)$
- $\bullet \ \underline{\rho}(B \triangleright A) \geq \underline{\rho}(A) \underline{\rho}(B)$

Corollary

 $\rho(B \triangleright A) = \rho(B)\rho(A)$

Into 0000000000 Within 0000

Into and Intrinsic Density

For a set X, P_X represents intrinsic density relative to X, i.e. invariance under all X-computable permutations.

Theorem If $P(A) = \alpha$ and $P_A(B) = \beta$, then $P(B \triangleright A) = \alpha\beta$.

Powers of Two

Lemma

There is a countable, disjoint sequence of sets $\{A_i\}_{i \in \omega}$ such that $P(A_i) = \frac{1}{2^{i+1}}$. Furthermore, $\lim_{n \to \infty} \overline{P}(\bigsqcup_{i>n} A_i) = 0$.

Proof Sketch.

Let *X* be 1-Random. Then by the general form of Van Lambalgen's theorem and the fact that 1-Randoms have intrinsic density $\frac{1}{2}$, the columns $X^{[n]}$ of *X* give us countably many sets all with intrinsic density relative to the rest. Then define $B_0 = \omega$, $A_n = \overline{X^{[n]}} \triangleright B_n$, and $B_{n+1} = X^{[n]} \triangleright B_n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

Into 00000000000

Arbitrary Intrinsic Density

Let $r \in (0, 1)$ and $\{A_i\}_{i \in \omega}$ be as in the previous lemma. We identify B_r with the set of bits which are 1 in the binary expansion of r. Then $\bigcup_{i \in B_r} A_i$ will have intrinsic density $\sum_{i \in B_r} \frac{1}{2^{i+1}} = r$.

Corollary

If $r \in (0, 1)$ *computes a* 1-*Random, then* r *computes a set of intrinsic density* r*.*

・ロト・日本・日本・日本・日本・日本

Into 00000000000 Within 0000

MWC Stochasticity

Informally, we say a set *X* is von Mises-Wald-Church stochastic, or MWC stochastic, for *r* if every infinite subsequence selected from it by a process which can only use information about whether or not $i \in X$ for i < n to decide whether or not to include *n* in the subsequence has asymptotic density *r*.

Into 0000000000 Within 0000

Into and Stochasticity

Lemma

If A is MWC-stochastic for α relative to B and B is MWC-stochastic for β relative to A, then $B \triangleright A$ is MWC-stochastic for $\alpha\beta$.

Into 000000000 Within 0000

Into and Randomness

Question *If A is* μ_{α} *-random relative to B and B is* μ_{β} *-random relative to A, is* $B \triangleright A \mu_{\alpha\beta}$ *-random?*

Within •000

The Within Operation

The into operation has a natural dual.

Definition

Given two sets

$$A = \{a_0 < a_1 < a_2 < \dots\}$$

and

$$B = \{b_0 < b_1 < b_2 < \dots\}$$

we define the set $B \triangleleft A$, or "*B* within *A*", to be $\{n : a_n \in B\}$. In other words, $B \cap A$ is some subset of *A*, so there is some *X* such that $X \triangleright A = B \cap A$. In this case, $B \triangleleft A = X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Example

• Let *T* be the multiple of three. Then $T \triangleleft E = T$:

$$T \triangleleft E = \{n : 2n \in T\} = \{n : 6 | 2n\} = \{n : 3 | n\}$$

• $T \triangleleft O$ is the set of naturals congruent to 1 mod 3:

 $T \triangleleft O = \{n : 2n + 1 \in T\} = \{n : 2n \equiv 2 \mod 3\} = \{n : n \equiv 1 \mod 3\}$

Within: Basic Properties

- $\omega = A \triangleleft A$
- $(B \triangleleft A) \sqcup (\overline{B} \triangleleft A) = \omega$
- If $B \subseteq A$, then $(B \triangleleft A) \triangleright A = B \cap A = B$.
- ⊲ is not associative: Let *E* be the evens, *O* the odds, and *N* the set of naturals congruent to 2 mod 4. Then

$$(O \triangleleft N) \triangleleft E = \emptyset \triangleleft E = \emptyset$$

but

$$O \triangleleft (N \triangleleft E) = O \triangleleft O = \omega$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ④ ◆ ●

Within 0000

Applications of Within

Let *C* be a computable set.

Lemma *If A has intrinsic density* α *, then so does A* \triangleleft *C*.

Lemma *If A has MWC-stochasticity for* α *, then so does A* \triangleleft *C.*

Lemma *If A is* μ_{α} *-random, then so is* $A \triangleleft C$ *.*