The Weak lpha-Core of Large Games

Kali P. Rath University of Notre Dame

> Haomiao Yu Ryerson University

Asian Meeting of the Econometric Society, Hong Kong, June 03, 2017

Literature

- Aumann and Peleg (1960) introduced the notions of α and β cores for finite player games. Aumann (1961) explores the issues further.
- General existence theorems are proved in Scarf (1967, 1971).
 (The notion of balancedness is important.)
- Notable contributions since have been many; e.g., Shapley (1973), Border (1982), Ichiishi (1982) and Konishi et al. (1997).
- ► Shapley and Vohra (1991) provides a proof of Scarf's theorem using Kakutani's fixed point theorem.
- ► The existence of core for infinite player games are proved in Ichiishi and Weber (1978) and Weber (1979, 1981).
- Recent important contributions for games with a non-atomic space of players and finite player games with nonatomic spaces of incomplete information are Askoura (2011), Askoura et al. (2013) and Noguchi (2014).

Literature, contd.

- Askoura (2011). The payoff to a player depends only on the societal distribution. It does not depend on the choice of own action.
 - ▶ The existence of weak α -core is shown.
 - For each coalition, the set of strongly unblocked distributions is a nonempty compact set.
 - The set of strongly unblocked distributions of coalitions have the finite intersection property. (This step requires characteristic function form construction and Scarf's theorem.)
- ▶ Ichiishi and Weber (1978). The game is in characteristic function form.
 - ▶ The connection between strategies and payoffs is not specified.
 - ▶ The notion of core may not correspond to either α or β cores.
 - The convexity of the set of feasible payoffs of the grand coalition is assumed. No other notion of balancedness is needed.
 - ▶ The proof uses Fan's theorem on linear inequalities.

This Talk

- We consider games over an atomless probability space of players with finite actions. The set of randomized strategy profiles is endowed with its weak topology.
- ► The payoff to a player depends on the choice of own action and the average action of all others.
- ► A coalition is a subset of the players of nonzero measure.
- A coalition E strongly blocks a strategy profile f if the coalition has a strategy h_E such that for any strategy of the complement of the coalition h_{E^c} and $h = (h_E, h_{E^c})$, the payoff to each member of the coalition under h exceeds by ϵ the payoff from f for some $\epsilon > 0$.
- ► The weak α -core is the set of strategy profiles which is not strongly blocked by any coalition.
- We show that under some conditions, the weak α -core is nonempty.
- ▶ The relationship between Nash equilibria and the weak α -core is explored.

Large Games

- Let $E = \{e^1, \dots, e^L\}$ be the set of unit vectors in \mathbb{R}^L and $S = \{s \in \mathbb{R}_+^L : \sum_{k=1}^L s_k = 1\}$ the unit simplex in \mathbb{R}^L .
- Let \mathcal{U} be the set of real valued continuous functions defined on $S \times S$, endowed with sup norm.

(We can restrict attention to $u \in \mathcal{U}$ where u is linear in the first coordinate.)

- ▶ Let (T, T, μ) be an atomless, probability space.
- A game is a measurable function $G: T \longrightarrow U$.
- A pure strategy profile is a measurable function f : T → E.
 A randomized strategy profile is a measurable function f : T → S.
- ▶ A $f: T \longrightarrow E$ is a (pure strategy) Nash equilibrium of \mathcal{G} if for almost all t, $\mathcal{G}(t)$ $(f(t), \int_T f d\mu) \ge \mathcal{G}(t)$ $(a, \int_T f d\mu)$ for all $a \in E$.

A $f: T \longrightarrow S$ is a (randomized strategy) Nash equilibrium of \mathcal{G} if for almost all t, $\mathcal{G}(t)$ (f(t), $\int_{T} f \, d\mu$) $\geq \mathcal{G}(t)$ (y, $\int_{T} f \, d\mu$) for all $y \in S$.

The Notion of α -Core

- Let $\mathcal F$ denote the set of measurable mappings from T to S with the weak topology. $\mathcal F$ corresponds to $L_1(T \times \{1,\ldots,L\})$. Under the weak topology, $\mathcal F$ is a compact, convex subset of a locally convex linear topological space.
- A coalition is a measurable subset of T with positive measure.
- Given a coalition E, B(E, S) denotes the set of measurable functions from E to S.
- A coalition E blocks a strategy profile f if there is a measurable function $h_E \in B(E, S)$, such that for every $h_{E^c} \in B(E^c, S)$ and $h = (h_E, h_{E^c})$,

$$u_t(h(t),\int_{\mathcal{T}} h \;\mathrm{d}\mu) > u_t(f(t),\int_{\mathcal{T}} f \;\mathrm{d}\mu) \;\; \text{for almost all} \; t \in E.$$

▶ The α -core of the game is the set of profiles that are not blocked by any coalition E.

The Notion of Weak α -Core

A coalition E blocks a strategy profile f if there is a measurable function $h_E \in B(E, S)$, such that for every $h_{E^c} \in B(E^c, S)$ and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \int_{\mathcal{T}} h \, \mathrm{d}\mu) > u_t(f(t), \int_{\mathcal{T}} f \, \mathrm{d}\mu)$$
 for almost all $t \in E$.

- The α -core of the game is the set of profiles that are not blocked by any coalition E.
- A coalition E strongly blocks a strategy profile f if there is $\epsilon > 0$ and a measurable function $h_E \in B(E,S)$, such that for every $h_{E^c} \in B(E^c,S)$ and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \int_{\mathcal{T}} h \ \mathrm{d}\mu) > u_t(f(t), \int_{\mathcal{T}} f \ \mathrm{d}\mu) + \epsilon \ \text{ for almost all } t \in \mathcal{E}.$$

► The weak α -core of the game is the set of profiles that are not strongly blocked by any coalition E.

Assumptions

The following three assumptions are respectively; integrably boundedness, equicontinuity and quasiconcavity. (The utility function $\mathcal{G}(t)$ is denoted by u_t .)

Assumption 1

The family of functions $\{u_t(f(t), \int_T f d\mu) : f \in \mathcal{F}\}$ is integrably bounded.

Assumption 2

Let $f \in \mathcal{F}$. If $\epsilon > 0$ then there is an open neighborhood $U(f,\epsilon)$ such that $|u_t(f(t),\int_{\mathcal{T}} f \ \mathrm{d}\mu) - u_t(g(t),\int_{\mathcal{T}} g \ \mathrm{d}\mu)| < \epsilon$ for all $g \in U(f,\epsilon)$ and $t \in \mathcal{T}$.

For a coalition E and $f \in \mathcal{F}$, let $z(E, f) = \int_{F} u_t(f(t), \int_{T} f d\mu) d\mu$.

Assumption 3

For every coalition E, $z(E, \cdot)$ is continuous and quasiconcave on \mathcal{F} .

Existence

Theorem

Under assumptions 1-3, the weak α -core of a game is nonempty.

The proof consists of two lemmas.

For a coalition E, let $\mathcal{H}(E) = \{ f \in \mathcal{F} : f \text{ is not strongly blocked by } E \}$.

Lemma 1

For every coalition E, $\mathcal{H}(E)$ is a nonempty, closed (and hence compact) subset of \mathcal{F} .

Lemma 2

Let E_i , $i \in I$ be a finite collection of coalitions. Then $\cap_{i \in I} \mathcal{H}(E_i)$ is nonempty.

Proof of Lemma 1

$$\mathcal{H}(E) = \{ f \in \mathcal{F} : f \text{ is not strongly blocked by } E \}.$$

- ▶ $\mathcal{H}(E) \neq \emptyset$. The function $z(E, f) = \int_E u_t(f(t), \int_T f d\mu) d\mu$ is continuous on \mathcal{F} . Since \mathcal{F} is compact, $z(E, \cdot)$ attains its maximum, say at f^* . The coalition E cannot strongly block the strategy profile f^* and $f^* \in \mathcal{H}(E)$.
- ▶ If *E* strongly blocks *f* then there exist $\epsilon > 0$ and $h_E \in B(E, S)$, such that for every $h_{E^c} \in B(E^c, S)$ and $h = (h_E, h_E^c)$,

$$u_t(h(t), \int_{\mathcal{T}} h \, \mathrm{d}\mu) > u_t(f(t), \int_{\mathcal{T}} f \, \mathrm{d}\mu) + \epsilon \,$$
 for almost all $t \in E$.

By assumption 2, given $\epsilon/2 > 0$, there is an open neighborhood $V(f, \epsilon/2)$ of f such that if $g \in V(f, \epsilon/2)$ then

$$|u_t(f(t), \int_T f) d\mu - u_t(g(t), \int_T g d\mu)| < \epsilon/2 \text{ for all } t \in T.$$

For almost all $t \in E$,

$$u_t(g(t), \int_T g d\mu) + (\epsilon/2) < u_t(f(t), \int_T f d\mu) + \epsilon < u_t(h(t), \int_T h d\mu).$$

This means the coalition E strongly blocks every profile $g \in V(f, \epsilon/2)$. Thus, the complement of $\mathcal{H}(E)$ is open and $\mathcal{H}(E)$ is closed.

Outline of Proof of Lemma 2

If I is a finite set then $\bigcap_{i\in I}\mathcal{H}(E_i)\neq\emptyset$.

- ▶ Let $\{E_i\}_{i\in I}$ be a finite family of coalitions such that $\bigcup_{i\in I} E_i = T$.
- Let $\{K_j\}_{j\in J}$ be a finite family of pairwise disjoint elements of \mathcal{T} such that $\mu(K_j) > 0$ for all j and each E_i is a union of some of the K_j s.
- ▶ For $B \subseteq J$, define $K_B = \bigcup_{j \in B} K_j$. If $B \subset J$ then K_{B^c} is nonempty and automatically defined as $T \setminus (\bigcup_{j \in B} K_j)$.
- ▶ For $B \subseteq J$, define a subset V(B) of \mathbb{R}^J as follows.

$$V(B) = \{ v \in \mathbb{R}^J : \exists \ h_{K_B} \ ext{such that} \ orall \ h_{K_{B^c}} \ ext{and} \ h = (h_{K_B}, h_{K_{B^c}}),$$
 $z(K_j, h) \ge v_j, \ orall \ j \in B \}.$

Note that if $j \notin B$ then $v_j \in V(B)$ can be any number in \mathbb{R} .

- ► The following properties hold:
 - (1) For every $B \subseteq J$, V(B) is nonempty and closed.
 - (2) For every $B \subseteq J$, if $v \in V(B)$ and $v' \le v$ then $v' \in V(B)$.
 - (3) V(J) is bounded from above.
 - (4) *J* is balanced.

Proof of Lemma 2, contd.

- Scarf' theorem: The core of G = (J, V) is nonempty. (If v is in the core then v is not in the interior of V(B) for any $B \subseteq J$.)
- If the core of G = (J, V) is not empty, then $\cap_{i \in I} \mathcal{H}(E_i) \neq \emptyset$.
- Let v be in the core of G = (J, V). Let $f : T \longrightarrow S$ such that $z(K_j, f) \ge v_j$ for all $j \in J$.
- Fix an arbitrary index $i \in I$. E_i is a finite union of some sets K_j , $j \in J$. Let $E_i = \bigcup_{j \in J_i} K_j$ where $J_i \subseteq J$.
- ▶ Since v is not in the interior of $V(J_i)$, for every h_{E_i} , there exists $h_{E_i^c}$ and an index $j \in J_i$ such that for $h = (h_{E_i}, h_{E_i^c})$,

$$z(K_j, h) \leq v_j \leq z(K_j, f).$$

- ► Thus, for any h_{E_i} , there exists $h_{E_i^c}$ and a subset D_i of E_i of positive measure such that $u_t(h(t), \int_T h d\mu) \le u_t(f(t), \int_T f d\mu)$ for all $t \in D_i$.
- ▶ This shows that $f \in \bigcap_{i \in I} \mathcal{H}(E_i)$ and completes the proof.

Purification

- ► We have proved the existence of a randomized strategy profile in the core. Does the core contain a pure strategy profile?
- ► Three possible ways of proving a pure strategy profile in the core.
 - 1. Use the DWW theorem. (A partitioning of the player set and a consequent refinement of the DWW theorem may be needed.)
 - 2. Extreme point argument. Consider the closed convex hull of the set of core profiles. It has an extreme point.
 Is the extreme point a pure strategy profile?
 - 3. The set of pure strategies are dense in the set of randomized strategies. Does this imply that there is a pure strategy profile in the core?

- ▶ The player space is T = [0,1] and λ denotes Lebesgue measure.
- The set of Nash equilibria is a proper subset of the core.
- ▶ Let $A = \{a_1, a_2\}$. For any $\eta \in \mathcal{M}^1_+(A)$, let

$$u(a_1, \eta) = \frac{1}{2},$$
 $u(a_2, \eta) = 1 - \eta(a_2).$

For each $t \in T$, let $u_t = u$.

- f is a Nash equilibrium of this game iff $\lambda \circ f^{-1}(a_2) = 1/2$.
- Since the payoff function is the same for all the players, the weak α -core and the α -core are the same.
- ▶ We will show that the α -core of this game is any f such that $\lambda \circ f^{-1}(a_2) \leq 1/2$.

(Thus, the set of Nash equilibria is contained in the core.)

Example 1: Blocked Profiles

- If $\lambda \circ f^{-1}(a_2) > 1/2$ then f is not in the core.
- ▶ Let $E \subseteq \{t \in T : f(t) = a_2\}$ such that $\lambda(E) > 0$.
- ▶ For any $t \in E$,

$$u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) < \frac{1}{2}.$$

▶ Let $h_E(t) = a_1$ for any $t \in E$. Then for any h_{E^c} and $h = (h_E, h_{E^c})$,

$$u_t(h(t),\lambda\circ h^{-1})=rac{1}{2} \ \ ext{for} \ \ t\in E.$$

► So, the coalition *E* blocks *f*.

Example 1: Unblocked Profiles

- Now consider any f such that $\lambda \circ f^{-1}(a_2) \le 1/2$. We will show that it is in the core.
- Suppose there is a coalition E which blocks f. Let h_E be the function on E such that for any function h_{E^c} on E^c and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \lambda \circ h^{-1}) > u_t(f(t), \lambda \circ f^{-1}).$$

Consider

$$S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, i, j = 1, 2\}.$$

- ▶ If $t \in S_{11}$ then $u_t(h(t), \lambda \circ h^{-1}) = u_t(f(t), \lambda \circ f^{-1}) = 1/2$, a contradiction. So, $\lambda(S_{11}) = 0$.
- ▶ If $t \in S_{21}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 \lambda \circ f^{-1}(a_2) \ge 1/2$ and $u_t(h(t), \lambda \circ h^{-1}) = 1/2$, again a contradiction. So, $\lambda(S_{21}) = 0$.
- ▶ Thus, $E = S_{12} \cup S_{22}$.

Example 1: Unblocked Profiles, contd.

We have

$$S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, \ i, j = 1, 2\}, \qquad E = S_{12} \cup S_{22}.$$

- ▶ If $t \in S_{12}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1/2$. If $t \in S_{22}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) \ge 1/2$.
- ▶ Let $h_{E^c}(t) = a_2$. Then $\lambda \circ h^{-1}(a_2) = 1$.
- For any $t \in E$, $u_t(h(t), \lambda \circ h^{-1}) = 1 \lambda \circ h^{-1}(a_2) = 0$. This is a contradiction.
- So, no coalition can block f and any f with $\lambda \circ f^{-1}(a_2) \le 1/2$ is in the core.

- In this example the weak core does not contain any Nash equilibrium.
- ▶ Let $A = \{a_1, a_2, a_3\}$, $M_t = \max\{1/10, t\}$ and $m_t = \min\{9/10, t\}$. For $t \in T$ define

$$\begin{array}{rcl} u_t(a_1,\eta) & = & 2[1-\eta(a_2)]M_t \\ \\ u_t(a_2,\eta) & = & 1-\eta(a_2) \\ \\ u_t(a_3,\eta) & = & 3[\eta(a_1)-\eta(a_2)](1-m_t) \end{array}$$

- ▶ This game has two Nash equilibria f_1 and f_2 where:
 - (1) $f_1(t) = a_1$ if t > 1/2 and $f_1(t) = a_2$ if $t \le 1/2$ and
 - ▶ (2) $f_2(t) = a_2$ for all t.
- None of the Nash equilibrium is in the weak core.

Example 2: Nash Equilibria

Payoff Functions:

$u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$ $u_t(a_2, \eta) = 1 - \eta(a_2)$ $u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$

Nash Equilibria:

(1)
$$f_1(t) = a_1 \text{ if } t > 1/2$$

 $f_1(t) = a_2 \text{ if } t \le 1/2.$
(2) $f_2(t) = a_2 \text{ for all } t.$

- Observation: If $\eta(a_2) < 1$ then for any t > 1/2, $u_t(a_1, \eta) > u_t(a_2, \eta)$ and for t < 1/2, $u_t(a_2, \eta) > u_t(a_1, \eta)$.
- ▶ (1) If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = \eta(a_2) = 1/2$. The payoffs from a_3 is zero and from a_1 and a_2 are positive for all t. a_1 is the BR for t > 1/2 and a_2 is the BR for t < 1/2. So, f_1 is an NE.
- (2) If $f_2(t) = a_2$ and $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$. For all t, the payoffs from a_1 and a_2 are zero and from a_3 is negative. So, a_2 is a BR for $t \in [0,1]$ and f_2 is an NE.
- ► The arguments to show that these are the only NE are omitted.

Example 2: No Nash Equilibrium in the Weak Core

Payoff Functions:

Nash Equilibria:

$$u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$$

$$u_t(a_2, \eta) = 1 - \eta(a_2)$$

$$u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$$

(1)
$$f_1(t) = a_1 \text{ if } t > 1/2$$

 $f_1(t) = a_2 \text{ if } t \le 1/2.$
(2) $f_2(t) = a_2 \text{ for all } t.$

 \triangleright At f_2 the payoff to each player is zero.

At f_1 , the payoff is t if t > 1/2 and the payoff is 1/2 if t < 1/2. So, $u_t(f_1(t), \lambda \circ (f_1)^{-1}) > u_t(f_2(t), \lambda \circ (f_2)^{-1}) + (1/2)$ for all t. So, f_2 is not in the weak core.

- At f_1 the payoff is t if t > 1/2 and the payoff is 1/2 if $t \le 1/2$.
 - ▶ Let $h(t) = a_1 = f_1(t)$ if t > 1/2 and $h(t) = a_3$ if t < 1/2.
 - If $\rho = \lambda \circ h^{-1}$ then $\rho(a_1) = 1/2$ and $\rho(a_2) = 0$.
 - ▶ The payoff at h is 2t if t > 1/2 and $(3/2)(1-t) \ge 3/4$ if $t \le 1/2$.
 - $u_t(h(t), \lambda \circ h^{-1}) > u_t(f_1(t), \lambda \circ (f_1)^{-1}) + (1/4)$ for almost all t.

So, f_1 is not in the weak core.

Example 2: A Core Profile

Payoff Functions:

A Core Profile:

$$u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$$

 $u_t(a_2, \eta) = 1 - \eta(a_2)$
 $u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$

$$f(t) = a_1 \text{ if } t > 1/2$$

 $f(t) = a_3 \text{ if } t \le 1/2.$

- ▶ If $\eta = \lambda \circ f^{-1}$ then $\eta(a_1) = \eta(a_3) = 1/2$ and $\eta(a_2) = 0$. t > 1/2: $u_t(a_1, \eta) = 2t > 1$. $t \le 1/2$: $u_t(a_3, \eta) = (3/2)(1 - t) \ge 3/4$.
- f is not an NE because at t = 1/2, $u_t(a_3, \eta) = 3/4 < 1 = u_t(a_2, \eta)$.
- ▶ Suppose a coalition *E* blocks *f*. Let $h = (h_E, h_{E^c})$ and $\rho = \lambda \circ h^{-1}$.
- ▶ Let t > 1/2. Then $u_t(a_2, \rho) \le u_t(a_1, \rho) \le u_t(a_1, \eta)$.
 - ▶ If $t \ge 2/3$ then $1 m_t \le 1/3$ and $u_t(a_3, \rho) \le 1$. $\lambda(E \cap [2/3, 1]) = 0$.
 - ▶ Let $h(t) = a_2$ on [2/3,1]. Then $\rho(a_1) \rho(a_2) \le 1/3$ and $u_t(a_3, \rho) \le 1$ if $t \in (1/2, 2/3)$. $\lambda(E \cap (1/2, 2/3)) = 0$.
- ▶ Let $t \le 1/2$. Assume that $h(t) = a_2$ if t > 1/2. Then $u_t(a_1, \rho) \le u_t(a_2, \rho) \le 1/2$ and $u_t(a_3, \rho) \le 0$. $\lambda(E \cap [0, 1/2]) = 0$.

Payoff Functions:

$$u_t(a_1, \eta) = \eta(a_1) - \eta(a_3)$$

 $u_t(a_2, \eta) = 0$
 $u_t(a_3, \eta) = -2$

Nash Equilibria:

- (1) $f_1(t) = a_1$ for all t.
- (2) $f_2(t) = a_2$ for all t.

 f_1 is in the core but not f_2 .

- (1) If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = 1$ and $\eta(a_2) = \eta(a_3) = 0$. a_1 is the unique BR for $t \in [0,1]$. So, f_1 is an NE.
- (2) If $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$ and $\eta(a_1) = \eta(a_3) = 0$. So, a_2 is a best response for $t \in [0,1]$ and f_2 is an NE.
- ▶ Conversely suppose that f is an NE and $\eta = \lambda \circ (f_1)^{-1}$.
 - ▶ If $\eta(a_1) > \eta(a_3)$ then $u_t(a_1, \eta) > u_t(a_i, \eta)$ for i = 2, 3. So, $f = f_1$.
 - ▶ If $\eta(a_1) \le \eta(a_3)$ then $u_t(a_2, \eta) = u_t(a_1, \eta) > u_t(a_3, \eta)$. So, $\eta(a_3) = 0$ which implies that $\eta(a_1) = 0$. Thus, $f = f_2$.
- ▶ The payoff to every player from f_1 is 1, which is the highest payoff in the game. So, no coalition can block it and f_1 is in the core.
- ▶ The payoff is zero to every player from f_2 . So, the all member coalition can strongly block f_2 (via f_1) and f_2 is not in the weak core.

- The core is a proper subset of the set of NE.
- ▶ Let $A = \{a_1, a_2\}$ and $u(a_i, \eta) = \eta(a_1)$ for i = 1, 2. For all $t \in [0, 1]$, let $u_t = u$.
- Each player has the same payoff function and the payoff depends only on the measure.
 - So, every measure (or the corresponding strategy profile) is an NE.
- ▶ We will show that $f(t) = a_1$ for all t is the only core profile.
- Let $\eta = \lambda \circ f^{-1}$. Then $\eta(a_1) = 1$ and the payoff is 1 to each. This is the highest payoff in the game. So, no coalition can block it and f_1 is in the core.
- Let h be any strategy profile, $\rho = \lambda \circ h^{-1}$ and $\rho(a_1) < 1$. Then the payoff to each player is $\rho(a_1) < 1$. The all member coalition strongly blocks h.
- So, f is the unique core allocation and the core is a proper subset of the set of NE.

- The core and set of NE are identical.
- ▶ Let $A = \{a_1, a_2\}$ and $u_t(a_1, \eta) = \eta(a_1)$, $u_t(a_2, \eta) = \eta(a_1) 1$.
- Let $f^*(t) = a_1$ for each t and $\eta^* = \lambda \circ (f^*)^{-1}$. Then $\eta^*(a_1) = 1$ and $\eta^*(a_2) = 0$. $u_t(a_1, \eta^*) = 1$ and $u_t(a_2, \eta^*) = 0$. So, f^* is an NE.
- Conversely, suppose that f is an NE. Then

$$u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1), \qquad u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) - 1.$$

So, $f(t) = a_1$ for almost all t. Thus f^* is the unique NE.

- f* is in the core. The payoff to t at f* is 1 and a player never gets more than 1. So, no coalition can block f*.
- Let f be any profile such that $\lambda \circ f^{-1}(a_2) > 0$. The payoffs are: $u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) < 1$, $u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) 1 < 0$.

The all member coalition strongly blocks f (via f^*).

This shows that the unique NE f* is in the unique element of the core.

