Approximate Equilibria in Games and Economies over Finitely Additive Measure Spaces

M. Ali Khan Johns Hopkins University

Lei Qiao Shanghai University of Finance and Economics

> Kali P. Rath University of Notre Dame

Yeneng Sun National University of Singapore

Ischia, July 03, 2019

Background and Motivation

- Finite agent economies and games: Arrow-Debreu (1954), McKenzie (1954), Nash (1951).
- Economies and games with a continuum of agents: Aumann (1964, 1966), Vind (1964), Milnor-Shapley (1961), Schmeidler (1973).
- ▶ Many macro economics papers assume infinite agents with mass 1.
- ► Modeling many agents:
 - Replication/Large finite approximations: Edgeworth (1881),
 Debreu-Scarf (1963), Anderson (1978).
 - ► Continuum models with an atomless measure: Milnor-Shapley (1961), Aumann (1964), Schmeidler (1973), Hildenbrand (1974), Khan-Sun (2002).
 - ► Infinitesimals, Loeb spaces: Brown-Robinson (1972, 1975), Khan (1974), Brown-Loeb (1976), Khan-Sun (1996, 1999).
 - Finitely additive economies: Armstrong-Richter (1984, 1986), Weiss (1981), Feldman-Gilles (1985), Basile (1993).

Mathematical Preliminaries

- Let T be a nonempty set and T a σ -algebra of subsets of T.
- Let μ be a set function from \mathcal{T} to [0,1] with $\mu(\mathcal{T})=1$.
 - ▶ μ is a finitely additive measure on \mathcal{T} if for any $A, B \in \mathcal{T}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.
 - ▶ μ is a countably additive measure on \mathcal{T} if for any sequence $\{A_n\}$ of pairwise disjoint sets in \mathcal{T} , $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.
- ▶ The triple (T, T, μ) will be called a (finitely additive/countably additive) measure space.

Mathematical Preliminaries

- Let T be a nonempty set and T a σ -algebra of subsets of T.
- ▶ Let μ be a set function from \mathcal{T} to [0,1] with $\mu(\mathcal{T})=1$.
 - ▶ μ is a finitely additive measure on \mathcal{T} if for any $A, B \in \mathcal{T}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.
 - ▶ μ is a countably additive measure on \mathcal{T} if for any sequence $\{A_n\}$ of pairwise disjoint sets in \mathcal{T} , $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.
- ▶ The triple (T, T, μ) will be called a (finitely additive/countably additive) measure space.
- A measure μ is atomless if for every $\epsilon > 0$, there exists a \mathcal{T} -measurable partition $\{F_1, \ldots, F_n\}$ of T such that $\mu(F_i) < \epsilon$ for every i.
- Let $\mathbb N$ be the set of positive integers and $\mathcal P(\mathbb N)$ its power set. There are finitely additive, atomless measures on $\mathcal P(\mathbb N)$ (such as a density charge).

Preview of the Results

- Negative results on finitely additive spaces.
 - ► An economy may not have a competitive equilibrium.

(Two examples)

A game may not have a Nash equilibrium.

(Two examples)

- An economy may not have the idealized limit property.
- A game may not have the idealized limit property.
- Consequences.
 - Necessity of countably additivity for economies: both existence and idealized limit property hold.
 - Necessity of countably additivity for games: both existence and idealized limit property hold.
- Approximate equilibria on finitely additive spaces.
 - An economy may not have an approximate competitive equilibrium.

A tightness assumption is sufficient for existence.

A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.

Economies and Competitive Equilibria

- ► There are L goods and the commodity space is \mathbb{R}_+^L .
- ▶ $u : \mathbb{R}^{L}_{+} \longrightarrow \mathbb{R}$ is strongly monotone if $x \ge y$, $x \ne y \Rightarrow u(x) > u(y)$.
- Let \mathcal{U} denote the class of real valued, continuous and strongly monotone functions on \mathbb{R}^L_+ . (endowed with the compact open topology)
- Let (T, T, μ) be a finitely additive measure space. (space of agents)

Economies and Competitive Equilibria

- ► There are L goods and the commodity space is \mathbb{R}_+^L .
- ▶ $u : \mathbb{R}^{L}_{+} \longrightarrow \mathbb{R}$ is strongly monotone if $x \ge y$, $x \ne y \Rightarrow u(x) > u(y)$.
- Let $\mathcal U$ denote the class of real valued, continuous and strongly monotone functions on $\mathbb R^L_+$. (endowed with the compact open topology)
- Let (T, T, μ) be a finitely additive measure space. (space of agents)
- An *economy* is a measurable mapping $\mathcal{E} = (u, \omega) : T \longrightarrow \mathcal{U} \times \mathbb{R}^{L}_{+}$ such that ω is integrable and $\bar{\omega} = \int_{T} \omega \ d\mu \gg 0$.
- An allocation of $\mathcal E$ is an integrable mapping f from T to $\mathbb R_+^L$. An allocation is *feasible* if $\int_{\mathcal T} f \ \mathrm{d} \mu = \int_{\mathcal T} \omega \ \mathrm{d} \mu$.
- ▶ Given a price vector $p \in \mathbb{R}_+^L$, the *budget set* of consumer t is $B_t(p) = \{x \in \mathbb{R}_+^L : p \cdot x \leq p \cdot \omega_t\}.$
- A competitive equilibrium of \mathcal{E} is a pair (p, f), where $p \in \mathbb{R}_+^L \setminus \{0\}$, f is a feasible allocation and μ -a.e.;
 - (a) $f(t) \in B_t(p)$ and (b) $u_t(f(t)) \ge u_t(x)$ for all $x \in B_t(p)$.
- An allocation f of \mathcal{E} is a *competitive allocation* if for some p, (p, f) is a competitive equilibrium.

Nonexistence of a CE: An Example on Integers

The measure space is $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. Fix $\theta \in [1/2, 1)$. Economy \mathcal{E} : for $t \in \mathbb{N}$,

$$u_t(x_1, x_2) = \frac{t+1}{t} x_1^{\frac{t}{t+1}} + x_2, \qquad \omega_t = (\theta, \theta).$$

- Equilibrium prices: $p \gg 0$, $p_1 + p_2 = 1$.
- ▶ For any $t \in \mathbb{N}$, the demand functions are:

$$D_{t1} = min \left\{ \frac{\rho_2^{t+1}}{\rho_1^{t+1}}, \frac{\theta}{\rho_1} \right\}, \qquad \qquad D_{t2} = \frac{\theta}{\rho_2} - \frac{\rho_1 D_{t1}}{\rho_2}.$$

- Case 1. $p_2/p_1 < 1$. $\lim_{t \to \infty} D_{t1} = 0$. $\int_{\mathbb{N}} D_{t1} d\mu = 0$. $\int_{\mathbb{N}} D_{t2} d\mu = \frac{\theta}{p_2} > \theta = \int_{\mathbb{N}} \omega_{t2} d\mu$. (contradiction)
- Case 2. $p_2/p_1 \ge 1$. $D_{t1} \ge \min\{1, 2\theta\} = 1$,

$$\int_{\mathbb{N}} D_{t1} d\mu \ge 1 > \theta = \int_{\mathbb{N}} \omega_{t1} d\mu.$$
 (contradiction)

Nonexistence of a CE on General Measure Spaces

Claim

Let (T, T, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is an economy on (T, T, μ) which has no competitive equilibrium.

Games and Nash Equilibria

- Let $E = \{e^1, \dots, e^L\}$ be the set of unit vectors in \mathbb{R}^L and $S = \{s \in \mathbb{R}_+^L : \sum_{k=1}^L s_k = 1\}$ the unit simplex in \mathbb{R}^L .
- ▶ Let V be the set of real valued continuous functions defined on $E \times S$, endowed with sup norm.
- $ightharpoonup (T, T, \mu)$ is an atomless, countably/finitely additive probability space.
- A *game* is a measurable function $\mathcal{G}: T \longrightarrow \mathcal{V}$.
- A pure strategy profile is a measurable function $f: T \longrightarrow E$.
- ▶ A $f: T \longrightarrow E$ is a pure strategy Nash equilibrium of G if μ -a.e.;

$$\mathcal{G}(t)\left(f(t),\int_{\mathcal{T}}f\;\mathrm{d}\mu\right)\geq\mathcal{G}(t)\left(a,\int_{\mathcal{T}}f\;\mathrm{d}\mu\right)\;$$
 for all $a\in E.$

Games and Nash Equilibria, contd.

- Pure strategy profile: $f: T \longrightarrow E$.
- ▶ Mixed strategy profile: $g: T \longrightarrow S$.
- ▶ Given a mixed strategy profile g and $y \in S$, the payoff to player t is

$$\mathcal{G}(t)\left(y,\int_{T}g\ d\mu\right)=\sum_{k=1}^{L}y_{k}\mathcal{G}(t)\left(e^{k},\int_{T}g\ d\mu\right).$$

▶ A $g: T \longrightarrow S$ is a mixed strategy Nash equilibrium of G if μ -a.e.;

$$\mathcal{G}(t)\left(g(t),\int_{\mathcal{T}}g\,\mathrm{d}\mu\right)\geq\mathcal{G}(t)\left(a,\int_{\mathcal{T}}g\,\mathrm{d}\mu\right) \text{ for all }a\in E.$$

Nonexistence of an NE: An Example on Integers

- Let $A = \{0,1\}$ and K = [0,1]. Any $x \in K$ is the weight on action 1.
- ▶ The measure space is $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. For each $t \in \mathbb{N}$,

$$G(t)(a,x) = a\left(\frac{1}{t} - x\right), \ a \in A.$$

Best responses:

$$\operatorname{argmax}_{a \in A} \mathcal{G}(t)(a, x) = \begin{cases} \{0, 1\} & \text{if } x = 1/t \\ 1 & \text{if } x < 1/t \\ 0 & \text{if } x > 1/t. \end{cases}$$

- Suppose that g from \mathbb{N} to K is a (mixed) NE. Let
 - Let $x = \int_{\mathbb{N}} g \, d\mu$.
 - If x=0 then x<1/t for all $t\in\mathbb{N}$ which implies that g(t)=1 for all t and $\int_{\mathbb{N}}g\;\mathrm{d}\mu=1$. (contradiction)
 - If x>0 then x>1/t for almost all t (since the measure of a finite set is zero), which implies that g(t)=0 for almost all t and $\int_{\mathbb{N}} g \ d\mu=0$. (contradiction)

Nonexistence of an NE on General Measure Spaces

Claim

Let (T, \mathcal{T}, μ) be an atomless finitely additive measure space. Assume that μ is not countably additive. Then there is a game on (T, \mathcal{T}, μ) which has no Nash equilibrium.

Idealized Limits: Economies

Definition

A measurable mapping $\alpha^m: T \longrightarrow \{1, \dots, m\}$ is a *replication function* if $\mu(\alpha^m)^{-1}(\{i\}) = 1/m$ for $i = 1, \dots, m$.

Definition

An economy $\mathcal{E} = (u, \omega)$ on an atomless, finitely additive measure space $(\mathcal{T}, \mathcal{T}, \mu)$ is said to have the *idealized limit property* if

- (1) for any sequence $\{\mathbb{E}^n = (u^n, \omega^n)\}$ of finite-agent economies with $\{f^n\}$ as competitive allocations, where the number of agents in \mathbb{E}^n is k_n and $\lim_{n\to\infty} k_n = \infty$,
- (2) for any sequence of replication functions $\{\alpha^{k_n}\}$ such that $\{\mathbb{E}^n \circ \alpha^{k_n}\}$ converges to \mathcal{E} pointwise on T, $\{f^n \circ \alpha^{k_n}\}$ converges to some allocation f pointwise on T, and $\lim_{n \to \infty} \int_T \omega^n \circ \alpha^{k_n} \, \mathrm{d}\mu = \int_T \omega \, \mathrm{d}\mu$, then f is a competitive allocation of \mathcal{E} .

Idealized Limits: Economies

Definition

A measurable mapping $\alpha^m: T \longrightarrow \{1, \dots, m\}$ is a *replication function* if $\mu(\alpha^m)^{-1}(\{i\}) = 1/m$ for $i = 1, \dots, m$.

Definition

An economy $\mathcal{E} = (u, \omega)$ on an atomless, finitely additive measure space $(\mathcal{T}, \mathcal{T}, \mu)$ is said to have the *idealized limit property* if

- (1) for any sequence $\{\mathbb{E}^n = (u^n, \omega^n)\}$ of finite-agent economies with $\{f^n\}$ as competitive allocations, where the number of agents in \mathbb{E}^n is k_n and $\lim_{n\to\infty} k_n = \infty$,
- (2) for any sequence of replication functions $\{\alpha^{k_n}\}$ such that $\{\mathbb{E}^n \circ \alpha^{k_n}\}$ converges to \mathcal{E} pointwise on T, $\{f^n \circ \alpha^{k_n}\}$ converges to some allocation f pointwise on T, and $\lim_{n \to \infty} \int_{\mathcal{T}} \omega^n \circ \alpha^{k_n} \, \mathrm{d}\mu = \int_{\mathcal{T}} \omega \, \mathrm{d}\mu$, then f is a competitive allocation of \mathcal{E} .

There is an economy \mathcal{E} on \mathbb{N} which does not have the idealized limit property.

Idealized Limits: Games

Definition

A game \mathcal{G} on an atomless, finitely additive measure space $(\mathcal{T}, \mathcal{T}, \mu)$ is said to have the *idealized limit property* if

- (1) for any sequence $\{\mathbb{G}^n\}$ of finite-player games with $\{g^n\}$ as mixed strategy Nash equilibria, where the number of players in \mathbb{G}^n is k_n and $\lim_{n\to\infty} k_n = \infty$,
- (2) for any sequence of replication functions $\{\alpha^{k_n}\}_{n=1}^{\infty}$ such that $\{\mathbb{G}^n\circ\alpha^{k_n}\}$ converges to $\mathcal G$ pointwise on $\mathcal T$, and $\{g^n\circ\alpha^{k_n}\}$ converges to some mixed strategy profile g pointwise on $\mathcal T$,

then g is a mixed strategy Nash equilibrium of G.

Idealized Limits: Games

Definition

A game \mathcal{G} on an atomless, finitely additive measure space $(\mathcal{T}, \mathcal{T}, \mu)$ is said to have the *idealized limit property* if

- (1) for any sequence $\{\mathbb{G}^n\}$ of finite-player games with $\{g^n\}$ as mixed strategy Nash equilibria, where the number of players in \mathbb{G}^n is k_n and $\lim_{n\to\infty} k_n = \infty$,
- (2) for any sequence of replication functions $\{\alpha^{k_n}\}_{n=1}^{\infty}$ such that $\{\mathbb{G}^n \circ \alpha^{k_n}\}$ converges to \mathcal{G} pointwise on \mathcal{T} , and $\{g^n \circ \alpha^{k_n}\}$ converges to some mixed strategy profile g pointwise on \mathcal{T} ,

then g is a mixed strategy Nash equilibrium of G.

There is a game G on \mathbb{N} which does not have the idealized limit property.

Necessity of Countable Additivity: Economies

We have seen failures of both *existence* and the *idealized limit property* for competitive equilibria in economies over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the agent space with the validity of each of the properties.

Theorem

Let (T, T, μ) be an atomless, finitely additive measure space. Then the following are equivalent.

- (i) Every economy \mathcal{E} on (T, \mathcal{T}, μ) has a competitive equilibrium.
- (ii) Every economy \mathcal{E} on (T, \mathcal{T}, μ) has the idealized limit property.
- (iii) (T, T, μ) is a countably additive measure space.

 $CA \Rightarrow Existence$: Aumann (1966). Existence $\Rightarrow CA$: Earlier example.

 $CA \Rightarrow ILP$: Proof in the paper.

ILP \Rightarrow CA: Earlier example on \mathbb{N} can be modified to any T.

Necessity of Countable Additivity: Games

We have seen failures of both *existence* and the *idealized limit property* for Nash equilibria in games over a finitely additive measure space.

The next theorem shows the equivalence of countable additivity of the player space with the validity of each of the properties.

Theorem

Let (T, T, μ) be an atomless, finitely additive measure space. Then the following are equivalent.

- (i) Every game \mathcal{G} on (T, \mathcal{T}, μ) has a mixed strategy Nash equilibrium.
- (ii) Every game \mathcal{G} on (T, \mathcal{T}, μ) has the idealized limit property.
- (iii) (T, T, μ) is a countably additive measure space.

 $CA \Rightarrow Existence$: Schmeidler (1973). Existence $\Rightarrow CA$: Earlier example.

 $CA \Rightarrow ILP$: Proof in the paper.

ILP \Rightarrow CA: Earlier example on \mathbb{N} can be modified to any T.

Approximate Competitive Equilibria

Earlier, we have seen examples that an economy may not have a competitive equilibrium. It is natural to ask if approximate competitive equilibria exist.

Definition

Let \mathcal{E} be an economy on $(\mathcal{T}, \mathcal{T}, \mu)$ and $\epsilon > 0$. (p, f) is an ϵ -competitive equilibrium of \mathcal{E} if $p \in \mathbb{R}^L_+ \setminus \{0\}$, f is a feasible allocation, $f(t) \in B_t(p)$ for almost all t and there exists $\mathcal{T}_{\epsilon} \in \mathcal{T}$ such that:

- (a) $\mu(T_{\epsilon}) \leq \epsilon$ and
- (b) for almost all $t \in T_{\epsilon}^c$, $u_t(f(t)) \ge u_t(y) \epsilon$ for any $y \in B_t(p)$.

In general, an ϵ -competitive equilibrium may not exist. There is an example.

Existence of Approximate Competitive Equilibria

Definition

An economy $\mathcal E$ on $(\mathcal T,\mathcal T,\mu)$ is tight if for any $\epsilon>0$, there exists $\bar{\mathcal T}\subseteq \mathcal T$ such that

- (a) $\mu(\bar{T}) < \epsilon$ and
- (b) $\mathcal{E}(T \setminus \overline{T})$ is a relatively compact subset of $\mathcal{U} \times \mathbb{R}^{L}_{+}$.

Proposition

If an economy is $\mathcal E$ is tight, then it has an ϵ -competitive equilibrium for every $\epsilon>0$.

Existence of Approximate Competitive Equilibria

Definition

An economy $\mathcal E$ on $(\mathcal T,\mathcal T,\mu)$ is tight if for any $\epsilon>0$, there exists $\bar{\mathcal T}\subseteq \mathcal T$ such that

- (a) $\mu(\bar{T}) < \epsilon$ and
- (b) $\mathcal{E}(T \setminus \overline{T})$ is a relatively compact subset of $\mathcal{U} \times \mathbb{R}^{L}_{+}$.

Proposition

If an economy is $\mathcal E$ is tight, then it has an ϵ -competitive equilibrium for every $\epsilon>0$.

The existence of an ϵ -competitive equilibrium for every $\epsilon>0$ does not imply that there is a competitive equilibrium. An earlier example demonstrates this.

Approximate Nash Equilibria

Earlier, we have seen examples that a game may not have a Nash equilibrium. It is natural to ask whether approximate Nash equilibria exist.

Definition

Let $\mathcal G$ be a game on $(\mathcal T,\mathcal T,\mu)$ and $\epsilon>0$. A strategy profile $g:\mathcal T\longrightarrow \mathcal S$ is an ϵ -Nash equilibrium of $\mathcal G$ if there exists $\mathcal T_\epsilon\in\mathcal T$ such that

- (a) $\mu(T_{\epsilon}) \leq \epsilon$ and
- (b) for almost all $t \in T_{\epsilon}^c$, $\mathcal{G}(t)\left(g(t), \int_T g \ \mathrm{d}\mu\right) \geq \mathcal{G}(t)\left(a, \int_T g \ \mathrm{d}\mu\right) \epsilon$ for all $a \in E$.

In general, an ϵ -Nash equilibrium may not exist. There is an example.

Existence of Approximate Nash Equilibria

Definition

A game $\mathcal G$ on $(T,\mathcal T,\mu)$ is tight if for any $\epsilon>0$, there exists $\bar T\subseteq T$ such that

- (a) $\mu(\bar{T}) < \epsilon$ and
- (b) $\mathcal{G}(T \setminus \overline{T})$ is a relatively compact subset of \mathcal{V} .

Proposition

If a game is $\mathcal G$ is tight, then it has a pure strategy $\epsilon ext{-Nash equilibrium for every }\epsilon>0$.

Existence of Approximate Nash Equilibria

Definition

A game $\mathcal G$ on $(\mathcal T,\mathcal T,\mu)$ is tight if for any $\epsilon>0$, there exists $\bar{\mathcal T}\subseteq \mathcal T$ such that

- (a) $\mu(\bar{T}) < \epsilon$ and
- (b) $\mathcal{G}(T \setminus \overline{T})$ is a relatively compact subset of \mathcal{V} .

Proposition

If a game is $\mathcal G$ is tight, then it has a pure strategy $\epsilon ext{-Nash equilibrium for every }\epsilon>0$.

The existence of an ϵ -Nash equilibrium for every $\epsilon>0$ does not imply that there is a Nash equilibrium. An earlier example demonstrates this.

Proof of Existence of Approximate Nash Equilibria

- Fix $0 < \epsilon < 1$. Since $\mathcal G$ is tight, there is a subset $\bar T \subseteq T$ such that $0 < \mu(\bar T) < \epsilon$ and $\mathcal G(T \backslash \bar T)$ is relatively compact.
- ► There are m disjoint sets T_1, \ldots, T_m such that $\bigcup_{k=1}^m T_k = T \setminus \overline{T}$, and for any $k \in \{1, 2, \ldots, m\}$, $\|\mathcal{G}(t) \mathcal{G}(t')\| < \epsilon/2$ if $t, t' \in T_k$.
- Assume that $\mu(T_k) > 0$ for $1 \le k \le m$. Denote \bar{T} by T_{m+1} .
- For $1 \le k \le m+1$, fix a player $i_k \in T_k$. Construct a game \mathcal{H} on T. If $t \in T_k$ then $\mathcal{H}(t) = \mathcal{G}(i_k)$. The range of \mathcal{H} is finite. It has a PSNE f.

$$\begin{array}{ll} \text{If } t \in \mathcal{T}_k \text{ then } & \mathcal{G}(i_k) \left(f(t), \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) = \mathcal{H}(t) \left(f(t), \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) \geq \\ & \mathcal{H}(t) \left(a, \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) = \mathcal{G}(i_k) \left(a, \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) \quad \text{for any} \quad a \in E. \end{array}$$

We will show that f is an ϵ -NE of \mathcal{G} . Recall that $\mu(T_{m+1}) < \epsilon$. Fix any $1 \le k \le m$ and let $t \in T_k$. Then for any $a \in E$,

$$\begin{split} \mathcal{G}(t) \left(f(t), \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) & \geq & \mathcal{G}(i_k) \left(f(t), \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) - \frac{\epsilon}{2} \\ & \geq & \mathcal{G}(i_k) \left(a, \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) - \frac{\epsilon}{2} \geq & \mathcal{G}(t) \left(a, \int_{\mathcal{T}} f \, \mathrm{d} \mu \right) - \epsilon. \end{split}$$

Summary of Results

- Negative results on finitely additive spaces.
 - ▶ An economy may not have a competitive equilibrium.

(Two examples)

A game may not have a Nash equilibrium.

(Two examples)

- An economy may not have the idealized limit property.
- ► A game may not have the idealized limit property.
- Consequences.
 - Necessity of countably additivity for economies: both existence and idealized limit property hold.
 - Necessity of countably additivity for games: both existence and idealized limit property hold.
- Approximate equilibria on finitely additive spaces.
 - An economy may not have an approximate competitive equilibrium.

A tightness assumption is sufficient for existence.

A game may not have an approximate Nash equilibrium.

A tightness assumption is sufficient for existence.

