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Background and Motivation

I The Perron-Frobenius theorem for nonnegative square matrices originated

with a series of writings by Perron and Frobenius in early 1900’s.

I It asserts that such a matrix has a nonnegative eigenvalue and the

corresponding eigenvector is also nonnegative.
I The eigenvalue dominates any other eigenvalue in modulus and is

often referred to as the dominant eigenvalue or the Frobenius root.
I In addition, if the matrix is indecomposable then both the

eigenvalue and the eigenvector are positive.

I The Perron-Frobenius theorem is the principal tool in the analysis of

linear input-output models.

I The dominant eigenvalue of the input matrix determines the rate of

growth and the eigenvector corresponds to a balanced growth path.
I Indecomposability in this context means each good is

directly or indirectly needed for the production of every other good.
I Monotonicity is a natural assumption in this setting.
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Background and Motivation, contd.

I Solow and Samuelson (1953) considered a more general production

system by dropping the additivity assumption for matrices (but retaining

the homogeneity condition) and obtained a balanced growth path for all

the sectors in the economy.

I In this nonlinear setting, Morishima (1964) and Morishima and Fujimoto

(1974) proved the existence of a positive eigenvalue and a positive

eigenvector under indecomposability.

I Kohlberg (1982) showed that if the mapping is primitive, repeated

iterations take any semipositive vector to the positive eigenvector.

I Bounds for the dominant eigenvalue were obtained in Rath (1986).

I Further developments and applications are contained in the monograph

by Lemmens and Nussbaum (2012) and in Chang (2014).

I Neither indecomposability nor monotonicity are as attractive in the

nonlinear setting. Furthermore, non-monotonicity and indecomposability

may be incompatible some times. These issues are explored below.
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Mathematical Preliminaries

I For a positive integer L, RL is the L-dimensional Euclidean space and

RL
+ its nonnegative orthant.

I If x ∈ RL then ‖ x ‖ =
∑L

i=1 |xi | and |x | = (|x1|, . . . , |xL|) ∈ RL
+.

I If x , y ∈ RL,

x 5 y means xi ≤ yi for every i ,

x ≤ y means x 5 y but x 6= y

x < y means xi < yi for every i .

I For any two vectors x and y , Ex,y = {i : xi = yi}.

I A matrix A is decomposable if there is a nonempty proper subset J of

{1, . . . , L} such that aij = 0 for i 6∈ J and j ∈ J.

I A matrix is indecomposable if it is not decomposable and is not the zero

matrix of order 1.

I A matrix A is primitive if for some positive integer p, Ap > 0.

(Every primitive matrix is indecomposable but not the converse.)
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Properties of Nonlinear Mappings

If A is a matrix then it has two properties:

A(αx) = αAx (homogeneity) and A(x + y) = Ax +Ay (additivity).

Nonlinear mappings typically relax the additivity assumption.

Let H : RL −→ RL be a continuous mapping. The following are some of the

common assumptions made in the literature.

(A1) Homogeneity. H(αx) = αH(x) for any α ∈ R.

(A2) Nonnegativity. H(x) = 0 for all x = 0.

(A3) Monotonicity. If x 5 y then H(x) 5 H(y).

(A4) Indecomposability. If L = 1 then H(1) > 0.

For L ≥ 2, if x ≤ y and Ex,y is a nonempty proper subset of

{1, . . . , L} then Hi (x) 6= Hi (y) for some i ∈ Ex,y .

(A5) Primitivity. For an integer ` ≥ 1, x ≤ y ⇒ H`(x) < H`(y).
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The Linear Input-Output Model & the Nonlinear Model

A =

 A11 A12

A21 A22


I aij is the amount of the i-th good needed to

produce one unit of the j-th good.

I Each row stands for a good and each column

stands for a production process.

I If x ≥ 0 is the output vector then Ax is the input requirement. (Unique)

I If A11 is square and A21 = 0 then A is decomposable, otherwise

indecomposable. It is a very reasonable assumption in this context.

The Nonlinear Model. Joint production is possible.

I For each x ≥ 0, the input requirement H(x) is a priori given.

The same output vector can be produced in many different ways.

I The overall production structure may have a high level of dependence

among all the goods but the dependence may be less strong among

specific individual production processes.

I Monotonicity implies free disposal of inputs, but really means more.

More output requires more of each input, which need not be true.
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An Illustration with Non-monotonicity

I Define H : R2
+ −→ R2

+ as H(x) = (|x1 − x2|, x1 + x2).

I Let x = (2, 1) and y = (2, 2). Then H(x) = (1, 3) and H(y) = (0, 4).

So, H is not monotone.

I H is not indecomposable either.

Let 0 < ε < x1 = y1, x2 = x1 − ε and y2 = y1 + ε.

Then x ≤ y , H(x) = (ε, 2x1 − ε) and H(y) = (ε, 2y1 + ε).

Since Ex,y = {1} and H1(x) = H1(y), indecomposability is violated.

I Non-monotonicity and indecomposability will often be in conflict.
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Weak indecomposability: Definition

(A4) Indecomposability. If L = 1 then H(1) > 0.

For L ≥ 2, if x ≤ y and Ex,y is a nonempty proper subset of

{1, . . . , L} then Hi (x) 6= Hi (y) for some i ∈ Ex,y .

(A6) Weak indecomposability. If L = 1 then H(1) > 0.

For L ≥ 2, if x ≤ y and Ex,y is a nonempty proper subset of

{1, . . . , L}, then for some integer k ≥ 1,

Hk
i (x) 6= Hk

i (y) for some i ∈ Ex,y .

In general, the k in the above definition will depend upon x and y .

Two inter-connections are immediate.

(1) Every indecomposable mapping is weakly indecomposable.

(2) A primitive mapping is weakly indecomposable.
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Example 1

Consider the following regions in R2:

W1 = {x ∈ R2
+ : x1 ≥ x2},

W2 = {x ∈ R2
+ : x2 > x1},

W3 = {x ∈ R2 : x1 < 0, x2 > 0},

W = W1 ∪W2 ∪W3.

Define H : R2 −→ R2 as follows.

H(x) = (2x2, x1) if x ∈ W1

= (x1 + x2, x2) if x ∈ W2

= (x2, x1 + x2) if x ∈ W3

= −H(−x) if x 6∈ W .

H is continuous, homogenous,

nonnegative.

I Monotonicity:

if x ≤ y then H(x) ≤ H(y).

I H is neither indecomposable nor

primitive.

I H is weakly indecomposable.

I H has two eigenvalues: λ∗ =
√

2

and λ̄ = (1−
√

5)/2.

I Eigenvectors: x∗ =
(√

2, 1
)

and

x̄ =
(
−(
√

5 + 1)/2, 1
)

.

λ∗ > 0, x∗ > 0, λ∗ ≥ |λ̄|, x̄ 6≥ 0.

These are consequences of

Theorem 1.
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Some Auxiliary Results (Weak ind and Mon)

Proposition 1

A nonnegative, square matrix is indecomposable iff

it is weakly indecomposable.

It is well known that if a mapping is monotonic and indecomposable, then

?? the image of a semipositive vector is semipositive and

?? the image of a positive vector is positive.

These conclusions are valid under weak indecomposability as well.

Lemma 1

Suppose that (A1)−(A3) and (A6) hold. Then H(x) ≥ 0 if x ≥ 0

and H(x) > 0 if x > 0.
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Weak indecomposability and Monotonicity: Existence

Theorem 1

Suppose that (A1)−(A3) and (A6) hold.

(i) There exist λ∗ > 0 and x∗ > 0 such that H(x∗) = λ∗x∗.

(ii) x∗ is unique up to scalar multiplication.

(iii) If λ 6= λ∗ then there is no x ≥ 0 such that H(x) = λx .

(iv) λ∗ ≥ |λ̄| for any eigenvalue λ̄ of H.

(iii) shows that x∗ is the only nonnegative eigenvector of H.

λ∗ is called the dominant eigenvalue because of (iv).
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Weak indecomposability and Monotonicity: Bounds

Theorem 2

Suppose that (A1)−(A3) and (A6) hold. Then for any x > 0,

min
i

Hi (x)

xi
≤ λ∗ ≤ max

i

Hi (x)

xi
.

If x = x∗ then both inequalities become equalities.

If x 6= x∗ then both the inequalities are strict.

Corollary 1 (Viability condition): x > H(x) for some x > 0 iff λ∗ < 1.

λ∗ < 1 ⇒ x∗ > H(x∗). x > H(x) ⇒ λ∗ ≤ maxi (Hi (x)/xi ) < 1.

In an economic system, the gross output of each commodity exceeds its total

input requirement, so the net output vector is positive. The system is viable,

i.e., capable of economic growth. If x∗ is the output vector then this is the

balanced growth path and the rate of balanced growth is (1/λ∗)− 1.
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Weak monotonicity

(A3) Monotonicity. If x 5 y then H(x) 5 H(y).

Let R2
− = −R2+.

(A7) Weak monotonicity. (I) If x , y ∈ RL
+, x ≤ y and x 6< y then

for some p ≥ 1, Hp(x) 5 Hp(y).

(II) If x 6∈ RL
+ ∪ RL

− then for every t ≥ 1, H t(|x |) = H t(x) = H t(−|x |).

Notice that (I) and (II) refer to distinct regions of RL.

If monotonicity holds then weak monotonicity holds. The converse is not true.
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Iterative semipositivity

(A8) Iterative semipositivity. For some z̄ ∈ RL
+, H t(z̄) ≥ 0 for every t ≥ 1.

This is not a very restrictive condition.

If weak indecomposability and monotonicity hold then this condition is satisfied

for every x ≥ 0, by Lemma 1.

Lemma 2

Suppose that (A1), (A2), (A6), (I) of (A7) and (A8) hold.

Then H(x) ≥ 0 if x ≥ 0.

Unlike Lemma 1, one cannot claim that if x > 0 then H(x) > 0.
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Weak indecomposability & Weak monotonicity: Existence

Theorem 3

Suppose that (A1), (A2) and (A6)−(A8) hold.

(i) There exist λ∗ > 0 and x∗ > 0 such that H(x∗) = λ∗x∗.

(ii) x∗ is unique up to scalar multiplication.

(iii) If λ 6= λ∗ then there is no x ≥ 0 such that H(x) = λx .

(iv) λ∗ ≥ |λ̄| for any eigenvalue λ̄ of H.

In the proof, weak monotonicity (II) is needed only in part (iv).

If weak monotonicity (II) is violated then (iv) need not hold.
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G -property

Given a mapping H, define G as G(x) = x + H(x) for every x ∈ RL
+.

(A9) G -property. (I) If x , y ∈ RL
+, x ≤ y and x 6< y then for some k ≥ 1 and

i ∈ Ex,y , G k
i (x) < G k

i (y).

(II) Let x > 0 and α and β be positive constants.

If αx = G(x) then αG(x) = G 2(x). If βx 5 G(x) then βG(x) 5 G 2(x).

(I) is somewhat stronger than weak indecomposability of G on the nonnegative

orthant. Here, the direction of inequality is specifically given.

If G is primitive on the nonnegative orthant then (I) automatically holds.

Primitivity of G does not imply G -property.
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Weak indecomposability & Weak monotonicity: Bounds

Theorem 4

Suppose that (A1), (A2) and (A6)−(A8) hold. Suppose that

(a) either G is primitive on RL
+, or (b) (A9) holds.

Then for any x > 0,

min
i

Hi (x)

xi
≤ λ∗ ≤ max

i

Hi (x)

xi
.

If x = x∗ then both inequalities become equalities.

If x 6= x∗ then both the inequalities are strict.

Corollary 2 (Viability condition): x > H(x) for some x > 0 iff λ∗ < 1.

The proof and the interpretations are the same as of Corollary 1.
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Summary of Results

I This paper has relaxed the notion of indecomposability to weak

indecomposability and the notion of monotonicity to weak monotonicity.

I The Perron-Frobenius theorem holds under weak indecomposability and

monotonicity. (Theorems 1 and 2)

I The Perron-Frobenius theorem holds under weak indecomposability and

weak monotonicity. (Theorem 3)

I Under weak indecomposability and weak monotonicity, additional

restrictions are needed to obtain bounds for the dominant eigenvalue.

(Theorem 4)
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