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Background and Motivation

I General equilibrium theory: Arrow-Debreu model, Continuum
model with an atomless measure, Finitely–additive economy.

I Modeling individual negligibility: Atomless measures,
infinitesimals, Loeb spaces, Finitely–additive measures.

I Standard model: continuum of players with atomless
distribution.

I Countably many agents.
I Each player has zero mass. Measure of the whole space is 1.

So, finitely additive measures.

I Literature: Weiss, Armstrong-Richter, Basile.
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This Talk

I If the set of agents is endowed with a finitely additive
measure, then

I An economy may not have a competitive equilibrium.
I The (competitive) equilibrium allocation correspondence may

not have the closed graph property.
I Sufficient conditions for existence of an ε-competitive

equilibrium.

I Primary reason for nonexistence of equilibrium: The lack of
upper hemicontinuity of the integral of a correspondence.
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Upper Hemicontinuity of the Integral

I Let (T , T , µ) be an atomless, countably additive measure
space and X a metric space.

I Let F : T × X −→→ Rn be a correspondence.

I If F (·, x) is measurable and F (t, ·) is upper hemicontinuous
then ∫

T
F (·, x) dµ

is upper hemicontinuous (in x).

I This results fails if µ is a finitely additive measure.
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Finitely Additive Measures

I T is a nonempty set and T a field of subsets of T .
(i) ∅, T ∈ T ; (ii) A, B ∈ T ⇒ A ∪ B ∈ T and
(iii) A, B ∈ T ⇒ A \ B ∈ T .

I µ is a finitely additive probability measure on T if
(i) µ(∅) = 0, µ(T ) = 1, µ(A) ≥ 0 for all A ∈ T and
(ii) µ(A ∪ B) = µ(A) + µ(B) if A,B ∈ T , A ∩ B = ∅.

I Let N denote the set of positive integers. Often, we will be
concerned with a finitely additive, probability measure on the
power set of N, P(N).

I µ is strongly continuous if for every ε > 0, there exists a
measurable partition {F1, . . . , Fn} of T such that µ(Fi ) < ε
for every i .

I If µ is strongly continuous then it is atomless. A countably
additive measure µ is strongly continuous iff it is atomless.

I The range of a strongly continuous measure is convex.
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A Motivating Example: Lack of UHC

I Let A = {0, 1} and S = [0, 1].
Let µ be a finitely additive probability measure on P(N) such
that the µ-measure of any finite set is zero.

I Define a correspondence F : N× S −→→ A as:

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Then ∫
N
F (·, x) dµ =

{
1 if x = 0
0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.

I We have only assumed that the µ-measure of any finite set is
zero. In particular, we can take µ to be any strongly
continuous measure (such as a density measure).
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Graphs of the Correspondence

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

Let t = 9.
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Example, contd.

I F : N× S −→→ A.

F (t, x) =


{0, 1} if x = 1/(t + 1)

1 if x < 1/(t + 1)
0 if x > 1/(t + 1).

I Then ∫
N
F (·, x) dµ =

{
1 if x = 0
0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.

I Let f be a measurable selection of F (·, x).
I If x = 0 then x < 1/(t + 1) for all t ∈ N, which implies that

f (t) = 1 for all t ∈ N and
∫
f dµ = 1.

I If x > 0 then x > 1/(t + 1) for almost all t, i.e., f (t) = 0 for
almost all t and

∫
f dµ = 0.
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Commodities and Preferences

I There are L goods and the commodity space is RL
+.

I A consumer has a complete, transitive, continuous and
monotone (i.e., x � y ⇒ x � y) preference relation defined
over RL

+.

I Let U denote the class of real valued, continuous utility
functions on RL

+ which represents these preferences,
endowed with the compact open topology.

I A preference relation is strongly monotone if x ≥ y and x 6= y
imply that x � y .
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Economies and Competitive Equilibria

I Let (T , T , µ) be a finitely additive measure space.

I An economy is a measurable mapping
E = (u, ω) : T −→ U × RL

+ such that ω is integrable and∫
T ω dµ� 0.

I An allocation of E is a measurable mapping f from T to RL
+

such that
∫
T f dµ ≤

∫
T ω dµ.

I Given a price vector p ∈ RL
+, the budget set of consumer t is

Bt(p) = {x ∈ RL
+ : p · x ≤ p · ωt}.

I A competitive equilibrium of E is a pair (p, f ), where
p ∈ RL

+ \ {0}, f is an allocation and µ-a.e.;
(a) ft ∈ Bt(p) and (b) ut(ft) ≥ ut(x) for all x ∈ Bt(p).

I An allocation f of E is a competitive allocation if for some p,
(p, f ) is a competitive equilibrium.
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Nonexistence of a CE: An Example on Integers

I The measure space is (N,P(N), µ).

I Let {an} be a decreasing sequence of positive numbers in
(0, 1) with limn→∞ an = 0.

I For t ∈ N, define the utility function

ut(x1, x2) =
√
atx1 +

√
x2.

The underlying preferences are continuous, strictly concave,
strongly monotone and homothetic.

I The endowment assignment ω is arbitrary.

I We will show that there is no competitive equilibrium.

I Let p1 > 0 and p2 > 0. The unique solution of the agent’s
utility maximization problem subject to budget constraint is

Dt1 =
atp2
p1
× p1ωt1 + p2ωt2

p1 + atp2
, Dt2 =

p1
p2
× p1ωt1 + p2ωt2

p1 + atp2
.

Khan-Qiao-Rath-Sun Finite additivity and general equilibrium



Example on Integers, contd. (I)

I Assume that p1, p2 ∈ R2
+ is a pair of competitive equilibrium

prices. We must have
p1 > 0 and p2 > 0 since ut is strongly monotone for each t.

I For any positive integer m,

0 ≤
∫
N
Dt1 dµ =

∫
t≤m

Dt1 dµ+

∫
t>m

Dt1 dµ

=

∫
t>m

atp2
p1
× p1ωt1 + p2ωt2

p1 + atp2
dµ

≤ amp2
p1

∫
t>m

p1ωt1 + p2ωt2

p1
dµ

=
amp2
p1

∫
N

(
ωt1 +

p2
p1
ωt2

)
dµ =

amp2
p1

(
ω̄1 +

p2
p1
ω̄2

)
.

Since limm→∞ am = 0,
∫
NDt1 dµ = 0 6= ω̄1.
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Example on Integers, contd. (II)

∫
N
Dt2 dµ =

∫
N

p1
p2
× p1ωt1 + p2ωt2

p1 + atp2
dµ

≤ p1
p2

∫
N

p1ωt1 + p2ωt2

p1
dµ =

p1
p2

(
ω̄1 +

p2
p1
ω̄2

)
.

In addition, for each m ∈ N, we have∫
N
Dt2 dµ =

∫
t≤m

Dt2 dµ+

∫
t>m

Dt2 dµ

=

∫
t>m

p1
p2
× p1ωt1 + p2ωt2

p1 + atp2
dµ

≥
∫
t>m

p1
p2
× p1ωt1 + p2ωt2

p1 + amp2
dµ

=
p1
p2
× 1

p1 + amp2

∫
t>m

(p1ωt1 + p2ωt2) dµ
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Example on Integers, contd. (III)

∫
N
Dt2 dµ ≥ p1

p2
× 1

p1 + amp2

∫
t>m

(p1ωt1 + p2ωt2) dµ

=
p1
p2
× 1

p1 + amp2

∫
N

(p1ωt1 + p2ωt2) dµ

=
p1
p2
× 1

p1 + amp2
(p1ω̄1 + p2ω̄2).

By letting m→∞, we obtain that∫
N
Dt2 dµ ≥ p1

p2
× 1

p1
(p1ω̄1 + p2ω̄2) =

p1
p2

(
ω̄1 +

p2
p1
ω̄2

)
.

Therefore, ∫
N
Dt2 dµ =

p1
p2
ω̄1 + ω̄2 > ω̄2.

Hence the market for each good cannot be cleared.
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Example on General Measure Spaces (Main Ideas)

I We will consider a general finitely additive measure space and
consider a sequence of economies.

I Each element of the sequence of economies has a competitive
equilibrium.

I However, the limit economy does not have a competitive
equilibrium.

I Fact: Let (T , T , µ) be a finitely additive probability space.
Then the following are equivalent.

(i) µ is not countably additive.
(ii) There is an increasing sequence of sets {Bn} in T such that
∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1.
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The Economies

I Let (T , T , µ) be given.

I There is an increasing sequence of sets {Bn} in T such that
∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1.

I Let A1 = B1 and An = Bn \ Bn−1 for n ≥ 2. Then {An} is a
sequence of pairwise disjoint sets and ∪∞n=1An = T .

I Define E = (u, ω) as follows. If t ∈ An then

ut(x1, x2) =
n + 1

n
x

n
n+1

1 + x2, ωt =

(
c + 1

2
,
c + 1

2

)
.

I Define En = (un, ωn) as follows. If t ∈ Am then

unt (x1, x2) =
m + 1

m
x

m
m+1

1 + x2, m ≤ n

= x1 + x2, m > n

ωn
t =

(
c + 1

2
,
c + 1

2

)
.
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Equilibrium of En

unt (x1, x2) =
m + 1

m
x

m
m+1

1 + x2, m ≤ n

= x1 + x2, m > n

ωn
t =

(
c + 1

2
,
c + 1

2

)
I Let pn1 = pn2 = 1.

I For t ∈ Am and m ≤ n,
max unt (x1, x2) subject to x1 + x2 ≤ c + 1 gives

Dn
t1 = 1, Dn

t2 = c .

I For t ∈ Am and m > n, let

Dn
t1 =

c+1
2 − µ(Bn)

1− µ(Bn)
, Dn

t2 = c + 1− Dn
t1.
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Equilibrium of En, contd.

Demands:

Dn
t1 = 1 Dn

t2 = c = c + 1− Dn
t1

Dn
t1 =

c+1
2 − µ(Bn)

1− µ(Bn)
Dn
t2 = c + 1− Dn

t1.

∫
T
Dn
t1 dµ =

∫
Bn

Dn
t1 dµ+

∫
T\Bn

Dn
t1 dµ

= µ(Bn) +
c+1
2 − µ(Bn)

1− µ(Bn)
(1− µ(Bn))

=
c + 1

2∫
T
Dn
t2 dµ =

∫
T

(c + 1− Dn
t1) dµ =

c + 1

2
.
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The Economy E

I Preferences and endowments: Let t ∈ An.

ut(x1, x2) =
n + 1

n
x

n
n+1

1 + x2, ωt =

(
c + 1

2
,
c + 1

2

)
.

I Assume that p1, p2 ∈ R2
+ is a pair of competitive equilibrium

prices. We must have
p1 > 0 and p2 > 0 since ut is strongly monotone for each t.

I Let p2 = 1 and p1 > 0. Then

Dt1 = min

{
1

pn+1
1

,
c + 1

2
(1 +

1

p1
)

}
, Dt2 =

c + 1

2
(1+p1)−p1Dt1.

I To show that there is no competitive equilibrium, we will
consider two cases: (i) 1 ≥ p1 and (ii) 1 < p1.
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Nonexistence of Equilibrium (Case 1)

Case 1: 1 ≥ p1.

Dt1 = min

{
1

pn+1
1

,
c + 1

2
(1 +

1

p1
)

}
≥ min

{
1,

c + 1

2
(1 +

1

p1
)

}
=

c + 1

2
+ min

{
1− c + 1

2
,
c + 1

2p1

}
.

Let ε = min
{

1− c+1
2 , c+1

2p1

}
> 0.

Then Dt1 ≥ c+1
2 + ε for any t ∈ T . Therefore,

c + 1

2
=

∫
T
Dt1 dµ ≥ c + 1

2
+ ε,

a contradiction.
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Nonexistence of Equilibrium (Case 2)

Case 2: 1 < p1. Note that Dt1 ≤ 1
pn+1
1

for any t ∈ An.

For any positive integer m,

c + 1

2
=

∫
T
Dt1 dµ =

∫
Bm

Dt1 dµ+

∫
T\Bm

Dt1 dµ

≤
∫
Bm

1 dµ+

∫
T\Bm

1

pm+2
1

dµ

= µ(Bm) +
1

pm+2
1

µ(T \ Bm).

Let m go to infinity. Then

c + 1

2
≤ c, a contradiction.

Thus, E does not have a competitive equilibrium.
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An Implication of Countable Additivity

Theorem

Let (T , T , µ) be a finitely additive probability space where T is a
σ-algebra and µ is strongly continuous. Then the following are
equivalent.

(i) Every economy E on T with strongly monotone preferences
has a competitive equilibrium.

(ii) µ is countably additive.

Proof (ii)⇒ (i). Aumann (1966).

(i)⇒ (ii). Assume that µ is not countably additive.
Consider the economy E in the Example on integers. It does not
have a competitive equilibrium.
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Closed Graph Property

I Let {En} and E be economies on (T , T , µ) and
(pn, f n) a competitive equilibrium of En.

I Suppose that
I {En} converges to E pointwise,
I {
∫
T
ωn dµ} →

∫
T
ω dµ and

I {f n} converges to f pointwise.

I E has the closed graph property if f is a competitive
allocation of E .
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Another Implication of Countable Additivity

Theorem

Let (T , T , µ) be a finitely additive probability space where T is a
σ-algebra and µ is strongly continuous. Then the following are
equivalent.

(i) Every economy E on T with strongly monotone preferences
which is the limit of a sequence of economies with strongly
monotone preferences has the closed graph property.

(ii) µ is countably additive.

Proof (ii)⇒ (i). Follows from Theorem B of Kannai (1970).

(i)⇒ (ii). Assume that µ is not countably additive. Consider the
Example on general measure spaces. There, each of the economies
En has a competitive equilibrium but the limit economy E does
not. Thus, E does not have the closed graph property.
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epsilon-Competitive Equilibrium

I Let E be economy on (T , T , µ) and ε > 0.
I (p, f ) is an ε-competitive equilibrium of E if

I p ∈ RL
+ \ {0},

I f is an allocation,
I for almost all t, ft ∈ Bt(p) and
I there exists Tε ∈ T such that:

(a) µ(Tε) ≤ ε and
(b) for almost all t ∈ T c

ε ,
ut(ft) ≥ ut(y)− ε for any y ∈ Bt(p).
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Existence of epsilon-Competitive Equilibrium

I An economy E on (T , T , µ) is tight if for any ε > 0, there
exist T1 ⊆ T such that µ(T1) > 1− ε and E(T1) is relatively
compact.

Theorem

Let E be an economy on (T , T , µ). If µ is strongly continuous and
E is tight then E has an ε-competitive equilibrium (p, f ) for
any ε > 0.
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