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Background and Motivation

I Finite agent economies and games: Arrow-Debreu (1954),

McKenzie (1954), Nash (1951).

I Economies and games with a continuum of agents: Aumann (1964,

1966), Vind (1964), Schmeidler (1969, 1973).

I Modeling individual negligibility:

I Replication/Large finite approximations: Edgeworth (1881),

Debreu-Scarf (1963), Anderson (1978).
I Continuum models with an atomless measure:

Milnor-Shapley (1961), Aumann (1964), Schmeidler (1973),

Hildenbrand (1974), Khan-Sun (2002).
I Infinitesimals, Loeb spaces: Brown-Robinson (1972, 1975),

Khan (1974), Brown-Loeb (1976), Khan-Sun (1996, 1999).
I Finitely additive economies: Armstrong-Richter (1984, 1986),

Weiss (1981), Feldman-Gilles (1985), Basile (1993).
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Mathematical Preliminaries

I Let T be a nonempty set and T a σ-algebra of subsets of T ,

(i) T ∈ T , (ii) A ∈ T implies Ac ∈ T ,

(iii) An ∈ T (n = 1, 2 . . .) implies ∪∞n=1An ∈ T .

I Let µ be a set function from T to [0, 1] with µ(T ) = 1.

I µ is a finitely additive measure on T if for any A,B ∈ T with

A ∩ B = ∅, µ(A ∪ B) = µ(A) + µ(B).
I µ is a countably additive measure on T if for any sequence {An} of

pairwise disjoint sets in T , µ(∪∞n=1An) =
∑∞

n=1 µ(An).

I The triple (T , T , µ) will be called a (finitely additive/countably additive)

measure space.

I A measure µ is atomless if for every ε > 0, there exists a T -measurable

partition {F1, . . . , Fn} of T such that µ(Fi ) < ε for every i .

I Let N be the set of positive integers and P(N) its power set. There are

finitely additive, atomless measures on P(N) (such as a density charge).
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Preview of the Results

I Negative results on finitely additive spaces.

I An economy may not have a competitive equilibrium.

(Two examples)
I A game may not have a Nash equilibrium.

(Two examples)
I An economy may not have the idealized limit property.
I A game may not have the idealized limit property.

I Consequences.

I Necessity of countably additivity for economies:

both existence and idealized limit property hold.
I Necessity of countably additivity for games:

both existence and idealized limit property hold.

I Approximate equilibria on finitely additive spaces.

I An economy may not have an approximate competitive equilibrium.

A tightness assumption is sufficient for existence.
I A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.
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Upper Hemicontinuity of the Integral

I Let (T , T , µ) be an atomless, countably additive measure space and

X a metric space.

I Let F : T × X 7−→→ Rn be a correspondence.

I If F (·, x) is measurable and F (t, ·) is upper hemicontinuous then∫
T
F (·, x) dµ

is upper hemicontinuous (in x).

I This results fails if µ is a finitely additive measure.
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Lack of UHC under Integration

I Let A = {0, 1} and K = [0, 1].

Let µ be an atomless, finitely additive measure on P(N).

I Define a correspondence F : N× K 7−→→ A as:

F (t, x) =


{0, 1} if x = 1/t

1 if x < 1/t

0 if x > 1/t.

I Then ∫
NF (·, x) dµ =

{
1 if x = 0

0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.
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Graphs of the Correspondence

F (t, x) =


{0, 1} if x = 1/t

1 if x < 1/t

0 if x > 1/t.

Let t = 10.
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Example, contd.

I F : N× K 7−→→ A.

F (t, x) =


{0, 1} if x = 1/t

1 if x < 1/t

0 if x > 1/t.

I Then ∫
NF (·, x) dµ =

{
1 if x = 0

0 if x > 0.

I Clearly,
∫
N F (·, x) dµ is not uhc at x = 0.

I Let f be a measurable selection of F (·, x).

I If x = 0 then x < 1/t for all t ∈ N, which implies that
f (t) = 1 for all t ∈ N and

∫
N f dµ = 1.

I If x > 0 then x > 1/t for almost all t, i.e., f (t) = 0 for almost
all t and

∫
N f dµ = 0.
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Economies and Competitive Equilibria

I There are L goods and the commodity space is RL
+.

I Let U denote the class of real valued, continuous utility functions on RL
+

(endowed with the compact open topology).

I A u ∈ U is strongly monotone if x ≥ y , x 6= y implies that u(x) > u(y).

I Let (T , T , µ) be a finitely additive measure space. (space of agents)

I An economy is a measurable mapping E = (u, ω) : T −→ U × RL
+ such

that ω is integrable and ω̄ =
∫
T
ω dµ� 0.

I An allocation of E is an integrable mapping f from T to RL
+.

An allocation is feasible if
∫
T
f dµ =

∫
T
ω dµ.

I Given a price vector p ∈ RL
+, the budget set of consumer t is

Bt(p) = {x ∈ RL
+ : p · x ≤ p · ωt}.

I A competitive equilibrium of E is a pair (p, f ), where p ∈ RL
+ \ {0},

f is a feasible allocation and µ-a.e.;

(a) f (t) ∈ Bt(p) and (b) ut(f (t)) ≥ ut(x) for all x ∈ Bt(p).

I An allocation f of E is a competitive allocation if for some p,

(p, f ) is a competitive equilibrium.
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Nonexistence of a CE: An Example on Integers

I The measure space is (N,P(N), µ).

I The economy E is defined as follows. For each t ∈ N,

ut(x1, x2) =
t + 1

t
x

t
t + 1

1 + x2, ωt =

(
c + 1

2
,
c + 1

2

)
,

where 0 ≤ c < 1.

I Assume that (p1, p2) ∈ R2
+ is a pair of equilibrium prices. We must have

p1 > 0 and p2 > 0 since ut is strongly monotone for each t ∈ N.

I Without loss of generality suppose that p1 + p2 = 1.

I For any t ∈ N, the unique solution of agent t’s problem;

maximize ut(x1, x2) subject to p1x1 + p2x2 = (c + 1)/2 is

Dt1 = min

{
pt+1

2

pt+1
1

,
c + 1

2p1

}
, Dt2 =

c + 1

2p2
− p1Dt1

p2
.
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Nonexistence of a CE, continued

I ωt = ((c + 1)/2, (c + 1)/2), 0 ≤ c < 1 for t ∈ N.

I p = (p1, p2)� 0, p1 + p2 = 1. Income: (c + 1)/2.

I Demand functions:

Dt1 = min

{
pt+1

2

pt+1
1

,
c + 1

2p1

}
, Dt2 =

c + 1

2p2
− p1Dt1

p2
.

I Case 1. p2/p1 < 1. limt→∞ Dt1 = 0.
∫
N Dt1 dµ = 0.

∫
NDt2 dµ =

c + 1

2p2
>

c + 1

2
=
∫

Nωt2 dµ. (contradiction)

I Case 2. p2/p1 ≥ 1. pt+1
2 /pt+1

1 ≥ 1. (c + 1)/(2p1) ≥ c + 1.

Therefore, Dt1 ≥ min {1, c + 1} = 1.

∫
NDt1 dµ ≥ 1 >

c + 1

2
=
∫

Nωt1 dµ. (contradiction)
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Nonexistence of a CE on General Measure Spaces

Claim
Let (T , T , µ) be an atomless finitely additive measure space.

Assume that µ is not countably additive. Then there is an

economy on (T , T , µ) which has no competitive equilibrium.

I Fact: Let (T , T , µ) be a finitely additive probability space.

Then the following are equivalent.

(i) µ is not countably additive.

(ii) There is an increasing sequence of sets {Bn} in T such that

∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1.

I Since µ is not countably additive, there is an increasing sequence of sets

{Bn} in T such that ∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1.

I For n ∈ N, let C1 = B1 and for n ≥ 2, Cn = Bn \ Bn−1.

I {Cn} is a sequence of pairwise disjoint sets and ∪∞n=1Cn = T .
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Nonexistence on General Measure Spaces, contd.

I Preferences and endowments: Let t ∈ Cn.

ut(x1, x2) =
n + 1

n
x

n
n + 1

1 + x2, ωt =

(
c + 1

2
,
c + 1

2

)
.

I Assume that p1, p2 ∈ R2
+ is a pair of competitive equilibrium prices.

We must have p1 > 0 and p2 > 0 since ut is strongly monotone for each t.

I Let p2 = 1 and p1 > 0. If t ∈ Cn, then

Dt1 = min

{
1

pn+1
1

,
c + 1

2

(
1 +

1

p1

)}
, Dt2 =

c + 1

2
(1 + p1)− p1Dt1.

I To show that there is no competitive equilibrium, we will consider two

cases: (i) 1 ≥ p1 and (ii) 1 < p1.
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Nonexistence of Equilibrium (Case 1)

Case 1: 1 ≥ p1. Let t ∈ Cn.

Dt1 = min

{
1

pn+1
1

,
c + 1

2

(
1 +

1

p1

)}
≥ min

{
1,

c + 1

2

(
1 +

1

p1

)}
=

c + 1

2
+ min

{
1− c + 1

2
,
c + 1

2p1

}
.

Let θ = min
{

1− c + 1
2 , c + 1

2p1

}
> 0.

Then Dt1 ≥ c + 1
2 + θ for any t ∈ T . Therefore,

∫
T
Dt1 dµ ≥ c + 1

2
+ θ >

c + 1

2
=
∫

T
ωt1 dµ,

a contradiction.
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Nonexistence of Equilibrium (Case 2)

Case 2: 1 < p1. Note that Dt1 ≤ 1/pn+1
1 for any t ∈ Cn. Then

(i) Dt1 ≤ 1 for any t ∈ T and

(ii) if t ∈ Cn+1 and n > m then Dt1 ≤ 1/pn+2
1 ≤ 1/pm+2

1 .

Fix a positive integer m.∫
T
Dt1 dµ =

∫
Bm

Dt1 dµ+
∫

T\Bm
Dt1 dµ

≤
∫

Bm
1 dµ+

∫
T\Bm

1

pm+2
1

dµ = µ(Bm) +
1

pm+2
1

µ(T\Bm).

Observe that µ(T\Bm) ≥ 1− c for any m. Let m tend to infinity.∫
T
Dt1 dµ ≤ limm→∞ µ(Bm) = c.

∫
T
Dt2 dµ =

c + 1

2
(1 + p1)− p1

∫
T
Dt1 dµ

≥ c + 1

2
(1 + p1)− p1c >

c + 1

2
=
∫

T
ωt2 dµ,

a contradiction.
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Games and Nash Equilibria

I Let E = {e1, . . . , eL} be the set of unit vectors in RL and

S = {s ∈ RL
+ :

∑L
k=1 sk = 1} the unit simplex in RL.

I Let V be the set of real valued continuous functions defined on E × S ,

endowed with sup norm.

I (T , T , µ) is an atomless, countably/finitely additive probability space.

I A game is a measurable function G : T −→ V.

I A pure strategy profile is a measurable function f : T −→ E .

I A f : T −→ E is a pure strategy Nash equilibrium of G if µ-a.e.;

G(t)
(
f (t),

∫
T
f dµ

)
≥ G(t)

(
a,
∫

T
f dµ

)
for all a ∈ E .
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Games and Nash Equilibria, contd.

I Pure strategy profile: f : T −→ E .

I Mixed strategy profile: g : T −→ S .

I Given a mixed strategy profile g and y ∈ S , the payoff to player t is

G(t)
(
y ,
∫

T
g dµ

)
=

L∑
k=1

ykG(t)
(
ek ,
∫

T
g dµ

)
.

I A g : T −→ S is a mixed strategy Nash equilibrium of G if µ-a.e.;

G(t)
(
g(t),

∫
T
g dµ

)
≥ G(t)

(
y ,
∫

T
g dµ

)
for all y ∈ S .
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Existence of Nash Equilibrium

Theorem (Schmeidler)

Every finite action game on a countably additive

measure space has a pure strategy Nash equilibrium.

I Define a correspondence B : T × S 7−→→ E by

B(t, s) = {ek ∈ E : G(t)(ek , s) ≥ G(t)(a, s) for all a ∈ E}.

I B(t, s) is nonempty, B(·, s) is measurable and B(t, ·) is uhc.

I Let Γ(s) =
∫
T
B(·, s) dµ.

I Γ(s) is nonempty for each s ∈ S .
I Γ(·) is uhc (integration preserves uhc).
I Γ(·) is convex valued (by Lyapunov’s theorem).

I Γ has a fixed point s∗ (by Kakutani’s fixed point theorem).

I There is f : T −→ E such that
∫
T
f dµ = s∗ and µ-a.e., f (t) ∈ B(t, s∗).

I This f is a pure strategy Nash equilibrium of G.
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Nonexistence of an NE: An Example on Integers

I Let A = {0, 1} and K = [0, 1].

Any x ∈ K can be interpreted as the weight on action 1.

I For each t ∈ N, let the payoff function on A× K is

G(t)(a, x) = a

(
1

t
− x

)
, a ∈ A.

I We will show that this game has no Nash equilibrium.

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = 1/t

1 if x < 1/t

0 if x > 1/t.

I x = 1/t: G(t)(0, x) = G(t)(1, x) = 0.
I x < 1/t: G(t)(0, x) = 0 < G(t)(1, x).
I x > 1/t: G(t)(0, x) = 0 > G(t)(1, x).
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Example, contd.

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = 1/t

1 if x < 1/t

0 if x > 1/t.

I Suppose that f from N to K is a (mixed) Nash equilibrium.

Let x =
∫
N f dµ.

I If x = 0 then x < 1/t for all t ∈ N which implies that

f (t) = 1 for all t and
∫
N f dµ = 1. (contradiction)

I If x > 0 then x > 1/t for almost all t

(since the measure of a finite set is zero),

which implies that f (t) = 0 for almost all t and∫
N f dµ = 0. (contradiction)

I The game does not have a Nash equilibrium in pure or mixed strategies.
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Nonexistence of an NE on General Measure Spaces

Claim
Let (T , T , µ) be an atomless finitely additive measure space.

Assume that µ is not countably additive. Then there is a

game on (T , T , µ) which has no Nash equilibrium.

I Since µ is not countably additive, there is an increasing sequence of sets

{Bn} in T such that

∪∞n=1Bn = T and lim
n→∞

µ(Bn) = c < 1.

I For n ∈ N, let C1 = B1 and for n ≥ 2, Cn = Bn \ Bn−1.

I {Cn} is a sequence of pairwise disjoint sets and ∪∞n=1Cn = T .

I A = {0, 1}, K = [0, 1]. For each t ∈ Cn, let

G(t)(a, x) = a(`n − x), where `n = c +
1− c

n
.

I Note that `1 = 1, `n > c for each n and {`n} is a monotonically

decreasing sequence converging to c.
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The Example, contd.

I G(t)(a, x) = a(`n − x). `n = c + [(1− c)/n].

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = `n

1 if x < `n
0 if x > `n.

I Let f : T −→ [0, 1] be a mixed strategy Nash equilibrium and

x =
∫
T
f dµ.

I Suppose that x ≤ c < 1. Then x < `n for all n.

For all t ∈ T , f (t) = 1, i.e., x = 1. (contradiction)
I Now suppose that x > c.

There is a unique n0 ∈ N such that `n0+1 < x ≤ `n0 .

If n ≥ n0 + 1 and t ∈ Cn then f (t) = 0.

So, x =
∫
T
f dµ ≤

∑n0
i=1 µ(Ci ) = µ(Bn0 )≤ c. (contradiction)

I The game does not have a Nash equilibrium in pure or mixed strategies.
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Idealized Limits: Economies

Definition
A measurable mapping αm : T −→ {1, . . . ,m} is a replication

function if µ(αm)−1({i}) = 1/m for i = 1, . . . ,m.

Definition
An economy E on an atomless finitely additive measure space (T , T , µ) is

said to have the idealized limit property if

(1) for any sequence {En}∞n=1 of finite-agent economies with {fn}∞n=1 as

competitive allocations, where the number of agents in En is kn and

limn→∞ kn =∞,

(2) for any sequence of replication functions {αkn}∞n=1 such that En ◦ αkn

converges to E pointwise on T , f n ◦ αkn converges to some

allocation f pointwise on T , and limn→∞
∫
T
ωn ◦ αkn dµ =

∫
T
ω dµ,

then f is a competitive allocation of E .
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Example: No Idealized Limit

I Consider the economy E = (u, ω), for each t ∈ N,

ut(x1, x2) =
t + 1

t
x

t
t + 1

1 + x2, ωt =

(
c + 1

2
,
c + 1

2

)
,

where 0 ≤ c < 1.

I Fix any n ∈ N. Let En be the restriction of E on {1, . . . , n}.
I Since En is a finite economy with concave and strictly increasing utility

functions, there exists a competitive equilibrium f n.

I Let {An
k}nk=1 be a partition of N such that An

k = {mn + k : m = 0, 1, . . . }.
I Let αn(t) = k for any t ∈ An

k , where k = 1, . . . , n.

I Note that for any n ≥ t, t ∈ An
t . Then uαn(t) = ut for any n ≥ t, which

implies En ◦ αn converges to E pointwise.

I Moreover, f n ◦ αn converges pointwise and

limn→∞
∫
T
ωn ◦ αn dµ =

∫
T
ω dµ.

I However, the limit economy E = (u, ω) has no competitive equilibrium,

which implies E = (u, ω) does not have the idealized limit property.
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I Note that for any n ≥ t, t ∈ An
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implies En ◦ αn converges to E pointwise.

I Moreover, f n ◦ αn converges pointwise and

limn→∞
∫
T
ωn ◦ αn dµ =

∫
T
ω dµ.

I However, the limit economy E = (u, ω) has no competitive equilibrium,

which implies E = (u, ω) does not have the idealized limit property.
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Idealized Limits: Games

Definition
A game G on an atomless finitely additive measure space (T , T , µ) is said

to have the idealized limit property if

(1) for any sequence {Gn}∞n=1 of finite-agent games with {fn}∞n=1 as pure

strategy Nash equilibria, where the number of agents in Gn is kn and

limn→∞ kn =∞,

(2) for any sequence of replication functions {αkn}∞n=1 such that Gn ◦ αkn

converges to G pointwise on T , and f n ◦ αkn converges to some pure

strategy profile f pointwise on T ,

then f is a pure strategy Nash equilibrium of G.

The next example shows that the idealized limit property may fail for a game

with countably many agents.
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Example: No Idealized Limit

I Consider the game G, for t ∈ N, G(t)(a, x) = a [(1/t)− x ]

I Fix any n ∈ N. Let Gn be the restriction of G on {1, . . . , n2}.
I Let {An

i }n
2

i=1 be an partition of N such that

An
i = {mn2 + i : m = 0, 1, . . . }.

I Let αn2

(t) = k for any t ∈ An
k , where k = 1, . . . , n2.

Note that for any n ≥
√
t, αn2

(t) = t.

I Then Gn ◦ αn2

(t) = G(t) for any n ≥
√
t, which implies Gn ◦ αn2

converges to G pointwise on T .

I Fix any n ≥ 2. Let

f n(i) =

{
1 if i ≤ n

0 if i > n.

Then f n is a Nash equilibrium of Gn.

I Fix any t ∈ N. For any n ≥ t, αn2

(t) = t, which implies f n ◦ αn2

(t) = 1.

Then f n ◦ αn2

(t)→ 1 as n→∞.

I However, the limit game G has no mixed strategy Nash equilibrium.
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Necessity of Countable Additivity: Economies

We have seen failures of both existence and the idealized limit property for

competitive equilibria in economies over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the agent

space with the validity of each of the properties.

Theorem
Let (T , T , µ) be a finitely additive measure space. Assume that all the

preferences are strongly monotone. Then the following statements hold.

(i) Every economy E on (T , T , µ) has a competitive equilibrium

if and only if µ is countably additive.

(ii) Every economy E on (T , T , µ) has the idealized limit property

if and only if µ is countably additive.

CA ⇒ Existence: Aumann (1966). Existence ⇒ CA: Earlier example.

CA ⇒ ILP: Proof in the paper. (Follows Hildenbrand (1974))

ILP ⇒ CA: Earlier example on N can be modified to any T .
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Necessity of Countable Additivity: Games

We have seen failures of both existence and the idealized limit property for

Nash equilibria in games over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the agent

space with the validity of each of the properties.

Theorem
Let (T , T , µ) be a finitely additive measure space. Then the following

statements hold.

(i) Every game G on (T , T , µ) has a pure strategy Nash equilibrium

if and only if µ is countably additive.

(ii) Every game G on (T , T , µ) has idealized limit property

if and only if µ is countably additive.

CA ⇒ Existence: Schmeidler (1973). Existence ⇒ CA: Earlier example.

CA ⇒ ILP: Proof in the paper.

ILP ⇒ CA: Earlier example on N can be modified to any T .
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Approximate Competitive Equilibria

Earlier, we have seen examples that an economy may not have a competitive

equilibrium. It is natural to ask if approximate competitive equilibria exist.

Definition
Let E be an economy on (T , T , µ) and ε > 0. (p, f ) is an ε-competitive

equilibrium of E if p ∈ RL
+ \ {0}, f is a feasible allocation, f (t) ∈ Bt(p)

for almost all t and there exists Tε ∈ T such that:

(a) µ(Tε) ≤ ε and

(b) for almost all t ∈ T c
ε , ut(f (t)) ≥ ut(y)− ε for any y ∈ Bt(p).

In general, an ε-competitive equilibrium may not exist, as shown by the next

Example.
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Nonexistence of Approximate Competitive Equilibria

I The economy is on N.

I The utility function and endowment of t ∈ N is,

ut(x1, x2) = et
[
t + 1

t
x

t
t + 1

1 + x2

]
, ωt =

(
c + 1

2
,
c + 1

2

)
,

where 0 ≤ c < 1/3.

I This economy does not have an ε-competitive equilibrium if 0 < ε ≤ 1/3.
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Existence of Approximate Competitive Equilibria

Definition
An economy E on (T , T , µ) is tight if for any ε > 0, there

exists T̄ ⊆ T such that

(a) µ(T̄ ) < ε and

(b) E(T\T̄ ) is a relatively compact subset of U ×RL+.

Proposition
If an economy is E is tight, then it has an

ε-competitive equilibrium for every ε > 0.

I The existence of an ε-competitive equilibrium for every ε > 0

does not imply that there is a competitive equilibrium.

We demonstrate this by means of an earlier example.
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Existence of Approximate Competitive Equilibria

Definition
An economy E on (T , T , µ) is tight if for any ε > 0, there
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(a) µ(T̄ ) < ε and

(b) E(T\T̄ ) is a relatively compact subset of U ×RL+.

Proposition
If an economy is E is tight, then it has an
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I The existence of an ε-competitive equilibrium for every ε > 0

does not imply that there is a competitive equilibrium.

We demonstrate this by means of an earlier example.
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Approximate Competitive Equilibria in an Example

I Take c = 0 in the first example. The (tight) economy is

ut(x1, x2) =
t + 1

t
x

t
t + 1

1 + x2, ωt =

(
1

2
,

1

2

)
.

I If p � 0 and p1 + p2 = 1, then the demand functions are

Dt1 = min

{
pt+1

2

pt+1
1

,
1

2p1

}
, Dt2 =

1

2p2
− p1Dt1

p2
.

I Let p = (1/2, 1/2) and f (t) = (1/2, 1/2) = ωt .

For any ε > 0, (p, f ) is an ε-competitive equilibrium.

I Dt1 = 1 and Dt2 = 0. The maximized utility is (t + 1)/t.

For each t, f (t) is in the budget set and f is a feasible allocation.

I We will show that for any ε > 0, and for almost all t,

t + 1

t

(
1

2

) t
t + 1

+
1

2
>

t + 1

t
− ε, ε >

t + 1

t
− t + 1

t

(
1

2

) t
t + 1 − 1

2
.

I As t tends to infinity, the RHS tends to zero. So, given ε > 0,

there exists t0 ∈ N such that for all t ≥ t0, the above inequality holds.
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Approximate Nash Equilibria

Earlier, we have seen examples that a game may not have a Nash equilibrium.

It is natural to ask whether approximate Nash equilibria exist.

Definition
Let G be a game on (T , T , µ) and ε > 0. A strategy profile f : T −→ S

is an ε-Nash equilibrium of G if there exists Tε ∈ T such that

(a) µ(Tε) ≤ ε and

(b) for almost all t ∈ T c
ε , G(t)

(
f (t),

∫
T
f dµ

)
≥ G(t)

(
y ,
∫
T
f dµ

)
− ε

for any y ∈ S .

In general, an ε-Nash equilibrium may not exist, as shown by the next Example.
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Nonexistence of Approximate Nash Equilibria

I The game is on N, with A = {0, 1} and K = [0, 1].

I For each player t ∈ N, the payoff function is G(t)(0, x) = 0 and

G(t)(1, x) =


1 + 2t−1(1− 2x) if − 1 ≤ 1 + 2t−1(1− 2x) ≤ 1

1 if 1 + 2t−1(1− 2x) > 1

−1 if 1 + 2t−1(1− 2x) < −1.

I The best responses are:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = (1/2) + 2−t

1 if x < (1/2) + 2−t

0 if x > (1/2) + 2−t .

I This game does not have an ε-Nash equilibrium if 0 < ε ≤ 1/4.
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Nonexistence of Approximate NE: Case 1

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = (1/2) + 2−t

1 if x < (1/2) + 2−t

0 if x > (1/2) + 2−t .

I Let 0 < ε ≤ 1/4 and suppose that f from N to [0, 1] is an ε-equilibrium.

Then there exists Iε ⊆ N such that, µ(Iε) ≤ ε and for any t ∈ I cε ,

G(t)(f (t), x) ≥ max{G(t)(0, x),G(t)(1, x)} − ε,

where x =
∫
T
f dµ.

I Case 1. x ≤ 1/2. For all t ∈ N, 1 + 2t−1(1− 2x) ≥ 1.

G(t)(1, x) = 1 > G(t)(0, x). Therefore, for any t ∈ I cε ,

G(t)(f (t), x) ≥ 1− ε, which means f (t) ≥ 1− ε.

x =
∫

Iε
f dµ+

∫
I cε
f dµ ≥

∫
I cε
f dµ ≥ (1− ε)2 >

1

2
. contradiction
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Nonexistence of Approximate NE: Case 1
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x =
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Iε
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I cε
f dµ ≥

∫
I cε
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1

2
. contradiction
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Nonexistence of Approximate NE: Case 2

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = (1/2) + 2−t

1 if x < (1/2) + 2−t

0 if x > (1/2) + 2−t .

I 0 < ε ≤ 1/4. There is Iε ⊆ N such that, µ(Iε) ≤ ε and for any t ∈ I cε ,

G(t)(f (t), x) ≥ max{G(t)(0, x),G(t)(1, x)} − ε,

where x =
∫
T
f dµ.

I Case 2. x > 1/2. For almost all t ∈ I cε , 1 + 2t−1(1− 2x) < −1.

G(t)(0, x) > G(t)(1, x) = −1. Therefore, for all t ∈ I cε ,

G(t)(f (t), x) ≥ −ε, which means f (t) ≤ ε.

x =
∫

Iε
f dµ+

∫
I cε
f dµ ≤ µ(Iε) + ε(1− ε) ≤ ε+ ε ≤ 1

2
. contradiction
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Nonexistence of Approximate NE: Case 2

I Best responses:

argmaxa∈AG(t)(a, x) =


{0, 1} if x = (1/2) + 2−t

1 if x < (1/2) + 2−t

0 if x > (1/2) + 2−t .

I 0 < ε ≤ 1/4. There is Iε ⊆ N such that, µ(Iε) ≤ ε and for any t ∈ I cε ,

G(t)(f (t), x) ≥ max{G(t)(0, x),G(t)(1, x)} − ε,

where x =
∫
T
f dµ.

I Case 2. x > 1/2. For almost all t ∈ I cε , 1 + 2t−1(1− 2x) < −1.

G(t)(0, x) > G(t)(1, x) = −1. Therefore, for all t ∈ I cε ,

G(t)(f (t), x) ≥ −ε, which means f (t) ≤ ε.

x =
∫

Iε
f dµ+

∫
I cε
f dµ ≤ µ(Iε) + ε(1− ε) ≤ ε+ ε ≤ 1

2
. contradiction
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Existence of Approximate Nash Equilibria

Definition
A game G on (T , T , µ) is tight if for any ε > 0,

there exists T̄ ⊆ T such that

(a) µ(T̄ ) < ε and

(b) G(T\T̄ ) is a relatively compact subset of V.

Proposition
If a game is G is tight, then it has a pure strategy

ε-Nash equilibrium for every ε > 0.

I The existence of an ε-Nash equilibrium for every ε > 0 does not ensure

the existence of an NE. Example: G(t)(a, x) = a[(1/t)− x ] on N.

I The game is tight. It has an ε-Nash equilibrium for every ε > 0.

I Explicitly, f (t) = 0 for all t ∈ N is an ε-Nash equilibrium.

G(t)(0, 0) = 0, G(t)(1, 0) = 1/t, 0 ≥ (1/t)− ε for almost all t.

I However, as has been shown, the game does not have a Nash equilibrium.
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Summary of Results

I Negative results on finitely additive spaces.

I An economy may not have a competitive equilibrium.

(Two examples)
I A game may not have a Nash equilibrium.

(Two examples)
I An economy may not have the idealized limit property.
I A game may not have the idealized limit property.

I Consequences.

I Necessity of countably additivity for economies:

both existence and idealized limit property hold.
I Necessity of countably additivity for games:

both existence and idealized limit property hold.

I Approximate equilibria on finitely additive spaces.

I An economy may not have an approximate competitive equilibrium.

A tightness assumption is sufficient for existence.
I A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.
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