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Background

I Consider situations where the payoff to a player depends upon
own action and the trait-action distribution of all others.

I A distributional game is a probability measure on the space of
players’ characteristics–the product of the space of players’
traits and the space of players’ payoffs.

I A Nash equilibrium distribution (NED) of a distributional
game is a probability measure on the product space of players’
characteristics and actions such that:

I its marginal on the space of characteristics is the given game
I it gives full measure to the characteristics and corresponding

best action pairs.

I A strategic game is a mapping from a space of players’ names
to the space of characteristics.

I A Nash equilibrium of a strategic game is a mapping from the
space of players’ names to the space of actions, such that
each player chooses a best action corresponding to the
induced trait-action distribution.
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Background, contd.

I General large games (with traits)
I Strategic form: Khan et al. (2013), Qiao-Yu (2013)
I Distributional form: Khan et al. (2013)

I Conventional large games (all players share some common
trait):

I Strategic form: Schmeidler (1973) (finite action)
I Distributional form: Mas-Colell (1984)
I Representation: Rath (1995) (finite action)

I This paper examines the relationships among equilibria of the
two game forms (distributional and strategic) in the general
setting.
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Large Distributional Games (LDG)

I A: a compact metric set of actions.

I T : a complete separable metric space of traits.

I M(T × A): the set of probability measures on T × A (weak
convergence).

I U
(A,T )

: the space of real valued continuous functions on
A×M(T × A), metrized by supremum norm.

Definition

(a) A LDG is a probability measure µ on T × U
(A,T )

.

(b) A probability measure τ on T × U
(A,T )
× A is a Nash

Equilibrium Distribution (NED) of a LDG µ if
(i) τ

T×U
(A,T )

= µ and

(ii) τ(B(τ)) = 1 where B(τ) = {(t, u, a) ∈ T × U
(A,T )
× A :

u(a, τT×A) ≥ u(x , τT×A) for all x ∈ A}.
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NEDs of LDG

I Let µ be a LDG .

Definition

(c) A NED τ of a game is symmetric if there exists a measurable
function h : T × U

(A,T )
−→ A such that τ(graph of h) = 1, i.e.,

players with the same characteristics take the same action.

(d) A NED τ of a game can be symmetrized if there exists a
symmetric NED τ s of the game such that B(τ) = B(τ s).

(e) Two NEDs τ and τ ′ of a game µ are similar if τA = τ ′A.

Theorem

(a) There exists a NED for any LDG .
(b)There exists a symmetric NED of an atomless LDG if T and A
are countable. Furthermore, every NED of such a LDG can be
symmetrized.
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Large Strategic Games (LSG )

Definition

(a) Given an abstract atomless probability space (I , I, λ), a LSG G
is measurable function from I to T × U

(A,T )
.

(b) A Nash equilibrium of a LSG G is a measurable function
f : I −→ A such that such that for λ-almost all i ∈ I ,

vi
(
f (i), λ ◦ (α, f )−1

)
≥ vi

(
a, λ ◦ (α, f )−1

)
for all a ∈ A,

with vi abbreviated for G2(i), and α : I → T abbreviated for G1,
where Gk is the projection of G on its kth-coordinate, k = 1, 2.

I If A or T is uncountable, a Nash equilibriums need not exist
in a LDG when the name space is Lebesgue unit interval.

I A Nash equilibrium of a LSG exists if both A and T are
countable (finite or countably infinite), or
(I , I, λ) is a saturated probability space. (Qiao-Yu)
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Strategic Representation of LDG

Definition

Let µ be a LDG . A (I , I, λ) representation of µ is a LSG G with
(I , I, λ) as its name space such that µ = λ ◦ G−1.

Let L denote the unit interval, L its Borel σ-algebra and ` the
Lebesgue measure on it. G is a Lebesgue representation of µ if G is
a representation of µ with the name space (L,L, `).

Theorem

Let µ be a LDG and (I , I, λ) an arbitrary atomless probability
space. Then there is a (I , I, λ) representation G of µ.
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Representation Results

Theorem

Let G be a (I , I, λ) representation of µ, f a measurable mapping
from I to A and τ = λ ◦ (G, f )−1. Then τ

T×U
(A,T )

= µ and

τ
A

= λ ◦ f −1. Furthermore,
(a) If f is a Nash equilibrium of G then τ is a NED of µ.
(b) If τ is a NED of µ then f is a Nash equilibrium of G.

The above theorem shows that any Nash equilibrium of a
representation induces a NED of the LDG .

It also shows that if a NED is induced by a strategy profile of the
representation, then the strategy profile is a Nash equilibrium of
the representation.

What about the converse?
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A Partial Converse

Theorem

Given a NED τ of µ and an atomless probability space (I , I, λ),
there is a (I , I, λ) representation G of µ and a Nash equilibrium f
of G such that τ = λ ◦ (G, f )−1.

I What about a full converse?

I Namely, in the statement above, given a (I , I, λ)
representation G of µ, does there exist a Nash equilibrium f of
G such that τ = λ ◦ (G, f )−1?

I In general, the answer is no.

Khan–Rath–Yu–Zhang Representation of Games



Two Exceptions

Case (1): Representation with Countable Characteristics:

A LSG G has countable characteristics if the range of G is
countable. (See Carmona (2008) when the space of characteristics
is the space of payoffs.)

Case (2): Saturated Representation:

(I , I, λ) is a saturate probability space.

Theorem

An atomless probability space (I , I, λ) and a NED τ of µ are
given. Given a (I , I, λ) representation G of µ,

if either Case (1) or Case (2) holds,
then there is a Nash equilibrium f of G such that τ = λ ◦ (G, f )−1.
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The Similarity Theorem

Theorem

Let A and T be countable. Let G be a (I , I, λ) representation of µ
and τ a NED of µ. Then there exists a Nash equilibrium f of G
such that τ∗ = λ ◦ (G, f )−1 is a NED of µ and τ∗ is similar to τ . If
in addition, µ is atomless then τ∗ can be taken to be symmetric.

I Example 1 shows that the conclusions of this Theorem cannot
be strengthened even with finite actions/one trait.

I Thus, one cannot go beyond similarity.

I Counterexamples show that this Theorem cannot be
strengthened to the case of uncountable actions/traits.

Khan–Rath–Yu–Zhang Representation of Games



Representation and Symmetric NEDs

Corollary

Let G be a (I , I, λ) representation of µ.
Let τ be a symmetric NED of µ such that τ(graph of h) = 1.
Define f : I −→ A by f (i) = h(G(i)).
Then τ = λ ◦ (G, f )−1 and f is a Nash equilibrium of G.

Given a LDG G, let σ(G) = {G−1(U) : U ∈ B(T × U
(A,T )

)}, where
B(T × U

(A,T )
) is the Borel σ-algebra of T × U

(A,T )
. σ(G) is the

smallest σ-algebra on I with respect to which G is measurable.

Theorem

Let G be a (I , I, λ) representation of µ. Then τ is a symmetric
NED of µ if and only if τ = λ ◦ (G, f )−1 for a σ(G)-measurable
Nash equilibrium f of G.
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Almost One-to-one Representations

Given any probability space (I , I, λ), a function on I is almost
one-to-one if it is one-to-one on I except some λ-null set of I .

Theorem

Let G be a (L,L, `) representation of µ. Assume that G is almost
one-to-one.
(a) If f is a Nash equilibrium of G then τ = ` ◦ (G, f )−1 is a
symmetric NED of µ.
(b) Let f : I −→ A be any measurable function and
τ = ` ◦ (G, f )−1. If τ is a NED of µ then f is a Nash equilibrium of
G and τ is symmetric.

I If µ is atomless, there exists an almost one-to-one Lebesgue
representation.

I The result is not true on arbitrary atomless measure spaces.
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Examples

To simplify the idea, in each example, we consider a game where
all players share a common trait, i.e., the space of characteristics
T × U

(A,T )
is now reduced to U

A
, the space of real valued

continuous functions on A×M(A), metrized by supremum norm.

I Example 1: A NED of a LDG cannot be induced by a Nash
equilibrium of a given strategic Lebesgue representation.

I Example 2: The NED above can be induced by a Nash
equilibrium of some other Lebesgue representation.
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Example 1

Let the action set be A = {a1, a2} and the player set be the
Lebesgue interval (L,L, `). Consider a particular function u ∈ U

A
,

defined as follows: u(a1, ν) = 1/2, u(a2, ν) = 1− ν(a2).

Let G1(i) = iu for i ∈ L. Define f1 and f2 as follows:

f1(t) = a1 if t < 1/2 and f1(t) = a2 if t ≥ 1/2.

f2(t) = a2 if t < 1/2 and f2(t) = a1 if t ≥ 1/2.

Both f1 and f2 are Nash equilibria of G1.

Let τ = ` ◦ (G1, f1)−1, τ ′ = ` ◦ (G1, f2)−1 and τα = ατ + (1− α)τ ′

for 0 < α < 1.

The LDG µ1 and τα

Consider the LDG µ1 = ` ◦ (G1)−1.
For any α ∈ (0, 1), τα is a NED of the LDG µ1.
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Example 1, contd.

One can show that

A Negative Result

G1 is a Lebesgue representation of µ1. But there is no Nash
equilibrium f of G1 such that τα = ` ◦ (G1, f )−1, for 0 < α < 1.

A Similarity Result

However, there exists a Nash equilibrium f ′ such that (a)

τ∗ = ` ◦
(
G1, f ′

)−1
is a NED of µ1, and (b) τα and τ∗ are similar.
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Example 2

We now show that for any fixed α, the NED τα of the LDG µ1 in
Example 1 indeed can be induced by some Lebesgue representation
of the LDG and its Nash equilibrium.

In particular, let α = 1/2.

Consider the same function u as in Example 1. Define
H : L −→ U

A
as follows.

H(i) = 2iu if i < 1
2

= H
(

i − 1
2

)
if i ≥ 1

2

Since H(i) = H(i − (1/2)) for each i ≥ 1/2, H is not one-to-one.
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Example 2, contd.

We can show that

Another Representation of µ1

H is a Lebesgue representation of the µ1 in Example 1.

Moreover, Let f (i) = a1 if i ∈ [0, 1/4] ∪ (3/4, 1] and
f (i) = a2 if i ∈ (1/4, 1/2] ∪ (1/2, 3/4].

Nash equilibrium of H
The NED τ1/2 of µ1 can be induced by a Nash equilibrium f of H.
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Examples on Uncountable Actions/Traits

Negative results on the existence of Nash equiilibria in some LSG
with Lebesgue unit interval as the name space.

I When A is [−1, 1]. Examples in RSY or in KRS:
LSG without Nash equilibrium.

I When T is [0, 1]. Example 1 in Qiao-Yu:
a LSG that has no Nash equilibrium.

Fix any LSG G in those examples. Let µ = λ ◦ G−1.
There exists a NED of µ.
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Further Discussions

I Countably Determined Games

I Realization of NEDs
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Countably Determined Games

Consider games with a common trait for all the players.

Denote by id(r) the constant function in UA which always assumes
value r . Let ψ be the operator on UA such that ψ(u) = u if
u = id(0) and u/ ‖ u ‖ otherwise. ψ is continuous on UA \ id(0)
and is measurable on UA. Given a game G, consider the game Ḡ
where Ḡ(i) = ψ(G(i)) for all i .

G is determined by countable characteristics if the range of Ḡ is
countable.

Theorem

Let G be a game determined by countable characteristics and
µ = λ ◦ G−1.
(a) G has a Nash equilibrium f .
(b) If µ is atomless then it has a symmetric NED.
(c) The similarity theorem (above) holds.
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Realization of NEDs

Definition

Given a NED τ of a LDG µ, we say that a probability space
(I , I, λ) is a realization of τ (or, (I , I, λ) realizes τ) if every
(I , I, λ) representation G of µ has a Nash equilibrium f such that
λ ◦ (G, f )−1 = τ .

Characterization of NEDs by Realization:

Corollary

Let µ be an atomless LDG and τ a NED of µ.
(a) τ is symmetric if and only if the Lebesuge unit interval is a
realization of τ .
(b) If τ is non-symmetric, then an atomless probability space
realizes τ if and only if it is saturated.
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Conclusions

I Existence of NED and symmetric NED in a LDG .

I LDG and its Strategic Representation:

I Any Nash equilibrium of a representation of a LDG induces a
NED of the LDG .

I Converse: not all NEDs of a LDG can be induced by a Nash
equilibrium of a given representation.

I Two exceptions:
I Representation with countable characteristics
I Saturated representation

I Representation in general: Similarity Theorem

I Characterization of Symmetric NED in a LDG
I σ(G)-measurable Nash equilibirum
I Almost one-to-one Lebesgue representation

I Countably determined games

I Realization: symmetric and non-symmetric case
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