Modeling Infinitely Many Agents: Why Countable Additivity Is Necessary

> M. Ali Khan Johns Hopkins University

Lei Qiao Shanghai University of Finance and Economics

> Kali P. Rath University of Notre Dame

Yeneng Sun National University of Singapore

Singapore, June 07, 2018

Background and Motivation

- Finite agent economies and games: Arrow-Debreu (1954), McKenzie (1954), Nash (1951).
- Economies and games with a continuum of agents: Aumann (1964, 1966), Vind (1964), Milnor-Shapley (1961), Schmeidler (1973).
- Many macro economics papers assume infinite agents with mass 1.
- Modeling many agents:
 - Replication/Large finite approximations: Edgeworth (1881), Debreu-Scarf (1963), Anderson (1978).
 - Continuum models with an atomless measure: Milnor-Shapley (1961), Aumann (1964), Schmeidler (1973), Hildenbrand (1974), Khan-Sun (2002).
 - Infinitesimals, Loeb spaces: Brown-Robinson (1972, 1975), Khan (1974), Brown-Loeb (1976), Khan-Sun (1996, 1999).
 - Finitely additive economies: Armstrong-Richter (1984, 1986), Weiss (1981), Feldman-Gilles (1985), Basile (1993).

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathematical Preliminaries

► Let T be a nonempty set and \mathcal{T} a σ -algebra of subsets of T, (*i*) $T \in \mathcal{T}$, (*ii*) $A \in \mathcal{T}$ implies $A^c \in \mathcal{T}$, (*iii*) $A_n \in \mathcal{T}$ (n = 1, 2...) implies $\cup_{n=1}^{\infty} A_n \in \mathcal{T}$.

• Let μ be a set function from \mathcal{T} to [0,1] with $\mu(\mathcal{T}) = 1$.

- μ is a finitely additive measure on \mathcal{T} if for any $A, B \in \mathcal{T}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.
- µ is a countably additive measure on T if for any sequence {A_n} of pairwise disjoint sets in T, µ(∪_{n=1}[∞]A_n) = ∑_{n=1}[∞] µ(A_n).
- The triple (T, T, µ) will be called a (finitely additive/countably additive) measure space.

Mathematical Preliminaries

► Let T be a nonempty set and \mathcal{T} a σ -algebra of subsets of T, (*i*) $T \in \mathcal{T}$, (*ii*) $A \in \mathcal{T}$ implies $A^c \in \mathcal{T}$, (*iii*) $A_n \in \mathcal{T}$ (n = 1, 2...) implies $\cup_{n=1}^{\infty} A_n \in \mathcal{T}$.

• Let μ be a set function from \mathcal{T} to [0,1] with $\mu(\mathcal{T}) = 1$.

- μ is a finitely additive measure on \mathcal{T} if for any $A, B \in \mathcal{T}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.
- µ is a countably additive measure on T if for any sequence {A_n} of pairwise disjoint sets in T, µ(∪_{n=1}[∞]A_n) = ∑_{n=1}[∞] µ(A_n).
- The triple (T, T, µ) will be called a (finitely additive/countably additive) measure space.
- A measure μ is atomless if for every ε > 0, there exists a *T*-measurable partition {*F*₁,..., *F_n*} of *T* such that μ(*F_i*) < ε for every *i*.
- Let N be the set of positive integers and P(N) its power set. There are finitely additive, atomless measures on P(N) (such as a density charge).

Preview of the Results

- Negative results on finitely additive spaces.
 - An economy may not have a competitive equilibrium.

(Two examples)

伺 ト イ ヨ ト イ ヨ ト

3

A game may not have a Nash equilibrium.

(Two examples)

- An economy may not have the idealized limit property.
- A game may not have the idealized limit property.
- Consequences.
 - Necessity of countably additivity for economies: both existence and idealized limit property hold.
 - Necessity of countably additivity for games: both existence and idealized limit property hold.
- Approximate equilibria on finitely additive spaces.
 - An economy may not have an approximate competitive equilibrium. A tightness assumption is sufficient for existence.
 - A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.

Economies and Competitive Equilibria

- There are L goods and the commodity space is \mathbb{R}^{L}_{+} .
- ▶ Let U denote the class of real valued, continuous utility functions on ℝ^L₊ (endowed with the compact open topology).
- A $u \in U$ is strongly monotone if $x \ge y$, $x \ne y$ implies that u(x) > u(y).
- Let (T, T, μ) be a finitely additive measure space. (space of agents)

Economies and Competitive Equilibria

- There are L goods and the commodity space is \mathbb{R}^{L}_{+} .
- ▶ Let U denote the class of real valued, continuous utility functions on ℝ^L₊ (endowed with the compact open topology).
- A $u \in U$ is strongly monotone if $x \ge y$, $x \ne y$ implies that u(x) > u(y).
- Let (T, T, μ) be a finitely additive measure space. (space of agents)
- An *economy* is a measurable mapping $\mathcal{E} = (u, \omega) : \mathcal{T} \longrightarrow \mathcal{U} \times \mathbb{R}^{L}_{+}$ such that ω is integrable and $\bar{\omega} = \int_{\mathcal{T}} \omega \, d\mu \gg 0$.
- ► An *allocation* of \mathcal{E} is an integrable mapping f from T to \mathbb{R}^{L}_{+} . An allocation is *feasible* if $\int_{T} f d\mu = \int_{T} \omega d\mu$.
- ► Given a price vector $p \in \mathbb{R}^{L}_{+}$, the *budget set* of consumer *t* is $B_{t}(p) = \{x \in \mathbb{R}^{L}_{+} : p \cdot x \leq p \cdot \omega_{t}\}.$
- A competitive equilibrium of *E* is a pair (*p*, *f*), where *p* ∈ ℝ^L₊ \ {0}, *f* is a feasible allocation and μ-a.e.;

(a) $f(t) \in B_t(p)$ and (b) $u_t(f(t)) \ge u_t(x)$ for all $x \in B_t(p)$.

An allocation f of E is a competitive allocation if for some p, (p, f) is a competitive equilibrium.

Nonexistence of a CE: An Example on Integers

▶ The measure space is $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. $0 \le c < 1$. Economy \mathcal{E} : for $t \in \mathbb{N}$,

$$u_t(x_1, x_2) = \frac{t+1}{t} x_1^{\frac{t}{t+1}} + x_2, \qquad \omega_t = \left(\frac{c+1}{2}, \frac{c+1}{2}\right),$$

• Equilibrium prices: $p_1 + p_2 = 1$, $p \gg 0$.

For any $t \in \mathbb{N}$, the demand function are:

$$D_{t1} = \min\left\{\frac{p_2^{t+1}}{p_1^{t+1}}, \frac{c+1}{2p_1}\right\}, \qquad D_{t2} = \frac{c+1}{2p_2} - \frac{p_1 D_{t1}}{p_2}.$$

► Case 1.
$$p_2/p_1 < 1$$
. $\lim_{t\to\infty} D_{t1} = 0$. $\int_{\mathbb{N}} D_{t1} \, d\mu = 0$.
 $\int_{\mathbb{N}} D_{t2} \, d\mu = \frac{c+1}{2p_2} > \frac{c+1}{2} = \int_{\mathbb{N}} \omega_{t2} \, d\mu$. (contradiction)

Case 2. $p_2/p_1 \ge 1$. $p_2^{t+1}/p_1^{t+1} \ge 1$. $(c+1)/(2p_1) \ge c+1$.

Therefore, $D_{t1} \ge \min \{1, c+1\} = 1$.

$$\int_{\mathbb{N}} D_{t1} \, \mathrm{d}\mu \ge 1 > \frac{c+1}{2} = \int_{\mathbb{N}} \omega_{t1} \, \mathrm{d}\mu. \qquad \qquad (\text{contradiction})$$

Nonexistence of a CE on General Measure Spaces

Claim

Let (T, T, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is an economy on (T, T, μ) which has no competitive equilibrium.

Nonexistence of a CE on General Measure Spaces

Claim

Let (T, T, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is an economy on (T, T, μ) which has no competitive equilibrium.

- Fact: Let (T, T, μ) be a finitely additive probability space. Then the following are equivalent.
 - (i) μ is not countably additive.
 - (ii) There is an increasing sequence of sets $\{B_n\}$ in \mathcal{T} such that $\bigcup_{n=1}^{\infty} B_n = \mathcal{T}$ and $\lim_{n\to\infty} \mu(B_n) = c < 1$.
- Since μ is not countably additive, there is an increasing sequence of sets $\{B_n\}$ in \mathcal{T} such that $\bigcup_{n=1}^{\infty} B_n = \mathcal{T}$ and $\lim_{n \to \infty} \mu(B_n) = c < 1$.
- ▶ For $n \in \mathbb{N}$, let $C_1 = B_1$ and for $n \ge 2$, $C_n = B_n \setminus B_{n-1}$.
- $\{C_n\}$ is a sequence of pairwise disjoint sets and $\bigcup_{n=1}^{\infty} C_n = T$.

Nonexistence on General Measure Spaces, contd.

Preferences and endowments: Let $t \in C_n$.

$$u_t(x_1, x_2) = \frac{n+1}{n} x_1^{\frac{n}{n+1}} + x_2, \qquad \omega_t = \left(\frac{c+1}{2}, \frac{c+1}{2}\right).$$

- Assume that p₁, p₂ ∈ ℝ²₊ is a pair of competitive equilibrium prices. We must have p₁ > 0 and p₂ > 0 since u_t is strongly monotone for each t.
- Let $p_2 = 1$ and $p_1 > 0$. If $t \in C_n$, then

$$D_{t1} = \min\left\{\frac{1}{p_1^{n+1}}, \frac{c+1}{2}\left(1+\frac{1}{p_1}\right)\right\}, \quad D_{t2} = \frac{c+1}{2}(1+p_1) - p_1 D_{t1}.$$

▶ To show that there is *no* competitive equilibrium, consider two cases: (*i*) $1 \ge p_1$ and (*ii*) $1 < p_1$. Obtain contradictions.

Games and Nash Equilibria

- ► Let $E = \{e^1, ..., e^L\}$ be the set of unit vectors in \mathbb{R}^L and $S = \{s \in \mathbb{R}_+^L : \sum_{k=1}^L s_k = 1\}$ the unit simplex in \mathbb{R}^L .
- Let V be the set of real valued continuous functions defined on E × S, endowed with sup norm.
- (T, T, μ) is an atomless, countably/finitely additive probability space.
- A *game* is a measurable function $\mathcal{G}: \mathcal{T} \longrightarrow \mathcal{V}$.
- A pure strategy profile is a measurable function $f: T \longrightarrow E$.
- A $f : T \longrightarrow E$ is a pure strategy Nash equilibrium of \mathcal{G} if μ -a.e.;

 $\mathcal{G}(t)\left(f(t),\int_{\mathsf{T}}f\,\mathsf{d}\mu
ight)\geq\mathcal{G}(t)\left(\mathsf{a},\int_{\mathsf{T}}f\,\mathsf{d}\mu
ight)\,\,\text{for all}\,\,\mathsf{a}\in\mathsf{E}.$

Games and Nash Equilibria, contd.

- Pure strategy profile: $f : T \longrightarrow E$.
- Mixed strategy profile: $g: T \longrightarrow S$.
- Given a mixed strategy profile g and $y \in S$, the payoff to player t is

$$\mathcal{G}(t)\left(y,\int_{T}g \,\mathrm{d}\mu\right) = \sum_{k=1}^{L} y_{k}\mathcal{G}(t)\left(e^{k},\int_{T}g \,\mathrm{d}\mu\right).$$

▶ A $g : T \longrightarrow S$ is a mixed strategy Nash equilibrium of G if μ -a.e.;

$$\mathcal{G}(t)\left(g(t),\int_{\mathcal{T}}g\,\mathrm{d}\mu
ight)\geq\mathcal{G}(t)\left(y,\int_{\mathcal{T}}g\,\mathrm{d}\mu
ight)\,\,\text{for all}\,\,y\in\mathcal{S}.$$

Nonexistence of an NE: An Example on Integers

Let A = {0, 1} and K = [0, 1]. Any x ∈ K is the weight on action 1.
The measure space is (N, P(N), µ). For each t ∈ N,

$$\mathcal{G}(t)(a,x) = a\left(\frac{1}{t}-x\right), \ a \in A.$$

Best responses:

$$\operatorname{argmax}_{a \in A} \mathcal{G}(t)(a, x) = \begin{cases} \{0, 1\} & \text{if } x = 1/t \\ 1 & \text{if } x < 1/t \\ 0 & \text{if } x > 1/t. \end{cases}$$

- Suppose that g from \mathbb{N} to K is a (mixed) Nash equilibrium. Let $x = \int_{\mathbb{N}} g d\mu$.
 - ▶ If x = 0 then x < 1/t for all $t \in \mathbb{N}$ which implies that g(t) = 1 for all t and $\int_{\mathbb{N}} g \, d\mu = 1$. (contradiction)
 - ▶ If x > 0 then x > 1/t for almost all t(since the measure of a finite set is zero), which implies that g(t) = 0 for almost all t and $\int_{\mathbb{N}} g \ d\mu = 0.$ (contradiction)

Nonexistence of an NE on General Measure Spaces

Claim

Let (T, T, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is a game on (T, T, μ) which has no Nash equilibrium.

Nonexistence of an NE on General Measure Spaces

Claim

Let (T, T, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is a game on (T, T, μ) which has no Nash equilibrium.

Since μ is not countably additive, there is an increasing sequence of sets $\{B_n\}$ in \mathcal{T} such that

$$\cup_{n=1}^{\infty}B_n= \ T \ \text{and} \ \lim_{n\to\infty}\mu(B_n)=c<1.$$

- ▶ For $n \in \mathbb{N}$, let $C_1 = B_1$ and for $n \ge 2$, $C_n = B_n \setminus B_{n-1}$.
- ▶ $\{C_n\}$ is a sequence of pairwise disjoint sets and $\bigcup_{n=1}^{\infty} C_n = T$.
- $A = \{0, 1\}, K = [0, 1].$ For each $t \in C_n$, let

$$\mathcal{G}(t)(a,x) = a(\ell_n - x),$$
 where $\ell_n = c + \frac{1-c}{n}$

- Note that $\ell_1 = 1$, $\ell_n > c$ for each n and $\{\ell_n\} \downarrow c$.
- ▶ To show that there is no mixed strategy NE, consider two cases: (i) $x \le c < 1$ and (ii) x > c. Obtain contradictions.

Idealized Limits: Economies

Definition

A measurable mapping $\alpha^m : T \longrightarrow \{1, \dots, m\}$ is a *replication function* if $\mu(\alpha^m)^{-1}(\{i\}) = 1/m$ for $i = 1, \dots, m$.

Definition

An economy \mathcal{E} on an atomless finitely additive measure space (T, \mathcal{T}, μ) is said to have the *idealized limit property* if

for any sequence {Eⁿ}[∞]_{n=1} of finite-agent economies with {f_n}[∞]_{n=1} as competitive allocations, where the number of agents in Eⁿ is k_n and lim_{n→∞} k_n = ∞,

(2) for any sequence of replication functions {α^{k_n}}[∞]_{n=1} such that Eⁿ ∘ α^{k_n} converges to E pointwise on T, f_n ∘ α^{k_n} converges to some allocation f pointwise on T, and lim_{n→∞} ∫_T ωⁿ ∘ α^{k_n} dμ = ∫_T ω dμ,

then f is a competitive allocation of \mathcal{E} .

Example: No Idealized Limit (Economies)

▶ Consider the economy $\mathcal{E} = (u, \omega)$. $0 \le c < 1$. For each $t \in \mathbb{N}$,

$$u_t(x_1, x_2) = \frac{t+1}{t} x_1^{\frac{t}{t+1}} + x_2, \qquad \omega_t = \left(\frac{c+1}{2}, \frac{c+1}{2}\right),$$

Fix any $n \in \mathbb{N}$. Let \mathcal{E}^n be the restriction of \mathcal{E} on $\{1, \ldots, n\}$.

Since \mathcal{E}^n is a finite economy with concave and strictly increasing utility functions, there exists a competitive equilibrium f_n .

Example: No Idealized Limit (Economies)

▶ Consider the economy $\mathcal{E} = (u, \omega)$. $0 \le c < 1$. For each $t \in \mathbb{N}$,

$$u_t(x_1, x_2) = \frac{t+1}{t}x_1^{\frac{t}{t+1}} + x_2, \qquad \omega_t = \left(\frac{c+1}{2}, \frac{c+1}{2}\right),$$

Fix any $n \in \mathbb{N}$. Let \mathcal{E}^n be the restriction of \mathcal{E} on $\{1, \ldots, n\}$.

- Since \mathcal{E}^n is a finite economy with concave and strictly increasing utility functions, there exists a competitive equilibrium f_n .
- ▶ Let $\{A_k^n\}_{k=1}^n$ be a partition of \mathbb{N} such that $A_k^n = \{mn + k : m = 0, 1, ... \}$.
- Let $\alpha^n(t) = k$ for any $t \in A_k^n$, where k = 1, ..., n.
- Note that for any n≥ t, t ∈ Aⁿ_t. Then u_{αⁿ(t)} = u_t for any n≥ t, which implies Eⁿ ∘ αⁿ converges to E pointwise.
- Moreover, $f_n \circ \alpha^n$ converges pointwise and $\lim_{n\to\infty} \int_T \omega^n \circ \alpha^n \, d\mu = \int_T \omega \, d\mu.$
- However, the limit economy *E* has no competitive equilibrium, which implies *E* does not have the idealized limit property.

Idealized Limits: Games

Definition

A game G on an atomless finitely additive measure space (T, T, μ) is said to have the *idealized limit property* if

- for any sequence {Gⁿ}[∞]_{n=1} of finite-agent games with {g_n}[∞]_{n=1} as mixed strategy Nash equilibria, where the number of agents in Gⁿ is k_n and lim_{n→∞} k_n = ∞,
- (2) for any sequence of replication functions {α^{k_n}}[∞]_{n=1} such that Gⁿ ∘ α^{k_n} converges to G pointwise on T, and g_n ∘ α^{k_n} converges to some mixed strategy profile g pointwise on T,

then g is a mixed strategy Nash equilibrium of G.

The next example shows that the idealized limit property may fail for a game with countably many agents.

Example: No Idealized Limit (Games)

- ▶ Consider the game \mathcal{G} , for $t \in \mathbb{N}$, $\mathcal{G}(t)(a, x) = a[(1/t) x]$
- Fix any $n \in \mathbb{N}$. Let \mathcal{G}^n be the restriction of \mathcal{G} on $\{1, \ldots, n^2\}$.
- ► Let $\{A_i^n\}_{i=1}^{n^2}$ be a partition of \mathbb{N} such that $A_i^n = \{mn^2 + i : m = 0, 1, ...\}.$
- ▶ Let $\alpha^{n^2}(t) = k$ for any $t \in A_k^n$, where $k = 1, ..., n^2$. Note that for any $n \ge \sqrt{t}$, $\alpha^{n^2}(t) = t$.
- Then Gⁿ ∘ α^{n²}(t) = G(t) for any n ≥ √t, which implies Gⁿ ∘ α^{n²} converges to G pointwise on T.

Example: No Idealized Limit (Games)

- ▶ Consider the game \mathcal{G} , for $t \in \mathbb{N}$, $\mathcal{G}(t)(a, x) = a[(1/t) x]$
- Fix any $n \in \mathbb{N}$. Let \mathcal{G}^n be the restriction of \mathcal{G} on $\{1, \ldots, n^2\}$.
- ► Let $\{A_i^n\}_{i=1}^{n^2}$ be a partition of \mathbb{N} such that $A_i^n = \{mn^2 + i : m = 0, 1, ...\}.$
- ▶ Let $\alpha^{n^2}(t) = k$ for any $t \in A_k^n$, where $k = 1, ..., n^2$. Note that for any $n \ge \sqrt{t}$, $\alpha^{n^2}(t) = t$.
- Then Gⁿ ∘ α^{n²}(t) = G(t) for any n ≥ √t, which implies Gⁿ ∘ α^{n²} converges to G pointwise on T.
- ▶ Fix any n ≥ 2. Let

$$g_n(i) = \begin{cases} 1 & \text{if } i \leq n \\ 0 & \text{if } i > n. \end{cases}$$

Then g_n is a Nash equilibrium of \mathcal{G}^n .

- Fix any $t \in \mathbb{N}$. For any $n \ge t$, $\alpha^{n^2}(t) = t$, which implies $g_n \circ \alpha^{n^2}(t) = 1$. Then $g_n \circ \alpha^{n^2}(t) \to 1$ as $n \to \infty$.
- ▶ However, the limit game *G* has no mixed strategy Nash equilibrium.

Necessity of Countable Additivity: Economies

We have seen failures of both existence and the idealized limit property for competitive equilibria in economies over a finitely additive measure space. The next theorem shows the equivalence of countable additivity of the agent space with the validity of each of the properties.

Theorem

Let (T, T, μ) be a finitely additive measure space. Assume that all the preferences are strongly monotone. Then the following statements hold.

- (i) Every economy \mathcal{E} on (T, \mathcal{T}, μ) has a competitive equilibrium if and only if μ is countably additive.
- (ii) Every economy \mathcal{E} on (T, \mathcal{T}, μ) has the idealized limit property if and only if μ is countably additive.

 $CA \Rightarrow Existence:$ Aumann (1966). Existence $\Rightarrow CA:$ Earlier example.

 $CA \Rightarrow ILP$: Proof in the paper. (Follows Hildenbrand (1974)) ILP \Rightarrow CA: Earlier example on \mathbb{N} can be modified to any T.

Necessity of Countable Additivity: Games

We have seen failures of both existence and the idealized limit property for Nash equilibria in games over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the agent space with the validity of each of the properties.

Theorem

Let (T, T, μ) be a finitely additive measure space. Then the following statements hold.

- (i) Every game G on (T, T, μ) has a pure strategy Nash equilibrium if and only if μ is countably additive.
- (ii) Every game \mathcal{G} on (T, \mathcal{T}, μ) has idealized limit property if and only if μ is countably additive.

 $CA \Rightarrow Existence:$ Schmeidler (1973). Existence $\Rightarrow CA:$ Earlier example.

- $CA \Rightarrow ILP$: Proof in the paper.
- $\mathsf{ILP} \Rightarrow \mathsf{CA}: \mathsf{ Earlier example on } \mathbb{N} \mathsf{ can be modified to any } \mathcal{T}.$

Approximate Competitive Equilibria

Earlier, we have seen examples that an economy may not have a competitive equilibrium. It is natural to ask if approximate competitive equilibria exist.

Definition

Let \mathcal{E} be an economy on $(\mathcal{T}, \mathcal{T}, \mu)$ and $\epsilon > 0$. (p, f) is an ϵ -competitive equilibrium of \mathcal{E} if $p \in \mathbb{R}^L_+ \setminus \{0\}$, f is a feasible allocation, $f(t) \in B_t(p)$ for almost all t and there exists $\mathcal{T}_{\epsilon} \in \mathcal{T}$ such that: (a) $\mu(\mathcal{T}_{\epsilon}) \leq \epsilon$ and

(b) for almost all
$$t \in T_{\epsilon}^{c}$$
, $u_{t}(f(t)) \geq u_{t}(y) - \epsilon$ for any $y \in B_{t}(p)$.

In general, an ϵ -competitive equilibrium may not exist, as shown by the next Example.

Nonexistence of Approximate Competitive Equilibria

- The economy is on \mathbb{N} .
- ▶ The utility function and endowment of $t \in \mathbb{N}$ is,

$$u_t(x_1, x_2) = e^t \left[\frac{t+1}{t} x_1^{\frac{t}{t+1}} + x_2 \right], \qquad \omega_t = \left(\frac{c+1}{2}, \frac{c+1}{2} \right),$$

where $0 \le c < 1/3$.

▶ This economy does not have an ϵ -competitive equilibrium if $0 < \epsilon \le 1/3$.

Existence of Approximate Competitive Equilibria

Definition

An economy \mathcal{E} on $(\mathcal{T}, \mathcal{T}, \mu)$ is *tight* if for any $\epsilon > 0$, there exists $\overline{\mathcal{T}} \subseteq \mathcal{T}$ such that (a) $\mu(\overline{\mathcal{T}}) < \epsilon$ and (b) $\mathcal{E}(\mathcal{T} \setminus \overline{\mathcal{T}})$ is a relatively compact subset of $\mathcal{U} \times \mathbb{R}_+^L$.

Proposition

If an economy is \mathcal{E} is tight, then it has an ϵ -competitive equilibrium for every $\epsilon > 0$.

Existence of Approximate Competitive Equilibria

Definition

An economy \mathcal{E} on $(\mathcal{T}, \mathcal{T}, \mu)$ is *tight* if for any $\epsilon > 0$, there exists $\overline{\mathcal{T}} \subseteq \mathcal{T}$ such that (a) $\mu(\overline{\mathcal{T}}) < \epsilon$ and (b) $\mathcal{E}(\mathcal{T} \setminus \overline{\mathcal{T}})$ is a relatively compact subset of $\mathcal{U} \times \mathbb{R}_+^L$.

Proposition

If an economy is \mathcal{E} is tight, then it has an ϵ -competitive equilibrium for every $\epsilon > 0$.

The existence of an e-competitive equilibrium for every e > 0 does not imply that there is a competitive equilibrium. We demonstrate this by means of an earlier example.

Approximate Competitive Equilibria in an Example

• Take c = 0 in the first example. The (tight) economy is

$$u_t(x_1, x_2) = rac{t+1}{t} x_1^{rac{t}{t+1}} + x_2, \qquad \omega_t = \left(rac{1}{2}, rac{1}{2}
ight).$$

• If $p \gg 0$ and $p_1 + p_2 = 1$, then the demand functions are

$$D_{t1} = \min\left\{\frac{p_2^{t+1}}{p_1^{t+1}}, \frac{1}{2p_1}\right\}, \qquad D_{t2} = \frac{1}{2p_2} - \frac{p_1 D_{t1}}{p_2}.$$

► Let
$$p = (1/2, 1/2)$$
 and $f(t) = (1/2, 1/2) = \omega_t$.
For any $\epsilon > 0$, (p, f) is an ϵ -competitive equilibrium.

▶ $D_{t1} = 1$ and $D_{t2} = 0$. The maximized utility is (t + 1)/t. For each t, f(t) is in the budget set and f is a feasible allocation.

• We will show that for any $\epsilon > 0$, and for almost all t,

$$\frac{t+1}{t} \left(\frac{1}{2}\right)^{\frac{t}{t+1}} + \frac{1}{2} > \frac{t+1}{t} - \epsilon, \qquad \epsilon > \frac{t+1}{t} - \frac{t+1}{t} \left(\frac{1}{2}\right)^{\frac{t}{t+1}} - \frac{1}{2}$$

► As *t* tends to infinity, the RHS tends to zero. So, given $\epsilon > 0$, there exists $t_0 \in \mathbb{N}$ such that for all $t \ge t_0$, the above inequality holds.

Approximate Nash Equilibria

Earlier, we have seen examples that a game may not have a Nash equilibrium. It is natural to ask whether approximate Nash equilibria exist.

Definition

Let \mathcal{G} be a game on $(\mathcal{T}, \mathcal{T}, \mu)$ and $\epsilon > 0$. A strategy profile $g : \mathcal{T} \longrightarrow S$ is an ϵ -Nash equilibrium of \mathcal{G} if there exists $\mathcal{T}_{\epsilon} \in \mathcal{T}$ such that (a) $\mu(\mathcal{T}_{\epsilon}) \leq \epsilon$ and (b) for almost all $t \in \mathcal{T}_{\epsilon}^{c}$, $\mathcal{G}(t)(g(t), \int_{\mathcal{T}} g d\mu) \geq \mathcal{G}(t)(y, \int_{\mathcal{T}} g d\mu) - \epsilon$ for any $y \in S$.

In general, an ϵ -Nash equilibrium may not exist, as shown by the next Example.

Nonexistence of Approximate Nash Equilibria

- The game is on \mathbb{N} , with $A = \{0, 1\}$ and K = [0, 1].
- For each player $t \in \mathbb{N}$, the payoff function is $\mathcal{G}(t)(0, x) = 0$ and

$$\mathcal{G}(t)(1,x) = \begin{cases} 1+2^{t-1}(1-2x) & \text{if } -1 \leq 1+2^{t-1}(1-2x) \leq 1 \\ 1 & \text{if } 1+2^{t-1}(1-2x) > 1 \\ -1 & \text{if } 1+2^{t-1}(1-2x) < -1. \end{cases}$$

The best responses are:

$$\operatorname{argmax}_{a \in A} \mathcal{G}(t)(a, x) = \begin{cases} \{0, 1\} & \text{if } x = (1/2) + 2^{-t} \\ 1 & \text{if } x < (1/2) + 2^{-t} \\ 0 & \text{if } x > (1/2) + 2^{-t}. \end{cases}$$

▶ This game does not have an ϵ -Nash equilibrium if $0 < \epsilon \leq 1/4$.

Existence of Approximate Nash Equilibria

Definition

A game \mathcal{G} on (T, \mathcal{T}, μ) is *tight* if for any $\epsilon > 0$, there exists $\overline{T} \subseteq T$ such that (a) $\mu(\overline{T}) < \epsilon$ and (b) $\mathcal{G}(T \setminus \overline{T})$ is a relatively compact subset of \mathcal{V} .

Proposition

If a game is G is tight, then it has a pure strategy ϵ -Nash equilibrium for every $\epsilon > 0$.

Existence of Approximate Nash Equilibria

Definition

A game \mathcal{G} on (T, \mathcal{T}, μ) is *tight* if for any $\epsilon > 0$, there exists $\overline{T} \subseteq T$ such that (a) $\mu(\overline{T}) < \epsilon$ and (b) $\mathcal{G}(T \setminus \overline{T})$ is a relatively compact subset of \mathcal{V} .

Proposition

If a game is G is tight, then it has a pure strategy ϵ -Nash equilibrium for every $\epsilon > 0$.

- ► The existence of an *ϵ*-Nash equilibrium for every *ϵ* > 0 does not ensure the existence of an NE. Example: G(t)(a, x) = a[(1/t) x] on N.
- The game is tight. It has an ϵ -Nash equilibrium for every $\epsilon > 0$.
- Explicitly, f(t) = 0 for all $t \in \mathbb{N}$ is an ϵ -Nash equilibrium. $\mathcal{G}(t)(0,0) = 0$, $\mathcal{G}(t)(1,0) = 1/t$, $0 \ge (1/t) - \epsilon$ for almost all t.
- However, as has been shown, the game does not have a Nash equilibrium.

Summary of Results

- Negative results on finitely additive spaces.
 - An economy may not have a competitive equilibrium.

(Two examples)

伺 ト イヨト イヨト

A game may not have a Nash equilibrium.

(Two examples)

- An economy may not have the idealized limit property.
- A game may not have the idealized limit property.
- Consequences.
 - Necessity of countably additivity for economies: both existence and idealized limit property hold.
 - Necessity of countably additivity for games: both existence and idealized limit property hold.
- Approximate equilibria on finitely additive spaces.
 - An economy may not have an approximate competitive equilibrium. A tightness assumption is sufficient for existence.
 - A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.