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Asymptotic Density

Recall that the (asymptotic) density of X is

ρ(X) = lim
n→∞

|X � n|
n

if this limit exists. ρ(X) and ρ(X), the upper and lower density, are the limit
superior and limit inferior respectively.
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Intrinsic Density

Intrinsic Density is the computable permutation invariant form of asymptotic
density, that is A has intrinsic density α if ρ(π(A)) = α for all computable
permutations π. We denote it by P(A) if it exists. A is intrinsically small if
P(A) = 0.

The absolute upper density, P(A), is the limit superior of ρ(π(A)) over all
computable permutations π. The absolute lower density, P(A), is the limit inferior.
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Randomness

What values of r ∈ [0, 1] are achieved as the intrinsic density of a set?

The short answer is everything: 0 and 1 are well known. If µr is the Bernoulli
measure with parameter r (i.e. the r-biased coin flip measure), then standard
arguments show that every µr-1-random set has intrinsic density r. (It also holds
for Schnorr randomness, but the proof takes more work.)
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Motivation

Can we use sets of a given intrinsic density to understand those of a different one?

As we shall see, sets with intrinsic density r are a strict super set of the µr-randoms
and have fundamentally different closure properties as a class. (The join preserves
intrinsic density.) We shall introduce noncomputable coding methods, the into
and within operations, to change intrinsic densities and construct an example for
every real r ∈ (0, 1) without appealing to µr-randomness.
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Changing Density via Noncomputable Coding

To understand intrinsic density, we set out to find some method of combining sets
A and B such that the intrinsic density of the resulting set is some function of the
intrinsic densities of A and B. Classical operations, notably the join, do not work.
Therefore we turn to the into operation.
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The Into Operation

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B . A, or “B into A,” to be

{ab0 < ab1 < ab2 < . . . }

This will be a fundamental tool for changing densities.
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Examples

• If E is the set of evens, then E . E is the set of multiples of 4: en = 2n, so

een = e2n = 2(2n) = 4n

• If O is the set of odds, then E . O is the set of naturals congruent to 1 mod 4:
on = 2n + 1 and en = 2n, so

oen = o2n = 2(2n) + 1 = 4n + 1

• For any A and B,
A⊕ B = (A . E) t (B . O)
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Basic Properties

• A = A . ω

• A = ω . A
• B . A ⊆ A
• (B . A) t (B . A) = A
• . is associative
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Into and Asymptotic Density

Lemma
• ρ(B . A) ≤ ρ(A)ρ(B)
• ρ(B . A) ≥ ρ(A)ρ(B)

Corollary
ρ(B . A) = ρ(B)ρ(A)
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Into and Intrinsic Density

For a set X, PX represents intrinsic density relative to X, i.e. invariance under all
X-computable permutations.

Theorem
If P(A) = α and PA(B) = β, then P(B . A) = αβ.
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Powers of Two

Lemma
There is a countable, disjoint sequence of sets {Ai}i∈ω such that P(Ai) =

1
2i+1 .

Furthermore, limn→∞ P(
⊔

i>n Ai) = 0.

Proof Sketch.
Let X be 1-Random. Then by the general form of Van Lambalgen’s theorem and
the fact that 1-Randoms have intrinsic density 1

2 , the columns X[n] of X give us
countably many sets all with intrinsic density relative to the rest. Then define
B0 = ω, An = X[n] . Bn, and Bn+1 = X[n] . Bn.
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Arbitrary Intrinsic Density

Let r ∈ (0, 1) and {Ai}i∈ω be as in the previous lemma. We identify Br with the set
of bits which are 1 in the binary expansion of r. Then

⋃
i∈Br

Ai will have intrinsic
density Σi∈Br

1
2i+1 = r.

Corollary
If r ∈ (0, 1) computes a 1-Random, then r computes a set of intrinsic density r.
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MWC Stochasticity

Informally, we say a set X is von Mises-Wald-Church stochastic, or MWC
stochastic, for r if every infinite subsequence selected from it by a process which
can only use information about whether or not i ∈ X for i < n to decide whether
or not to include n in the subsequence has asymptotic density r.
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Into and Stochasticity

Lemma
If A is MWC-stochastic for α relative to B and B is MWC-stochastic for β relative to A,
then B . A is MWC-stochastic for αβ.
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Into and Randomness

Question
If A is µα-random relative to B and B is µβ-random relative to A, is B . A µαβ-random?
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The Within Operation

The into operation has a natural dual.

Definition
Given two sets

A = {a0 < a1 < a2 < . . . }

and
B = {b0 < b1 < b2 < . . . }

we define the set B / A, or “B within A”, to be {n : an ∈ B}. In other words, B∩A is
some subset of A, so there is some X such that X . A = B∩A. In this case,
B / A = X.
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Example

• Let T be the multiple of three. Then T / E = T:

T / E = {n : 2n ∈ T} = {n : 6|2n} = {n : 3|n}

• T / O is the set of naturals congruent to 1 mod 3:

T / O = {n : 2n + 1 ∈ T} = {n : 2n ≡ 2 mod 3} = {n : n ≡ 1 mod 3}
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Within: Basic Properties

• ω = A / A
• (B / A) t (B / A) = ω

• If B ⊆ A, then (B / A) . A = B∩A = B.
• / is not associative: Let E be the evens, O the odds, and N the set of naturals

congruent to 2 mod 4. Then

(O / N) / E = ∅ / E = ∅

but
O / (N / E) = O / O = ω
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Applications of Within

Let C be a computable set.

Lemma
If A has intrinsic density α, then so does A / C.

Lemma
If A has MWC-stochasticity for α, then so does A / C.

Lemma
If A is µα-random, then so is A / C.
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