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Background and Motivation

I Games with finite number of players.
I Modeling individual negligibility: Atomless measures,

infinitesimals, Loeb spaces, Finitely–additive measures.
I Standard model: continuum of players with atomless

distribution.
I Countably many agents.
I Each player has zero mass. Measure of the whole space is 1.

So, finitely additive measures.
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Literature

I Nash: Every finite-player, finite-action game has an
equilibrium in mixed strategies.

I Games with infinitely many players, compact convex action
set of each player, payoffs are quasi-concave in own argument.
There is a Nash equilibrium. Ma (1969)

I Atomless, countably additive measure space of players:
I If the set of players is an atomless, countably additive measure

space then a game has a pure strategy Nash equilibrium.
Schmeidler (1973)

I DWW (1951) theorem: Every mixed strategy Nash equilibrium
can be purified.

I The DWW theorem holds for finitely additive measure spaces.

I Question: Does a pure/mixed strategy Nash equilibrium exist
in a game over a finitely additive measure space of players?

Khan-Qiao-Rath-Sun Nonexistence of Nash Equilibria



This Talk

I If the set of players is endowed with a finitely additive
measure, then:

I a game may not have a Nash equilibrium (in pure or mixed
strategies).

I the Nash equilibrium correspondence may not have the closed
graph property.

I a game may not have an ε-equilibrium.
I sufficient conditions for existence of an ε-equilibrium.

I Primary reason for nonexistence of equilibrium: The lack of
upper hemicontinuity of the integral of a correspondence.
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Large Games

I Let E = {e1, . . . , eL} be the set of unit vectors in RL and
S = {s ∈ RL

+ :
∑L

k=1 sk = 1} the unit simplex in RL.

I Let U be the set of real valued continuous functions defined
on E × S , endowed with sup norm.

I Let (T , T , µ) be an atomless, countably additive probability
space.

I A (non-anonymous large) game is a measurable function
G : T −→ U .

I A pure strategy profile (of a game G) is a measurable function
f : T −→ E .

I A f : T −→ E is a (pure strategy) Nash equilibrium of G if for
almost all t,

G(t)

(
f (t),

∫
T
f dµ

)
≥ G(t)

(
a,

∫
T
f dµ

)
for all a ∈ E .
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Existence of Nash Equilibrium

Theorem (Schmeidler)

Every game has a pure strategy Nash equilibrium.

I Define a correspondence B : T × S −→ E by

B(t, s) = {ek ∈ E : G(t)(ek , s) ≥ G(t)(a, s) for all a ∈ E}.

I B(t, s) is nonempty, B(·, s) is measurable and B(t, ·) is uhc.
I Let Γ(s) =

∫
T B(·, s) dµ.

I Γ(s) is nonempty for each s ∈ S .
I Γ(·) is uhc (integration preserves uhc).
I Γ(·) is convex valued (by Lyapunov’s theorem).

I Γ has a fixed point s∗ (by Kakutani’s fixed point theorem).

I So, there is f : T −→ E such that
∫
T f dµ = s∗ and for

almost all t, f (t) ∈ B(t, s∗).

I This f is a Nash equilibrium of G.
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Finitely Additive Measures

I T is a nonempty set and T a field of subsets of T .
(i) ∅, T ∈ T ; (ii) A, B ∈ T ⇒ A ∪ B ∈ T and
(iii) A, B ∈ T ⇒ A \ B ∈ T .

I µ is a finitely additive probability measure on T if
(i) µ(∅) = 0, µ(T ) = 1, µ(A) ≥ 0 for all A ∈ T and
(ii) µ(A ∪ B) = µ(A) + µ(B) if A,B ∈ T , A ∩ B = ∅.

I Let N denote the set of positive integers. Often, we will be
concerned with a finitely additive, probability measure on the
power set of N, P(N).

I µ is strongly continuous if for every ε > 0, there exists a
measurable partition {F1, . . . , Fn} of T such that µ(Fi ) < ε
for every i .

I If µ is strongly continuous then it is atomless. A countably
additive measure µ is strongly continuous iff it is atomless.

I The range of a strongly continuous measure is convex.
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Games on Finitely Additive Spaces

I Let E = {e1, . . . , eL} be the set of unit vectors in RL and
S = {s ∈ RL

+ :
∑L

k=1 sk = 1} the unit simplex in RL.

I Let U be the set of real valued continuous functions defined
on E × S , endowed with sup norm.

I Let (T , T , µ) be a finitely additive probability space.

I A game is a measurable function
G : T −→ U .

I A pure strategy profile (of a game G) is a measurable function
f : T −→ E .

I A f : T −→ E is a (pure strategy) Nash equilibrium of G if for
almost all t,

G(t)

(
f (t),

∫
T
f dµ

)
≥ G(t)

(
a,

∫
T
f dµ

)
for all a ∈ E .
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Mixed Strategies

I Pure strategy profile: f : T −→ E .

I Mixed strategy profile: f : T −→ S .

I Given a mixed strategy profile f and y ∈ S , the payoff to
player t is

G(t)

(
y ,

∫
T
f dµ

)
=

L∑
k=1

ykG(t)

(
ek ,

∫
T
f dµ

)
.

I A f : T −→ E is a (mixed strategy) Nash equilibrium of G if
for almost all t,

G(t)

(
f (t),

∫
T
f dµ

)
≥ G(t)

(
y ,

∫
T
f dµ

)
for all y ∈ S .
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Nonexistence of Nash Equilibria: Example

I Let A = {0, 1} and K = [0, 1]. For each t ∈ N, let the payoff
function (on A× K ) be

G(t)(a, x) =

(
x − 1

t + 1

)a+1

, a ∈ A.

I We will derive the best responses and show that this game has
no Nash equilibrium.

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I x = 1/(t + 1): G(t)(0, x) = G(t)(1, x) = 0.
I x < 1/(t + 1): G(t)(0, x) < 0 < G(t)(1, x).
I x > 1/(t + 1): 0 < G(t)(0, x) < 1, G(t)(1, x) = [G(t)(0, x)]2.
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Example, contd.

I Best responses:

argmaxa∈Aut(a, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Suppose that f from N to K is a Nash equilibrium.
Let x =

∫
N f dµ.

I If x = 0 then x < 1/(t + 1) for all t ∈ N which implies that
f (t) = 1 for all t and

∫
N f dµ = 1, a contradiction.

I If x > 0 then x > 1/(t + 1) for almost all t
(since the measure of a finite set is zero),
which implies that f (t) = 0 for almost all t and

∫
N f dµ = 0,

again a contradiction.

I The game does not have a Nash equilibrium in pure or mixed
strategies.
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Nonexistence of Equilibria on General Measure Spaces

I Let T be a nonempty set and T a field of subsets of T .
Let µ be a finitely additive probability measure on T .

I Assume that µ is not countably additive.
We will show that there is a game on µ which has no pure or
mixed strategy Nash equilibrium.

Claim

The following conditions are equivalent.

(i) µ is countably additive.

(ii) limn→∞ µ(An) = µ(A) whenever {An} is an increasing
sequence of sets in T with A = ∪∞n=1An ∈ T .
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The Example

I Let A = {0, 1} be the set of actions.

I Since µ is not countably additive, there is an increasing
sequence of sets {Bn} in T such that

∪∞n=1Bn = T and lim
n→∞

µ(Bn) = c < 1.

I For n ∈ N, let C1 = B1 and for n ≥ 2, Cn = Bn \ Bn−1.

I {Cn} is a sequence of pairwise disjoint sets and ∪∞n=1Cn = T .

I Now we will define the payoffs. Let x ∈ [0, 1].
For each t ∈ Cn, let

G(t)(a, x) = (x − `n)a+1, a ∈ A where `n = c +
1− c

n
.

I Note that `1 = 1, `n > c for each n and {`n} is a
monotonically decreasing sequence converging to c .
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The Example, contd.

I G(t)(a, x) = (x − `n)a+1. Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = `n

1 if x < `n
0 if x > `n.

I Let f : T −→ [0, 1] be a mixed strategy Nash equilibrium and
x =

∫
T f dµ.

I Suppose that x ≤ c < 1. Then for all t ∈ T , f (t) = 1 which
implies that x = 1, a contradiction.

I Now suppose that x > c . Then there exists a unique n0 ∈ N
such that `n0+1 < x ≤ `n0 . If n ≥ n0 + 1 and t ∈ Cn then
f (t) = 0. So, x =

∫
T
f dµ ≤

∑n0
i=1 µ(Ci ) = µ(Bn0)≤ c ,

a contradiction.

I The game does not have a Nash equilibrium in pure or mixed
strategies.
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A Sequence of Games

I Below we construct a sequence of games, each of which has a
pure strategy Nash equilibrium.

I Fix any n ∈ N, and let

Gn(t) =

{
G(t) if t ∈ Bn

ū if t 6∈ Bn,

where ū(0, x) = ū(1, x) = 0 for any x ∈ [0, 1].

I Let f n be a function from T to A such that

f n(t) = 1 on Bn and f n(t) = 0 on Bc
n .

I Then
∫
T
f n dµ = µ(Bn) ≤ c < `n for every n ∈ N.

I It is clear that f n(t) is a best response to
∫
T
f n dµ for every

player t,

I This means f n is a Nash equilibrium of Gn.
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An Implication of Countable Additivity

Theorem

Let (T , T , µ) be a finitely additive probability space where T is a
σ-algebra and µ is strongly continuous. Then the following are
equivalent.

(i) Every game G on T with at least two actions has a mixed
strategy Nash equilibrium.

(ii) µ is countably additive.

Proof (ii)⇒ (i). Schmeidler (1973).

(i)⇒ (ii). Assume that µ is not countably additive.
Consider the game G in the example on general measure spaces.
It does not have a pure/mixed strategy Nash equilibrium.
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Closed Graph Property

I The Nash equilibrium correspondence assigns the set of Nash
equilibria to a game.

I Let Gn, n ∈ N, and G be games on (T , T , µ). The Nash
equilibrium correspondence has the closed-graph property if
the following holds: if

I {Gn} converges to G pointwise,
I f n is a Nash equilibrium of Gn for each n and
I {f n} converges to f pointwise.

then f is a Nash equilibrium of G.

Khan-Qiao-Rath-Sun Nonexistence of Nash Equilibria



Another Implication of Countable Additivity

Theorem

Let (T , T , µ) be a finitely additive probability space where T is a
σ-algebra and µ is strongly continuous. Then the following are
equivalent.

(i) The Nash equilibrium correspondence of games with at least
two actions has the closed graph property.

(ii) µ is countably additive.

Proof (ii)⇒ (i). This is shown in Theorem 2 of Qiao-Yu-Zhang
(2015).

(i)⇒ (ii). Assume that µ is not countably additive.
Consider the sequence of games {Gn} and the game G in the
example on general measure spaces.
The closed graph property fails at G.
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epsilon-Equilibrium

I Let G be a game on (T , T , µ) and ε > 0.
I A strategy profile f : T −→ S is an ε-equilibrium of G if

I there exists Tε ∈ T such that µ(Tε) ≤ ε and
I for any t ∈ T c

ε ,

G(t)

(
f (t),

∫
T

f dµ

)
≥ G(t)

(
a,

∫
T

f dµ

)
− ε

for all a ∈ E .
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Nonexistence of epsilon-Equilibrium

I The game is on N, with A = {0, 1} and K = [0, 1].

I For each player t ∈ N, the payoff function is

G(t)(0, x) = 0 and G(t)(1, x) = 1− 2tx + 2t−1.

I The best responses are:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = (1/2) + 2−t

1 if x < (1/2) + 2−t

0 if x > (1/2) + 2−t .

I This game does not have an ε-equilibrium if 0 < ε ≤ 1/4.
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Existence of epsilon-Equilibrium

I A game G on (T , T , µ) is said to be tight if for any ε > 0,
there exist T̄ ⊆ T such that µ(T̄ ) < ε and
G(T\T̄ ) is a relatively compact subset of U .

Theorem

Let G be a game on (T , T , µ). If the measure µ is strongly
continuous and G is tight, then G has a pure strategy ε-equilibrium
for every ε > 0.
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