
The nature of equilibria under noncollusive product design and

collusive pricing

Kali P. Rath

Department of Economics, University of Notre Dame, Notre Dame, IN 46556, USA

(email: rath.1@nd.edu)

Gongyun Zhao

Department of Mathematics, National University of Singapore, 117543, Singapore

(email: matzgy@nus.edu.sg)

Abstract

The basic framework is Hotelling’s model of product choice with quadratic transporta-
tion cost. Duopolists choose locations in the initial period and compete in prices in subse-
quent infinite periods. The firms share profits on the profit possibility frontier. It is shown
that under very general conditions, both the firms locating at the center is an equilibrium.
It is not necessarily unique and multiple symmetric equilibria can exist. Thus the products
are not necessarily minimally differentiated. How the profits are shared when the firms
are located together off the center has a critical bearing on the nature of equilibria. If the
firms share profits equally at those locations, then all the equilibria are symmetric. Other-
wise, asymmetric equilibria can appear. The equilibria can be classified into three types: a
unique equilibrium at the center of the market, multiple symmetric equilibria and multiple
asymmetric agglomerated equilibria. The second case entails nonminimal product differen-
tiation. Sufficient conditions for each of these equilibria are given. Necessary conditions for
multiple symmetric equilibria off the center are also obtained.
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1 Introduction

The literature on product differentiation originating from Hotelling (1929) is by now vast.

d’Aspremont et al. (1979) and Neven (1985) have shown that, in a two stage model with

quadratic transportation cost, where duopolists first choose locations and then compete in

prices, the equilibrium locations are at the extreme endpoints of the market segment.

This model, with variations, has been extensively used to examine a wide range of the-

oretical and policy issues. Schmalensee (1978) is an early empirical investigation of product

positioning and entry deterrence. A more recent study on firm entry with endogenous product

choice is Seim (2006). Mazzeo (2002) examines the effect of product differentiation on oligopoly

market structure. An excellent survey of endogenous product choice can be found in Crawford

(2012). Sweeting (2013) develops a dynamic model of product positioning to evaluate the effect

of taxation on product repositioning. The effect on firm location when the transportation cost

is shared between the producers and the consumers is examined in Kyureghian et al. (2013).

Draganska et al. (2009) and Sullivan (2017) develop models that integrate product choice,

price competition and collusion in differentiated product markets. They also provide empirical

analyses of the food industry. Fan (2013) studies the effects of mergers on both prices and

product characteristics. Using data on newspaper characteristics and prices, the author finds

that a merger would have led to higher prices and lower product quality. Wollmann (2018)

distinguishes between entry and exit of products, rather than firms. In stage one firms choose

product characteristics for their commercial vehicles and in stage two, firms observe product

characteristic choices of competitors and simultaneously choose prices. The author examines

the efficacy of the automotive industry bailout policy.

The model has also been examined in a supergame setting, with payoff discounting. The

firms choose locations in the initial period and prices in subsequent infinite periods. A justifi-

cation for this is that redesigning the product is often more difficult than changing the price.

The profit possibility frontier (PPF) is the set of Pareto optimal profit allocations between

the two firms. Even though locations are chosen independently, the firms can tacitly collude

in the price setting stage. Friedman and Thisse (1993) has termed this “partial collusion.” In

general, the optimal locations chosen in the beginning by the firms will depend on the collusive

prices charged subsequently. In Schmalensee (1987), the collusive profit ratio is determined by

the market-share ratio of the one-shot Nash equilibrium [see also Friedman and Thisse (1993,
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p.641)]. In Jehiel (1992), the prices are determined by the Nash bargaining solution at each pair

of locations. In Friedman and Thisse (1993), the firms share profits on the PPF in proportion

to the Nash equilibrium profits of the one–shot game. In all these cases, central agglomeration

is the unique subgame perfect Nash equilibrium (SPNE) outcome.

An often perceived explanation for this minimum differentiation is that, in the one–shot

game the firms locate at the market extremes to minimize competition and earn higher profits

through higher prices. In a repeated setting with price collusion, competition is softened and

each firm finds it advantageous to move inwards, towards the other. So, both firms locate at

the market center.

This intuition, however, is not quite correct. Rath and Zhao (2003) has shown that if the

prices are determined either by the egalitarian [Kalai (1977)] or the Kalai and Smorodinsky

(1975) bargaining solutions then there are multiple symmetric equilibria. If there is cost differ-

ential between firms, then minimal product differentiation is not obtained; see Matsumura and

Matsushima (2011). An inward move by a firm results in a lower price that does not compen-

sate for the increase in market share. Profit goes down and the firms locate off the center. So,

in equilibrium, the products are not necessarily minimally differentiated. The relative magni-

tude of the reservation price and the transportation cost parameter determines the extent of

differentiation. Thus, the equilibrium outcomes obtained in these papers are very detail specific

and do not support any general conclusion on the nature of product differentiation.

This paper focuses on these minimal and nonminimal product differentiation results. Fried-

man and Thisse (1993) provided a set of sufficient conditions on profit sharing which ensures

central agglomeration as the unique equilibrium outcome. Unfortunately, it was recently dis-

covered in Rath and Zhao (2021) that those conditions are too strong. In the presence of some

mild continuity requirements, there is exactly one profit sharing rule that satisfies those condi-

tions. Under this rule, the firms charge identical prices at each pair of locations. Furthermore,

with discounting, this sharing rule cannot be supported as an SPNE outcome at every pair

of locations. This brings out an inconsistency in those conditions, and so cannot be used to

characterize equilibria.

In light of the preceding discussion, it is futile to consider any strengthening of those con-

ditions for uniqueness, rather one should consider a weakening of the conditions to encompass

a wider class of profit sharing rules. However, slightly weakened versions can result in multiple
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equilibria. For the specific details, see Rath and Zhao (2021). The shortcomings of the condi-

tions in Friedman and Thisse (1993) is a serious setback to the existence claims in this literature.

In particular, sufficient conditions for a unique equilibrium is not available at present.

This paper addresses this issue and explores the possible nature of equilibria in this frame-

work. If the firms share profits on the PPF then under very general conditions both the firms

locating at the center is an equilibrium. The required conditions are: (a) the profits of the

two firms be identical if they are symmetrically located and (b) the profit ratio be bounded

either above or below one at distinct asymmetric locations, depending on how asymmetrically

the firms are located. These conditions also rule out certain other locations being an equilib-

rium. However, at this level of generality, one should not expect a unique outcome, and further

conditions are required for possible equilibrium predictions.

As is well known, if the firms locate together then the profit of each firm is indeterminate.

This is a primary motivation behind Simon and Zame (1990) and it shows that alternative

criteria for breaking ties have a critical bearing on possible equilibrium outcomes.

Two conditions on profit sharing between the firms, which arise naturally when the firms

are located at the same point, are explored in the sequel. In one, the firms share the profits

equally if they are identically located.1 As a result, in the presence of symmetry, agglomeration

off the center does not survive as an equilibrium. All equilibria are symmetric; in some cases, the

equilibrium at the center emerges as the unique one but in others there are multiple equilibria

inside market quartiles. In the other variant, the profit of each firm is determined by the limit

of the profit as one firm approaches the other. Continuity of the profit functions is retained in

this case. The profit of a firm might decrease or increase as it moves towards the other firm,

and in the latter case, asymmetric equilibria with the firms agglomerating together can appear.

We describe below why these different results obtain and how the equilibrium outcomes are

characterized. The primitives of this model are the reservation price, the transportation cost

parameter and the discount factors of the firms. Given these entities, it is clear from the existing

literature that different profit sharing rules yield different equilibrium outcomes (e.g., the Nash

and the Kalai and Smorodinsky bargaining solutions). So, any equilibrium characterization

must involve restrictions on the profit sharing rule itself. In this context, the profit ratio and

1Typically, this introduces a discontinuity in the profit functions at locations off the center. Since Dasgupta
and Maskin (1986a, 1986b), the literature on the existence of Nash equilibrium in discontinuous games has grown
considerably. See Reny (2016) and the other papers in the same volume.
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the market shares of the firms emerge as natural candidates for further exploration since these

are likely to be known in most situations and are easy to interpret.

Suppose that the firms share profits equally when they are identically located. Then the

possible equilibrium outcomes are the symmetric locations inside the market quartiles. If a firm

moves outwards, then typically its profit declines. On the other hand, an inward move results

in a lower price but the market share can increase. Thus the effect on profit is ambiguous. If the

profit increases, then the given pair of symmetric locations is not an equilibrium and if this is the

case at all symmetric locations off the center, then there is a unique equilibrium at the center of

the market. This increase in profit is captured through lower bounds on the derivatives of the

ratio of profits (with respect to locations) to yield sufficient conditions for a unique equilibrium.

In contrast, if the profit decreases by an inward move, then the pair of symmetric locations

emerges as an equilibrium. This phenomenon provides upper bounds on market shares, which

give necessary and sufficient conditions for symmetric equilibria off the center. These conditions

have easy and interesting geometric interpretations. The other remaining scenario is that the

profits are determined as limits when the firms agglomerate together. Again, an increase in

profits as a firm moves inwards translates into lower bounds on the derivatives of the ratio of

profits. These bounds determine whether asymmetric agglomerated equilibria exist or not.

The paper is organized as follows. The one–shot model is given in the next section. Con-

ditions on profit sharing are given in section 3. Some implications for possible equilibrium

locations are noted in section 4. Example 2 in this section demonstrates that under general

conditions, every pair of symmetric locations inside the market quartiles can be an equilibrium.

This underscores the importance of further conditions to restrict the set of equilibria. Section 5

gives sufficient conditions for a unique equilibrium at the center of the market. These are in

the form of lower bounds on the derivatives of the profit ratio. Section 6 gives conditions for

existence of multiple symmetric equilibria and interprets them geometrically. Section 7 deals

with agglomerated equilibria off the center. Some aspects of sustaining collusion are discussed

in section 8. Section 9 concludes. The proofs of the results are given in section 10.

2 The one-shot model

The consumers are uniformly distributed over the unit interval [0, 1]. The two firms are located

in the interval at x1 ≤ x2. Typically, a consumer is located distinctly from a firm and so incurs
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a utility cost in consuming the firm’s product. This is formalized as a transportation cost. This

cost is quadratic and the associated parameter is t. If the consumer is located at s ∈ [0, 1] and

firm i charges a price pi, i = 1, 2, then the transportation cost is t(s − xi)2 and the delivered

price is pi + t(s − xi)2. Each consumer buys a unit of a good from the firm with the lower

delivered price. When x1 < x2, the (marginal) consumer y who faces the same price from the

two firms is given by p1 + t(y − x1)2 = p2 + t(y − x2)2. The solution gives

y =
p2 − p1

2t(x2 − x1)
+
x1 + x2

2
. (1)

Each consumer in [0, y] buys a unit from firm 1 and each consumer in (y, 1] buys a unit from

firm 2. The production costs are zero and the profit of the two firms are p1y and p2(1 − y)

respectively.

For each pair of locations a Nash equilibrium in prices exists. If x1 = x2 then the Nash

equilibrium profit of each firm is zero. When x1 < x2 the Nash equilibrium profits are R1N =

t(x2−x1)(2+x1 +x2)2/18 and R2N = t(x2−x1)(4−x1−x2)2/18. The profit of a firm increases

as it moves away from the other firm. So, in a one-shot, two stage game, where the duopolists

choose locations first and prices next, the equilibrium locations are at the extreme endpoints

of the market segment. For details, see d’Aspremont et al. (1979, p. 1149), Neven (1985), or

Friedman and Thisse (1993, p. 634).

3 Some conditions on profit sharing

Let the time periods be given by {0, 1, 2, . . .}. Suppose that the firms choose locations in period

0 and in subsequent infinite periods compete in prices. Future payoffs are discounted. Some

general conditions on profit sharing by the two firms and their implications for equilibrium

outcomes are examined in this section.

In the one-shot game of the previous section, the profit functions of the firms (in contrast

to the Nash equilibrium profits) can be unbounded. Since we wish to address the issue of price

collusion, we introduce a reservation price for the consumers which makes the profit functions

bounded. It is presumed that the consumers buy a unit of the product per unit time from

the cheapest seller, subject to the reservation price π. Given firm locations x1, x2 and prices

p1, p2, the profit of firm i is Fi(x1, x2, p1, p2), i = 1, 2. If we let x = (x1, x2) denote the pair

of locations and if p1(x) and p2(x) are given, then the profit of firm i can be abbreviated to
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Fi(x) and the pair of profits can be written as F (x) = (F1(x), F2(x)). We will follow this

interpretation. The ratio of profits is denoted by Λ = F1/F2. The PPF is the set of Pareto

optimal profit allocations between the two firms. Some conditions on profit sharing between

the two firms are given below.

(C1) For any x1 ≤ x2, (F1, F2) is on the PPF and the profit of each firm is positive.

(C2) For any x1 ≤ x2, F1 = F2 if x1 + x2 = 1.

(C3) For any x1 < x2, F1/F2 < 1 if x1 + x2 < 1 and F1/F2 > 1 if x1 + x2 > 1.

Lemma 3 in Friedman and Thisse (1993) shows that if π ≥ 3t then at any PPF prices the

entire market is served. This assumption π ≥ 3t will be maintained throughout. If π ≥ 3t,

then (C1) is equivalent to the two conditions that (i) at a pair of prices the entire market

is served, each firm has a positive market share and (ii) some consumer pays the reservation

price. So, the PPF prices can be of three types depending on the location of the reservation

price consumer: p1 = π − tx2
1, or p2 = π − t(1− x2)2, or p1 + t(y − x1)2 = π = p2 + t(y − x2)2.

These correspond respectively to the cases that the reservation price is paid by consumer zero,

or one, or the marginal consumer y.

(C2) is the symmetry condition. This requires that the profits be identical if the firms are

symmetrically located. (C3) provides an upper or lower bound on the profit ratio depending

on the type of asymmetry in locations. If x1 < x2 and x1 + x2 < 1 then firm 2 is closer to the

market center than firm 1. In this case (C3) requires a higher profit for firm 2.

The profits need to be specified if the firms are located at the same point x1 = x2 6= 1/2.

Two possible alternative conditions (tie-breaking rules) are examined. Let x̄1 = x̄2.

(C4) F1(x̄1, x̄2) = F2(x̄1, x̄2).

(C5) For i = 1, 2, Fi(x̄1, x̄2) = limx1→x̄2 Fi(x1, x̄2) = limx2→x̄1 Fi(x̄1, x2).

(C4) is equal division. It stipulates that whenever the firms are located at the same point

their profits are identical. (C5), on the other hand, requires that if the firms are located at the

same point then the profits are determined by the limits of the profits as one firm gradually

moves towards the other. It is presupposed that these limits exist and are identical.

(C4) can always be exogenously imposed by the modeler. (C5), on the other hand, deter-

mines profits endogenously by the structure of the profit sharing rule. If limx1→x2 Λ 6= 1 then

(C4) introduces a discontinuity in the profit ratio if the firms are located at the same point. If
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limx1→x2 Λ = 1 then the choice between (C4) and (C5) is inconsequential.2 The implications of

both these conditions are worth examining. It will be seen in sections 5–7 that the equilibrium

outcomes are different under these two conditions.

First we present an example in which, given any arbitrary fixed locations x∗ = (x∗1, x
∗
2),

there is a profit sharing rule under which x∗ is the unique SPNE outcome. The profit sharing

rule satisfies (C2)–(C4), but (C1) is violated at some (but not at all) pairs of locations. The

example thus underscores the importance of (C1) at all locations.

Example 1 Fix a pair of locations x∗ = (x∗1, x
∗
2), x∗1 ≤ x∗2. Assume that the firms are on the

PPF at x∗. If either x∗1 = x∗2, or x∗1 +x∗2 = 1, then F1(x∗) = F2(x∗). If x∗1 < x∗2 and x∗1 +x∗2 6= 1

then F1(x∗)/F2(x∗) = 1/2 when x∗1 + x∗2 < 1 and F1(x∗)/F2(x∗) = 2 when x∗1 + x∗2 > 1. (The

point on the PPF corresponding to the profit ratio determines the prices of the firms.) At any

x = (x1, x2) 6= (x∗1, x
∗
2), Fi(x) = RiN (x), i = 1, 2. This profit sharing rule satisfies (C2)–(C4).

(C1) is violated if x 6= x∗.

Consider the following strategy of firm i, i = 1, 2. (I) In period 0, choose location x∗i . (II)

Let t ≥ 1. If the locations are x∗, charge the price corresponding to the profits (F1(x∗), F2(x∗)).

Continue to charge this price until a defection from these prices obtain. In case of a defection,

charge the one-shot Nash equilibrium price at x∗ for the remainder of the game. If the locations

are x 6= x∗ to begin with, then charge the one-shot Nash equilibrium price at x in all periods.

We will show that these strategies are subgame perfect and yield the equilibrium outcome x∗.

At any pair of locations RiN ≤ t/2. On the other hand, at x∗, because of (C1) and π ≥ 3t,

some consumer pays the reservation price and the entire market is served. So, each price is

greater then or equal to π − t, the total profit is greater then or equal to π − t and each firm’s

profit is greater than or equal to (π − t)/3. From π ≥ 3t, (π − t)/3 ≥ 3t/5. Therefore, for

i = 1, 2; Fi(x
∗) > Fi(x) for any x 6= x∗ and Fi(x

∗) ≥ RiN (x∗) + (t/10). The defection profit

(at x∗) is at most π. This shows that for sufficiently high discount factors, the given strategies

are subgame perfect and the unique equilibrium outcome is x∗.3

2This is true for some specific profit sharing rules, such as the Nash, Kalai–Smorodinsky and egalitarian
bargaining solutions. See Rath and Zhao (2003), sections 4 and 6.

3Notice that there are two sources of payoff discontinuities in this example. One is caused by (C4), and is
inevitable. Let 1/2 < x1 < x∗1 = x∗2. Then Λ(x∗1, x

∗
2) = 1 and Λ(x1, x

∗
2) = (2 + x1 + x∗2)2/(4− x1 − x∗2)2 6→ 1 as

x1 → x∗1. The other is, if 1/2 < x1 < x∗1 ≤ x∗2 then limx1→x∗
1
Fi(x1, x

∗
2) ≤ t/2 < 3t/5 ≤ Fi(x

∗
1, x
∗
2). The latter

should not be a concern. A modified version of this example (which we do not present here) has (C4) as the
only source of discontinuity, but the conclusion remains the same.
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A further aspect of the example merits attention. A particular pair of locations was fixed

a priori, and the profit sharing rule was such that (C1) was satisfied at those locations and

nowhere else. The unique equilibrium outcome was the starting pair of locations. Alternatively,

one could consider profit sharing rules so that (C1) holds at all locations. This is the import

of partial collusion. The subsequent sections address this issue. As will be seen, the set of

equilibria is (considerably) restricted under (C1) and in some cases the equilibrium is unique.

4 Some implications of (C1)–(C4)

Lemmas 1 and 2 below characterize possible equilibrium outcomes.4 The conclusions of these

two lemmas are combined to yield Proposition 1. It states that under (C1)–(C4), the possible

equilibrium outcomes are the symmetric ones inside the market quartiles.

Lemma 1 Suppose that (C1)–(C3) hold.

(i) x1 = x2 = 1/2 is an equilibrium. Furthermore, any x1 < x2 = 1/2, or 1/2 = x1 < x2 is

not an equilibrium.

(ii) Let x1 ≤ 1/2 ≤ x2. If x1 +x2 < 1 then F1(x1, x2) < F1(1−x2, x2). If x1 +x2 > 1 then

F2(x1, x2) < F2(x1, 1− x1). So, x1 ≤ 1/2 ≤ x2 and x1 + x2 6= 1 is not an equilibrium.

(iii) Any symmetric pair of locations (x1, 1− x1) with x1 < 1/4 is not an equilibrium.

If (C1)–(C3) hold then (1/2, 1/2) is an equilibrium. Part (ii) rules out asymmetric equi-

libria on opposite sides of the center of the market. The other candidates for equilibrium are

the symmetric locations (x1, 1 − x1) with 1/4 ≤ x1 < 1/2 and locations on the same side of

the center of the market, i.e., x1 < x2 < 1/2, or 1/2 < x1 < x2, or x1 = x2 6= 1/2. These

asymmetric equilibria can be ruled out if (C4) holds.5

Lemma 2 Let (C1) and (C4) hold.

(i) If (C2) holds then x1 = x2 6= 1/2 is not an equilibrium.

(ii) If (C3) holds then neither x1 < x2 < 1/2 nor 1/2 < x1 < x2 can occur in equilibrium.

4For the time being, if a particular pair of locations is claimed to be an equilibrium, it is made under the
caveat that it can be sustained in a repeated setting. This aspect is examined in section 8.

5In some cases, asymmetric equilibria can be ruled out without the aid of (C4). Suppose that (C1)–(C3) and
(C5) hold. If ∂F1/∂x1 is negative for all 1/2 < x1 < x2 then firm 1 will not locate at x1 ∈ (1/2, x2]. If a similar
condition also holds for the profit function of firm 2 then under (C1)–(C3) and (C5), (1/2, 1/2) is an equilibrium
and the other candidates for equilibria are the symmetric ones (x1, 1− x1) with 1/4 ≤ x1 < 1/2.
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Proposition 1 Suppose that (C1)–(C4) hold. Then (1/2, 1/2) is an equilibrium and the other

candidates for equilibria are the symmetric locations (x1, 1− x1) with 1/4 ≤ x1 < 1/2.

These results have been proved before under different conditions, see for example, Friedman

and Thisse (1993) and Rath and Zhao (2003). The conditions (C1)–(C4) above are the weakest.

In particular, if the entire market is served at a pair of prices, then (C3) above is weaker than

(P4) in Rath and Zhao (2003). This is discussed in subsection 10.3.

Proposition 1 above provides the smallest set of equilibria under general conditions. With-

out additional assumptions on the profit sharing rule, the set of equilibria cannot be restricted

further, as the following example shows.

Example 2 Let 1/4 ≤ x∗1 ≤ 1/2. Then there is a profit sharing rule satisfying (C1)–(C4) such

that every symmetric pair of locations in [x∗1, 1− x∗1] is an equilibrium.

Let 0 ≤ µ ≤ 1. Suppose that at any pair of locations the firms remain on the PPF. If

x1 < x2, the firms charge prices such that the marginal consumer given in (1) is

y =
1

2
+
tµ

π
(x1 + x2 − 1) (2)

and if x1 = x2 then the profits are shared equally, i.e., F1(x) = F2(x). At distinct locations, if

µ increases then the market share of firm 1 increases, which could result in a higher profit. So,

a firm might find it advantageous to move inwards.

This example is analyzed in detail in Rath and Zhao (2021). Some pertinent facts are

given here. Since tµ/π ≤ 1/3, 1/6 ≤ y ≤ 5/6. So, the profit of each firm is positive and

(C1) holds. By assumption, (C4) holds and (C2) is immediate. To verify (C3), assume that

x1 + x2 > 1. Then y ≥ 1/2. Since tµ/π ≤ 1/3, y < (x1 + x2)/2. From (1), p2 < p1. Therefore,

p1y > p2(1− y), i.e., F1 > F2.

If µ ≤ 4π/(16π− t) then any pair of symmetric locations in [1/4, 3/4] is an equilibrium. If

µ ≥ 2π/(4π − t) then (1/2, 1/2) is the unique equilibrium. If 4π/(16π − t) < µ < 2π/(4π − t)

then there is a unique x∗1 ∈ (1/4, 1/2) such that any pair of symmetric locations in the interval

[x∗1, 1− x∗1] is an equilibrium, where

x∗1 =
−π +

√
π2 + 4πtµ2

2tµ
. (3)

As µ increases, the RHS increases and the set of equilibria becomes smaller.
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The example shows that under (C1)–(C4), there can be a unique equilibrium at the market

center, but multiple symmetric equilibria inside the market quartiles cannot be ruled out.

5 Sufficient conditions for a unique equilibrium

In the last section we saw that the only candidate for a unique equilibrium is at the market

center (Proposition 1), and that, in general multiple equilibria exist (Example 2). Therefore,

further structure on the profit sharing rule is needed to narrow down the set of equilibrium

outcomes. There is no specific restriction that one can impose and alternative characterizations

are possible. Any such condition should be intuitive and easily verifiable. The profit ratio Λ

naturally suggests itself since it is easy to interpret and is likely to be known in many situations.

The next theorem provides sufficient conditions for a unique equilibrium involving the

derivatives of Λ. It is worth noting that typically the profit functions are not differentiable at

symmetric locations. Nevertheless, Λ might be differentiable. Since only inward moves need to

be examined to determine equilibria because of Lemma 1 (ii), the derivatives are usually the

right (left) hand side derivatives at symmetric locations with respect to changes in x1 (x2).

Theorem 1 Suppose that (C1)–(C4) hold. For x1 ∈ [1/4, 1/2), if ∂Λ/∂x1 ≥ t(1 + 2x1)/(π −

tx2
1) at (x1, 1 − x1) then the pair of locations is not an equilibrium. For x2 ∈ (1/2, 3/4],

if ∂Λ/∂x2 ≥ t(3 − 2x2)/[π − t(1 − x2)2] at (1 − x2, x2) then the pair of locations is not an

equilibrium. So, (1/2, 1/2) is the unique equilibrium if either ∂Λ/∂x1 ≥ t(1 + 2x1)/(π − tx2
1)

at all symmetric locations with x1 ∈ [1/4, 1/2), or ∂Λ/∂x2 ≥ t(3− 2x2)/[π − t(1− x2)2] at all

symmetric locations with x2 ∈ (1/2, 3/4].

By Proposition 1, the possible equilibria are the symmetric ones in [1/4, 3/4]. The lower

bounds on the derivatives of Λ ensure that the profit of a firm increases by an inward move

from symmetric locations off the center. So, (1/2, 1/2) emerges as the unique equilibrium.

Corollary 1 Let (C1)–(C4) hold. Suppose that ∂Λ/∂x1 ≥ 8/11 at all symmetric locations

(x1, 1 − x1), x1 ∈ [1/4, 1/2), or ∂Λ/∂x2 ≥ 8/11 at all symmetric locations (1 − x2, x2), x2 ∈

(1/2, 3/4]. Then (1/2, 1/2) is the unique equilibrium.

This follows readily from the theorem. t(1 + 2x1)/(π − tx2
1) is an increasing function of

x1 and equals 8t/(4π − t) when x1 = 1/2. Since π ≥ 3t, 8/11 ≥ 8t/(4π − t). Therefore,

10



if ∂Λ/∂x1 ≥ 8/11 at all symmetric locations (x1, 1 − x1) for x1 ∈ [1/4, 1/2) then central

agglomeration is the unique equilibrium. A similar argument applies if ∂Λ/∂x2 ≥ 8/11.

Below we consider three profit sharing rules to further elucidate Theorem 1. The same

profit sharing rules are also examined after Theorems 2 and 3.

Illustrations (1) If the firms share profits on the PPF in proportion to the one–shot Nash

equilibrium profits, as in Friedman and Thisse (1993), then Λ = (2 + x1 + x2)2/(4− x1 − x2)2.

If x2 6= 1/2 then Λ does not tend to 1 as x1 tends to x2, so one needs to assume (C4). Clearly,

(C1)–(C3) are satisfied. ∂Λ/∂x1 = 12(2 + x1 + x2)/(4− x1 − x2)3 and equals 4/3 (> 8/11) at

symmetric locations. So, central agglomeration is the unique equilibrium.

(2) If the firms share profits on the PPF in proportion to the Nash equilibrium market shares,

see Schmalensee (1987) or Friedman and Thisse (1993), Λ = (2 + x1 + x2)/(4 − x1 − x2).

(C1)–(C3) are satisfied, and assume (C4). ∂Λ/∂x1 = 6/(4 − x1 − x2)2 and equals 2/3 at

symmetric locations. If π ≥ 4t then ∂Λ/∂x1 > 8t/(4π − t) and central agglomeration is the

unique equilibrium.

(3) Consider Example 2 in section 4. Unlike the preceding two illustrations, here the profit ratio

Λ is not explicitly given. So, a bit more work is involved to determine a unique equilibrium.

Let x̄1 + x̄2 > 1 and x̄2 ≤ 3/4. Then y ≥ 1/2. If p1 + t(y − x̄1)2 = π = p2 + t(y − x̄2)2, then

either consumer zero is not served (if y = 1/2), or consumer 1 is not served (if y > 1/2), a

contradiction. Since y < (x̄1+x̄2)/2, p2 < p1 and from π−t(1−x̄2)2 > π−tx̄2
1, p2 6= π−t(1−x̄2)2.

Thus p1 = π − tx̄2
1.

In this case, the two derivatives ∂y/∂x1 and ∂Λ/∂x1 are related by (5) in section 10. At

symmetric locations, the equation simplifies to p1(∂Λ/∂x1) = [4p1−2t(1−2x1)](∂y/∂x1)+t(1−

2x1). So, p1(∂Λ/∂x1) ≥ t(1+2x1)⇔ [4p1−2t(1−2x1)](∂y/∂x1) ≥ 4tx1. Using ∂y/∂x1 = tµ/π,

we get µ ≥ 2πx1/[2p1 − t(1 − 2x1)]. The RHS is increasing in x1. Letting x1 = 1/2 yields

µ ≥ 2π/(4π − t). This is exactly the bound obtained in the example for a unique equilibrium

at the center of the market. In particular, since 3/5 > 2π/(4π − t), if µ ≥ 3/5 then there is a

unique equilibrium at the market center.
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6 Necessary and sufficient conditions for symmetric equilibria
off the center

Consider a pair of distinct symmetric locations inside the market quartiles. It is an equilibrium

if neither an outward nor an inward move by a firm is profitable. Outward moves are never

profitable by part (ii) of Lemma 1. So, only inward moves need to be examined to determine

whether the pair of locations is an equilibrium or not. In general, such a move by a firm results

in a lower price. So, if the market share does not increase significantly, then profit decreases and

the given pair of symmetric locations emerges as an equilibrium. Along these lines, consider

the following entities.

For x1 < x2, let σ1 = [π − t(1− x2)2]/[2(π − tx2
1)], σ2 = (π − tx2

1)/[2(π − t(1− x2)2)],

Q1 =
π − t(1− x2)2

2[π − tx2
1 + t(x2 − x1)(2σ1 − x1 − x2)](1− σ1)

,

Q2 =
2[π − t(1− x2)2 − t(x2 − x1)(2− 2σ2 − x1 − x2)](1− σ2)

π − tx2
1

.

These expressions play a central role in characterization of symmetric equilibrium locations off

the center in the next theorem. An inward move and nonincreasing profit automatically put

restrictions on the reservation price consumer and the market shares. These determine the

bounds σ1 and σ2 on the market shares. Q1 and Q2, respectively, are the profit ratios when

the market shares equal these bounds.

Theorem 2 Suppose that (C1)–(C4) hold. Let (x∗1, x
∗
2) be a pair of symmetric locations,

1/2 < x∗2 ≤ 3/4. Then the following conditions are equivalent.

(i) The pair of symmetric locations (x∗1, x
∗
2) is an equilibrium.

(ii) y(x1, x
∗
2) ≤ σ1(x1, x

∗
2) for x∗1 < x1 < x∗2 and 1−y(x∗1, x2) ≤ σ2(x∗1, x2) for x∗1 < x2 < x∗2.

(iii) Λ(x1, x
∗
2) ≤ Q1(x1, x

∗
2) for x∗1 < x1 < x∗2 and Λ(x∗1, x2) ≥ Q2(x∗1, x2) for x∗1 < x2 < x∗2.

Theorem 2 admits the following corollary, which is applicable in many situations.

Corollary 2 Let (C1)–(C4) hold. Suppose that Λ(1−x2, 1−x1) = 1/Λ(x1, x2) if x1 < x2. Let

(x∗1, x
∗
2) be symmetric locations, 1/2 < x∗2 ≤ 3/4. Then the following conditions are equivalent.

(i) The pair of symmetric locations (x∗1, x
∗
2) is an equilibrium.

(ii) y(x1, x
∗
2) ≤ σ1(x1, x

∗
2) for x∗1 < x1 < x∗2.

(iii) Λ(x1, x
∗
2) ≤ Q1(x1, x

∗
2) for x∗1 < x1 < x∗2.
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The condition Λ(1 − x2, 1 − x1) = 1/Λ(x1, x2) means that if the locations are flipped

symmetrically, then the profit ratio reverses.6 In this scenario, it is enough to check for inward

moves of only one firm.

Illustrations (1) Let Λ = (2 + x1 + x2)2/(4− x1− x2)2. Then Λ(1− x2, 1− x1) = 1/Λ(x1, x2)

if x1 < x2. It was shown in the preceding section that central agglomeration is the unique

equilibrium under this profit sharing rule. We will show that (iii) of Corollary 2 is violated.

Consider symmetric locations (x1, x2), 1/2 < x2 ≤ 3/4. If Λ(x2, x2) > Q1(x2, x2) then

by continuity, Λ(x̄1, x2) > Q1(x̄1, x2) for some x1 < x̄1 < x2. In this case, Λ(x2, x2) =

(1 +x2)2/(2−x2)2 and Q1(x2, x2) = [π− t(1−x2)2]/[π− tx2
2− t(2x2− 1)] = [π− tx2

2 + t(2x2−

1)]/[π− tx2
2− t(2x2−1)]. So, Λ(x2, x2) > Q1(x2, x2) iff 3π−3tx2

2−5t+ 2tx2(1−x2) > 0. Since

π ≥ 3t, the inequality holds. Thus, the unique equilibrium is at the center of the market.

(2) If Λ = (2 + x1 + x2)/(4 − x1 − x2) then Λ(1 − x2, 1 − x1) = 1/Λ(x1, x2) if x1 < x2.

Consider symmetric locations (x1, x2), 1/2 < x2 ≤ 3/4. Λ(x2, x2) = (1 + x2)/(2 − x2) and

Λ(x2, x2) > Q1(x2, x2) iff π − tx2
2 − 3t > 0. If π ≥ 4t then the inequality holds and central

agglomeration is the unique equilibrium.

(3) If y = (1/2) + (tµ/π)(x1 + x2 − 1), as in Example 2, then y(1− x2, 1− x1) = 1− y(x1, x2)

[which is equivalent to Λ(1− x2, 1− x1) = 1/Λ(x1, x2), see Lemma 6]. In this case, y ≤ σ1 ⇔

π(1 + x1 − x2)− 2µ(π − tx2
1) ≥ 0.7 The LHS is increasing in x1. As an equality at symmetric

locations this becomes tµx2
1 + πx1 − πµ = 0. Its positive root determines the equilibria in (3).

The conditions in Theorem 2 characterizing the equilibrium locations have nice geometric

interpretations which we describe below. The shift in the PPF as a firm changes its location

is instrumental in obtaining these results. Consider a pair of symmetric locations (x1, x2) with

1/2 < x2 ≤ 3/4. In Figure 1, DSB is the PPF for this pair of locations. The line OS is the

45◦ line. Since all our profit sharing rules satisfy symmetry (C2), the solution of any profit

sharing rule at the pair of symmetric locations (x1, x2) is at S and the profit of each firm is

[π − t(1− x2)2]/2 = (π − tx2
1)/2.

Suppose that firm 1 moves to the right from x1 to x̄1, x1 < x̄1 < x2. The PPF for the

locations (x̄1, x2) is not drawn but two of its important qualitative properties are: (i) on the

6Lemma 6 in section 10 examines some implications of this condition.
7If µ is close to 1 this inequality never holds and central agglomeration is the unique equilibrium.
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horizontal axis the PPF expands and (ii) the point S no longer belongs to the profit possibility

set (PPS) at locations (x̄1, x2).8,9

F1

F2

G

H

T

D

B

S

K

E

V

L

O

Figure 1

Along the line ST the profit of firm 1 is always (π− tx2
1)/2. To determine which portion of

the line ST belongs to the PPS at (x̄1, x2), one can maximize the profit of firm 2 subject to the

constraint that the profit of firm 1 is (π− tx2
1)/2. This determines the point L, its coordinates

are given below.

Let p̄1 = π− tx̄2
1, ȳ = (π− tx2

1)/[2(π− tx̄2
1)], p̄2 = p̄1 + t(x2 − x̄1)(2ȳ− x̄1 − x2) and define

F̄1 = p̄1ȳ = (π − tx2
1)/2, F̄2 = p̄2(1 − ȳ). The coordinates of point L are (F̄1, F̄2). Notice two

important facts here: ȳ above is precisely σ1(x̄1, x2) and F̄1/F̄2 = Q1(x̄1, x2). Also observe

that, since the PPS is convex and both L and K belong to it, so is the entire line segment LK.

At any interior point of this line segment the profit of firm 1 is strictly greater than (π− tx2
1)/2.

We can now examine the effects on profits and consequent equilibrium locations because

of relocation by firm 1. At (x̄1, x2) symmetry no longer holds. So, in general, the profit

allocations will be different under different profit sharing rules. Consider the line OG passing

through L. The condition Q1(x̄1, x2) < Λ(x̄1, x2) means the line passing through the profit

8At locations (x1, x2), B corresponds to the maximum profit of firm 1 when firm 2 has zero profit. This
happens when firm 1 serves the entire market, i.e., the price as well as the profit of firm 1 is π − t(1 − x1)2.
By similar reasoning, at locations (x̄1, x2), firm 1 can earn π − t(1 − x̄1)2 > π − t(1 − x1)2 if x̄1 ≤ 1/2, or
π − tx̄21 > π − t(1 − x1)2 if x̄1 > 1/2. So, on the horizontal axis the PPF at (x̄1, x2) expands, say to K, where
the profit of firm 1 is either π − t(1− x̄1)2, or π − tx̄21.

9Point S has coordinates
(
[π − tx21]/2, [π − tx21]/2

)
. What is extremely important is that point S no longer

belongs to the PPS at locations (x̄1, x2). If S belongs to the PPS, then without loss of generality we can suppose
that there is (p1, p2, y) such that p1y ≥ (π − tx21)/2, p2(1− y) ≥ (π − tx21)/2 and (p1y, p2[1− y]) is on the PPF.
p1y ≥ (π − tx21)/2 and p1 ≤ π − tx̄21 < π − tx21 imply that y > 1/2. On the other hand, p2(1− y) ≥ (π − tx21)/2
and p2 ≤ π − t(1 − x2)2 = π − tx21 imply that 1 − y ≥ 1/2, i.e., y ≤ 1/2. This is a contradiction. So, at the
locations (x̄1, x2), the point S as well as points near S lie outside the PPS.
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allocation (F1(x̄1, x2), F2(x̄1, x2)) [under the specific sharing rule given by Λ(·, ·)] lies to the

right of the line OG, say OH in the figure. This implies that F1(x̄1, x2) > (π − tx2
1)/2 and

the pair of symmetric locations (x1, x2) is not an equilibrium. This phenomenon is captured

in condition (iii) of Theorem 2.

On the other hand (and unlike the figure), if the line OH were to the left of the line OG,

then Λ(x̄1, x2) < Q1(x̄1, x2), the profit of firm 1 decreases as it moves inwards [F1(x̄1, x2) <

(π − tx2
1)/2], and the pair of symmetric locations (x1, x2) is a candidate for an equilibrium as

depicted by Theorem 2.

It is worth exploring how these general insights translate into specific profit sharing rules.

We examine further the three illustrations given after Theorem 2. We know that if Λ =

(2 + x1 + x2)2/(4 − x1 − x2)2, or Λ = (2 + x1 + x2)/(4 − x1 − x2) then there is a unique

equilibrium at the market center.

Suppose that Λ = (2 + x1 + x2)2/(4 − x1 − x2)2. Let point E in the figure corre-

spond to the one-shot Nash equilibrium profits at (x̄1, x2). Its coordinates are (R1N , R2N ) =(
t(x2 − x̄1)[2 + x̄1 + x2]2/18, t(x2 − x̄1)[4− x̄1 − x2]2/18

)
. Given Λ, the solution will be where

the line OH intersects the PPF at (x̄1, x2).

The geometric interpretation ofQ1(x̄1, x2) < Λ(x̄1, x2) is that the line OH lies below the line

OG. This is equivalent to point V lies below point L. Since V lies on ST and OH, its coordinates

are
(
F̄1, F̄1[R2N/R1N ]

)
. Point L lies above point V iff p̄2(1 − ȳ) − F̄1(R2N/R1N ) > 0. This

inequality hods for x̄1 ∈ (x1, x2), i.e., the profit of firm 1 increases because of the inward move.

An analogous explanation applies if Λ = (2+x1+x2)/(4−x1−x2). Now assume that π ≥ 4t

and point E has coordinates ([2 + x̄1 + x2]/6, [4− x̄1 − x2]/6), given by the one-shot Nash equi-

librium market shares. The coordinates of point V are
(
F̄1, F̄1[(4− x̄1 − x2)/(2 + x̄1 + x2)]

)
.

Point L lies above point V iff p̄2(1− ȳ)− F̄1[(4− x̄1 − x2)/(2 + x̄1 + x2)] > 0. As in the earlier

case, this inequality hods for x̄1 ∈ (x1, x2).

Lastly, consider the profit sharing rule of Example 2. In this case, y = (1/2) + (tµ/π)(x1 +

x2 − 1) and the set of equilibria is determined by µ. Recall that Λ(x̄1, x2) ≤ Q1(x̄1, x2) ⇔

y(x̄1, x2) ≤ σ1(x̄1, x2). Consider the line OH, point E can be ignored now and V is relevant

only if OH lies to the right of OG. If the line OH is indeed to the right of line OG as in the figure,

then Λ(x̄1, x2) > Q1(x̄1, x2) and those locations are not equilibrium locations. On the other

hand, if the line OH is to the left of the line OG, or coincides with it, then Λ(x̄1, x2) ≤ Q1(x̄1, x2)
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and equilibrium locations are obtained.

The exact placement of the line OH vis-a-vis the line OG is determined by the symmetric

equilibrium locations (x1, x2) given in (3). In particular, if µ = 0 then y(x̄1, x2) = 1/2 < (π −

tx2
1)/[2(π−tx̄2

1)] = σ1(x̄1, x2). So, any pair of symmetric locations (x1, x2) with 1/2 ≤ x2 ≤ 3/4

is an equilibrium. At the other extreme, if µ = 1 then y(x̄1, x2) = (1/2) + (t/π)(x̄1 + x2− 1) >

(π − tx2
1)/[2(π − tx̄2

1)] = σ1(x̄1, x2) is equivalent to π(2− x1 − x̄1)− 2tx̄2
1 > 0. Since x1 < 1/2

and x̄1 ≤ 3/4, the inequality holds and central agglomeration is the unique equilibrium.

7 Existence of asymmetric equilibria

For many profit sharing rules, limx1→x2 Λ 6= 1 for some x2 6= 1/2. To preserve the continuity

of Λ, (C5) can be imposed instead of (C4). As Lemma 2 suggests, (C4) primarily rules out

asymmetric equilibria. Without (C4) it may not be possible to rule those out. So, asymmetric

equilibria can exist and the firms may agglomerate at a point off the center.

Theorem 3 Suppose that (C1)–(C3) and (C5) hold.

(i) (1/2, 1/2) is an equilibrium.

(ii) Let x∗1 = x∗2 6= 1/2 and x∗ = (x∗1, x
∗
2). If (∂Λ/∂x1)/Λ2 ≥ t(1 + 2x1)/

(
π − tx∗22

)
at all

x1 < x∗2 and ∂Λ/∂x2 ≥ t(3− 2x2)/
[
π − t(1− x∗1)2

]
at all x2 > x∗1 then x∗ is an equilibrium.

Like Theorem 1, the lower bounds on the derivatives of Λ ensure that the profit of a firm

increases by an inward move. So, x∗ is an equilibrium.

Corollary 3 Let (C1)–(C3) and (C5) hold. Suppose that Λ(1 − x2, 1 − x1) = 1/Λ(x1, x2) if

x1 < x2. Let x∗1 = x∗2 6= 1/2 and x∗ = (x∗1, x
∗
2).

If x∗2 > 1/2, [∂Λ(x1, x
∗
2)/∂x1]/Λ2 ≥ t(1+2x1)/

(
π − tx∗22

)
at all x1 < x∗2 and [∂Λ(x1, x2)/∂x1]/Λ2 ≥

t/(π − t) at all x1 < x2 < 1/2, then x∗ is an equilibrium.

If x∗1 < 1/2, ∂Λ(x∗1, x2)/∂x2 ≥ t(3−2x2)/
[
π − t(1− x∗1)2

]
at all x2 > x∗1 and ∂Λ(x1, x2)/∂x2 ≥

t/(π − t) at all x2 > x1 > 1/2 then x∗ is an equilibrium.

The profit ratio reversal condition in the corollary ensures that it is enough to examine

changes in location of only one firm to determine equilibria.

Illustrations (1) If Λ = (2 + x1 + x2)2/(4− x1 − x2)2 then ∂Λ/∂x1 = ∂Λ/∂x2 = 12(2 + x1 +
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x2)/(4− x1 − x2)3 and (∂Λ/∂x1)/Λ2 = 12(4− x1 − x2)/(2 + x1 + x2)3. If x1 < x2 < 1/2 then

(∂Λ/∂x1)/Λ2 ≥ 4/3 > t/(π − t) and if 1/2 < x1 < x2 then ∂Λ/∂x2 ≥ 4/3 > t/(π − t).

The function [(∂Λ/∂x1)/Λ2] − [t(1 + 2x1)/(π − tx2
2)] is decreasing in both x1 and x2. To

identify equilibria with x∗1 = x∗2 > 1/2, one can take x1 = x2 and solve [3(2− x2)/(1 + x2)3]−

[t(1 + 2x2)/(π− tx2
2)] ≥ 0. This is decreasing in x2. The function (∂Λ/∂x2)− (t(3− 2x2)/[π−

t(1 − x1)2]) is increasing in both x1 and x2. To identify equilibria with x∗1 = x∗2 < 1/2, one

can take x2 = x1 and solve [3(1 + x1)/(2 − x1)3] − (t(3 − 2x1)/[π − t(1 − x1)2]) ≥ 0. This is

increasing in x1. If π ≥ 3t then any point in the interval [0.35, 0.65] is an equilibrium. If π ≥ 9t

then any point in the interval [0, 1] is an equilibrium.

This observation also underscores the role of (C4) in section 5, that the profits be identical

if the firms are located together, to obtain central agglomeration as the unique equilibrium.

(2) If Λ = (2 + x1 + x2)/(4 − x1 − x2) then ∂Λ/∂x1 = ∂Λ/∂x2 = 6/(4 − x1 − x2)2 and

(∂Λ/∂x1)/Λ2 = 6/(2 + x1 + x2)2. If x1 < x2 < 1/2 then (∂Λ/∂x1)/Λ2 ≥ 2/3 > t/(π− t) and if

1/2 < x1 < x2 then ∂Λ/∂x2 ≥ 2/3 > t/(π − t) when π ≥ 4t.

The function [(∂Λ/∂x1)/Λ2] − [t(1 + 2x1)/(π − tx2
2)] is decreasing in both x1 and x2. To

identify equilibria with x∗1 = x∗2 > 1/2, one can take x1 = x2 and solve [(3/2)/(1+x2)2]− [t(1+

2x2)/(π−tx2
2)] ≥ 0. This is decreasing in x2. The function (∂Λ/∂x2)−(t(3−2x2)/[π−t(1−x1)2])

is increasing in both x1 and x2. To identify equilibria with x∗1 = x∗2 < 1/2, one can take x2 = x1

and solve [(3/2)/(2−x1)2]− (t(3−2x1)/[π− t(1−x1)2]) ≥ 0. This is increasing in x1. If π ≥ 4t

then any point in the interval [0.45, 0.55] is an equilibrium. If π ≥ 9t then any point in the

interval [0, 1] is an equilibrium.

(3) Let µ = 1 in Example 2. Fix 1/2 < x2 < 3/4. Lemma 1 shows that if x1 + x2 < 1 then

F1(x1, x2) < F1(1−x2, x2). Assume that x1 +x2 > 1. Then p1 = π− tx2
1. Since ∂y/∂x1 = t/π,

∂F1/∂x1 = (π − tx2
1)(t/π)− 2tyx1. This is decreasing in x1 and is positive when x1 = 1/2.

Now let 1/2 < x1 < x2. Then p1 = π − tx2
1. It is easily verified that y < (x1 + x2)/2, i.e.,

p2 < p1. Note that 1 − y = (1/2) − (t/π)(x1 + x2 − 1) < (1/2) − (t/π)(2x1 − 1). By (C5),

F2(x1, x1) = p1[(1/2)− (t/π)(2x1 − 1)] > p2(1− y) = F2(x1, x2).

Analogously, it can be shown that (i) if 1/4 < x1 < 1/2, then F2(x1, x2) < F2(x1, 1 − x1)

when x1 + x2 > 1 and ∂F2/∂x2 is negative when x2 = 1/2 and (ii) if x1 < x2 < 1/2 then

F1(x2, x2) > F1(x1, x2).

This means, there is an interval containing 1/2 such that any point in it is an equilibrium.
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Therefore, if µ is large then the firms may locate together off the center.

We conclude this section with some observations on the similarities and dissimilarities

between Theorems 1 and 3. Under each, (1/2, 1/2) is an equilibrium. More generally, in these

two results, the firms always agglomerate. This happens because each firm finds it advantageous

to move towards the other. However, in Theorem 1 the equilibrium at the center is unique, but

Theorem 3 exhibits multiple equilibria off the center. This difference highlights the distinction

between (C4) and (C5).

8 Sustaining collusion

In our setting, the firms choose locations in the initial period and prices in subsequent infinite

periods. If a specific pair of locations is an SPNE outcome of the supergame, then the collusive

prices at any given pair of locations is an SPNE outcome of the repeated game. In this context,

one can examine optimal punishment paths as in Abreu (1988). However, for existence purposes

reversion to Nash equilibrium prices of the one-shot game is sufficient.

If at each pair of locations, the firm profits are (uniformly) bounded away from the Nash

equilibrium profits, then for sufficiently high discount factors, the prices are subgame perfect

in the infinite horizon location choice game. Formally, for i = 1, 2 and x1 ≤ x2, let si =

inf(x1,x2){Fi(x1, x2) − RiN (x1, x2)} and s = min {s1, s2}. Since Fi(x1, x2) < π for i = 1, 2,

s < π. That s be positive is essential. Denote by δi the discount factor of firm i, i = 1, 2.

Lemma 3 Let (C1)–(C3) and one of (C4) and (C5) hold for the profit allocation (F1, F2). If

s > 0 and δi ∈ [(π − s)/π, 1) for i = 1, 2, then (F1(x1, x2), F2(x1, x2)) is an SPNE outcome at

each (x1, x2).

The lemma shows the existence of SPNE under very general conditions. In all the illus-

trations considered in the preceding sections, s > 0. On occasions, however, it may not be

possible to directly compute s. More critically, s might be nonpositive. A positive lower bound

on s can be obtained with some other structure on the profit ratio Λ.

Lemma 4 Let (C1)–(C3) and one of (C4) and (C5) hold. Suppose that for all x1 < x2: (i)

1/r ≤ Λ ≤ r for some 1 < r < ∞, (ii) (x1 + x2)/(2 − x1 − x2) ≤ Λ if x1 + x2 < 1 and

Λ ≤ (x1 + x2)/(2− x1 − x2) if x1 + x2 > 1. Then s ≥ t/(1 + r) > 0.
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Recall that (C3) provided a bound for the profit ratio in one direction, depending on

location asymmetry. Condition (ii) above supplements this by providing a bound in the other

direction. This lemma gives sufficient conditions for s to be positive, and in turn Lemma 3

ensures the existence of positive discount factors less than one.

9 Conclusion

The general framework is that symmetric duopolists choose locations once and then repeatedly

choose prices to remain on the PPF. Schmalensee (1987), Jehiel (1992), Friedman and Thisse

(1993) and Rath and Zhao (2003) have identified the equilibria in this setting when the firms

share profits in proportion to the one-shot Nash equilibrium profits and market shares and

under different bargaining solutions. In some cases, there is a unique equilibrium at the market

center (minimal product differentiation), but in others multiple symmetric equilibria can exist

(nonminimal product differentiation).

Friedman and Thisse (1993) did propose a set of sufficient conditions for a unique equilib-

rium at the market center. However, it was shown recently in Rath and Zhao (2021) that those

conditions are inconsistent in some sense and cannot be used to characterize equilibria, unique

or not. The discovery of this flaw is a serious setback to the existence claims in this literature.

The consequence is that the works cited above address some special cases only but no general

characterization result is available. In particular, sufficient conditions for a unique equilibrium

is yet unknown.

This paper has systematically explored the nature of equilibria in this framework. It has

been shown that if at symmetric locations inside market quartiles the derivatives of the profit

ratio exceed certain magnitudes then there is a unique equilibrium. In our opinion, this is

the first general result asserting a unique outcome at the market center and minimal product

differentiation. Depending on the profit sharing rule, other symmetric equilibria might exist.

Necessary and sufficient conditions for this have been identified in terms of upper bounds on the

market shares and the profit ratio. That these conditions have nice geometric interpretations

is appealing. Furthermore, asymmetric equilibria might exist if equal division of profits when

the firms agglomerate together is not assumed. These results, thus characterize the equilibria

in this framework under fairly general conditions.

Throughout, we have assumed that the costs of the two firms are identical. In Matsumura
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and Matsushima (2011), there is cost differential between the firms. They have shown that

the agglomeration results in Jehiel (1992) and Friedman and Thisse (1993) do not hold under

firm asymmetry, but have not derived the equilibrium locations. This is an interesting topic

for further research.

10 Proofs of the results

In the next two subsections, we present some preliminary results and the derivatives of profit

functions. The main results of the paper are proved subsequently.

10.1 Some preliminary results

Claim 1 For fixed locations x1 < x2, suppose that min{p1, p2} ≥ 2t(x2−x1), the entire market

is served at these prices and the profit of each firm is positive. Then the profit function of a

firm is decreasing in its own price and is increasing in the other price. So, Λ is decreasing in

p1 and is increasing in p2.

This is immediate from ∂y/∂pi = (−1)i/[2t(x2 − x1)], i = 1, 2.

The next claim shows that if at fixed locations, the profit ratio or the market shares are

held fixed, then the corresponding prices are unique.

Claim 2 For fixed locations x1 < x2, let p = (p1, p2) and w = (w1, w2) be two sets of prices

such that: (a) the corresponding profit allocations are on the PPF and (b) the profit of each firm

is positive. Then p = w, if either (i) F1(p)/F2(p) = F1(w)/F2(w), or if (ii) p2 − p1 = w2 − w1.

Proof (i) Suppose that w1 > p1. If w2 > p2 then the entire market is not served at w, a

contradiction. So, w2 ≤ p2. Observe that the entire market is served and the profit of each

firm is positive at the prices (p1, w2). By Claim 1, Λ(p) ≥ Λ(p1, w2) > Λ(w), a contradiction.

Suppose that w1 < p1. If w2 < p2 then no consumer pays the reservation price at the

prices (w1, w2), a contradiction. So, w2 ≥ p2. Observe that the entire market is served and the

profit of each firm is positive at the prices (w1, p2). By Claim 1, Λ(p) < Λ(w1, p2) ≤ Λ(w), a

contradiction. So, w1 = p1. If w2 > p2 then Λ(p) < Λ(w) and if w2 < p2 then Λ(p) > Λ(w).

So, w2 = p2 and w = p.
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(ii) If w2 > p2 then w1 > p1 and the entire market is not served at the prices (w1, w2),

a contradiction. If w2 < p2 then w1 < p1 and no consumer pays the reservation price at the

prices (w1, w2), a contradiction. So, w = p.

The following lemma provides a partial characterization of the prices and also determines

the effect of particular prices on profits.

Lemma 5 Let (C1) and (C2) hold and 1/4 ≤ x1 < x2 ≤ 3/4.

(i) If x1 + x2 6= 1, then p1 6= π − t(y − x1)2 and p2 6= π − t(y − x2)2.

(ii) If x1+x2 > 1 and p2 = π−t(1−x2)2, then F1(x1, x2)/F2(x1, x2) > (x1+x2)/(2−x1−x2)

and F1(x1, x2) > F1(1− x2, x2) = p2/2.

(iii) If x1 + x2 < 1 and p1 = π − tx2
1, then F1(x1, x2)/F2(x1, x2) < (x1 + x2)/(2− x1 − x2)

and F2(x1, x2) > F2(x1, 1− x1) = p1/2.

Proof (i) Suppose that x1 + x2 6= 1. Specifically, let x1 + x2 > 1. If p1 = π − t(y − x1)2 then

p2 = π − t(y − x2)2. Either one is not served (if y > 1/2), or zero is not served (if y ≤ 1/2), a

contradiction. A similar argument applies if x1 + x2 < 1.

(ii) Let x1 + x2 > 1 and p2 = π− t(1− x2)2. Let x = (x1, x2) and p = (p1, p2). Since (C1)

holds, Fi(x, p) > 0 for i = 1, 2. Let p̄1 = π − tx2
1. Then p1 ≤ p̄1 < p2.

Since the entire market is served at the price vector p and p1 < p2, the entire market is

served as well at the price vector (p1, p1). F2(x, p) > 0 implies that F2(x, p1, p1) > 0. Notice that

p1 + tx2
1 < p1 + tx2

2, i.e., zero is not served by firm 2 at the prices (p1, p1). So, F1(x, p1, p1) > 0.

By Claim 1, F1(x, p)/F2(x, p) > F1(x, p1, p1)/F2(x, p1, p1) = (x1 + x2)/(2− x1 − x2).

It is easy to show that the entire market is served at the prices (p̄1, p2). F2(x, p) > 0 implies

that F2(x, p̄1, p2) > 0. From x1 + x2 > 1, x2 > 1/2. So, p2 + tx2
2 = π + t(2x2 − 1) > π, which

means that firm 2 does not serve zero. This gives F1(x, p̄1, p2) > 0.

By Claim 1, F1(x, p) ≥ F1(x, p̄1, p2). When the prices are (p̄1, p2), the market share of

firm 1 is greater than (x1 +x2)/2 from (1), i.e., F1(x, p̄1, p2) ≥ (π− tx2
1)(x1 +x2)/2. Therefore,

to show that F1(x, p) > p2/2, it suffices to show that (π− tx2
1)(x1 + x2) > π− t(1− x2)2. This

is true since the LHS is increasing in x1 and equals the RHS when x1 = 1− x2.

(iii) The proof is analogous.
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10.2 The derivatives of the profit functions

The derivatives of the profit functions with respect to locations are needed in the proofs of

Theorems 1 and 3. These are derived at the outset.

Since p1y = p2(1− y)Λ,

∂p1

∂x1
y + p1

∂y

∂x1
= p2(1− y)

∂Λ

∂x1
+ Λ

(
∂p2

∂x1
(1− y)− p2

∂y

∂x1

)
. (4)

As noted earlier, depending on the reservation price consumer, the prices can be of three types:

(i) p1 = π − tx2
1, or (ii) p2 = π − t(1 − x2)2, or (iii) p1 = π − t(y − x1)2. The prices of the

two firms are related by p2 = p1 + t(x2 − x1)(2y − x1 − x2). Given one of the prices and its

derivative (which may involve the derivative of the market share), the derivative of the other

can be determined. These in turn determine the derivatives of the profit functions.

If p1 = π − tx2
1 then ∂p1/∂x1 = −2tx1. From (4),

∂y

∂x1
=

(p1y/Λ)(∂Λ/∂x1)− 2ty(1− y)Λ + 2tyx1

p1 + [p2 − 2t(x2 − x1)(1− y)]Λ
(5)

1

Λy
× ∂F1

∂x1
=

(p2
1/Λ

2)(∂Λ/∂x1)− 2tp1(1 + x1 − y) + 2t2(x2 − x1)(x1 + x2 + 2− 4y)x1

p1 + [p2 − 2t(x2 − x1)(1− y)]Λ
. (6)

If p2 = π − t(1− x2)2, then ∂p2/∂x1 = 0.

1

Λy
× ∂F1

∂x1
=

(p1/Λ
2)(∂Λ/∂x1)[p1 − 2t(x2 − x1)y] + 2tp2(y − x1)

p1 − 2t(x2 − x1)y + p2Λ
. (7)

If p1 = π − t(y − x1)2, then ∂p1/∂x1 = 2t(y − x1)− 2t(y − x1)(∂y/∂x1).

1

Λy
× ∂F1

∂x1
=

(p1/Λ
2)(∂Λ/∂x1)[p1 − 2t(y − x1)y] + 2t(y − x1)[p2 + 2t(y − x2)(1− y)]

p1 − 2t(y − x1)y + [p2 + 2t(y − x2)(1− y)]Λ
. (8)

Similarly, from p1y = p2(1− y)Λ,

∂p1

∂x2
y + p1

∂y

∂x2
= p2(1− y)

∂Λ

∂x2
+ Λ

(
∂p2

∂x2
(1− y)− p2

∂y

∂x2

)
. (9)

If p1 = π − tx2
1, then ∂p1/∂x2 = 0. From (9),

1

1− y
× ∂F2

∂x2
=

2tp1(y − x2)− p2[p2 − 2t(x2 − x1)(1− y)](∂Λ/∂x2)

p1 + [p2 − 2t(x2 − x1)(1− y)]Λ
.

If p2 = π − t(1− x2)2 then ∂p2/∂x2 = 2t(1− x2).

1

1− y
× ∂F2

∂x2
=

2tp2(1− x2 + y) + 2t2(x2 − x1)(x1 + x2 − 4y)(1− x2)− p2
2(∂Λ/∂x2)

p1 − 2t(x2 − x1)y + p2Λ
.

If p1 = π − t(y − x1)2, then ∂p1/∂x2 = −2t(y − x1)(∂y/∂x2).

1

1− y
× ∂F2

∂x2
=

2t(y − x2)[p1 − 2t(y − x1)y]− p2[p2 + 2t(y − x2)(1− y)](∂Λ/∂x2)

p1 − 2t(y − x1)y + [p2 + 2t(y − x2)(1− y)]Λ
.
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10.3 Relationship between two conditions on profit sharing

It is shown below that if the entire market is served at a pair of prices then (C3) in section 3 is

weaker than (P4) in Rath and Zhao (2003). In the notations of the present paper, (P4) there

can be stated as follows.

(P4) Let x1 < x2.

(i) If x1 + x2 > 1 then 1/2 ≤ y < 1 and p1 ∈ {π − tx2
1, π − t(y − x1)2}.

(ii) If x1 + x2 < 1 then 0 < y ≤ 1/2 and p2 ∈ {π − t(1− x2)2, π − t(y − x2)2}.

First we show that (P4) implies (C3). Without loss of generality, let x1 +x2 > 1. Using (1),

F1 − F2 = p1y − [p1 + t(x2 − x1)(2y − x1 − x2)] (1− y)

= [p1 − t(x2 − x1)(1− y)] (2y − 1) + t(x2 − x1)(x1 + x2 − 1)(1− y).

Since p1 − t(x2 − x1)(1− y) > 0, 2y − 1 ≥ 0 and 1− y > 0, F1 > F2, i.e., (C3) holds.

The converse is not true, (C3) does not imply (P4). Suppose the profit sharing rule is such

that, when x1 < x2, the market share of firm 1 is

y =
1

2
+ (x2 − x1)(1− x1 − x2)ε

where 0 < ε ≤ t/(8π).

If x1 + x2 > 1 then y < 1/2. So, (P4) is violated. That (C3) holds can be seen as follows.

Note that 2y − 1 = 2(x2 − x1)(1− x1 − x2)ε and 2y − x1 − x2 = (1− x1 − x2)[1 + 2(x2 − x1)ε].

Moreover, from π ≥ 3t, ε ≤ 1/24 and y ∈ [11/24, 13/24]. Since the entire market is served, the

profit of each firm is positive. In particular, p1 ≤ π.

F1 − F2 = p1y − [p1 + t(x2 − x1)(2y − x1 − x2)](1− y)

= p1(2y − 1)− t(x2 − x1)(2y − x1 − x2)(1− y)

= (x2 − x1)(1− x1 − x2) [2p1ε− t[1 + 2(x2 − x1)ε](1− y)] .

It is shown below that 2p1ε− t[1 + 2(x2 − x1)ε](1− y) is negative. Therefore, F1 − F2 has the

same sign as x1 + x2 − 1, i.e., (C3) holds. Notice that 2p1ε ≤ 2p1t/(8π) ≤ t/4. On the other

hand, 1− y ≥ 11/24 > 1/3.

10.4 Proofs of Lemmas 1 and 2

Proof of Lemma 1 Let x1 < x2. First we show that if x1 + x2 < 1 then the profit of firm 1

is less than p2/2 and if x1 + x2 > 1 then the profit of firm 2 is less than p1/2.
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Assume that x1 + x2 < 1. If y ≥ 1/2, then by (C3), p1y < p2(1− y) ≤ p2/2. Let y < 1/2.

From (1), p1 = p2−t(x2−x1)(2y−x1−x2). Therefore, p1y < p2/2 iff 2t(x2−x1)(x1+x2−2y)y <

p2(1− 2y). Since p2 ≥ π− t ≥ 2t and y < 1/2, it is enough to show that x1 + x2− 2y < 1− 2y,

i.e., x1 + x2 < 1, which holds. We have shown that the profit of firm 1 is less than p2/2.

Analogously it can be shown that if x1 + x2 > 1 then the profit of firm 2 is less than p1/2.

(i) Fix any x1 < x2 = 1/2. Then x1+x2 < 1. We have shown that the profit of firm 1 is less

than p2/2. Since x2 = 1/2 and some consumer pays the reservation price, p2 = π − t(1− x2)2.

If firm 1 relocates at x2, by (C2), its profit is p2/2 since p2 remains unchanged.

The preceding arguments show that firm 1 is better off at x1 = x2 = 1/2 than at x1 <

x2 = 1/2. So, x1 < x2 = 1/2 is not an equilibrium. By similar arguments, firm 2 is better off

at 1/2 = x1 = x2 than at 1/2 = x1 < x2. So, 1/2 = x1 < x2 is not an equilibrium. Moreover,

(1/2, 1/2) is an equilibrium.

(ii) Let x1 ≤ 1/2 ≤ x2. Without loss of generality suppose that x1+x2 < 1. Then x1 < 1/2

and x1 < x2.

We have shown that F1(x1, x2) < p2/2. Moreover, p2 ≤ π−t(1−x2)2 and p2 ≤ π−t(y−x2)2.

Suppose that x2 ≤ 3/4. Then F1(x1, x2) <
[
π − t(1− x2)2

]
/2 = F1(1− x2, x2).

Now suppose that x2 > 3/4. Assume that y ≤ 1/2. Note that p1 ≤ π−t(y−x1)2. Therefore,

F1(x1, x2) = p1y ≤
[
π − t(y − x1)2

]
y ≤

(
π − t[(1/2)− x1]2

)
/2 <

(
π − t[(1/2)− x2]2

)
/2 =

F1(1 − x2, x2). Let y > 1/2. By (C3), F1(x1, x2) < F2(x1, x2) ≤
[
π − t(y − x2)2

]
(1 − y) <(

π − t[(1/2)− x2]2
)
/2 = F1(1− x2, x2).

(iii) Fix any (x1, x2) with x2 = 1 − x1 and x1 < 1/4. Then the profit of each firm is[
π − t((1/2)− x2)2

]
/2. Let x1 < x̄1 < 1/4. Then x̄1 + x2 > 1. We will consider the three

possibilities for the prices.

First suppose that p1 = π − tx̄2
1. We will show that F2 > F1, which violates (C3). So, this

possibility cannot hold. Using (1),

F2 − F1 = [p1 + t(x2 − x̄1)(2y − x̄1 − x2)] (1− y)− p1y

= [p1 − t(x2 − x̄1)(1− y)] (1− 2y)− t(x2 − x̄1)(x̄1 + x2 − 1)(1− y).

This is a decreasing function of y. Since p1 = π − tx̄2
1, the market share of firm 1 is at most

2x̄1, i.e., y ≤ 2x̄1 < 1/2. Therefore,

F2 − F1 ≥ [p1 − t(x2 − x̄1)(1− 2x̄1)] (1− 4x̄1)− t(x2 − x̄1)(x̄1 + x2 − 1)(1− 2x̄1).
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Since p1 > 2t, the RHS is positive when x̄1 = x1. Hence, F2 − F1 > 0, if x̄1 − x1 is small.

Next suppose that p2 = π − t(1 − x2)2. We will show that F1 >
[
π − t((1/2)− x2)2

]
/2,

i.e., the profit of firm 1 increases because of relocation.

Using (1), F1 = p1y = [p2 − t(x2 − x̄1)(2y − x̄1 − x2)] y. This is increasing in y. Since

p2 = π − t(1 − x2)2, the market share of firm 2 is at most 2 − 2x2, i.e., y ≥ 2x2 − 1. So,

F1 ≥ [p2 − t(x2 − x̄1)(4x2 − 2− x̄1 − x2)] (2x2−1). To show that F1 >
[
π − t((1/2)− x2)2

]
/2,

it suffices to show that 2 [p2 − t(x2 − x̄1)(4x2 − 2− x̄1 − x2)] (2x2 − 1) >
[
π − t((1/2)− x2)2

]
.

It is enough to establish this when x̄1 = x1. In that case, the inequality can be written as

π(4x2 − 3)− 2t(2x2 − 1)2(4x2 − 3) +
t

4
(2x2 − 1)2 − 2t(1− x2)2(2x2 − 1) > 0.

Since π > 2t, 2x2 − 1 ≤ 1 and (2x2 − 1)/4 > 1/8 > 2(1− x2)2, the inequality holds.

The remaining possibility is p1+t(y−x̄1)2 = π = p2+t(y−x2)2 at (x̄1, x2). If y < 1/2, then

F2(x̄1, x2) =
[
π − t(y − x2)2

]
(1−y) >

[
π − t((1/2)− x2)2

]
/2. Since F1(x̄1, x2) > F2(x̄1, x2) by

(C3), F1(x̄1, x2) >
[
π − t((1/2)− x2)2

]
/2. If y ≥ 1/2 then F1(x̄1, x2) =

[
π − t(y − x̄1)2

]
y >[

π − t(y − x1)2
]
y ≥

[
π − t((1/2)− x1)2

]
/2. Thus, F1 increases because of relocation.

We have shown that any symmetric location pair (x1, 1 − x1) with x1 < 1/4 is not an

equilibrium.

Proof of Lemma 2 (i) Let x1 = x2 > 1/2. Then p2 = π−tx2
2 and by (C4), F1 = (π−tx2

2)/2. If

firm 1 locates symmetrically instead, its profit is
[
π − t(1− x2)2

]
/2, or

[
π − t((1/2)− x2)2

]
/2

depending on whether x2 ≤ 3/4, or x2 > 3/4. Clearly, the profit increases because of relocation.

So, x1 = x2 6= 1/2 cannot be an equilibrium.

(ii) Let x1 < x2 < 1/2. Then x1 + x2 < 1 and p2 = π − t(1 − x2)2. By (C3), as argued

in the proof of Lemma 1, F1 < p2/2 =
[
π − t(1− x2)2

]
/2. If firm 1 relocates at x2, by (C4),

F1 =
[
π − t(1− x2)2

]
/2. So, x1 < x2 < 1/2 cannot be an equilibrium.

10.5 Proof of Theorem 1

From Proposition 1, (1/2, 1/2) is an equilibrium and the other candidates for equilibria are

the symmetric ones with 1/4 ≤ x1 < 1/2. To eliminate these, consider a pair of symmetric

locations (x1, x2). Let x1 < x̄1 < x2. Then x̄1 + x2 > 1. If p2 = π − t(1 − x2)2 at locations

(x̄1, x2), then Lemma 5 implies that F1(x̄1, x2) > F1(x1, x2), i.e., (x1, x2) is not an equilibrium.
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Therefore, suppose that p1 = π − tx̄2
1 for all x1 < x̄1 < x2. At symmetric locations

(x1, 1− x1), y = 1/2 and Λ = 1. From (6), ∂F1/∂x1 > 0 if

p2
1

∂Λ

∂x1
− tp1(1 + 2x1) + 2t2(1− 2x1)x1 > 0,

which follows from ∂Λ/∂x1 ≥ t(1 + 2x1)/(π − tx2
1) and p1 = π − tx2

1. Since F1 increases at

symmetric locations, (x1, x2) is not an equilibrium. Thus, (1/2, 1/2) is the unique equilibrium.

The proof when firm 2 changes its location is similar, one uses ∂F2/∂x2 given earlier.

10.6 Proofs of Theorem 2 and Corollary 2

Proof of Theorem 2 (i) ⇔ (ii). Suppose that (x∗1, x
∗
2) is an equilibrium. This implies that

inward moves by neither firm is profitable, i.e., F1(x1, x
∗
2) ≤ F1(x∗1, x

∗
2) = [π− t(1− x∗2)2]/2 for

x∗1 < x1 < x∗2 and F2(x∗1, x2) ≤ F2(x∗1, x
∗
2) = (π − tx∗12)/2 for x∗1 < x2 < x∗2.

Consider F1(x1, x
∗
2) ≤ F1(x∗1, x

∗
2) for x∗1 < x1 < x∗2. If p2 = π − t(1 − x∗2)2 at locations

(x1, x
∗
2), then by (ii) of Lemma 5, F1(x1, x

∗
2) > F1(x∗1, x

∗
2), a contradiction. So, p1 = π − tx2

1

for all x∗1 < x1 < x∗2. Hence, (π − tx2
1)y = F1(x1, x

∗
2) ≤ F1(x∗1, x

∗
2) = [π − t(1 − x∗2)2]/2, which

implies that y(x1, x
∗
2) ≤ σ1(x1, x

∗
2).

Let x∗1 < x1 < x∗2 and y(x1, x
∗
2) ≤ σ1(x1, x

∗
2). It is easy to check that σ1 < (x1 +x∗2)/2 when

x1 + x∗2 > 1, which implies that y < (x1 + x∗2)/2 and p2 < p1. Since π − t(1− x∗2)2 > π − tx2
1,

p2 6= π − t(1− x∗2)2 and p1 = π − tx2
1. So, F1(x1, x

∗
2) = (π − tx2

1)y ≤ (π − tx2
1)σ1 = [π − t(1−

x∗2)2]/2 = F1(x∗1, x
∗
2). We have shown that an inward move by firm 1 is not profitable. An

outward move is not profitable by part (ii) of Lemma 1.

The proof F2(x∗1, x2) ≤ F2(x∗1, x
∗
2)⇔ 1− y(x∗1, x2) ≤ σ2(x∗1, x2) for x∗1 < x2 < x∗2 is similar.

(ii) ⇔ (iii). Suppose that y(x1, x
∗
2) ≤ σ1(x1, x

∗
2) and x∗1 < x1 < x∗2. Since x1 + x∗2 > 1,

σ1 < (x1+x∗2)/2. So, y < (x1+x∗2)/2, which implies that p1 > p2. Since π−t(1−x∗2)2 > π−tx2
1,

p2 6= π − t(1− x∗2)2 and p1 = π − tx2
1. This gives,

Λ(x1, x
∗
2) =

(π − tx2
1)y

[π − tx2
1 + t(x∗2 − x1)(2y − x1 − x∗2)](1− y)

.

This is an increasing function of y and since y ≤ σ1, Λ(x1, x
∗
2) ≤ Q1(x1, x

∗
2).

Conversely, suppose that Λ(x1, x
∗
2) ≤ Q1(x1, x

∗
2). It can be shown that Q1 is an increasing

function of σ1. Since x1 + x∗2 > 1, σ1 < (x1 + x∗2)/2 which implies that Q1 < (x1 + x∗2)/(2 −

x1 − x∗2). Therefore, Λ < (x1 + x∗2)/(2− x1 − x∗2).
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If p2 = π − t(1− x∗2)2 at (x1, x
∗
2), then Lemma 5 implies that Λ > (x1 + x∗2)/(2− x1 − x∗2),

a contradiction. So, p1 = π − tx2
1 at (x1, x

∗
2) and Λ(x1, x

∗
2) is given by the expression above.

This is increasing in y. Since Λ ≤ Q1, y(x1, x
∗
2) ≤ σ1(x1, x

∗
2).

The proof of 1 − y(x∗1, x2) ≤ σ2(x∗1, x2) ⇔ Λ(x∗1, x2) ≥ Q2(x∗1, x2) for x∗1 < x2 < x∗2 is

similar.

Before proving Corollary 2, we examine some consequences of flipping firm locations.

Lemma 6 Suppose that (C1) holds. Let x1 < x2. Then the following conditions are equivalent.

(i) Λ(1− x2, 1− x1) = 1/Λ(x1, x2).

(ii) y(1− x2, 1− x1) = 1− y(x1, x2).

(iii) F1(1− x2, 1− x1) = F2(x1, x2) and F2(1− x2, 1− x1) = F1(x1, x2).

Proof Assume that (C1) holds and x1 < x2. Given Λ(x1, x2) = p1y/[p2(1−y)], let x̄1 = 1−x2,

x̄2 = 1− x1, p̄1 = p2, p̄2 = p1 and ȳ the market share of firm 1 when the prices are (p̄1, p̄2) at

(x̄1, x̄2).

It is easy to check that ȳ = 1 − y, at the prices(p̄1, p̄2) at locations (x̄1, x̄2) the entire

market is served and some consumer pays the reservation price. Moreover, p̄1ȳ = p2(1−y) and

p̄2(1− ȳ) = p1y. So, the profit of each firm is positive at (x̄1, x̄2).

Clearly, (iii) implies (i). Suppose that Λ(1 − x2, 1 − x1) = 1/Λ(x1, x2). At the prices

(p̄1, p̄2), p̄1ȳ/[p̄2(1 − ȳ)] = 1/Λ(x1, x2). By Claim 2, these prices are unique. At these prices,

y(1−x2, 1−x1) = 1−y(x1, x2). So, (i)⇒ (ii). Now suppose that y(1−x2, 1−x1) = 1−y(x1, x2).

This is true when the prices are (p̄1, p̄2) at (x̄1, x̄2). By Claim 2, these prices are unique. At

these prices, F1(1 − x2, 1 − x1) = F2(x1, x2) and F2(1 − x2, 1 − x1) = F1(x1, x2). So, (ii)

⇒ (iii).

Proof of Corollary 2 It is easy to check that if Λ(1− x2, 1− x1) = 1/Λ(x1, x2) then σ2(1−

x2, 1− x1) = σ1(x1, x2) and Q2(1− x2, 1− x1) = 1/Q1(x1, x2).

Suppose that y(x1, x
∗
2) ≤ σ1(x1, x

∗
2) for x∗1 < x1 < x∗2. Consider x∗1 < x2 < x∗2. Lemma 6

implies that 1− y(x∗1, x2) = y(x1, x
∗
2). So, 1− y(x∗1, x2) = y(x1, x

∗
2) ≤ σ1(x1, x

∗
2) = σ2(x∗1, x2).

Suppose that Λ(x1, x
∗
2) ≤ Q1(x1, x

∗
2) for x∗1 < x1 < x∗2. Consider x∗1 < x2 < x∗2. Then

Λ(x∗1, x2) = 1/Λ(x1, x
∗
2) ≥ 1/Q1(x1, x

∗
2) = Q2(x∗1, x2).

The corollary now follows from the theorem.
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10.7 Proofs of Theorem 3 and Corollary 3

Proof of Theorem 3 (i) Lemma 1 implies that (1/2, 1/2) is an equilibrium.

(ii) In order to show that x∗ = (x∗1, x
∗
2) is an equilibrium it needs to be shown that

F1(x1, x
∗
2) < F1(x∗1, x

∗
2) if x1 < x∗2 and F2(x∗1, x2) < F2(x∗1, x

∗
2) if x2 > x∗1.

If x∗2 ≤ 1/2 then p2 = π − t(1− x∗2)2. Since ∂Λ/∂x1 > 0, if y ≥ x1 then ∂F1/∂x1 > 0 from

(7). If y < x1 then p1 > p2. ∂F1/∂x1 > 0 if [(∂Λ/∂x1)/Λ2][p1 − 2t(x∗2 − x1)y] > 2t(x1 − y).

Since x1 < 1/2, 1 + 2x1 > 4(x1− y) and the inequality holds if 2[p1− 2t(x∗2− x1)y] > π− tx∗22.

This follows from p1 > p2 = π − t(1− x∗2)2, π ≥ 3t and (x∗2 − x1)y < 1/4.

Now let x∗2 > 1/2. Suppose that x1 + x∗2 < 1. Then x1 < 1/2. Lemma 1 shows that

F1(x1, x
∗
2) < F1(1− x∗2, x∗2). Therefore, suppose that x1 + x∗2 ≥ 1. Consider the three cases for

the prices.

If p2 = π − t(1 − x∗2)2 then p1 ≤ π − tx2
1 ≤ p2 and y − x1 > 0. If p1 = π − t(y − x1)2

then y − x1 > 0. Since ∂Λ/∂x1 > 0, from (7) and (8), ∂F1/∂x1 > 0 in either of these cases.

Therefore, suppose that p1 = π − tx2
1. By (6), ∂F1/∂x1 > 0 if

1

Λ2
× ∂Λ

∂x1
>

2t

p2
1

[p1(1 + x1 − y)− t(x∗2 − x1)(x1 + x∗2 + 2− 4y)x1].

The RHS is a decreasing function of y.

Since p1 = π−tx2
1, p2 > π−tx∗22 (otherwise the profit of firm 1 is zero). So, p1y+p2(1−y) >

π − tx∗2
2. (C3) ensures that p1y > (π − tx∗2

2)/2, i.e., y > (π − tx∗2
2)/[2(π − tx2

1)] = y∗,

say. Then y∗ < 1/2. The RHS is less than 2t(1 + x1 − y∗)/p1. It is enough to show that

t(1+2x1)/(π−tx∗22) > 2t(1+x1−y∗)/(π−tx2
1). This is equivalent to 1+2x1 > 4y∗(1+x1−y∗).

Since 1 > 4y∗(1− y∗) and 2x1 ≥ 4y∗x1, the inequality holds. So, ∂F1/∂x1 > 0 if x∗2 > 1/2.

Analogous arguments show that ∂F2/∂x2 < 0 if x2 > x∗1 and F2(x∗1, x2) < F2(x∗1, x
∗
2).

Proof of Corollary 3 Let x∗2 > 1/2. If [∂Λ(x1, x
∗
2)/∂x1]/Λ2 ≥ t(1 + 2x1)/(π − tx∗22) at all

x1 < x∗2, then from the theorem, F1(x1, x
∗
2) < F1(x∗1, x

∗
2) for all x1 < x∗2. It needs to be shown

that F2(x∗1, x2) < F2(x∗1, x
∗
2) for all x2 > x∗1.

Let x̄1 = 1− x2 and x̄2 = 1− x∗1. Then x̄1 < x̄2 < 1/2. If x̄1 ≤ x1 < x̄2, then at locations

(x1, x̄2), p2 = π − t(1− x̄2)2. Since ∂Λ(x1, x̄2)/∂x1 > 0, if y ≥ x1 then ∂F1/∂x1 > 0 from (7).

If y < x1 then p1 > p2. ∂F1/∂x1 > 0 if [(∂Λ/∂x1)/Λ2][p1−2t(x̄2−x1)y] > 2t(x1−y). Since

p1 > p2, p1 − 2t(x̄2 − x1)y > π − t(1− x̄2)2 − 2t(x̄2 − x1)y > π − t. Notice that x1 − y < 1/2.

So, ∂F1/∂x1 > 0. This means F1(x̄1, x̄2) < F1(x̄2, x̄2).
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From Lemma 6, F1(x̄1, x̄2) = F2(x∗1, x2) and F2(x̄1, x̄2) = F1(x∗1, x2). By (C5), F1(x̄2, x̄2) =

F2(x∗1, x
∗
1). So, F2(x∗1, x2) < F2(x∗1, x

∗
1) and x∗ is an equilibrium.

The proof with ∂Λ/∂x2 is analogous.

10.8 Proofs of Lemmas 3 and 4

Proof of Lemma 3 Consider the following strategies by the two firms. At any pair of locations,

the firms continue to charge the prices corresponding to (F1, F2) until a single deviation occurs,

in which event they switch to the Nash equilibrium prices for the remainder of the game. Let

Di denote the defection profit of firm i (i = 1, 2) from the profits (F1, F2). Subgame perfection

requires,
1

1− δi
Fi ≥ Di +

δi
1− δi

RiN , δi ≥
Di − Fi

Di −RiN
.

We will show that (π − s)/π ≥ (Di − Fi)/(Di −RiN ). This is equivalent to (Fi −RiN )/(Di −

RiN ) ≥ s/π. Since Fi −RiN ≥ s and Di −RiN ≤ π, the inequality holds.

Proof of Lemma 4 By (C1), F1 + F2 ≥ π − t ≥ 2t.

First suppose that x1 = x2. Let i = 1, 2. If (C4) holds then Fi = (F1 +F2)/2. If (C5) holds

then 1/r ≤ F1/F2 ≤ r, which yields Fi ≥ (F1+F2)/(1+r). Since RiN = 0, Fi−RiN ≥ 2t/(1+r).

Henceforth, assume that x1 < x2.

Consider firm 2. If x1 + x2 ≤ 1, then by (C2) and (C3), F2 ≥ (F1 + F2)/2 ≥ t and

R2N = t(x2 − x1)(4− x1 − x2)2/18 ≤ t/2. So, F2 −R2N ≥ t/2 ≥ t/(1 + r).

If x1 + x2 > 1 then R2N ≤ t(x2 − x1)/2. There are two possibilities to consider: either

x2 − x1 ≤ 2/(1 + r), or x2 − x1 > 2/(1 + r). Suppose that x2 − x1 ≤ 2/(1 + r). Then

R2N ≤ t/(1+r). Since F1/F2 ≤ r, F2 ≥ (F1 +F2)/(1+r) ≥ 2t/(1+r) and F2−R2N ≥ t/(1+r).

Now suppose that x2 − x1 > 2/(1 + r). From F1/F2 ≤ (x1 + x2)/(2 − x1 − x2), F2 ≥ (F1 +

F2)(2−x1−x2)/2 ≥ (F1 +F2)(x2−x1)/2 ≥ t(x2−x1). So, F2−R2N ≥ t(x2−x1)/2 ≥ t/(1+r).

Similar arguments show that F1 −R1N ≥ t/(1 + r). So, s ≥ t/(1 + r).
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