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Literature

I Aumann and Peleg (1960) introduced the notions of α and β cores for

finite-player games. Aumann (1961) explored the issues further.

I General existence theorems are proved in Scarf (1967, 1971).

(The notion of balancedness is important.)

I Notable contributions since have been many; e.g., Shapley (1973),

Border (1982), Ichiishi (1982), Kajii (1992).

I Weber (1981): weak-core for games with a continuum of player in a

characteristic function form.

I We consider a large (strategic) game over an atomless probability space

of players where a player’s payoff (continuously) depends on the choice of

own action and the societal action distribution.
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Literature, cont’d

I Nash equilibrium (NE) in a large game: Existence results

I Finite actions: Schmeidler (1973).
I Countable actions: Khan and Sun (1995), Yu and Zhang (2007).
I But it may fail for uncountable actions: Rath, Sun and Yamashige

(1995), Khan, Rath and Sun (1997).
I Positive results with additional assumptions: Khan and Sun (1999),

Keisler and Sun (2009), Khan et al. (2013), He, Sun and

Sun (2017), He and Sun (2018), etc.

I α-core in a large game:

I Askoura (2011): The non-emptiness of weak α-core is shown by

assuming that a player’s (quasi-concave) payoff depends only on the

societal distribution but does not depend on her own action.
I Askoura(2017), Example 3: Weak α-core is empty for a large game

with finite actions if a player’s payoff depends on own action and

the action distribution of others.
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This Talk

1. We consider:

I The relationship among NE, strong NE and the α-core in a large

game.
I By assuming two conditions in Konishi et al.(1997), we can show

that the α-core in a large game is non-empty.

2. We also consider the weak α-core of a large game by working with

randomized strategy profiles.

I A coalition is a subset of the players of nonzero measure.
I A coalition E strongly blocks a strategy profile f if the coalition has

a strategy hE such that for any strategy of the complement of the

coalition hE c and h = (hE , hE c ), the payoff to each member of the

coalition under h exceeds by ε the payoff from f for some ε > 0.
I The weak α-core is the set of strategy profiles which is not strongly

blocked by any coalition.
I We show that under some conditions, the weak α-core is non-empty.
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Large Games

I Player space: an atomless probability space (T , T , λ)

I Common action set: A compact metric space A.

Societal summaries: M(A), the set of probability measures on A endowed

with the topology of weak convergence.

I Space of payoff functions: U , the space of all continuous functions on

A×M(A) with the sup-norm topology.

I A large game is a measurable function G : T −→ U .

I A (pure strategy) profile is a measurable function f : T −→ A.

Rath-Yu α-Core



The Notion of α-Core

I A coalition is a measurable subset of T with positive measure.

I Given a coalition E , B(E , S) denotes the set of measurable functions

from E to S .

I A coalition E blocks a strategy profile f if there is a measurable function

hE ∈ B(E , S), such that for every hE c ∈ B(E c ,S) and h = (hE , hE c ),

ut(h(t), λh−1) > ut(f (t), λf −1) for almost all t ∈ E ,

where we abbreviate G(t) as ut .

I The α-core of the game is the set of profiles that are not blocked by any

coalition E .
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Nash Equilibrium and Strong Nash Equilibrium

I A strategy profile f is a (pure-strategy) Nash equilibrium (NE) if

ut(f (t), λf −1) ≥ ut(a, λf
−1)

for all a ∈ A and almost all t ∈ T .

I An NE f s is a strong NE if there does not exist any coalition E and

hE ∈ B(E ,A) such that

ut(h(t), λh−1) > ut(f , λf
−1)

for almost all t ∈ E where h = (hE , f |E c ).

I In a large game G, it is not hard to show:

Claim
If f is a strong NE then it is in the α-core.

So, once an NE exists in a large game, if we can obtain the existence of

strong NE, then we know that α-core is not empty.
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An Existence Result of NE

Nowhere equivalence (He, Sun and Sun, 2017)

A σ-algebra T is said to be nowhere equivalent to a sub-σ-algebra F if for

every nonnegligible subset E ∈ T , there exists an T -measurable subset E0 of E

such that λ(E04E1) > 0 for any E1 ∈ FE , where E04E1 is the symmetric

difference (E0 \ E1) ∪ (E1 \ E0).

Proposition 1

A game G has a Nash equilibrium if

(i) A is countable, or

(ii) T is nowhere equivalent to σ(G).
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Two Assumptions in Konoshi et al. (1997)

Assumption IIC: Independence of Irrelevant Choices

Given any strategy profile f ∈ B(T ,A), for almost all player t ∈ T , if

τ ∈M(A) such that τ(f (t)) = λf −1(f (t)), then ut(f (t), λf −1) = ut(f (t), τ).

IIC says that a player’s payoff depends on her own choice and the proportion of

others who choose the same alternative.

Assumption PR: Partial Rivalry

Given any strategy profile f ∈ B(T ,A), for almost all player t ∈ T , if

τ ∈M(A) such that λf −1(f (t)) ≤ τ(f (t)), then ut(f (t), λf −1) ≥ ut(f (t), τ).

PR says that a player’s payoff depends on her own choice and negatively

related to the proportion of others who choose the same alternative.

Examples: Congestion, public goods with negative externalities, etc.
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The First Result on α-Core

Proposition 2

Under Assumptions IIC and PR, an NE must be a strong NE in G.

Theorem 1

Under Assumptions IIC and PR, the α-core of G is not empty if

(i) A is countable, or

(ii) T is nowhere equivalent to σ(G).
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Randomized Strategies

I A randomized strategy profile is a measurable function g : T −→M(A).

I When g is played, the expect payoff of player t ∈ T is

Ut(g) =

∫
A

ut(a,

∫
s∈T

g(s)dλ(s))dg(t, da).

I Let B(T ,M(A)) (the set of all randomized strategy profiles) be endowed

with the weak topology which is defined as the weakest topology for

which the functional

g →
∫
T

∫
A

c(t, a)g(t; da)dλ(t)

is continuous for every bounded Caratheodory function c : T × A −→ R.

I B(T ,M(A)) is a compact space under the weak topology.
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The Notion of Weak α-Core in Randomized Strategies

I A coalition E blocks a randomized strategy profile g if there is a

hE ∈ B(E ,M(A)), such that for every hEc ∈ B(E c ,M(A)) and

h = (hE , hEc ),

Ut(h) > Ut(g) for almost all t ∈ E .

I The α-core in randomized strategies of the game is the set of randomized

profiles that are not blocked by any coalition E .

I A coalition E strongly blocks a strategy profile g if there is ε > 0 and a

hE ∈ B(E ,M(A)), such that for every hEc ∈ B(E c ,M(A)) and

h = (hE , hEc ),

Ut(h) > Ut(g) + ε for almost all t ∈ E .

I The weak α-core in randomized strategies of G is the set of profiles that

are not strongly blocked by any coalition E .
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Assumptions

The following three assumptions are respectively; integrably boundedness,

equicontinuity and quasiconcavity.

Assumption 1

The family of functions {Ut(g : g ∈ B(T ,M(A)} is integrably bounded.

Assumption 2

Let g ∈ B(T ,M(A)). If ε > 0 then there is an open neighborhood V (g , ε)

such that |Ut(g)− Ut(g
′)| < ε for all g ′ ∈ V (g , ε) and t ∈ T.

For a coalition E and g ∈ B(T ,M(A)), let z(E , g) =
∫
E
Ut(g) dλ.

Assumption 3

For every coalition E, z(E , ·) is quasiconcave.
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The Second Main Result

Theorem 2
Under Assumptions 1-3, the weak α-core in randomized strategies of a large

game G is nonempty.

For a coalition E , let

H(E) = {g ∈ B(T ,M(A)) : g is not strongly blocked by E}. The proof

consists of two lemmas.

Lemma A
For every coalition E, H(E) is a nonempty, closed (and hence compact) subset

of B(T ,M(A)).

Lemma B
Let Ei , i ∈ I be a finite collection of coalitions. Then ∩i∈IH(Ei ) is nonempty.
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Proof of Lemma A

H(E) = {g ∈ B(T ,M(A)) : g is not strongly blocked by E}.

I H(E) 6= ∅. The function z(E , ·) =
∫
E
Ut(·)dλ(t) is continuous. Since

B(T ,M(A)) is compact, z(E , ·) attains its maximum, say at g∗. The

coalition E cannot strongly block the strategy profile g∗ and g∗ ∈ H(E).

I If E strongly blocks g then there exist ε > 0 and hE ∈ B(E ,M(A)), such

that for every hEc ∈ B(E c ,M(A)) and h = (hE , h
c
E ),

Ut(h) > Ut(g) + ε for almost all t ∈ E .

By Assumption 2, given ε/2 > 0, there is an open neighborhood

V (g , ε/2) of f such that if g ′ ∈ V (g , ε/2) then

|Ut(g)− Ut(g
′)| < ε/2 for all t ∈ T .

For almost all t ∈ E ,

Ut(g
′) + (ε/2) < Ut(g) + ε < Ut(h).

This means the coalition E strongly blocks every profile g ′ ∈ V (g , ε/2).

Thus, the complement of H(E) is open and H(E) is closed.
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Outline of Proof of Lemma B

If I is a finite set then ∩i∈IH(Ei ) 6= ∅.

I Let {Ei}i∈I be a finite family of coalitions such that ∪i∈IEi = T .

I Let {Kj}j∈J be a finite family of pairwise disjoint elements of T such that

µ(Kj) > 0 for all j and each Ei is a union of some of the Kjs.

I For B ⊆ J, define KB = ∪j∈BKj . If B ⊂ J then KBc is nonempty and

automatically defined as T \ (∪j∈BKj).

I For B ⊆ J, define a subset V (B) of RJ as follows.

V (B) = {v ∈ RJ : ∃ hKB such that ∀ hKBc and h = (hKB , hKBc ),

z(Kj , h) ≥ vj , ∀ j ∈ B}.
Note that if j 6∈ B then vj ∈ V (B) can be any number in R.

I The following properties hold:

(1) For every B ⊆ J, V (B) is nonempty and closed.

(2) For every B ⊆ J, if v ∈ V (B) and v ′ ≤ v then v ′ ∈ V (B).

(3) V (J) is bounded from above.

(4) J is balanced.(By Assumption 3.)
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Proof of Lemma B, contd.

I Scarf’ theorem: The core of G = (J,V ) is nonempty.

(If v is in the core then v is not in the interior of V (B) for any B ⊆ J.)

I If the core of G = (J,V ) is not empty, then ∩i∈IH(Ei ) 6= ∅.
I Let v be in the core of G = (J,V ). Let g : T −→M(A) such that

z(Kj , g) ≥ vj for all j ∈ J.

I Fix an arbitrary index i ∈ I . Ei is a finite union of some sets Kj , j ∈ J.

Let Ei = ∪j∈JiKj where Ji ⊆ J.

I Since v is not in the interior of V (Ji ), for every hEi , there exists hEc
i

and

an index j ∈ Ji such that for h = (hEi , hE c
i

),

z(Kj , h) ≤ vj ≤ z(Kj , g).

I Thus, for any hEi , there exists hE c
i

and a subset Di of Ei of positive

measure such that ut(h) ≤ Ut(g) for all t ∈ Di .

I This shows that g ∈ ∩i∈IH(Ei ) and completes the proof.
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Weak α-Core in Pure Strategies?

I We have proved the existence of a randomized strategy profile in the

weak α-core. Does the core contain a pure strategy profile?

I Purification (in progress)

1. A is countable: Use the DWW theorem.

2. A is uncountable: assume the no-where equivalence

conditions.
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Example 1

I The player space is T = [0, 1] and λ denotes Lebesgue measure.

I The set of Nash equilibria is a proper subset of the core.

I Let A = {a1, a2}. For any η ∈M(A), let

u(a1, η) =
1

2
, u(a2, η) = 1− η(a2).

For each t ∈ T , let ut = u.

I f is a Nash equilibrium of this game iff λ ◦ f −1(a2) = 1/2.

I Since the payoff function is the same for all the players,

the weak α-core and the α-core are the same.

I We will show that the α-core of this game is any f such that

λ ◦ f −1(a2) ≤ 1/2.

(Thus, the set of Nash equilibria is contained in the α-core.)
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Example 1: Blocked Profiles

I If λ ◦ f −1(a2) > 1/2 then f is not in the core.

I Let E ⊆ {t ∈ T : f (t) = a2} such that λ(E) > 0.

I For any t ∈ E ,

ut(f (t), λ ◦ f −1) = 1− λ ◦ f −1(a2) <
1

2
.

I Let hE (t) = a1 for any t ∈ E . Then for any hEc and h = (hE , hEc ),

ut(h(t), λ ◦ h−1) =
1

2
for t ∈ E .

I So, the coalition E blocks f .
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Example 1: Unblocked Profiles

I Now consider any f such that λ ◦ f −1(a2) ≤ 1/2.

We will show that it is in the core.

I Suppose there is a coalition E which blocks f .

Let hE be the function on E such that for any function hEc on E c and

h = (hE , hEc ),

ut(h(t), λ ◦ h−1) > ut(f (t), λ ◦ f −1).

I Consider

Sij = {t ∈ E : f (t) = ai and h(t) = aj , i , j = 1, 2}.

I If t ∈ S11 then ut(h(t), λ ◦ h−1) = ut(f (t), λ ◦ f −1) = 1/2,

a contradiction. So, λ(S11) = 0.
I If t ∈ S21 then ut(f (t), λ ◦ f −1) = 1− λ ◦ f −1(a2) ≥ 1/2 and

ut(h(t), λ ◦ h−1) = 1/2, again a contradiction. So, λ(S21) = 0.
I Thus, E = S12 ∪ S22.
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Example 1: Unblocked Profiles, contd.

I We have

Sij = {t ∈ E : f (t) = ai and h(t) = aj , i , j = 1, 2}, E = S12 ∪ S22.

I If t ∈ S12 then ut(f (t), λ ◦ f −1) = 1/2.

If t ∈ S22 then ut(f (t), λ ◦ f −1) = 1− λ ◦ f −1(a2) ≥ 1/2.
I Let hEc (t) = a2. Then λ ◦ h−1(a2) = 1.
I For any t ∈ E , ut(h(t), λ ◦ h−1) = 1− λ ◦ h−1(a2) = 0.

This is a contradiction.

I So, no coalition can block f and any f with λ ◦ f −1(a2) ≤ 1/2 is in the

α-core.
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Example 2

I In this example the weak α-core does not contain any Nash equilibrium.

I Let A = {a1, a2, a3}, Mt = max{1/10, t} and mt = min{9/10, t}.
For t ∈ T define

ut(a1, η) = 2[1− η(a2)]Mt

ut(a2, η) = 1− η(a2)

ut(a3, η) = 3[η(a1)− η(a2)](1−mt)

I This game has two Nash equilibria f1 and f2 where:

I (1) f1(t) = a1 if t > 1/2 and f1(t) = a2 if t ≤ 1/2 and
I (2) f2(t) = a2 for all t.

I None of the Nash equilibrium is in the weak α-core.
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Example 2: Nash Equilibria

Payoff Functions:

ut(a1, η) = 2[1− η(a2)]Mt

ut(a2, η) = 1− η(a2)

ut(a3, η) = 3[η(a1)− η(a2)](1−mt)

Nash Equilibria:

(1) f1(t) = a1 if t > 1/2

f1(t) = a2 if t ≤ 1/2.

(2) f2(t) = a2 for all t.

I Observation: If η(a2) < 1 then for any t > 1/2, ut(a1, η) > ut(a2, η) and

for t < 1/2, ut(a2, η) > ut(a1, η).

I (1) If η = λ ◦ (f1)−1 then η(a1) = η(a2) = 1/2.

The payoffs from a3 is zero and from a1 and a2 are positive for all t.

a1 is the BR for t > 1/2 and a2 is the BR for t < 1/2. So, f1 is an NE.

I (2) If f2(t) = a2 and η = λ ◦ (f2)−1 then η(a2) = 1.

For all t, the payoffs from a1 and a2 are zero and from a3 is negative.

So, a2 is a BR for t ∈ [0, 1] and f2 is an NE.

I The arguments to show that these are the only NE are omitted.
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Example 2: No Nash Equilibrium in the Weak α-Core

Payoff Functions:

ut(a1, η) = 2[1− η(a2)]Mt

ut(a2, η) = 1− η(a2)

ut(a3, η) = 3[η(a1)− η(a2)](1−mt)

Nash Equilibria:

(1) f1(t) = a1 if t > 1/2

f1(t) = a2 if t ≤ 1/2.

(2) f2(t) = a2 for all t.

I At f2 the payoff to each player is zero.

At f1, the payoff is t if t > 1/2 and the payoff is 1/2 if t ≤ 1/2.

So, ut(f1(t), λ ◦ (f1)−1) ≥ ut(f2(t), λ ◦ (f2)−1) + (1/2) for all t.

So, f2 is not in the weak core.

I At f1 the payoff is t if t > 1/2 and the payoff is 1/2 if t ≤ 1/2.

I Let h(t) = a1 = f1(t) if t > 1/2 and h(t) = a3 if t ≤ 1/2.
I If ρ = λ ◦ h−1 then ρ(a1) = 1/2 and ρ(a2) = 0.
I The payoff at h is 2t if t > 1/2 and (3/2)(1− t) ≥ 3/4 if t ≤ 1/2.
I ut(h(t), λ ◦ h−1) ≥ ut(f1(t), λ ◦ (f1)−1) + (1/4) for almost all t.

So, f1 is not in the weak α-core.
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Example 2: A α-Core Profile

Payoff Functions:

ut(a1, η) = 2[1− η(a2)]Mt

ut(a2, η) = 1− η(a2)

ut(a3, η) = 3[η(a1)− η(a2)](1−mt)

A alpha-Core Profile:

f (t) = a1 if t > 1/2

f (t) = a3 if t ≤ 1/2.

I If η = λ ◦ f −1 then η(a1) = η(a3) = 1/2 and η(a2) = 0.

t > 1/2: ut(a1, η) = 2t > 1. t ≤ 1/2: ut(a3, η) = (3/2)(1− t) ≥ 3/4.

I f is not an NE because at t = 1/2, ut(a3, η) = 3/4 < 1 = ut(a2, η).

I Suppose a coalition E blocks f . Let h = (hE , hE c ) and ρ = λ ◦ h−1.

I Let t > 1/2. Then ut(a2, ρ) ≤ ut(a1, ρ) ≤ ut(a1, η).

I If t ≥ 2/3 then 1−mt ≤ 1/3 and ut(a3, ρ) ≤ 1. λ(E ∩ [2/3, 1]) = 0.
I Let h(t) = a2 on [2/3,1]. Then ρ(a1)− ρ(a2) ≤ 1/3 and

ut(a3, ρ) ≤ 1 if t ∈ (1/2, 2/3). λ(E ∩ (1/2, 2/3)) = 0.

I Let t ≤ 1/2. Assume that h(t) = a2 if t > 1/2.

Then ut(a1, ρ) ≤ ut(a2, ρ) ≤ 1/2 and ut(a3, ρ) ≤ 0. λ(E ∩ [0, 1/2]) = 0.
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Example 3

Payoff Functions:

ut(a1, η) = η(a1)− η(a3)

ut(a2, η) = 0

ut(a3, η) = −2

Nash Equilibria:

(1) f1(t) = a1 for all t.

(2) f2(t) = a2 for all t.

f1 is in the core but not f2.

I (1) If η = λ ◦ (f1)−1 then η(a1) = 1 and η(a2) = η(a3) = 0.

a1 is the unique BR for t ∈ [0, 1]. So, f1 is an NE.
I (2) If η = λ ◦ (f2)−1 then η(a2) = 1 and η(a1) = η(a3) = 0.

So, a2 is a best response for t ∈ [0, 1] and f2 is an NE.
I Conversely suppose that f is an NE and η = λ ◦ (f1)−1.

I If η(a1) > η(a3) then ut(a1, η) > ut(ai , η) for i = 2, 3. So, f = f1.
I If η(a1) ≤ η(a3) then ut(a2, η) = ut(a1, η) > ut(a3, η).

So, η(a3) = 0 which implies that η(a1) = 0. Thus, f = f2.
I The payoff to every player from f1 is 1, which is the highest payoff in the

game. So, no coalition can block it and f1 is in the core.
I The payoff is zero to every player from f2. So, the all member coalition

can strongly block f2 (via f1) and f2 is not in the weak core.
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Example 4

I The core is a proper subset of the set of NE.

I Let A = {a1, a2} and u(ai , η) = η(a1) for i = 1, 2.

For all t ∈ [0, 1], let ut = u.

I Each player has the same payoff function and the payoff depends only on

the measure.

So, every measure (or the corresponding strategy profile) is an NE.

I We will show that f (t) = a1 for all t is the only core profile.

I Let η = λ ◦ f −1. Then η(a1) = 1 and the payoff is 1 to each. This is the

highest payoff in the game. So, no coalition can block it and f1 is in the

core.

I Let h be any strategy profile, ρ = λ ◦ h−1 and ρ(a1) < 1. Then the payoff

to each player is ρ(a1) < 1. The all member coalition strongly blocks h.

I So, f is the unique core allocation and the core is a proper subset of the

set of NE.
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Example 5

I The core and set of NE are identical.

I Let A = {a1, a2} and ut(a1, η) = η(a1), ut(a2, η) = η(a1)− 1.

I Let f ∗(t) = a1 for each t and η∗ = λ ◦ (f ∗)−1. Then η∗(a1) = 1 and

η∗(a2) = 0. ut(a1, η
∗) = 1 and ut(a2, η

∗) = 0. So, f ∗ is an NE.

I Conversely, suppose that f is an NE. Then

ut(a1, λ ◦ f −1) = λ ◦ f −1(a1), ut(a2, λ ◦ f −1) = λ ◦ f −1(a1)− 1.

So, f (t) = a1 for almost all t. Thus f ∗ is the unique NE.

I f ∗ is in the core. The payoff to t at f ∗ is 1 and a player never gets more

than 1. So, no coalition can block f ∗.

I Let f be any profile such that λ ◦ f −1(a2) > 0. The payoffs are:

ut(a1, λ ◦ f −1) = λ ◦ f −1(a1) < 1,

ut(a2, λ ◦ f −1) = λ ◦ f −1(a1)− 1 < 0.

The all member coalition strongly blocks f (via f ∗).

I This shows that the unique NE f ∗ is in the unique element of the core.
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