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Background and Motivation

I Nash: Every finite-player, finite-action game has an
equilibrium in mixed strategies.

I Games with infinitely many players, compact convex action
set of each player, payoffs are quasi-concave in own argument.
There is a Nash equilibrium. Ma (1969)

I Atomless, countably additive measure space of players:
I If the set of players is an atomless, countably additive measure

space then a game has a pure strategy Nash equilibrium.
Schmeidler (1973)

I DWW (1951) theorem: Every mixed strategy Nash equilibrium
can be purified.

I The DWW theorem holds for finitely additive measure spaces.

I Question: Does a pure/mixed strategy Nash equilibrium exist
in a game over a finitely additive measure space of players?
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This Talk

I If the set of players is endowed with a finitely additive
measure, then a game may not have a Nash equilibrium (in
pure or mixed strategies).

I Main reason: Failure of the upper hemicontinuity of the
integral of a correspondence.
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Upper Hemicontinuity of the Integral

I Let (T , T , µ) be an atomless, countably additive measure
space and X a metric space.

I Let F : T × X −→→ Rn be a correspondence.

I If F (·, x) is measurable and F (t, ·) is upper hemicontinuous
then ∫

T
F (·, x) dµ

is upper hemicontinuous (in x).

I This results fails if µ is a finitely additive measure.
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Large Games

I Let E = {e1, . . . , en} be the set of unit vectors in Rn and
S = {s ∈ Rn

+ :
∑n

i=1 si = 1} the unit simplex in Rn.

I Let U be the set of real valued continuous functions defined
on E × S , endowed with sup norm.

I Let (T , T , µ) be an atomless, countably additive measure
space.

I A (non-anonymous large) game is a measurable function
G : T −→ U .

I A f : T −→ E is a (pure strategy) Nash equilibrium of G if for
almost all t,

G(t)

(
f (t),

∫
f dµ

)
≥ G(t)

(
a,

∫
f dµ

)
for all a ∈ E .
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Existence of Nash Equilibrium

Theorem (Schmeidler)

Every game has a pure strategy Nash equilibrium.

I Define a correspondence B : T × S −→ E by

B(t, s) = {e i ∈ E | G(t)(e i , s) ≥ G(t)(a, s) for all a ∈ E}.

I B(t, s) is nonempty, B(·, s) is measurable and B(t, ·) is uhc.
I Let Γ(s) =

∫
T B(·, s) dµ.

I Γ(s) is nonempty for each s ∈ S .
I Γ(·) is uhc (integration preserves uhc).
I Γ(·) is convex valued (by Lyapunov’s theorem).

I Γ has a fixed point s∗ (by Kakutani’s fixed point theorem).

I So, there is f : T −→ E such that
∫

f dµ = s∗ and for almost
all t, f (t) ∈ B(t, s∗).

I This f is a Nash equilibrium of G.
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Finitely Additive Measures

I T is a nonempty set and T a field of subsets of T .
(i) ∅, T ∈ T ; (ii) A, B ∈ T ⇒ A ∪ B ∈ T and
(iii) A, B ∈ T ⇒ A \ B ∈ T .

I µ is a finitely additive probability measure on T if
(i) µ(∅) = 0, µ(T ) = 1, µ(A) ≥ 0 for all A ∈ T and
(ii) µ(A ∪ B) = µ(A) + µ(B) if A,B ∈ T , A ∩ B = ∅.

I Let N denote the set of positive integers. Often, we will be
concerned with a finitely additive, probability measure on the
power set of N, P(N).

I µ is strongly continuous if for every ε > 0, there exists a
measurable partition {F1, . . . , Fn} of T such that µ(Fi ) < ε
for every i .

I If µ is strongly continuous then it is atomless. A countably
additive measure µ is strongly continuous iff it is atomless.

I The range of a strongly continuous measure is convex.
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Integration on Finitely Additive Measure Spaces

Let (T , T , µ) be a finitely additive probability measure space.
All functions below are real valued on T .

I f is simple if there exist {s1, . . . , sn} and {T1, . . . ,Tn} such
that Tn ∈ T for all n and f (t) = sn if t ∈ Tn.

f is said to be µ-integrable and
∫

f dµ =
∑n

i=1 siµ(Ti ).

I The outer measure µ∗ : P(T ) −→ [0, 1] is given by

µ∗(A) = inf{µ(B) : A ⊆ B, B ∈ T }.

I A sequence of functions {fn} converges hazily to f if

lim
n→∞

µ∗({t ∈ T : |fn(t)− f (t)| > ε}) = 0, for every ε > 0.

I f is integrable if there exist a sequence of simple functions
such that: (i) {fn} converges hazily to f and
(ii) limm,n→∞

∫
|fn− fm| dµ = 0.

∫
f dµ = limn→∞

∫
fn dµ.
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A Motivating Example: Lack of UHC

I Let A = {0, 1} and S = [0, 1].
Let µ be a finitely additive probability measure on P(N) such
that the µ-measure of any finite set is zero.

I Define a correspondence F : N× S −→→ A as:

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Then ∫
N

F (·, x) dµ =

{
1 if x = 0
0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.

I We have only assumed that the µ-measure of any finite set is
zero. In particular, we can take µ to be any strongly
continuous measure (such as a density measure).
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Graphs of the Correspondence

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

Let t = 9.
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Example, contd.

I F : N× S −→→ A.

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Then ∫
N

F (·, x) dµ =

{
1 if x = 0
0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.

I Let f be a measurable selection. If x = 0 then x < 1/(t + 1)
for all t ∈ N, which implies that f (t) = 1 for all t ∈ N and∫

f dµ = 1.

I If x > 0 then x ≤ 1/(t + 1) for at most finitely many t’s.
Since the µ-measure of any finite set is zero, f (t) = 0 for
almost all t and

∫
f dµ = 0.
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Games and Nash Equilibria

I Let A = {0, 1} and S = [0, 1]. Let U be the set of real valued
continuous functions on A× S , endowed with sup norm.

I N is the set of positive integers. Let µ be a strongly
continuous, finitely additive measure on P(N).

I A game is a measurable function G from N to U .

I A measurable function f from N to A is a Nash equilibrium of
a game G if

G(t)

(
f (t),

∫
f dµ

)
≥ G(t)

(
a,

∫
f dµ

)
for all a ∈ A and for almost all t ∈ N.

I Note: This notion of Nash equilibrium is in pure strategies.
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Nonexistence of Nash Equilibria: Example

I Let A = {0, 1} and S = [0, 1]. For each t ∈ N, let the payoff
function (on A× S) be

ut(a, x) =

(
x − 1

t + 1

)a+1

, a ∈ A.

Then t −→ ut defines a game.

I We will derive the best responses and show that this game has
no Nash equilibrium.

I Best responses:

argmaxa∈Aut(a, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I x = 1/(t + 1): ut(0, x) = ut(1, x) = 0.
I x < 1/(t + 1): ut(0, x) < 0 < ut(1, x).
I x > 1/(t + 1): 0 < ut(0, x) < 1, ut(1, x) = [ut(0, x)]2.

Khan–Rath–Sun Nonexistence of Nash Equilibria



Example: contd.

I Best responses:

argmaxa∈Aut(a, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Suppose that f from N to A is a Nash equilibrium.
Let x =

∫
f dµ.

I If x = 0 then x < 1/(t + 1) for all t ∈ N which implies that
f (t) = 1 for all t and

∫
f dµ = 1, a contradiction.

I If x > 0 then x > 1/(t + 1) for almost all t
(since the measure of a finite set is zero),
which implies that f (t) = 0 for almost all t and

∫
f dµ = 0,

again a contradiction.

I The game does not have a Nash equilibrium.
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Nonexistence of Mixed Strategy Nash Equilibria

I We will now consider mixed strategies (formalized as
integrals).

I Let A = S = [0, 1]. For each t ∈ N, let the payoff be

vt(p, x) = (1− p)ut(0, x) + put(1, x).

A f : N −→ A is a (mixed strategy) Nash equilibrium if

vt

(
f (t),

∫
f dµ

)
≥ vt

(
p,

∫
f dµ

)
for all p ∈ A and for almost all t ∈ N.

I The best responses are as before, i.e., almost all t will choose
a pure action, 0 or 1. The preceding arguments show that
there is no Nash equilibrium (in mixed strategies).
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Nonexistence of Equilibria on General Measure Spaces

I Let T be a nonempty set and T a field of subsets of T . Let µ
be a finitely additive probability measure on T .

I Assume that µ is not countably additive.
We will show that there is a game on µ which has no pure or
mixed strategy Nash equilibrium.

Claim

The following conditions are equivalent.

(i) µ is countably additive.

(ii) limn→∞ µ(Bn) = µ(B) whenever {Bn} is an increasing
sequence of sets in T with B = ∪∞n=1Bn ∈ T .
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The Example

I Let A = {0, 1} be the set of actions.

I Since µ is not countably additive, there is an increasing
sequence of sets {Bn} in T such that

∪∞n=1Bn = T and lim
n→∞

µ(Bn) = c < 1.

I For n ∈ N, let C1 = B1 and for n ≥ 2, Cn = Bn \ Bn−1.

I {Cn} is a sequence of pairwise disjoint sets and ∪∞n=1Cn = T .

I Now we will define the payoffs. Let x ∈ [0, 1]. For each
t ∈ Cn, let

ut(a, x) = (x − `n)a+1, a ∈ A where `n = c +
1− c

n
.

I Note that `1 = 1, `n > c for each n and {`n} is a
monotonically decreasing sequence converging to c .
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The Example, contd.

I ut(a, x) = (x − `n)a+1. Best responses:

argmaxa∈Aut(a, x) =


{0, 1} if x = `n

1 if x < `n
0 if x > `n.

I Let f : T −→ A be a pure strategy Nash equilibrium and
x =

∫
f dµ.

I Suppose that x ≤ c < 1. Then for all t ∈ T , f (t) = 1 which
implies that x = 1, a contradiction.

I Now suppose that x > c . Then there exists a unique n0 ∈ N
such that `n0+1 < x ≤ `n0 . If n ≥ n0 + 1 and t ∈ Cn then
f (t) = 0. So, x =

∫
f dµ ≤

∑n0
i=1 µ(Ci ) = µ(Bn0)≤ c , a

contradiction.

I The game does not have a pure strategy Nash equilibrium.

I Similar arguments can be used to show that the game does
not have a mixed strategy Nash equilibrium.
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Sum up

Theorem

Let (T , T , µ) be a finitely additive measure space where µ is
strongly continuous. Let A be a finite set with at least two
elements. Then the following are equivalent.

(i) Every game G on T with A as the action space has a pure
(mixed) strategy Nash equilibrium.

(ii) µ is countably additive.

I (ii)⇒ (i). If µ is countably additive, then Schmeidler’s
theorem ensures that every game has a pure/mixed strategy
Nash equilibrium.

I (i)⇒ (ii). Suppose that µ is not countably additive. Consider
the game in the example. It does not have any pure/mixed
strategy Nash equilibrium.
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Open Questions

1. (Example) Consider a two-player finite-action game of
incomplete information. Suppose that the information space of
each player has a finitely additive measure. The game may not
have a Nash equilibrium.

2. (Theorem) Every game (on a finitely additive measure space of
players) has an ε-Nash equilibrium.
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