The Perron-Frobenius Theorem under Weak Indecomposability and Weak Monotonicity

> Kali P. Rath University of Notre Dame

> > April 29, 2023

Background and Motivation

- The Perron-Frobenius theorem for nonnegative square matrices originated with a series of writings by Perron and Frobenius in early 1900's.
 - It asserts that such a matrix has a nonnegative eigenvalue and the corresponding eigenvector is also nonnegative.
 - The eigenvalue dominates any other eigenvalue in modulus and is often referred to as the dominant eigenvalue or the Frobenius root.
 - In addition, if the matrix is indecomposable then both the eigenvalue and the eigenvector are positive.
- The Perron-Frobenius theorem is the principal tool in the analysis of linear input-output models.
 - The dominant eigenvalue of the input matrix determines the rate of growth and the eigenvector corresponds to a balanced growth path.
 - Indecomposability in this context means each good is directly or indirectly needed for the production of every other good.
 - Monotonicity is a natural assumption in this setting.

Background and Motivation, contd.

- Solow and Samuelson (1953) considered a more general production system by dropping the additivity assumption for matrices (but retaining the homogeneity condition) and obtained a balanced growth path for all the sectors in the economy.
- In this nonlinear setting, Morishima (1964) and Morishima and Fujimoto (1974) proved the existence of a positive eigenvalue and a positive eigenvector under indecomposability.
- Kohlberg (1982) showed that if the mapping is primitive, repeated iterations take any semipositive vector to the positive eigenvector.
- Bounds for the dominant eigenvalue were obtained in Rath (1986).
- Further developments and applications are contained in the monograph by Lemmens and Nussbaum (2012) and in Chang (2014).
- Neither indecomposability nor monotonicity are as attractive in the nonlinear setting. Furthermore, non-monotonicity and indecomposability may be incompatible some times. These issues are explored below.

Mathematical Preliminaries

- For a positive integer L, ℝ^L is the L-dimensional Euclidean space and ℝ^L₊ its nonnegative orthant.
- ▶ If $x \in \mathbb{R}^{L}$ then $||x|| = \sum_{i=1}^{L} |x_i|$ and $|x| = (|x_1|, ..., |x_L|) \in \mathbb{R}_+^{L}$. ▶ If $x, y \in \mathbb{R}^{L}$,
 - $\begin{array}{ll} x \leq y & \text{means} & x_i \leq y_i \text{ for every } i, \\ x \leq y & \text{means} & x \leq y \text{ but } x \neq y \\ x < y & \text{means} & x_i < y_i \text{ for every } i. \end{array}$

For any two vectors x and y, $E_{x,y} = \{i : x_i = y_i\}.$

- ▶ A matrix *A* is *decomposable* if there is a nonempty proper subset *J* of $\{1, ..., L\}$ such that $a_{ij} = 0$ for $i \notin J$ and $j \in J$.
- A matrix is *indecomposable* if it is not decomposable and is not the zero matrix of order 1.
- A matrix A is primitive if for some positive integer p, A^p > 0. (Every primitive matrix is indecomposable but not the converse.)

Properties of Nonlinear Mappings

If A is a matrix then it has two properties:

 $A(\alpha x) = \alpha A x$ (homogeneity) and A(x + y) = A x + A y (additivity). Nonlinear mappings typically relax the additivity assumption.

Let $H : \mathbb{R}^{L} \longrightarrow \mathbb{R}^{L}$ be a continuous mapping. The following are some of the common assumptions made in the literature.

(A1) Homogeneity. $H(\alpha x) = \alpha H(x)$ for any $\alpha \in \mathbb{R}$.

(A2) Nonnegativity. $H(x) \ge 0$ for all $x \ge 0$.

(A3) Monotonicity. If $x \leq y$ then $H(x) \leq H(y)$.

(A4) Indecomposability. If L = 1 then H(1) > 0. For $L \ge 2$, if $x \le y$ and $E_{x,y}$ is a nonempty proper subset of $\{1, \ldots, L\}$ then $H_i(x) \ne H_i(y)$ for some $i \in E_{x,y}$. (A5) Primitivity. For an integer $\ell \ge 1$, $x \le y \Rightarrow H^{\ell}(x) < H^{\ell}(y)$.

Kali Rath

The Linear Input-Output Model & the Nonlinear Model

$$\boldsymbol{A} = \left[\begin{array}{cc} A_{11} & A_{12} \\ \\ A_{21} & A_{22} \end{array} \right]$$

- a_{ij} is the amount of the *i*-th good needed to produce one unit of the *j*-th good.
- Each row stands for a good and each column stands for a production process.

• If $x \ge 0$ is the output vector then Ax is the input requirement. (Unique)

If A₁₁ is square and A₂₁ = 0 then A is decomposable, otherwise indecomposable. It is a very reasonable assumption in this context.

The Nonlinear Model.

Joint production is possible.

- For each x ≥ 0, the input requirement H(x) is a priori given. The same output vector can be produced in many different ways.
- The overall production structure may have a high level of dependence among all the goods but the dependence may be less strong among specific individual production processes.
- Monotonicity implies free disposal of inputs, but really means more. More output requires more of *each* input, which need not be true.

Kali Rath

An Illustration with Non-monotonicity

- Define $H : \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ as $H(x) = (|x_1 x_2|, x_1 + x_2).$
- Let x = (2, 1) and y = (2, 2). Then H(x) = (1, 3) and H(y) = (0, 4). So, *H* is not monotone.
- H is not indecomposable either.

Let $0 < \epsilon < x_1 = y_1$, $x_2 = x_1 - \epsilon$ and $y_2 = y_1 + \epsilon$. Then $x \le y$, $H(x) = (\epsilon, 2x_1 - \epsilon)$ and $H(y) = (\epsilon, 2y_1 + \epsilon)$. Since $E_{x,y} = \{1\}$ and $H_1(x) = H_1(y)$, indecomposability is violated.

Non-monotonicity and indecomposability will often be in conflict.

Weak indecomposability: Definition

(A4) Indecomposability. If L = 1 then H(1) > 0. For $L \ge 2$, if $x \le y$ and $E_{x,y}$ is a nonempty proper subset of $\{1, \ldots, L\}$ then $H_i(x) \ne H_i(y)$ for some $i \in E_{x,y}$.

(A6) Weak indecomposability. If L = 1 then H(1) > 0. For $L \ge 2$, if $x \le y$ and $E_{x,y}$ is a nonempty proper subset of $\{1, \ldots, L\}$, then for some integer $k \ge 1$, $H_i^k(x) \ne H_i^k(y)$ for some $i \in E_{x,y}$.

In general, the k in the above definition will depend upon x and y.

Two inter-connections are immediate.

(1) Every indecomposable mapping is weakly indecomposable.

(2) A primitive mapping is weakly indecomposable.

Kali Rath

Example 1

Consider the following regions in \mathbb{R}^2 :

$$\begin{split} & \mathcal{W}_1 = \{ x \in \mathbb{R}^2_+ : x_1 \geq x_2 \}, \\ & \mathcal{W}_2 = \{ x \in \mathbb{R}^2_+ : x_2 > x_1 \}, \\ & \mathcal{W}_3 = \{ x \in \mathbb{R}^2 : x_1 < 0, \ x_2 > 0 \}, \\ & \mathcal{W} = \mathcal{W}_1 \cup \mathcal{W}_2 \cup \mathcal{W}_3. \end{split}$$

Define $H : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ as follows.

$$\begin{array}{rcl} H(x) & = & (2x_2, x_1) & \text{ if } x \in W_1 \\ & = & (x_1 + x_2, x_2) & \text{ if } x \in W_2 \\ & = & (x_2, x_1 + x_2) & \text{ if } x \in W_3 \\ & = & -H(-x) & \text{ if } x \notin W. \end{array}$$

H is continuous, homogenous, nonnegative.

- Monotonicity: if $x \le y$ then $H(x) \le H(y)$.
- H is neither indecomposable nor primitive.
- *H* is weakly indecomposable.
- *H* has two eigenvalues: $\lambda^* = \sqrt{2}$ and $\overline{\lambda} = (1 - \sqrt{5})/2$.
- Eigenvectors: $x^* = (\sqrt{2}, 1)$ and $\bar{x} = (-(\sqrt{5}+1)/2, 1)$.

$$\lambda^* > 0$$
, $x^* > 0$, $\lambda^* \ge |\overline{\lambda}|$, $\overline{x} \not\ge 0$.

These are consequences of Theorem 1.

Some Auxiliary Results (Weak ind and Mon)

Proposition 1

A nonnegative, square matrix is indecomposable iff it is weakly indecomposable.

It is well known that if a mapping is monotonic and indecomposable, then ** the image of a semipositive vector is semipositive and ** the image of a positive vector is positive.

These conclusions are valid under weak indecomposability as well.

Lemma 1

Suppose that (A1)–(A3) and (A6) hold. Then $H(x) \ge 0$ if $x \ge 0$ and H(x) > 0 if x > 0.

Weak indecomposability and Monotonicity: Existence

Theorem 1

Suppose that (A1)-(A3) and (A6) hold.

(i) There exist $\lambda^* > 0$ and $x^* > 0$ such that $H(x^*) = \lambda^* x^*$.

(ii) x^* is unique up to scalar multiplication.

(iii) If $\lambda \neq \lambda^*$ then there is no $x \ge 0$ such that $H(x) = \lambda x$.

(iv) $\lambda^* \geq |\bar{\lambda}|$ for any eigenvalue $\bar{\lambda}$ of H.

(iii) shows that x^* is the only nonnegative eigenvector of H.

 λ^* is called the dominant eigenvalue because of (iv).

Weak indecomposability and Monotonicity: Bounds

Theorem 2

Suppose that (A1)–(A3) and (A6) hold. Then for any x > 0, $\min_{i} \frac{H_{i}(x)}{x_{i}} \leq \lambda^{*} \leq \max_{i} \frac{H_{i}(x)}{x_{i}}.$ If $x = x^{*}$ then both inequalities become equalities. If $x \neq x^{*}$ then both the inequalities are strict.

Corollary 1 (Viability condition): x > H(x) for some x > 0 iff $\lambda^* < 1$.

 $\lambda^* < 1 \Rightarrow x^* > H(x^*)$, $x > H(x) \Rightarrow \lambda^* \le \max_i (H_i(x)/x_i) < 1$.

In an economic system, the gross output of each commodity exceeds its total input requirement, so the net output vector is positive. The system is *viable*, i.e., capable of economic growth. If x^* is the output vector then this is the balanced growth path and the rate of balanced growth is $(1/\lambda^*) - 1$.

Kali Rath

Weak monotonicity

(A3) Monotonicity. If $x \leq y$ then $H(x) \leq H(y)$.

Let $\mathbb{R}^2_- = -\mathbb{R}^2 + .$

(A7) Weak monotonicity. (1) If $x, y \in \mathbb{R}^{L}_{+}$, $x \leq y$ and $x \not< y$ then for some $p \geq 1$, $H^{p}(x) \leq H^{p}(y)$.

(II) If $x \notin \mathbb{R}^{L}_{+} \cup \mathbb{R}^{L}_{-}$ then for every $t \ge 1$, $H^{t}(|x|) \ge H^{t}(x) \ge H^{t}(-|x|)$.

Notice that (I) and (II) refer to distinct regions of \mathbb{R}^{L} .

If monotonicity holds then weak monotonicity holds. The converse is not true.

(A8) Iterative semipositivity. For some $\bar{z} \in \mathbb{R}^{L}_{+}$, $H^{t}(\bar{z}) \geq 0$ for every $t \geq 1$.

This is not a very restrictive condition.

If weak indecomposability and monotonicity hold then this condition is satisfied for every $x \ge 0$, by Lemma 1.

Lemma 2

Suppose that (A1), (A2), (A6), (I) of (A7) and (A8) hold. Then $H(x) \ge 0$ if $x \ge 0$.

Unlike Lemma 1, one cannot claim that if x > 0 then H(x) > 0.

Weak indecomposability & Weak monotonicity: Existence

Theorem 3

Suppose that (A1), (A2) and (A6)-(A8) hold.

(i) There exist $\lambda^* > 0$ and $x^* > 0$ such that $H(x^*) = \lambda^* x^*$.

(ii) x^* is unique up to scalar multiplication.

(iii) If $\lambda \neq \lambda^*$ then there is no $x \ge 0$ such that $H(x) = \lambda x$.

(iv) $\lambda^* \geq |\bar{\lambda}|$ for any eigenvalue $\bar{\lambda}$ of H.

In the proof, weak monotonicity (II) is needed only in part (iv).

If weak monotonicity (II) is violated then (iv) need not hold.

G-property

Given a mapping *H*, define *G* as G(x) = x + H(x) for every $x \in \mathbb{R}^{L}_{+}$.

(A9) *G*-property. (I) If $x, y \in \mathbb{R}^{L}_{+}$, $x \leq y$ and $x \not < y$ then for some $k \geq 1$ and $i \in E_{x,y}$, $G_{i}^{k}(x) < G_{i}^{k}(y)$.

(II) Let x > 0 and α and β be positive constants. If $\alpha x \ge G(x)$ then $\alpha G(x) \ge G^2(x)$. If $\beta x \le G(x)$ then $\beta G(x) \le G^2(x)$.

(I) is somewhat stronger than weak indecomposability of G on the nonnegative orthant. Here, the direction of inequality is specifically given.

If G is primitive on the nonnegative orthant then (I) automatically holds.

Primitivity of *G* does not imply *G*-property.

Weak indecomposability & Weak monotonicity: Bounds

Theorem 4

Suppose that (A1), (A2) and (A6)–(A8) hold. Suppose that (a) either G is primitive on \mathbb{R}^{L}_{+} , or (b) (A9) holds. Then for any x > 0, $\min_{i} \frac{H_{i}(x)}{x_{i}} \leq \lambda^{*} \leq \max_{i} \frac{H_{i}(x)}{x_{i}}$. If $x = x^{*}$ then both inequalities become equalities. If $x \neq x^{*}$ then both the inequalities are strict.

Corollary 2 (Viability condition): x > H(x) for some x > 0 iff $\lambda^* < 1$.

The proof and the interpretations are the same as of Corollary 1.

Summary of Results

- This paper has relaxed the notion of indecomposability to weak indecomposability and the notion of monotonicity to weak monotonicity.
- The Perron-Frobenius theorem holds under weak indecomposability and monotonicity. (Theorems 1 and 2)
- The Perron-Frobenius theorem holds under weak indecomposability and weak monotonicity. (Theorem 3)
- Under weak indecomposability and weak monotonicity, additional restrictions are needed to obtain bounds for the dominant eigenvalue. (Theorem 4)