The Weak α -Core of Large Games

Kali P. Rath University of Notre Dame

> Haomiao Yu Ryerson University

SAET 2018, Taipei June 11, 2018

Literature

- Aumann and Peleg (1960) introduced the notions of α and β cores for finite-player games. Aumann (1961) explored the issues further.
- General existence theorems are proved in Scarf (1967, 1971). (The notion of balancedness is important.)
- Notable contributions since have been many; e.g., Shapley (1973), Border (1982), Ichiishi (1982), Kajii (1992).
- Weber (1981): weak-core for games with a continuum of player in a characteristic function form.
- We consider a large (strategic) game over an atomless probability space of players where a player's payoff (continuously) depends on the choice of own action and the societal action distribution.

Literature, cont'd

▶ Nash equilibrium (NE) in a large game: Existence results

- Finite actions: Schmeidler (1973).
- Countable actions: Khan and Sun (1995), Yu and Zhang (2007).
- But it may fail for uncountable actions: Rath, Sun and Yamashige (1995), Khan, Rath and Sun (1997).
- Positive results with additional assumptions: Khan and Sun (1999), Keisler and Sun (2009), Khan *et al.* (2013), He, Sun and Sun (2017), He and Sun (2018), *etc.*
- α -core in a large game:
 - Askoura (2011): The non-emptiness of weak α-core is shown by assuming that a player's (quasi-concave) payoff depends only on the societal distribution but does not depend on her own action.
 - Askoura(2017), Example 3: Weak α-core is empty for a large game with finite actions if a player's payoff depends on own action and the action distribution of others.

This Talk

- 1. We consider:
 - The relationship among NE, strong NE and the α-core in a large game.
 - By assuming two conditions in Konishi et al.(1997), we can show that the α-core in a large game is non-empty.
- 2. We also consider the weak α -core of a large game by working with randomized strategy profiles.
 - A coalition is a subset of the players of nonzero measure.
 - A coalition *E* strongly blocks a strategy profile *f* if the coalition has a strategy *h_E* such that for any strategy of the complement of the coalition *h_{E^c}* and *h* = (*h_E*, *h_{E^{c}*), the payoff to each member of the coalition under *h* exceeds by *\epsilon* the payoff from *f* for some *\epsilon* > 0.</sub>}
 - The weak α-core is the set of strategy profiles which is not strongly blocked by any coalition.
 - We show that under some conditions, the weak α -core is non-empty.

Large Games

- ▶ Player space: an atomless probability space (T, T, λ)
- Common action set: A compact metric space A.

Societal summaries: $\mathcal{M}(A)$, the set of probability measures on A endowed with the topology of weak convergence.

- Space of payoff functions: U, the space of all continuous functions on A × M(A) with the sup-norm topology.
- A *large game* is a measurable function $\mathcal{G} : T \longrightarrow \mathcal{U}$.
- A (*pure strategy*) *profile* is a measurable function $f : T \longrightarrow A$.

The Notion of lpha-Core

- ► A *coalition* is a measurable subset of *T* with positive measure.
- Given a coalition E, B(E, S) denotes the set of measurable functions from E to S.
- ► A coalition *E* blocks a strategy profile *f* if there is a measurable function $h_E \in B(E, S)$, such that for every $h_{E^c} \in B(E^c, S)$ and $h = (h_E, h_{E^c})$,

$$u_t(h(t),\lambda h^{-1}) > u_t(f(t),\lambda f^{-1})$$
 for almost all $t\in E,$

where we abbreviate $\mathcal{G}(t)$ as u_t .

• The α -core of the game is the set of profiles that are not blocked by any coalition *E*.

Nash Equilibrium and Strong Nash Equilibrium

A strategy profile f is a (pure-strategy) Nash equilibrium (NE) if

$$u_t(f(t), \lambda f^{-1}) \geq u_t(a, \lambda f^{-1})$$

for all $a \in A$ and almost all $t \in T$.

An NE f^s is a *strong NE* if there does not exist any coalition E and $h_E \in B(E, A)$ such that

$$u_t(h(t),\lambda h^{-1}) > u_t(f,\lambda f^{-1})$$

for almost all $t \in E$ where $h = (h_E, f|_{E^c})$.

• In a large game \mathcal{G} , it is not hard to show:

Claim

If f is a strong NE then it is in the α -core.

So, once an NE exists in a large game, if we can obtain the existence of strong NE, then we know that α -core is not empty.

Nowhere equivalence (He, Sun and Sun, 2017)

A σ -algebra \mathcal{T} is said to be nowhere equivalent to a sub- σ -algebra \mathcal{F} if for every nonnegligible subset $E \in \mathcal{T}$, there exists an \mathcal{T} -measurable subset E_0 of Esuch that $\lambda(E_0 \triangle E_1) > 0$ for any $E_1 \in \mathcal{F}^E$, where $E_0 \triangle E_1$ is the symmetric difference $(E_0 \setminus E_1) \cup (E_1 \setminus E_0)$.

Proposition 1

A game ${\mathcal G}$ has a Nash equilibrium if

(i) A is countable, or

(ii) \mathcal{T} is nowhere equivalent to $\sigma(\mathcal{G})$.

Assumption IIC: Independence of Irrelevant Choices

Given any strategy profile $f \in B(T, A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\tau(f(t)) = \lambda f^{-1}(f(t))$, then $u_t(f(t), \lambda f^{-1}) = u_t(f(t), \tau)$.

IIC says that a player's payoff depends on her own choice and the proportion of others who choose the same alternative.

Assumption PR: Partial Rivalry

Given any strategy profile $f \in B(T, A)$, for almost all player $t \in T$, if $\tau \in \mathcal{M}(A)$ such that $\lambda f^{-1}(f(t)) \leq \tau(f(t))$, then $u_t(f(t), \lambda f^{-1}) \geq u_t(f(t), \tau)$.

PR says that a player's payoff depends on her own choice and negatively related to the proportion of others who choose the same alternative.

Examples: Congestion, public goods with negative externalities, etc.

The First Result on α -Core

Proposition 2

Under Assumptions IIC and PR, an NE must be a strong NE in \mathcal{G} .

Theorem 1

Under Assumptions IIC and PR, the $\alpha\text{-core}$ of $\mathcal G$ is not empty if

(i) A is countable, or

(ii) \mathcal{T} is nowhere equivalent to $\sigma(\mathcal{G})$.

Randomized Strategies

- A randomized strategy profile is a measurable function $g : T \longrightarrow \mathcal{M}(A)$.
- ▶ When g is played, the expect payoff of player $t \in T$ is

$$U_t(g) = \int_A u_t(a, \int_{s \in T} g(s) d\lambda(s)) dg(t, da).$$

Let B(T, M(A)) (the set of all randomized strategy profiles) be endowed with the weak topology which is defined as the weakest topology for which the functional

$$g
ightarrow \int_T \int_A c(t, a) g(t; da) d\lambda(t)$$

is continuous for every bounded Caratheodory function c : T × A → ℝ.
B(T, M(A)) is a compact space under the weak topology.

The Notion of Weak α -Core in Randomized Strategies

► A coalition *E* blocks a randomized strategy profile *g* if there is a $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_{E^c})$, $U_t(h) > U_t(g)$ for almost all $t \in E$.

• The α -core in randomized strategies of the game is the set of randomized profiles that are not blocked by any coalition *E*.

▶ A coalition *E* strongly blocks a strategy profile *g* if there is $\epsilon > 0$ and a $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_{E^c})$,

 $U_t(h) > U_t(g) + \epsilon$ for almost all $t \in E$.

The weak α-core in randomized strategies of G is the set of profiles that are not strongly blocked by any coalition E. The following three assumptions are respectively; integrably boundedness, equicontinuity and quasiconcavity.

Assumption 1

The family of functions $\{U_t(g : g \in B(T, \mathcal{M}(A))\}$ is integrably bounded.

Assumption 2

Let $g \in B(T, \mathcal{M}(A))$. If $\epsilon > 0$ then there is an open neighborhood $V(g, \epsilon)$ such that $|U_t(g) - U_t(g')| < \epsilon$ for all $g' \in V(g, \epsilon)$ and $t \in T$.

For a coalition E and $g \in B(T, \mathcal{M}(A))$, let $z(E, g) = \int_E U_t(g) d\lambda$.

Assumption 3

For every coalition E, $z(E, \cdot)$ is quasiconcave.

The Second Main Result

Theorem 2

Under Assumptions 1-3, the weak $\alpha\text{-core}$ in randomized strategies of a large game ${\cal G}$ is nonempty.

For a coalition E, let $\mathcal{H}(E) = \{g \in B(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}$. The proof consists of two lemmas.

Lemma A

For every coalition E, $\mathcal{H}(E)$ is a nonempty, closed (and hence compact) subset of $B(T, \mathcal{M}(A))$.

Lemma B

Let E_i , $i \in I$ be a finite collection of coalitions. Then $\cap_{i \in I} \mathcal{H}(E_i)$ is nonempty.

Proof of Lemma A

 $\mathcal{H}(E) = \{g \in B(T, \mathcal{M}(A)) : g \text{ is not strongly blocked by } E\}.$

- H(E) ≠ Ø. The function z(E, ·) = ∫_E U_t(·)dλ(t) is continuous. Since B(T, M(A)) is compact, z(E, ·) attains its maximum, say at g*. The coalition E cannot strongly block the strategy profile g* and g* ∈ H(E).
- ▶ If *E* strongly blocks *g* then there exist $\epsilon > 0$ and $h_E \in B(E, \mathcal{M}(A))$, such that for every $h_{E^c} \in B(E^c, \mathcal{M}(A))$ and $h = (h_E, h_E^c)$,

 $U_t(h) > U_t(g) + \epsilon$ for almost all $t \in E$.

By Assumption 2, given $\epsilon/2 > 0$, there is an open neighborhood $V(g, \epsilon/2)$ of f such that if $g' \in V(g, \epsilon/2)$ then $|U_t(g) - U_t(g')| < \epsilon/2$ for all $t \in T$. For almost all $t \in E$,

$$U_t(g') + (\epsilon/2) < U_t(g) + \epsilon < U_t(h).$$

This means the coalition E strongly blocks every profile $g' \in V(g, \epsilon/2)$. Thus, the complement of $\mathcal{H}(E)$ is open and $\mathcal{H}(E)$ is closed.

Outline of Proof of Lemma B

If *I* is a finite set then $\cap_{i \in I} \mathcal{H}(E_i) \neq \emptyset$.

- ▶ Let $\{E_i\}_{i \in I}$ be a finite family of coalitions such that $\bigcup_{i \in I} E_i = T$.
- ► Let $\{K_j\}_{j \in J}$ be a finite family of pairwise disjoint elements of \mathcal{T} such that $\mu(K_j) > 0$ for all j and each E_i is a union of some of the K_j s.
- For B ⊆ J, define K_B = ∪_{j∈B}K_j. If B ⊂ J then K_{B^c} is nonempty and automatically defined as T \ (∪_{j∈B}K_j).
- For $B \subseteq J$, define a subset V(B) of \mathbb{R}^J as follows.

$$V(B) = \{ v \in \mathbb{R}^J : \exists h_{\mathcal{K}_B} \text{ such that } \forall h_{\mathcal{K}_{B^c}} \text{ and } h = (h_{\mathcal{K}_B}, h_{\mathcal{K}_{B^c}}), \\ z(\mathcal{K}_j, h) \ge v_j, \ \forall j \in B \}.$$

Note that if $j \notin B$ then $v_j \in V(B)$ can be any number in \mathbb{R} .

- The following properties hold:
 - (1) For every $B \subseteq J$, V(B) is nonempty and closed.
 - (2) For every $B \subseteq J$, if $v \in V(B)$ and $v' \leq v$ then $v' \in V(B)$.
 - (3) V(J) is bounded from above.
 - (4) J is balanced. (By Assumption 3.)

Proof of Lemma B, contd.

Scarf' theorem: The core of G = (J, V) is nonempty.

(If v is in the core then v is not in the interior of V(B) for any $B \subseteq J$.)

- ▶ If the core of G = (J, V) is not empty, then $\bigcap_{i \in I} \mathcal{H}(E_i) \neq \emptyset$.
- ▶ Let v be in the core of G = (J, V). Let $g : T \longrightarrow \mathcal{M}(A)$ such that $z(K_j, g) \ge v_j$ for all $j \in J$.
- Fix an arbitrary index i ∈ I. E_i is a finite union of some sets K_j, j ∈ J. Let E_i = ∪_{j∈Ji}K_j where J_i ⊆ J.
- Since v is not in the interior of V(J_i), for every h_{E_i}, there exists h_{E^c_i} and an index j ∈ J_i such that for h = (h_{E_i}, h_{E^c_i}),

$$z(K_j,h) \leq v_j \leq z(K_j,g).$$

- ► Thus, for any h_{Ei}, there exists h_{Ei} and a subset D_i of E_i of positive measure such that u_t(h) ≤ U_t(g) for all t ∈ D_i.
- ▶ This shows that $g \in \bigcap_{i \in I} \mathcal{H}(E_i)$ and completes the proof.

Weak α -Core in Pure Strategies?

- We have proved the existence of a randomized strategy profile in the weak α-core. Does the core contain a pure strategy profile?
 - Purification (in progress)
 - 1. A is countable: Use the DWW theorem.
 - 2. *A* is uncountable: assume the no-where equivalence conditions.

- The player space is T = [0, 1] and λ denotes Lebesgue measure.
- The set of Nash equilibria is a proper subset of the core.
- Let $A = \{a_1, a_2\}$. For any $\eta \in \mathcal{M}(A)$, let

$$u(a_1,\eta) = \frac{1}{2}, \qquad u(a_2,\eta) = 1 - \eta(a_2).$$

For each $t \in T$, let $u_t = u$.

- f is a Nash equilibrium of this game iff $\lambda \circ f^{-1}(a_2) = 1/2$.
- Since the payoff function is the same for all the players, the weak α-core and the α-core are the same.
- We will show that the α-core of this game is any f such that λ ∘ f⁻¹(a₂) ≤ 1/2. (Thus, the set of Nash equilibria is contained in the α-core.)

Example 1: Blocked Profiles

- If $\lambda \circ f^{-1}(a_2) > 1/2$ then f is not in the core.
- Let $E \subseteq \{t \in T : f(t) = a_2\}$ such that $\lambda(E) > 0$.
- For any $t \in E$,

$$u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) < \frac{1}{2}$$

▶ Let $h_E(t) = a_1$ for any $t \in E$. Then for any h_{E^c} and $h = (h_E, h_{E^c})$,

$$u_t(h(t),\lambda\circ h^{-1})=rac{1}{2} \ \ ext{for} \ \ t\in E.$$

So, the coalition E blocks f.

Example 1: Unblocked Profiles

- Now consider any f such that λ ∘ f⁻¹(a₂) ≤ 1/2. We will show that it is in the core.
- Suppose there is a coalition E which blocks f. Let h_E be the function on E such that for any function h_{E^c} on E^c and $h = (h_E, h_{E^c})$,

$$u_t(h(t), \lambda \circ h^{-1}) > u_t(f(t), \lambda \circ f^{-1}).$$

Consider

$$S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, i, j = 1, 2\}.$$

- ▶ If $t \in S_{11}$ then $u_t(h(t), \lambda \circ h^{-1}) = u_t(f(t), \lambda \circ f^{-1}) = 1/2$, a contradiction. So, $\lambda(S_{11}) = 0$.
- ▶ If $t \in S_{21}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 \lambda \circ f^{-1}(a_2) \ge 1/2$ and $u_t(h(t), \lambda \circ h^{-1}) = 1/2$, again a contradiction. So, $\lambda(S_{21}) = 0$.
- Thus, $E = S_{12} \cup S_{22}$.

Example 1: Unblocked Profiles, contd.

We have

 $S_{ij} = \{t \in E : f(t) = a_i \text{ and } h(t) = a_j, i, j = 1, 2\}, \quad E = S_{12} \cup S_{22}.$

- ▶ If $t \in S_{12}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1/2$. If $t \in S_{22}$ then $u_t(f(t), \lambda \circ f^{-1}) = 1 - \lambda \circ f^{-1}(a_2) \ge 1/2$.
- Let $h_{E^c}(t) = a_2$. Then $\lambda \circ h^{-1}(a_2) = 1$.
- For any t ∈ E, ut(h(t), λ ∘ h⁻¹) = 1 − λ ∘ h⁻¹(a₂) = 0. This is a contradiction.
- So, no coalition can block f and any f with λ ∘ f⁻¹(a₂) ≤ 1/2 is in the α-core.

- In this example the weak α -core does not contain any Nash equilibrium.
- ▶ Let $A = \{a_1, a_2, a_3\}$, $M_t = \max\{1/10, t\}$ and $m_t = \min\{9/10, t\}$. For $t \in T$ define

$$\begin{array}{lll} u_t(a_1,\eta) &=& 2[1-\eta(a_2)]M_t\\ u_t(a_2,\eta) &=& 1-\eta(a_2)\\ u_t(a_3,\eta) &=& 3[\eta(a_1)-\eta(a_2)](1-m_t) \end{array}$$

- This game has two Nash equilibria f_1 and f_2 where:
 - (1) $f_1(t) = a_1$ if t > 1/2 and $f_1(t) = a_2$ if $t \le 1/2$ and • (2) $f_2(t) = a_2$ for all t.

▶ None of the Nash equilibrium is in the weak α -core.

Example 2: Nash Equilibria

Payoff Functions:

Nash Equilibria:

 $\begin{array}{rcl} u_t(a_1,\eta) &=& 2[1-\eta(a_2)]M_t \\ u_t(a_2,\eta) &=& 1-\eta(a_2) \\ u_t(a_3,\eta) &=& 3[\eta(a_1)-\eta(a_2)](1-m_t) \end{array} \begin{array}{ll} (1) & f_1(t) = a_1 \text{ if } t > 1/2 \\ f_1(t) = a_2 \text{ if } t \le 1/2 \\ f_2(t) = a_2 \text{ for all } t. \end{array}$

- Observation: If $\eta(a_2) < 1$ then for any t > 1/2, $u_t(a_1, \eta) > u_t(a_2, \eta)$ and for t < 1/2, $u_t(a_2, \eta) > u_t(a_1, \eta)$.
- (1) If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = \eta(a_2) = 1/2$. The payoffs from a_3 is zero and from a_1 and a_2 are positive for all t. a_1 is the BR for t > 1/2 and a_2 is the BR for t < 1/2. So, f_1 is an NE.
- (2) If $f_2(t) = a_2$ and $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$. For all t, the payoffs from a_1 and a_2 are zero and from a_3 is negative. So, a_2 is a BR for $t \in [0, 1]$ and f_2 is an NE.
- ▶ The arguments to show that these are the only NE are omitted.

Example 2: No Nash Equilibrium in the Weak α -Core

Payoff Functions:

Nash Equilibria:

 $u_t(a_1, \eta) = 2[1 - \eta(a_2)]M_t$ $u_t(a_2, \eta) = 1 - \eta(a_2)$ $u_t(a_3, \eta) = 3[\eta(a_1) - \eta(a_2)](1 - m_t)$

- (1) $f_1(t) = a_1 \text{ if } t > 1/2$ $f_1(t) = a_2 \text{ if } t \le 1/2.$ (2) $f_2(t) = a_2 \text{ for all } t.$
- At f₂ the payoff to each player is zero.
 At f₁, the payoff is t if t > 1/2 and the payoff is 1/2 if t ≤ 1/2.
 So, u_t(f₁(t), λ ∘ (f₁)⁻¹) ≥ u_t(f₂(t), λ ∘ (f₂)⁻¹) + (1/2) for all t.
 So, f₂ is not in the weak core.
- At f_1 the payoff is t if t > 1/2 and the payoff is 1/2 if $t \le 1/2$.
 - Let $h(t) = a_1 = f_1(t)$ if t > 1/2 and $h(t) = a_3$ if $t \le 1/2$.
 - If $\rho = \lambda \circ h^{-1}$ then $\rho(a_1) = 1/2$ and $\rho(a_2) = 0$.
 - The payoff at h is 2t if t > 1/2 and $(3/2)(1-t) \ge 3/4$ if $t \le 1/2$.
 - $u_t(h(t), \lambda \circ h^{-1}) \ge u_t(f_1(t), \lambda \circ (f_1)^{-1}) + (1/4)$ for almost all t.

So, f_1 is not in the weak α -core.

Example 2: A α -Core Profile

Payoff Functions:

A *alpha*-Core Profile:

- $\begin{array}{rcl} u_t(a_1,\eta) &=& 2[1-\eta(a_2)]M_t & f(t) = a_1 \text{ if } t > 1/2 \\ u_t(a_2,\eta) &=& 1-\eta(a_2) & f(t) = a_3 \text{ if } t \le 1/2. \\ u_t(a_3,\eta) &=& 3[\eta(a_1) \eta(a_2)](1-m_t) & \end{array}$
 - ▶ If $\eta = \lambda \circ f^{-1}$ then $\eta(a_1) = \eta(a_3) = 1/2$ and $\eta(a_2) = 0$. t > 1/2: $u_t(a_1, \eta) = 2t > 1$. $t \le 1/2$: $u_t(a_3, \eta) = (3/2)(1-t) \ge 3/4$.
 - f is not an NE because at t = 1/2, $u_t(a_3, \eta) = 3/4 < 1 = u_t(a_2, \eta)$.
 - Suppose a coalition *E* blocks *f*. Let $h = (h_E, h_{E^c})$ and $\rho = \lambda \circ h^{-1}$.
 - Let t > 1/2. Then $u_t(a_2, \rho) \le u_t(a_1, \rho) \le u_t(a_1, \eta)$.
 - If $t \ge 2/3$ then $1 m_t \le 1/3$ and $u_t(a_3, \rho) \le 1$. $\lambda(E \cap [2/3, 1]) = 0$.
 - ► Let $h(t) = a_2$ on [2/3,1]. Then $\rho(a_1) \rho(a_2) \le 1/3$ and $u_t(a_3, \rho) \le 1$ if $t \in (1/2, 2/3)$. $\lambda(E \cap (1/2, 2/3)) = 0$.
 - ► Let $t \le 1/2$. Assume that $h(t) = a_2$ if t > 1/2. Then $u_t(a_1, \rho) \le u_t(a_2, \rho) \le 1/2$ and $u_t(a_3, \rho) \le 0$. $\lambda(E \cap [0, 1/2]) = 0$.

Payoff Functions:

$u_t(a_1, \eta) = \eta(a_1) - \eta(a_3)$ $u_t(a_2, \eta) = 0$ $u_t(a_3, \eta) = -2$

Nash Equilibria:

(1)
$$f_1(t) = a_1$$
 for all t.
(2) $f_2(t) = a_2$ for all t.

 f_1 is in the core but not f_2 .

- (1) If $\eta = \lambda \circ (f_1)^{-1}$ then $\eta(a_1) = 1$ and $\eta(a_2) = \eta(a_3) = 0$. a_1 is the unique BR for $t \in [0, 1]$. So, f_1 is an NE.
- (2) If $\eta = \lambda \circ (f_2)^{-1}$ then $\eta(a_2) = 1$ and $\eta(a_1) = \eta(a_3) = 0$. So, a_2 is a best response for $t \in [0, 1]$ and f_2 is an NE.
- Conversely suppose that f is an NE and $\eta = \lambda \circ (f_1)^{-1}$.
 - If $\eta(a_1) > \eta(a_3)$ then $u_t(a_1, \eta) > u_t(a_i, \eta)$ for i = 2, 3. So, $f = f_1$.
 - If $\eta(a_1) \le \eta(a_3)$ then $u_t(a_2, \eta) = u_t(a_1, \eta) > u_t(a_3, \eta)$. So, $\eta(a_3) = 0$ which implies that $\eta(a_1) = 0$. Thus, $f = f_2$.
- The payoff to every player from f₁ is 1, which is the highest payoff in the game. So, no coalition can block it and f₁ is in the core.
- ▶ The payoff is zero to every player from f_2 . So, the all member coalition can strongly block f_2 (via f_1) and f_2 is not in the weak core.

- The core is a proper subset of the set of NE.
- Let $A = \{a_1, a_2\}$ and $u(a_i, \eta) = \eta(a_1)$ for i = 1, 2. For all $t \in [0, 1]$, let $u_t = u$.
- Each player has the same payoff function and the payoff depends only on the measure.

So, every measure (or the corresponding strategy profile) is an NE.

- We will show that $f(t) = a_1$ for all t is the only core profile.
- Let η = λ ∘ f⁻¹. Then η(a₁) = 1 and the payoff is 1 to each. This is the highest payoff in the game. So, no coalition can block it and f₁ is in the core.
- Let *h* be any strategy profile, ρ = λ ∘ h⁻¹ and ρ(a₁) < 1. Then the payoff to each player is ρ(a₁) < 1. The all member coalition strongly blocks *h*.
- So, f is the unique core allocation and the core is a proper subset of the set of NE.

- The core and set of NE are identical.
- ► Let $A = \{a_1, a_2\}$ and $u_t(a_1, \eta) = \eta(a_1)$, $u_t(a_2, \eta) = \eta(a_1) 1$.
- ▶ Let $f^*(t) = a_1$ for each t and $\eta^* = \lambda \circ (f^*)^{-1}$. Then $\eta^*(a_1) = 1$ and $\eta^*(a_2) = 0$. $u_t(a_1, \eta^*) = 1$ and $u_t(a_2, \eta^*) = 0$. So, f^* is an NE.

Conversely, suppose that f is an NE. Then

$$u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1), \qquad u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) - 1.$$

So, $f(t) = a_1$ for almost all t. Thus f^* is the unique NE.

- f* is in the core. The payoff to t at f* is 1 and a player never gets more than 1. So, no coalition can block f*.
- ► Let f be any profile such that $\lambda \circ f^{-1}(a_2) > 0$. The payoffs are: $u_t(a_1, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) < 1$, $u_t(a_2, \lambda \circ f^{-1}) = \lambda \circ f^{-1}(a_1) - 1 < 0$.

The all member coalition strongly blocks f (via f^*).

This shows that the unique NE f* is in the unique element of the core.