Strategic Representation and Realization of Large Distributional Games

M. Ali Khan Johns Hopkins University

Kali P. Rath University of Notre Dame

> Haomiao Yu Ryerson University

Yongchao Zhang Shanghai University of Finance and Economics

August 04, 2013

Background

- Consider situations where the payoff to a player depends upon own action and the trait-action distribution of all others.
- A distributional game is a probability measure on the space of players' characteristics-the product of the space of players' traits and the space of players' payoffs.
- A Nash equilibrium distribution (NED) of a distributional game is a probability measure on the product space of players' characteristics and actions such that:
 - its marginal on the space of characteristics is the given game
 - it gives full measure to the characteristics and corresponding best action pairs.
- A strategic game is a mapping from a space of players' names to the space of characteristics.
- A Nash equilibrium of a strategic game is a mapping from the space of players' names to the space of actions, such that each player chooses a best action corresponding to the induced trait-action distribution.

Background, contd.

- General large games (with traits)
 - Strategic form: Khan et al. (2013), Qiao-Yu (2013)
 - Distributional form: Khan et al. (2013)
- Conventional large games (all players share some common trait):
 - Strategic form: Schmeidler (1973) (finite action)
 - Distributional form: Mas-Colell (1984)
 - Representation: Rath (1995) (finite action)
- This paper examines the relationships among equilibria of the two game forms (distributional and strategic) in the general setting.

Large Distributional Games (LDG)

- A: a compact metric set of actions.
- ► *T*: a complete separable metric space of traits.
- ► M(T × A): the set of probability measures on T × A (weak convergence).
- $\mathcal{U}_{(A,T)}$: the space of real valued continuous functions on $A \times \mathcal{M}(T \times A)$, metrized by supremum norm.

Definition

(a) A *LDG* is a probability measure μ on $T \times U_{(A,T)}$.

(b) A probability measure τ on $T \times U_{(A,T)} \times A$ is a Nash Equilibrium Distribution (NED) of a LDG μ if

(i)
$$\tau_{\tau \times \mathcal{U}_{(A,T)}} = \mu$$
 and
(ii) $\tau(B(\tau)) = 1$ where $B(\tau) = \{(t, u, a) \in T \times \mathcal{U}_{(A,T)} \times A : u(a, \tau_{T \times A}) \ge u(x, \tau_{T \times A}) \text{ for all } x \in A\}.$

NEDs of LDG

• Let μ be a *LDG*.

Definition

(c) A NED τ of a game is *symmetric* if there exists a measurable function $h: T \times \mathcal{U}_{(A,T)} \longrightarrow A$ such that $\tau(\text{graph of } h) = 1$, i.e., players with the same characteristics take the same action.

(d) A NED τ of a game can be symmetrized if there exists a symmetric NED τ^s of the game such that $B(\tau) = B(\tau^s)$.

(e) Two NEDs τ and τ' of a game μ are *similar* if $\tau_A = \tau'_A$.

Theorem

(a) There exists a NED for any LDG.

(b)There exists a symmetric NED of an atomless LDG if T and A are countable. Furthermore, every NED of such a LDG can be symmetrized.

Large Strategic Games (LSG)

Definition

(a) Given an abstract atomless probability space $(I, \mathcal{I}, \lambda)$, a LSG \mathcal{G} is measurable function from I to $T \times \mathcal{U}_{(A,T)}$.

(b) A Nash equilibrium of a LSG \mathcal{G} is a measurable function $f: I \longrightarrow A$ such that such that for λ -almost all $i \in I$,

$$\mathsf{v}_i\left(f(i),\lambda\circ(lpha,f)^{-1}
ight)\geq\mathsf{v}_i\left(\mathsf{a},\lambda\circ(lpha,f)^{-1}
ight)$$
 for all $\mathsf{a}\in\mathsf{A},$

with v_i abbreviated for $\mathcal{G}_2(i)$, and $\alpha : I \to T$ abbreviated for \mathcal{G}_1 , where \mathcal{G}_k is the projection of \mathcal{G} on its k^{th} -coordinate, k = 1, 2.

- ▶ If A or T is uncountable, a Nash equilibriums need not exist in a *LDG* when the name space is Lebesgue unit interval.
- ► A Nash equilibrium of a LSG exists if both A and T are countable (finite or countably infinite), or (1, I, λ) is a saturated probability space. (Qiao-Yu)

Strategic Representation of LDG

Definition

Let μ be a *LDG*. A $(I, \mathcal{I}, \lambda)$ representation of μ is a *LSG* \mathcal{G} with $(I, \mathcal{I}, \lambda)$ as its name space such that $\mu = \lambda \circ \mathcal{G}^{-1}$.

Let *L* denote the unit interval, \mathcal{L} its Borel σ -algebra and ℓ the Lebesgue measure on it. \mathcal{G} is a *Lebesgue representation* of μ if \mathcal{G} is a representation of μ with the name space (L, \mathcal{L}, ℓ) .

Theorem

Let μ be a LDG and $(I, \mathcal{I}, \lambda)$ an arbitrary atomless probability space. Then there is a $(I, \mathcal{I}, \lambda)$ representation \mathcal{G} of μ .

Representation Results

Theorem

Let \mathcal{G} be a (I,\mathcal{I},λ) representation of μ , f a measurable mapping from I to A and $\tau = \lambda \circ (\mathcal{G}, f)^{-1}$. Then $\tau_{\tau \times \mathcal{U}_{(A,\tau)}} = \mu$ and $\tau_A = \lambda \circ f^{-1}$. Furthermore, (a) If f is a Nash equilibrium of \mathcal{G} then τ is a NED of μ . (b) If τ is a NED of μ then f is a Nash equilibrium of \mathcal{G} .

The above theorem shows that any Nash equilibrium of a representation induces a NED of the *LDG*.

It also shows that if a NED is induced by a strategy profile of the representation, then the strategy profile is a Nash equilibrium of the representation.

What about the converse?

A Partial Converse

Theorem

Given a NED τ of μ and an atomless probability space $(I, \mathcal{I}, \lambda)$, there is a $(I, \mathcal{I}, \lambda)$ representation \mathcal{G} of μ and a Nash equilibrium f of \mathcal{G} such that $\tau = \lambda \circ (\mathcal{G}, f)^{-1}$.

- What about a full converse?
- Namely, in the statement above, given a (I, I, λ) representation G of μ, does there exist a Nash equilibrium f of G such that τ = λ ∘ (G, f)⁻¹?
- In general, the answer is no.

Case (1): Representation with Countable Characteristics:

A LSG G has countable characteristics if the range of G is countable. (See Carmona (2008) when the space of characteristics is the space of payoffs.)

Case (2): Saturated Representation:

 $(I, \mathcal{I}, \lambda)$ is a saturate probability space.

Theorem

An atomless probability space $(I, \mathcal{I}, \lambda)$ and a NED τ of μ are given. Given a $(I, \mathcal{I}, \lambda)$ representation \mathcal{G} of μ , if either Case (1) or Case (2) holds, then there is a Nash equilibrium f of \mathcal{G} such that $\tau = \lambda \circ (\mathcal{G}, f)^{-1}$.

The Similarity Theorem

Theorem

Let A and T be countable. Let \mathcal{G} be a $(I, \mathcal{I}, \lambda)$ representation of μ and τ a NED of μ . Then there exists a Nash equilibrium f of \mathcal{G} such that $\tau^* = \lambda \circ (\mathcal{G}, f)^{-1}$ is a NED of μ and τ^* is similar to τ . If in addition, μ is atomless then τ^* can be taken to be symmetric.

- Example 1 shows that the conclusions of this Theorem cannot be strengthened even with finite actions/one trait.
- Thus, one cannot go beyond similarity.
- Counterexamples show that this Theorem cannot be strengthened to the case of uncountable actions/traits.

Representation and Symmetric NEDs

Corollary

Let \mathcal{G} be a $(I, \mathcal{I}, \lambda)$ representation of μ . Let τ be a symmetric NED of μ such that τ (graph of h) = 1. Define $f : I \longrightarrow A$ by $f(i) = h(\mathcal{G}(i))$. Then $\tau = \lambda \circ (\mathcal{G}, f)^{-1}$ and f is a Nash equilibrium of \mathcal{G} .

Given a *LDG* \mathcal{G} , let $\sigma(\mathcal{G}) = \{\mathcal{G}^{-1}(U) : U \in \mathcal{B}(T \times \mathcal{U}_{(A,T)})\}$, where $\mathcal{B}(T \times \mathcal{U}_{(A,T)})$ is the Borel σ -algebra of $T \times \mathcal{U}_{(A,T)}$. $\sigma(\mathcal{G})$ is the smallest σ -algebra on \mathcal{I} with respect to which \mathcal{G} is measurable.

Theorem

Let \mathcal{G} be a $(I, \mathcal{I}, \lambda)$ representation of μ . Then τ is a symmetric NED of μ if and only if $\tau = \lambda \circ (\mathcal{G}, f)^{-1}$ for a $\sigma(\mathcal{G})$ -measurable Nash equilibrium f of \mathcal{G} .

Given any probability space $(I, \mathcal{I}, \lambda)$, a function on I is *almost* one-to-one if it is one-to-one on I except some λ -null set of I.

Theorem

Let \mathcal{G} be a (L, \mathcal{L}, ℓ) representation of μ . Assume that \mathcal{G} is almost one-to-one. (a) If f is a Nash equilibrium of \mathcal{G} then $\tau = \ell \circ (\mathcal{G}, f)^{-1}$ is a symmetric NED of μ . (b) Let $f : I \longrightarrow A$ be any measurable function and $\tau = \ell \circ (\mathcal{G}, f)^{-1}$. If τ is a NED of μ then f is a Nash equilibrium of \mathcal{G} and τ is symmetric.

- ▶ If µ is atomless, there exists an almost one-to-one Lebesgue representation.
- ▶ The result is not true on arbitrary atomless measure spaces.

Examples

To simplify the idea, in each example, we consider a game where all players share a common trait, i.e., the space of characteristics $T \times U_{(A,T)}$ is now reduced to U_A , the space of real valued continuous functions on $A \times \mathcal{M}(A)$, metrized by supremum norm.

- Example 1: A NED of a LDG cannot be induced by a Nash equilibrium of a given strategic Lebesgue representation.
- Example 2: The NED above can be induced by a Nash equilibrium of some other Lebesgue representation.

Example 1

Let the action set be $A = \{a_1, a_2\}$ and the player set be the Lebesgue interval (L, \mathcal{L}, ℓ) . Consider a particular function $u \in \mathcal{U}_A$, defined as follows: $u(a_1, \nu) = 1/2$, $u(a_2, \nu) = 1 - \nu(a_2)$.

Let $\mathcal{G}^1(i) = iu$ for $i \in L$. Define f_1 and f_2 as follows:

$$f_1(t)=a_1$$
 if $t<1/2$ and $f_1(t)=a_2$ if $t\geq 1/2$.

$$f_2(t) = a_2$$
 if $t < 1/2$ and $f_2(t) = a_1$ if $t \ge 1/2$.

Both f_1 and f_2 are Nash equilibria of \mathcal{G}^1 .

Let $\tau = \ell \circ (\mathcal{G}^1, f_1)^{-1}$, $\tau' = \ell \circ (\mathcal{G}^1, f_2)^{-1}$ and $\tau^{\alpha} = \alpha \tau + (1 - \alpha) \tau'$ for $0 < \alpha < 1$.

The LDG μ^1 and τ^{lpha}

Consider the *LDG* $\mu^1 = \ell \circ (\mathcal{G}^1)^{-1}$. For any $\alpha \in (0, 1)$, τ^{α} is a NED of the *LDG* μ^1 .

Example 1, contd.

One can show that

A Negative Result

 \mathcal{G}^1 is a Lebesgue representation of μ^1 . But there is no Nash equilibrium f of \mathcal{G}^1 such that $\tau^{\alpha} = \ell \circ (\mathcal{G}^1, f)^{-1}$, for $0 < \alpha < 1$.

A Similarity Result

However, there exists a Nash equilibrium f' such that (a) $\tau^* = \ell \circ (\mathcal{G}^1, f')^{-1}$ is a NED of μ^1 , and (b) τ^{α} and τ^* are similar.

Example 2

We now show that for any fixed α , the NED τ^{α} of the LDG μ^{1} in Example 1 indeed can be induced by some Lebesgue representation of the LDG and its Nash equilibrium.

In particular, let $\alpha = 1/2$.

Consider the same function u as in Example 1. Define $\mathcal{H}: L \longrightarrow \mathcal{U}_A$ as follows.

$$\begin{aligned} \mathcal{H}(i) &= 2iu & \text{if } i < \frac{1}{2} \\ &= \mathcal{H}\left(i - \frac{1}{2}\right) & \text{if } i \geq \frac{1}{2} \end{aligned}$$

Since $\mathcal{H}(i) = \mathcal{H}(i - (1/2))$ for each $i \ge 1/2$, \mathcal{H} is not one-to-one.

Example 2, contd.

We can show that

Another Representation of μ^1

 \mathcal{H} is a Lebesgue representation of the μ^1 in Example 1.

Moreover, Let
$$f(i) = a_1$$
 if $i \in [0, 1/4] \cup (3/4, 1]$ and $f(i) = a_2$ if $i \in (1/4, 1/2] \cup (1/2, 3/4]$.

Nash equilibrium of \mathcal{H}

The NED $\tau^{1/2}$ of μ^1 can be induced by a Nash equilibrium f of \mathcal{H} .

Examples on Uncountable Actions/Traits

Negative results on the existence of Nash equiilibria in some *LSG* with Lebesgue unit interval as the name space.

- ▶ When A is [-1, 1]. Examples in RSY or in KRS: LSG without Nash equilibrium.
- ▶ When T is [0, 1]. Example 1 in Qiao-Yu: a LSG that has no Nash equilibrium.

Fix any *LSG* \mathcal{G} in those examples. Let $\mu = \lambda \circ \mathcal{G}^{-1}$. There exists a NED of μ .

Further Discussions

- Countably Determined Games
- Realization of NEDs

Consider games with a common trait for all the players.

Denote by id(r) the constant function in \mathcal{U}_A which always assumes value r. Let ψ be the operator on \mathcal{U}_A such that $\psi(u) = u$ if u = id(0) and u/ || u || otherwise. ψ is continuous on $\mathcal{U}_A \setminus id(0)$ and is measurable on \mathcal{U}_A . Given a game \mathcal{G} , consider the game $\overline{\mathcal{G}}$ where $\overline{\mathcal{G}}(i) = \psi(\mathcal{G}(i))$ for all i.

 \mathcal{G} is determined by countable characteristics if the range of $\overline{\mathcal{G}}$ is countable.

Theorem

Let \mathcal{G} be a game determined by countable characteristics and $\mu = \lambda \circ \mathcal{G}^{-1}$. (a) \mathcal{G} has a Nash equilibrium f. (b) If μ is atomless then it has a symmetric NED. (c) The similarity theorem (above) holds.

Realization of NEDs

Definition

Given a NED τ of a *LDG* μ , we say that a probability space $(I, \mathcal{I}, \lambda)$ is a *realization* of τ (or, $(I, \mathcal{I}, \lambda)$ realizes τ) if every $(I, \mathcal{I}, \lambda)$ representation \mathcal{G} of μ has a Nash equilibrium f such that $\lambda \circ (\mathcal{G}, f)^{-1} = \tau$.

Characterization of NEDs by Realization:

Corollary

Let μ be an atomless LDG and τ a NED of μ .

(a) τ is symmetric if and only if the Lebesuge unit interval is a realization of τ .

(b) If τ is non-symmetric, then an atomless probability space realizes τ if and only if it is saturated.

Conclusions

- Existence of NED and symmetric NED in a *LDG*.
- LDG and its Strategic Representation:
- Any Nash equilibrium of a representation of a LDG induces a NED of the LDG.
- Converse: not all NEDs of a LDG can be induced by a Nash equilibrium of a given representation.
 - Two exceptions:
 - Representation with countable characteristics
 - Saturated representation
 - Representation in general: Similarity Theorem
- Characterization of Symmetric NED in a LDG
 - $\sigma(\mathcal{G})$ -measurable Nash equilibirum
 - Almost one-to-one Lebesgue representation
- Countably determined games
- Realization: symmetric and non-symmetric case