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Background and Motivation

> Finite agent economies and games: Arrow-Debreu (1954),
McKenzie (1954), Nash (1951).

> Economies and games with a continuum of agents: Aumann (1964,
1966), Vind (1964), Schmeidler (1969, 1973).
» Modeling individual negligibility:

> Replication/Large finite approximations: Edgeworth (1881),
Debreu-Scarf (1963), Anderson (1978).

» Continuum models with an atomless measure:
Milnor-Shapley (1961), Aumann (1964), Schmeidler (1973),
Hildenbrand (1974), Khan-Sun (2002).

> Infinitesimals, Loeb spaces: Brown-Robinson (1972, 1975),
Khan (1974), Brown-Loeb (1976), Khan-Sun (1996, 1999).

> Finitely additive economies: Armstrong-Richter (1984, 1986),
Weiss (1981), Feldman-Gilles (1985), Basile (1993).
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Mathematical Preliminaries

> Let T be a nonempty set and 7 a o-algebra of subsets of T,
() TeT, (il) A€ T implies A € T,
(i) Ap € T (n=1,2...) implies U1 A, € T.
> Let u be a set function from 7T to [0,1] with p(T) = 1.
> u is a finitely additive measure on 7 if for any A, B € T with
ANB =10, u(AUB) = u(A) + n(B).
> u is a countably additive measure on T if for any sequence {A,} of
pairwise disjoint sets in 7, (U521 An) = 3 o0; p(An).
» The triple (T, 7, 1) will be called a (finitely additive/countably additive)
measure space.
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Mathematical Preliminaries

> Let T be a nonempty set and 7 a o-algebra of subsets of T,
() TeT, (il) A€ T implies A € T,
(i) Ap € T (n=1,2...) implies U1 A, € T.
> Let u be a set function from 7T to [0,1] with p(T) = 1.
> u is a finitely additive measure on 7 if for any A, B € T with
ANB =10, u(AUB) = u(A) + n(B).
> u is a countably additive measure on T if for any sequence {A,} of
pairwise disjoint sets in 7, (U521 An) = 3 o0; p(An).
» The triple (T, 7, 1) will be called a (finitely additive/countably additive)
measure space.

> A measure y is atomless if for every € > 0, there exists a 7-measurable
partition {Fi,..., Fa} of T such that u(F;) < ¢ for every i.

> Let N be the set of positive integers and P(N) its power set. There are
finitely additive, atomless measures on P(N) (such as a density charge).
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Preview of the Results

> Negative results on finitely additive spaces.
> An economy may not have a competitive equilibrium.
(Two examples)
> A game may not have a Nash equilibrium.
(Two examples)
> An economy may not have the idealized limit property.
» A game may not have the idealized limit property.
» Consequences.
> Necessity of countably additivity for economies:
both existence and idealized limit property hold.
> Necessity of countably additivity for games:
both existence and idealized limit property hold.
> Approximate equilibria on finitely additive spaces.
> An economy may not have an approximate competitive equilibrium.
A tightness assumption is sufficient for existence.
> A game may not have an approximate Nash equilibrium.
A tightness assumption is sufficient for existence.
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Upper Hemicontinuity of the Integral

> Let (T,T,u) be an atomless, countably additive measure space and
X a metric space.

> Let F: T x X —— R" be a correspondence.

> If F(,x) is measurable and F(t,-) is upper hemicontinuous then

J+F(,x)du

is upper hemicontinuous (in x).

> This results fails if u is a finitely additive measure.
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Lack of UHC under Integration

» Let A= {0, 1} and K = [0, 1].
Let p be an atomless, finitely additive measure on P(N).

> Define a correspondence F: N x K —— A as:
{0,1} ifx=1/t
F(t,x) = 1 if x <1/t
0 if x> 1/t.

» Then
1 ifx=0

fNF("X)d“_{ 0 ifx>0.

» Clearly, [ F(-,x) du is not uhc at x = 0.
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Graphs of the Correspondence

0,1} ifx=1/t

F(t,x) = 1 if x <1/t
0 if x> 1/t.
Let t = 10.
F(t, ) F(- x)
1| f— BN eemm—————
Finitely many t’s
Infinitely many t’s
RS
0 1/10 X 1 0 X 1t 1
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Example, contd.

> F: Nx K—— A

{0,1} ifx=1/t
F(t,x) = 1 if x <1/t
0 if x> 1/t.

> Then
1 ifx=0

F(,x)du =

S Cox) du { 0 ifx>0.
» Clearly, [ F(-,x) du is not uhc at x = 0.

> Let f be a measurable selection of F(-, x).

» If x =0 then x < 1/t for all t € N, which implies that
f(t)=1forall t e Nand [ fdu=1.

» If x > 0 then x > 1/t for almost all t, i.e., f(t) = 0 for almost
all tand [ f du=0.
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Economies and Competitive Equilibria

» There are L goods and the commodity space is R

> Let U denote the class of real valued, continuous utility functions on R}
(endowed with the compact open topology).

> A u €U is strongly monotone if x > y, x # y implies that u(x) > u(y).
> Let (T,7T,u) be a finitely additive measure space. (space of agents)
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Economies and Competitive Equilibria

» There are L goods and the commodity space is R

> Let U denote the class of real valued, continuous utility functions on R}
(endowed with the compact open topology).

> A u €U is strongly monotone if x > y, x # y implies that u(x) > u(y).
> Let (T,7T,u) be a finitely additive measure space. (space of agents)

> An economy is a measurable mapping £ = (u,w) : T — U x RL such

that w is integrable and @ = fTw du > 0.
» An allocation of £ is an integrable mapping f from T to RY.

An allocation is feasible if [, fdu= [;wdpu.
> Given a price vector p € Ri, the budget set of consumer t is

Bi(p) ={x €R{ : p-x < p-wi}.

> A competitive equilibrium of £ is a pair (p, f), where p € R: \ {0},

f is a feasible allocation and p-a.e;

(a) f(t) € Be(p) and (b) u(f(t)) > ue(x) for all x € Bi(p).

> An allocation f of £ is a competitive allocation if for some p,
(p, f) is a competitive equilibrium.
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Nonexistence of a CE: An Example on Integers

> The measure space is (N, P(N), ).

» The economy & is defined as follows. For each t € N,
t+1 % c+1 c+1
ur(xi,x2) = TXIH_ + X2, W = ( ) ) )

where 0 < ¢ < 1.

> Assume that (p1, p2) € Ri is a pair of equilibrium prices. We must have
p1 > 0 and p> > 0 since u; is strongly monotone for each t € N.

> Without loss of generality suppose that p1 + p» = 1.

> For any t € N, the unique solution of agent t's problem;
maximize u¢(xi, x2) subject to pix1 + poxe = (c +1)/2 is

t+1
. 1 1 D
Dﬂ:mln{pfﬂ,c+ }, Dp=St1 _ Pln
pi 2p 2p2 p2
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Nonexistence of a CE, continued

» we=((c+1)/2,(c+1)/2),0<c<1forteN.

> p=(p1,p2) >0, p1+p2=1. Income: (c +1)/2.
» Demand functions:
t+1
. [P c+1 c+1 piDn
Dy = Dy = — .
t1 min {Pf+l, 2p1 } ) t2 2P2 D
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Nonexistence of a CE, continued

» we=((c+1)/2,(c+1)/2),0<c<1forteN.
> p=(p1,p2) >0, pr+p=1 Income: (c+1)/2.
» Demand functions:
41
. [P c+1 c+1 piDn
Dy = Dir = — .
t1 min {Pf+l, 2p1 } ; t2 2p2 P2
» Casel. pp/p1 < 1. lim¢— o0 D1 = 0. fN D1 dpp = 0.
fNDtg du = Cz—;l > < —; ! = watz du. (contradiction)
> Case2. po/pr>1. pstt /it > 1. (c+1)/(2p) > c+1.

Therefore, D1 > min{l,c+ 1} =1.

c+1

JyDndp>1> = [wa du. (contradiction)
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Nonexistence of a CE on General Measure Spaces

Let (T, T, u) be an atomless finitely additive measure space.
Assume that p is not countably additive. Then there is an
economy on (T, T, u) which has no competitive equilibrium.
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Nonexistence of a CE on General Measure Spaces

Let (T, T, u) be an atomless finitely additive measure space.
Assume that p is not countably additive. Then there is an
economy on (T, T, ) which has no competitive equilibrium.

v

Fact: Let (T,7,u) be a finitely additive probability space.
Then the following are equivalent.
(i) p is not countably additive.
(i) There is an increasing sequence of sets {B,} in T such that
Up2iBr = T and limpoo u(Bn) = ¢ < 1.

v

Since p is not countably additive, there is an increasing sequence of sets
{Bs} in T such that Us2;B, = T and lim,—oo p(Bn) = c < 1.

For ne N, let C; = By and for n > 2, C, = B, \ Bn—1.

{C,} is a sequence of pairwise disjoint sets and U2, G, = T.

v

v
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Nonexistence on General Measure Spaces, contd.

> Preferences and endowments: Let t € C,.

n+1 *I c+1 c+1
ue(xi, x2) = n+l on+ + x2, wa( + , * )

2 2

> Assume that p1,p € Ri is a pair of competitive equilibrium prices.
We must have p; > 0 and p> > 0 since u; is strongly monotone for each t.

> Let pp =1and p1 > 0. If t € C,, then

. 1 c+1 1 c+1
D1 = m — ——(1+ = Dy = 1+ — p1Dy1.
t1 |n{ {1+1’ 2 ( 1)}, t2 5 ( P1) P11

» To show that there is no competitive equilibrium, we will consider two
cases: (/) 1> p1 and (ii) 1 < p1.
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Nonexistence of Equilibrium (Case 1)

Case 1: 12> p;. Let t € C,.
. 1 c+1 1 . c+1 1
D, = —_ 1+ = > 1, — 1+ —
o= e (g ) e {n S (100}
— C+1+min{1—c+1,c+1}.
2 2p1

Let9:min{l—‘:‘_2'i C+1}>0.

" opr
Then Dy > %1 + 0 forany te T. Therefore,
c+1 c+1
fTDtl dp > T + 0 > 5 = f—,—wtl du,

a contradiction.
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Nonexistence of Equilibrium (Case 2)

Case 2: 1< p1. Note that Dy < 1/pf*! for any t € C,. Then
(i) Dy < 1forany t € T and
(i) if t € Cop1 and n > m then Dy < 1/pi? < 1/p[2.

Fix a positive integer m.

J+Dadp = IBmel du + fT\B,,,Df1 du
1 1
< Jetdut [ g, smrz 4= p(Bn) + o i(T\Bnm).
Py Py
Observe that p(T\Bm) > 1 — ¢ for any m. Let m tend to infinity.
J7 D dpp < limpm s 0 1(Bm) = €.
c+1
fTth du = 5 (1+P1)—P1fTDt1 du
c+1 c+1
2 2 (1+p1)*p1C > T = f—,—wt2dﬂ,

a contradiction.
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Games and Nash Equilibria

> Let E ={e',...,e"} be the set of unit vectors in R" and
S={seRL: SF s =1} the unit simplex in R.

Let V be the set of real valued continuous functions defined on E x S,
endowed with sup norm.

v

v

(T, T,up) is an atomless, countably/finitely additive probability space.

v

A game is a measurable function G: T —V.

> A pure strategy profile is a measurable function f: T— E.
» A f: T — E is a pure strategy Nash equilibrium of G if p-a.e.;

G(t) ((t), [ ,f du) > G(¢t) (a, [ ,f du) forall a € E.
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Games and Nash Equilibria, contd.

Pure strategy profile: f: T — E.

v

v

Mixed strategy profile: g: T — S.

v

Given a mixed strategy profile g and y € S, the payoff to player t is

L
G(t) (v, J & du) = S y6(t) (", [ 1g du)
k=1
» Ag: T — Sis a mixed strategy Nash equilibrium of G if p-a.e.;

G(t) (g(t), [rgdu) > G(t) (v, [rgdp) forally € S.
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Existence of Nash Equilibrium

Theorem (Schmeidler)

Every finite action game on a countably additive
measure space has a pure strategy Nash equilibrium.
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Existence of Nash Equilibrium

Theorem (Schmeidler)

Every finite action game on a countably additive
measure space has a pure strategy Nash equilibrium.

> Define a correspondence B: T x S —— E by

B(t,s) = {e" € E: G(t)(e",s) > G(t)(a,s) forall ac E}.

v

B(t,s) is nonempty, B(-,s) is measurable and B(t,-) is uhc.
Let I'(s) = [; B(-,s) dp.

> T (s) is nonempty for each s € S.

> I'(-) is uhc (integration preserves uhc).

> I'(-) is convex valued (by Lyapunov’s theorem).

v

v

I has a fixed point s* (by Kakutani's fixed point theorem).
Thereis f : T — E such that [, f du = s* and p-a.e., f(t) € B(t,s”).
This f is a pure strategy Nash equilibrium of G. u
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Nonexistence of an NE: An Example on Integers

» Let A= {0, 1} and K = [0, 1].
Any x € K can be interpreted as the weight on action 1.

> For each t € N, let the payoff function on A x K is

G(t)(a,x) = 2 (% _ x) LacA

> We will show that this game has no Nash equilibrium.

> Best responses:

{0,1} ifx=1/t
argmax,c,G(t)(a, x) = 1 if x <1/t
0 ifx>1/t.

» x=1/t: G(t)(0,x) = G(t)(1,x) =0.
» x<1/t: G(t)(0,x) =0 < G(t)(1,x).
» x>1/t: G(t)(0,x) =0 > G(t)(1,x).
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Example, contd.

> Best responses:

{0,1} ifx=1/t
argmax,c,G(t)(a, x) = 1 if x <1/t
0 ifx>1/t.

> Suppose that f from N to K is a (mixed) Nash equilibrium.
Let x = [ f du.

> If x =0 then x < 1/t for all t € N which implies that
f(t)=1forall tand [ fdu=1 (contradiction)

> If x > 0 then x > 1/t for almost all t
(since the measure of a finite set is zero),
which implies that f(t) = 0 for almost all ¢ and
Jyfdu=0. (contradiction)

» The game does not have a Nash equilibrium in pure or mixed strategies.
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Nonexistence of an NE on General Measure Spaces

Let (T,T,u) be an atomless finitely additive measure space.
Assume that p is not countably additive. Then there is a
game on (T, T, ) which has no Nash equilibrium.
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Nonexistence of an NE on General Measure Spaces

Let (T,T,u) be an atomless finitely additive measure space.
Assume that p is not countably additive. Then there is a
game on (T, T, ) which has no Nash equilibrium.

> Since p is not countably additive, there is an increasing sequence of sets
{Bn} in T such that

Upe1Br = T and lim p(B,) =c < 1.
n— oo
» ForneN, let GG = By and for n > 2, C, = B, \ Bp—1.

» {C,} is a sequence of pairwise disjoint sets and U2, C, = T.
» A={0,1}, K =[0,1]. For each t € G, let

1—c

G(t)(a,x) = a(ln — x), where £, =c+

> Note that ¢; =1, £, > c for each n and {¢,} is a monotonically
decreasing sequence converging to c.
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The Example, contd.

> G(t)(a,x) = a(ln — x). ly=c+[(1-=c)/n].

> Best responses:

{0,1} ifx=1¢,
argmax,c,G(t)(a, x) = 1 if x < £,
0 if x > £,

» Let f: T — [0, 1] be a mixed strategy Nash equilibrium and

x= [ fdpu.
> Suppose that x < ¢ < 1. Then x < £, for all n.
Forallte T, f(t)=1,ie, x=1 (contradiction)

» Now suppose that x > c.
There is a unique ny € N such that lrgr1 < X <A
Ifn>ng+1andteC,then f(t)=0.
So, x = [, fdu <37 u(G) = pu(Bny)< c. (contradiction)

» The game does not have a Nash equilibrium in pure or mixed strategies.
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Idealized Limits: Economies

Definition

A measurable mapping o : T — {1,...,m} is a replication
function if w(a™) " ({i}) =1/mfori=1,...,m.

Definition
An economy £ on an atomless finitely additive measure space (T, 7, p) is
said to have the idealized limit property if
(1) for any sequence {E€"}72; of finite-agent economies with {f,};2; as
competitive allocations, where the number of agents in £" is k, and
limp— 0 kn = 00,
(2) for any sequence of replication functions {a*"}52; such that £ o o
converges to & pointwise on T, " o o*" converges to some
allocation f pointwise on T, and lim,— o fT w'oak dy = fTw du,

then f is a competitive allocation of £.
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Example: No ldealized Limit

» Consider the economy & = (u,w), for each t € N,

ue(x1, x0) = S

+1 ‘I+x Wt:<c+1 c+1)’
where 0 < ¢ < 1.
> Fix any n € N. Let £" be the restriction of £ on {1,...,n}.

> Since £" is a finite economy with concave and strictly increasing utility
functions, there exists a competitive equilibrium .
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Example: No Idealized Limit

» Consider the economy & = (u,w), for each t € N,

ue(x1, x0) = S

+1 ‘I+x Wt:<c+1 c+1)7
where 0 < ¢ < 1.
> Fix any n € N. Let £" be the restriction of £ on {1,...,n}.

> Since £" is a finite economy with concave and strictly increasing utility
functions, there exists a competitive equilibrium .

> Let {A;}i_; be a partition of N such that A} = {mn+k: m=0,1,...}.

> Let a"(t) = k for any t € A}, where k=1,...,n

> Note that for any n > t, t € A{. Then ugn() = u: for any n > t, which
implies £" o " converges to £ pointwise.

> Moreover, " o " converges pointwise and
limp—co fT w'oa" du = fTw du.

> However, the limit economy £ = (u,w) has no competitive equilibrium,
which implies £ = (u,w) does not have the idealized limit property.
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Idealized Limits: Games

A game G on an atomless finitely additive measure space (T, 7T, u) is said
to have the idealized limit property if
(1) for any sequence {G"}2; of finite-agent games with {f,}32; as pure
strategy Nash equilibria, where the number of agents in G" is k, and
limp— 00 kn = 00,
(2) for any sequence of replication functions {a"}32; such that G" o a/*»
converges to G pointwise on T, and f" o " converges to some pure
strategy profile f pointwise on T,

then f is a pure strategy Nash equilibrium of G.

The next example shows that the idealized limit property may fail for a game
with countably many agents.
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Example: No ldealized Limit

» Consider the game G, for t € N, G(t)(a,x) = a[(1/t) — x]
» Fix any n € N. Let G" be the restriction of G on {1,...,n°}.
> Let {A,’-’}f—i be an partition of N such that
Al ={mn’ +i:m=0,1,...}.
> Let a"2(t) = k for any t € A}, where k =1,...,n°
Note that for any n > /¢, a"z(t) =t
» Then G" o oz"Z(t) = G(t) for any n > \/t, which implies G" o a”
converges to G pointwise on T.
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Example: No ldealized Limit

» Consider the game G, for t € N, G(t)(a,x) = a[(1/t) — x]
» Fix any n € N. Let G" be the restriction of G on {1,...,n°}.
> Let {A7 7; be an partition of N such that
Al ={mn’ +i:m=0,1,...}.
> Let a"2(t) = k for any t € A}, where k =1,...,n°
Note that for any n > /¢, a"z(t) =t
» Then G" o oz"Z(t) = G(t) for any n > \/t, which implies G" o a”
converges to G pointwise on T.

f"(l_):{l ifi<n

0 ifi>n.

» Fix any n > 2. Let

Then " is a Nash equilibrium of G".
» Fix any t € N. For any n > t, a"z(t) = t, which implies f" o a"z(t) =1
2
Then f"oa™ (t) = 1 as n — oo.

> However, the limit game G has no mixed strategy Nash equilibrium.
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Necessity of Countable Additivity: Economies

We have seen failures of both existence and the idealized limit property for
competitive equilibria in economies over a finitely additive measure space.
The next theorem shows the equivalence of countable additivity of the agent
space with the validity of each of the properties.

Let (T, T, u) be a finitely additive measure space. Assume that all the
preferences are strongly monotone. Then the following statements hold.
(i) Every economy & on (T, T, ) has a competitive equilibrium
if and only if y is countably additive.

(i) Every economy € on (T, T, ) has the idealized limit property
if and only if j is countably additive.

CA = Existence: Aumann (1966). Existence = CA: Earlier example.

CA = ILP: Proof in the paper. (Follows Hildenbrand (1974))
ILP = CA: Earlier example on N can be modified to any T.
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Necessity of Countable Additivity: Games

We have seen failures of both existence and the idealized limit property for
Nash equilibria in games over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the agent
space with the validity of each of the properties.

Let (T, T, u) be a finitely additive measure space. Then the following
statements hold.

(i) Every game G on (T, T, u) has a pure strategy Nash equilibrium
if and only if i is countably additive.

(i) Every game G on (T, T, ) has idealized limit property
if and only if i is countably additive.

y

CA = Existence: Schmeidler (1973). Existence = CA: Earlier example.

CA = ILP: Proof in the paper.
ILP = CA: Earlier example on N can be modified to any T.
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Approximate Competitive Equilibria

Earlier, we have seen examples that an economy may not have a competitive
equilibrium. It is natural to ask if approximate competitive equilibria exist.

Definition

Let £ be an economy on (T,7,u) and € > 0. (p, f) is an e-competitive
equilibrium of £ if p € R \ {0}, f is a feasible allocation, f(t) € B:(p)
for almost all t and there exists Te € T such that:

(a) u(Te) <eand

(b) for almost all t € T¢, u:(f(t)) > u:(y) — € for any y € Bi(p).

In general, an e-competitive equilibrium may not exist, as shown by the next

Example.
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Nonexistence of Approximate Competitive Equilibria

» The economy is on N.

> The utility function and endowment of t € N is,

t C+1 C—|—1
ut(Xl,Xz) = e s Wt = 2 2 ’

t
t+1
et T

where 0 < ¢ < 1/3.

» This economy does not have an e-competitive equilibrium if 0 < e <1/3.
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Existence of Approximate Competitive Equilibria

Definition

An economy & on (T, T, u) is tight if for any € > 0, there
exists T C T such that

(a) w(T) < € and

(b) E(T\T) is a relatively compact subset of i x R:+.

Proposition

If an economy is £ is tight, then it has an
e-competitive equilibrium for every € > 0.
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Existence of Approximate Competitive Equilibria

Definition

An economy & on (T, T, u) is tight if for any € > 0, there
exists T C T such that

(a) w(T) < € and

(b) E(T\T) is a relatively compact subset of i x R:+.

Proposition

If an economy is £ is tight, then it has an
e-competitive equilibrium for every € > 0.

> The existence of an e-competitive equilibrium for every ¢ > 0
does not imply that there is a competitive equilibrium.
We demonstrate this by means of an earlier example.
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Approximate Competitive Equilibria in an Example

> Take ¢ = 0 in the first example. The (tight) economy is

t
t+1 11
ur(x1, %) = T’ﬁt +1 + x2, W = <§7 E) .
» Ifp>0and p1 +p2 =1, then the demand functions are
t+1
. [P 1 1 p1Du
Diy=ming —=5,— ¢, Dp = — — =72,
o= min{ By 1 o= g — B

> Let p=(1/2,1/2) and f(t) = (1/2,1/2) = ws.
For any € > 0, (p, f) is an e-competitive equilibrium.
» Dy =1and D =0. The maximized utility is (¢t + 1)/t.
For each t, f(t) is in the budget set and f is a feasible allocation.
> We will show that for any € > 0, and for almost all t,

t t
t+1/1\t+1 1 t+1 t+1 t+1/1\t+1 1
— (= S>> e, e>————Z|Z2 -

t 2 2 t t t 2 2
> As t tends to infinity, the RHS tends to zero. So, given € > 0,

there exists top € N such that for all t > ty, the above inequality holds.
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Approximate Nash Equilibria

Earlier, we have seen examples that a game may not have a Nash equilibrium.
It is natural to ask whether approximate Nash equilibria exist.

Definition

Let G be a game on (T,7,p) and € > 0. A strategy profile f : T — S
is an e-Nash equilibrium of G if there exists T, € T such that
(a) p(Te) <eand
(b) for almost all t € TS, G(t) (£(t), [ F du) > G(t) (v, [, du) —e
forany y € S.

In general, an e-Nash equilibrium may not exist, as shown by the next Example.
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Nonexistence of Approximate Nash Equilibria

The game is on N, with A= {0,1} and K = [0, 1].
For each player t € N, the payoff function is G(t)(0,x) =0 and

v

v

14271 —2x) if —1<142711-2x)<1
G(t)(1,x) = 1 if14+27 11 —2x) > 1
-1 if 1+271(1 —2x) < —1.

v

The best responses are:

(0,1} ifx=(1/2) 42"
argmax,c 4G (t)(a, x) = 1 if x < (1/2)+27°¢
0 ifx>(1/2)+27"

> This game does not have an e-Nash equilibrium if 0 < ¢ < 1/4.
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Nonexistence of Approximate NE: Case 1

> Best responses:
{0,1} ifx=(1/2)+2"
argmax,c,G(t)(a, x) = 1 if x < (1/2)+27*F
0 if x> (1/2)+27"

> Let 0 < € <1/4 and suppose that f from N to [0, 1] is an e-equilibrium.
Then there exists I C N such that, p(l) < € and for any t € IS,

G()(£(1), x) = max{G(£)(0,x), G(£)(1, x)} — e,

where x = [ f dp.
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Nonexistence of Approximate NE: Case 1

> Best responses:

0,1} ifx=(1/2)+2""
argmax,c,G(t)(a, x) = 1 if x < (1/2)+27*F
0 ifx>(1/2)+27"

> Let 0 < € <1/4 and suppose that f from N to [0, 1] is an e-equilibrium.
Then there exists I C N such that, p(l) < € and for any t € IS,

G()(£(1), x) = max{G(£)(0,x), G(£)(1, x)} — e,

where x = [ f dp.

> Casel. x<1/2. Forallt € N, 1+271(1—2x) > 1.
G(t)(1,x) =1 > G(t)(0,x). Therefore, for any t € If,
G(t)(f(t),x) > 1 — ¢, which means f(t) > 1 —e.

x = f,ﬁfd,u + flgfdp > flgfdu >(1—€)? > % contradiction

Khan-Qiao-Rath-Sun Modeling Infinitely Many Agents



Nonexistence of Approximate NE: Case 2

> Best responses:

{0,1} ifx=(1/2)+2°¢
argmax,c,G(t)(a, x) = 1 if x < (1/2)+27*F
0 if x> (1/2)+27"
» 0<e<1/4.  Thereis lc C N such that, u(l) < e and for any t € I,

G(t)(f(t),x) = max{G(t)(0,x), G(t)(1,x)} — e,

where x = [ f du.
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Nonexistence of Approximate NE: Case 2

> Best responses:

0,1} ifx=(1/2)+2""
argmax,c,G(t)(a, x) = 1 if x < (1/2)+27*F
0 ifx>(1/2)+27"

» 0<e<1/4.  Thereis lc C N such that, u(l) < e and for any t € I,
G(t)(f(t), x) = max{G(t)(0,x), G(t)(1,x)} — ¢,

where x = [ f du.

» Case2. x>1/2.  Foralmostall t €I, 1+27}(1—2x) < —1.
G(t)(0,x) > G(t)(1,x) = —1. Therefore, for all t € I,
G(t)(f(t),x) > —e, which means f(t) <e.

1

x=[, fdu+ f/gfdﬂ Sp(l)+e(l—e)<e+e< 5 contradiction
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Existence of Approximate Nash Equilibria

Definition

A game G on (T, T, u) is tight if for any € > 0,
there exists T C T such that

(a) u(T) < € and

(b) G(T\T) is a relatively compact subset of V.

Proposition

If a game is G is tight, then it has a pure strategy
e-Nash equilibrium for every € > 0.
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Existence of Approximate Nash Equilibria

Definition

A game G on (T, T, u) is tight if for any € > 0,
there exists T C T such that

(a) u(T) < € and

(b) G(T\T) is a relatively compact subset of V.

Proposition

If a game is G is tight, then it has a pure strategy
e-Nash equilibrium for every € > 0.

» The existence of an e-Nash equilibrium for every € > 0 does not ensure
the existence of an NE. Example: G(t)(a,x) = a[(1/t) — x] on N.

» The game is tight. It has an e-Nash equilibrium for every € > 0.

> Explicitly, f(t) = 0 for all t € N is an e-Nash equilibrium.
G(t)(0,0) =0, G(t)(1,0) =1/t, 0 > (1/t) — € for almost all t.

» However, as has been shown, the game does not have a Nash equilibrium.
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Summary of Results

> Negative results on finitely additive spaces.
> An economy may not have a competitive equilibrium.
(Two examples)
> A game may not have a Nash equilibrium.
(Two examples)
> An economy may not have the idealized limit property.
» A game may not have the idealized limit property.
» Consequences.
> Necessity of countably additivity for economies:
both existence and idealized limit property hold.
> Necessity of countably additivity for games:
both existence and idealized limit property hold.
> Approximate equilibria on finitely additive spaces.
> An economy may not have an approximate competitive equilibrium.
A tightness assumption is sufficient for existence.
> A game may not have an approximate Nash equilibrium.
A tightness assumption is sufficient for existence.
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