The Nonexistence of Mixed Strategy Nash Equilibria for a Countable Agent Space

M. Ali Khan Johns Hopkins University

Kali P. Rath University of Notre Dame

Yeneng Sun National University of Singapore

May 04, 2013

Background and Motivation

- Nash: Every finite-player, finite-action game has an equilibrium in mixed strategies.
- Games with infinitely many players, compact convex action set of each player, payoffs are quasi-concave in own argument.
 There is a Nash equilibrium.
 Ma (1969)
- Atomless, countably additive measure space of players:
 - If the set of players is an atomless, countably additive measure space then a game has a pure strategy Nash equilibrium.
 Schmeidler (1973)
 - ▶ DWW (1951) theorem: Every mixed strategy Nash equilibrium can be purified.
- ▶ The DWW theorem holds for finitely additive measure spaces.
- ▶ Question: Does a pure/mixed strategy Nash equilibrium exist in a game over a finitely additive measure space of players?

This Talk

- ▶ If the set of players is endowed with a finitely additive measure, then a game may not have a Nash equilibrium (in pure or mixed strategies).
- Main reason: Failure of the upper hemicontinuity of the integral of a correspondence.

Upper Hemicontinuity of the Integral

- Let (T, T, μ) be an atomless, countably additive measure space and X a metric space.
- ▶ Let $F: T \times X \longrightarrow \mathbb{R}^n$ be a correspondence.
- ▶ If $F(\cdot,x)$ is measurable and $F(t,\cdot)$ is upper hemicontinuous then

$$\int_{\mathcal{T}} F(\cdot, x) \ d\mu$$

is upper hemicontinuous (in x).

▶ This results fails if μ is a finitely additive measure.

Large Games

- Let $E = \{e^1, \dots, e^n\}$ be the set of unit vectors in \mathbb{R}^n and $S = \{s \in \mathbb{R}^n_+ : \sum_{i=1}^n s_i = 1\}$ the unit simplex in \mathbb{R}^n .
- Let \mathcal{U} be the set of real valued continuous functions defined on $E \times S$, endowed with sup norm.
- Let (T, T, μ) be an atomless, countably additive measure space.
- A (non-anonymous large) *game* is a measurable function $\mathcal{G}: \mathcal{T} \longrightarrow \mathcal{U}$.
- ▶ A $f: T \longrightarrow E$ is a (pure strategy) Nash equilibrium of G if for almost all t,

$$\mathcal{G}(t)\left(f(t),\int f\ d\mu
ight)\geq \mathcal{G}(t)\left(a,\int f\ d\mu
ight)\ ext{for all}\ a\in E.$$

Existence of Nash Equilibrium

Theorem (Schmeidler)

Every game has a pure strategy Nash equilibrium.

▶ Define a correspondence $B: T \times S \longrightarrow E$ by

$$B(t,s) = \{e^i \in E | \mathcal{G}(t)(e^i,s) \ge \mathcal{G}(t)(a,s) \text{ for all } a \in E\}.$$

- ▶ B(t,s) is nonempty, $B(\cdot,s)$ is measurable and $B(t,\cdot)$ is uhc.
- ▶ Let $\Gamma(s) = \int_T B(\cdot, s) d\mu$.
 - ▶ $\Gamma(s)$ is nonempty for each $s \in S$.
 - $ightharpoonup \Gamma(\cdot)$ is uhc (integration preserves uhc).
 - $ightharpoonup \Gamma(\cdot)$ is convex valued (by Lyapunov's theorem).
- ▶ Γ has a fixed point s^* (by Kakutani's fixed point theorem).
- ▶ So, there is $f: T \longrightarrow E$ such that $\int f d\mu = s^*$ and for almost all $t, f(t) \in B(t, s^*)$.
- ▶ This f is a Nash equilibrium of G.

Finitely Additive Measures

- ightharpoonup T is a nonempty set and T a field of subsets of T.
 - (i) \emptyset , $T \in \mathcal{T}$; (ii) A, $B \in \mathcal{T} \Rightarrow A \cup B \in \mathcal{T}$ and (iii) A, $B \in \mathcal{T} \Rightarrow A \setminus B \in \mathcal{T}$.
- $\mu \text{ is a finitely additive probability measure on } \mathcal{T} \text{ if} \\ (i) \ \mu(\emptyset) = 0, \ \mu(\mathcal{T}) = 1, \ \mu(A) \geq 0 \text{ for all } A \in \mathcal{T} \text{ and} \\ (ii) \ \mu(A \cup B) = \mu(A) + \mu(B) \text{ if } A, B \in \mathcal{T}, \ A \cap B = \emptyset.$
- Let $\mathbb N$ denote the set of positive integers. Often, we will be concerned with a finitely additive, probability measure on the power set of $\mathbb N$, $\mathcal P(\mathbb N)$.
- μ is strongly continuous if for every $\epsilon > 0$, there exists a measurable partition $\{F_1, \ldots, F_n\}$ of T such that $\mu(F_i) < \epsilon$ for every i.
- ▶ If μ is strongly continuous then it is atomless. A countably additive measure μ is strongly continuous iff it is atomless.
- ▶ The range of a strongly continuous measure is convex.

Integration on Finitely Additive Measure Spaces

Let (T, T, μ) be a finitely additive probability measure space. All functions below are real valued on T.

- f is simple if there exist $\{s_1, \ldots, s_n\}$ and $\{T_1, \ldots, T_n\}$ such that $T_n \in \mathcal{T}$ for all n and $f(t) = s_n$ if $t \in T_n$. f is said to be μ -integrable and $\int f \ d\mu = \sum_{i=1}^n s_i \mu(T_i)$.
- ▶ The outer measure $\mu^* : \mathcal{P}(T) \longrightarrow [0,1]$ is given by

$$\mu^*(A) = \inf\{\mu(B) : A \subseteq B, B \in \mathcal{T}\}.$$

▶ A sequence of functions $\{f_n\}$ converges hazily to f if

$$\lim_{n\to\infty}\mu^*(\{t\in T: |f_n(t)-f(t)|>\epsilon\})=0, \text{ for every }\epsilon>0.$$

▶ f is integrable if there exist a sequence of simple functions such that: (i) $\{f_n\}$ converges hazily to f and (ii) $\lim_{m,n\to\infty}\int |f_n-f_m|\ d\mu=0$. $\int f\ d\mu=\lim_{n\to\infty}\int f_n\ d\mu$.

A Motivating Example: Lack of UHC

- Let $A = \{0, 1\}$ and S = [0, 1]. Let μ be a finitely additive probability measure on $\mathcal{P}(\mathbb{N})$ such that the μ -measure of any finite set is zero.
- ▶ Define a correspondence $F : \mathbb{N} \times S \longrightarrow A$ as:

$$F(t,x) = \begin{cases} \{0,1\} & \text{if } x = 1/(t+1) \\ 1 & \text{if } x < 1/(t+1) \\ 0 & \text{if } x > 1/(t+1). \end{cases}$$

► Then

$$\int_{\mathbb{N}} F(\cdot, x) d\mu = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0. \end{cases}$$

- ▶ Clearly, $\int_{\mathbb{N}} F(\cdot, x) d\mu$ is not uhc at x = 0.
- We have only assumed that the μ -measure of any finite set is zero. In particular, we can take μ to be any strongly continuous measure (such as a density measure).

Graphs of the Correspondence

$$F(t,x) = \begin{cases} \{0,1\} & \text{if } x = 1/(t+1) \\ 1 & \text{if } x < 1/(t+1) \\ 0 & \text{if } x > 1/(t+1). \end{cases}$$

Let t = 9.

Example, contd.

 $F: \mathbb{N} \times S \longrightarrow A.$

$$F(t,x) = \begin{cases} \{0,1\} & \text{if } x = 1/(t+1) \\ 1 & \text{if } x < 1/(t+1) \\ 0 & \text{if } x > 1/(t+1). \end{cases}$$

► Then

$$\int_{\mathbb{N}} F(\cdot, x) d\mu = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0. \end{cases}$$

- ▶ Clearly, $\int_{\mathbb{N}} F(\cdot, x) d\mu$ is not uhc at x = 0.
- Let f be a measurable selection. If x=0 then x<1/(t+1) for all $t\in\mathbb{N}$, which implies that f(t)=1 for all $t\in\mathbb{N}$ and $\int f\ d\mu=1$.
- If x > 0 then $x \le 1/(t+1)$ for at most finitely many t's. Since the μ -measure of any finite set is zero, f(t) = 0 for almost all t and $\int f \ d\mu = 0$.

Games and Nash Equilibria

- Let $A = \{0, 1\}$ and S = [0, 1]. Let \mathcal{U} be the set of real valued continuous functions on $A \times S$, endowed with sup norm.
- \mathbb{N} is the set of positive integers. Let μ be a strongly continuous, finitely additive measure on $\mathcal{P}(\mathbb{N})$.
- ▶ A *game* is a measurable function \mathcal{G} from \mathbb{N} to \mathcal{U} .
- A measurable function f from $\mathbb N$ to A is a Nash equilibrium of a game $\mathcal G$ if

$$\mathcal{G}(t)\left(f(t),\int f\ d\mu
ight)\geq \mathcal{G}(t)\left(a,\int f\ d\mu
ight)$$

for all $a \in A$ and for almost all $t \in \mathbb{N}$.

▶ Note: This notion of Nash equilibrium is in pure strategies.

Nonexistence of Nash Equilibria: Example

▶ Let $A = \{0, 1\}$ and S = [0, 1]. For each $t \in \mathbb{N}$, let the payoff function (on $A \times S$) be

$$u_t(a,x) = \left(x - \frac{1}{t+1}\right)^{a+1}, \ a \in A.$$

Then $t \longrightarrow u_t$ defines a game.

- We will derive the best responses and show that this game has no Nash equilibrium.
- ► Best responses:

$$\operatorname{argmax}_{a \in \mathcal{A}} u_t(a, x) = \left\{ egin{array}{ll} \{0, 1\} & ext{if } x = 1/(t+1) \ 1 & ext{if } x < 1/(t+1) \ 0 & ext{if } x > 1/(t+1). \end{array}
ight.$$

- x = 1/(t+1): $u_t(0,x) = u_t(1,x) = 0$.
- x < 1/(t+1): $u_t(0,x) < 0 < u_t(1,x)$.
- > x > 1/(t+1): $0 < u_t(0,x) < 1$, $u_t(1,x) = [u_t(0,x)]^2$.

Example: contd.

Best responses:

$$\operatorname{argmax}_{a \in A} u_t(a, x) = \left\{ egin{array}{ll} \{0, 1\} & \text{if } x = 1/(t+1) \\ 1 & \text{if } x < 1/(t+1) \\ 0 & \text{if } x > 1/(t+1). \end{array}
ight.$$

- Suppose that f from \mathbb{N} to A is a Nash equilibrium. Let $x = \int f d\mu$.
 - ▶ If x = 0 then x < 1/(t+1) for all $t \in \mathbb{N}$ which implies that f(t) = 1 for all t and $\int f d\mu = 1$, a contradiction.
 - If x>0 then x>1/(t+1) for almost all t (since the measure of a finite set is zero), which implies that f(t)=0 for almost all t and $\int f \ d\mu=0$, again a contradiction.
- ▶ The game does not have a Nash equilibrium.

Nonexistence of Mixed Strategy Nash Equilibria

- We will now consider mixed strategies (formalized as integrals).
- ▶ Let A = S = [0, 1]. For each $t \in \mathbb{N}$, let the payoff be

$$v_t(p,x) = (1-p)u_t(0,x) + pu_t(1,x).$$

A $f : \mathbb{N} \longrightarrow A$ is a (mixed strategy) Nash equilibrium if

$$v_t\left(f(t), \int f \ d\mu\right) \geq v_t\left(p, \int f \ d\mu\right)$$

for all $p \in A$ and for almost all $t \in \mathbb{N}$.

▶ The best responses are as before, i.e., almost all t will choose a pure action, 0 or 1. The preceding arguments show that there is no Nash equilibrium (in mixed strategies).

Nonexistence of Equilibria on General Measure Spaces

- Let T be a nonempty set and T a field of subsets of T. Let μ be a finitely additive probability measure on T.
- Assume that μ is not countably additive. We will show that there is a game on μ which has no pure or mixed strategy Nash equilibrium.

Claim

The following conditions are equivalent.

- (i) μ is countably additive.
- (ii) $\lim_{n\to\infty} \mu(B_n) = \mu(B)$ whenever $\{B_n\}$ is an increasing sequence of sets in \mathcal{T} with $B = \bigcup_{n=1}^{\infty} B_n \in \mathcal{T}$.

The Example

- Let $A = \{0, 1\}$ be the set of actions.
- Since μ is not countably additive, there is an increasing sequence of sets $\{B_n\}$ in \mathcal{T} such that

$$\cup_{n=1}^{\infty}B_n=T$$
 and $\lim_{n\to\infty}\mu(B_n)=c<1.$

- ▶ For $n \in \mathbb{N}$, let $C_1 = B_1$ and for $n \geq 2$, $C_n = B_n \setminus B_{n-1}$.
- ▶ $\{C_n\}$ is a sequence of pairwise disjoint sets and $\bigcup_{n=1}^{\infty} C_n = T$.
- Now we will define the payoffs. Let $x \in [0, 1]$. For each $t \in C_n$, let

$$u_t(a,x)=(x-\ell_n)^{a+1},\ a\in A \text{ where } \ell_n=c+rac{1-c}{n}.$$

Note that $\ell_1 = 1$, $\ell_n > c$ for each n and $\{\ell_n\}$ is a monotonically decreasing sequence converging to c.

The Example, contd.

 $u_t(a,x)=(x-\ell_n)^{a+1}$. Best responses:

$$\operatorname{argmax}_{a \in \mathcal{A}} u_t(a, x) = \left\{ \begin{array}{ll} \{0, 1\} & \text{if } x = \ell_n \\ 1 & \text{if } x < \ell_n \\ 0 & \text{if } x > \ell_n. \end{array} \right.$$

- Let $f: T \longrightarrow A$ be a pure strategy Nash equilibrium and $x = \int f d\mu$.
 - Suppose that $x \le c < 1$. Then for all $t \in T$, f(t) = 1 which implies that x = 1, a contradiction.
 - Now suppose that x > c. Then there exists a unique $n_0 \in \mathbb{N}$ such that $\ell_{n_0+1} < x \le \ell_{n_0}$. If $n \ge n_0 + 1$ and $t \in C_n$ then f(t) = 0. So, $x = \int f \ d\mu \le \sum_{i=1}^{n_0} \mu(C_i) = \mu(B_{n_0}) \le c$, a contradiction.
- ► The game does not have a pure strategy Nash equilibrium.
- Similar arguments can be used to show that the game does not have a mixed strategy Nash equilibrium.

Sum up

$\mathsf{Theorem}$

Let (T, T, μ) be a finitely additive measure space where μ is strongly continuous. Let A be a finite set with at least two elements. Then the following are equivalent.

- (i) Every game G on T with A as the action space has a pure (mixed) strategy Nash equilibrium.
- (ii) μ is countably additive.
 - $(ii) \Rightarrow (i)$. If μ is countably additive, then Schmeidler's theorem ensures that every game has a pure/mixed strategy Nash equilibrium.
 - $(i) \Rightarrow (ii)$. Suppose that μ is not countably additive. Consider the game in the example. It does not have any pure/mixed strategy Nash equilibrium.

Open Questions

- (Example) Consider a two-player finite-action game of incomplete information. Suppose that the information space of each player has a finitely additive measure. The game may not have a Nash equilibrium.
- 2. (Theorem) Every game (on a finitely additive measure space of players) has an ϵ -Nash equilibrium.