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Abstract

The consumers are uniformly distributed in the unit interval and there are two

producers. A consumer purchases from the producer with the lower delivered price

(product price plus the quadratic transportation cost). The consumer’s quantity de-

manded depends on the product price and the transportation cost which is paid for

every unit of the product purchased. The producers first choose locations and then

compete in prices. For each fixed pair of locations, there is a unique Nash equilibrium

in prices. The equilibrium locations are unique, symmetric and depend upon the ratio

of the reservation price and the transportation cost parameter. When this ratio ex-

ceeds a certain critical value, the locations are at the extreme endpoints of the market.

As the ratio decreases, the two firms gradually move inwards, approximately to the

quartiles of the market. The firms never agglomerate at the center.
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1 Introduction

Hotelling, in his 1929 classic, examined a two stage differentiated product model in which

duopolists first choose product type and then compete in prices. The linear transportation

cost is borne by the consumers and they buy a unit from the cheapest seller. His conclusion

was that the firms locate close to each other and the products are minimally differentiated.

However, subsequent research has found a flaw in his Hotelling’s argument. Due to the

incentive to undercut the competitor located closeby the payoff functions exhibit discontinu-

ities resulting in non-existence of pure strategy equilibrium in prices when firms are located

sufficiently close to each other.

Osborne and Pitchik (1987) restored equilibrium in the second stage by allowing for

mixed strategies over prices, the resulting equilibrium locations are then near the quartiles.

Indeed, d’Aspremont et al. (1983) found that minimum differentiation would never obtain

in location-price models in the spirit of Hotelling. The reason is that, when firms locate

coincidentally, intense price competition drives profits to zero. Anticipating this outcome,

firms will never choose to locate together.

The discovery of the flaw in Hotelling’s argument [Vickrey (1964, p. 323–334), d’Aspremont

et al. (1979)] has led to many variants of this model and a significant body of research.

Gabszewicz and Thisse (1992) contains a review of this extensive literature. One impor-

tant development in this line of research is models with nonlinear transportation cost. The

two stage model with quadratic transportation cost exhibits maximal product differentiation

[d’Aspremont et al. (1979), Neven (1985)].

A predominant theme in the literature since Hotelling’s paper is that the models are

characterized by perfectly inelastic demand. The consumers buy either zero or a unit of the

product subject to a reservation price. One implication of inelastic demand is that a firm

does not make any sacrifice in its own market segment as it moves towards its competitor.

However, such a movement intensifies competition. So the net effect depends on the relative

strengths of these effects.

In many contexts it is reasonable to suppose that the quantity demanded by consumers

is inversely related with price. Smithies (1941), Anderson et al. (1992) and Hamilton et al.

(1994) have examined models with this feature.
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Elastic demand can act as a check towards moving nearer to one’s rival [Smithies (1941,

p. 423)]. In a model with linear transportation cost, Smithies concludes that the firms

locate apart from each other and each locates inside the quartiles of the market to maximize

profits. However, because of subsequent difficulties associated with Hotelling’s model due to

discontinuities, Smithies’ results need to be interpreted with care and caution.

If consumers’ demand is inversely related to price then a distinction can be made between

two issues: whether the transportation cost is lump sum or proportional to the quantity

demanded. This distinction has already been made in Stahl (1987, p. 793–794), Anderson

et al. (1992, p. 283) and Rath and Zhao (2001). Anderson et al. (1992) call it a “shopping

model” if the transportation cost is a lump sum and a “shipping model” if the transportation

cost is paid for every unit of the product.

Anderson et al. (1992, p. 283) examines a model of elastic demand with lump sum

transportation cost. The prices are assumed to be identical for both producers. In such a

model, both firms locate at the center of the market. The reasoning is that, since the prices

are the same each consumer buys from the nearest seller and each consumer buys the same

quantity. The model is thus similar to one with inelastic demand and identical prices which

exhibits central agglomeration.

In Rath and Zhao (2001) the consumers’ demand functions are linear in prices. The

quadratic transportation cost is paid only once and doesn’t depend on quantity purchased.

The interesting result of their model is that the extent of product differentiation depends on

the relative magnitudes of (squared) reservation price and transportation cost parameter. In

particular, if the relative magnitude is sufficiently high then firms locate at the extremes, as

the ratio decreases firms gradually move towards the center of the market.

This paper is concerned with a two stage model with elastic demand. The firms choose

locations in the first stage and compete in prices in the second stage. The (quadratic)

transportation cost is paid per unit purchased. The demand of each consumer varies inversely

with delivered price (price plus the transportation cost) and is assumed to be linear. The

firms charge the Nash equilibrium prices in the second stage and choose locations accordingly

in the initial stage. A unique Nash equilibrium in prices is shown to exist at each possible

pair of locations. The analysis of the location stage turns out to be considerably difficult.

While we were not able to show the existence and uniqueness of the optimal location choices,

we provide results from numerical simulations. The algorithm converges to a unique location
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pair irrespective of initial guess of the equilibrium locations and is always symmetric.

If A is the reservation price and b is the transportation cost parameter then the equilibrium

locations are determined by the ratio A/b. If A/b exceeds a certain critical value, then

the locations are at the extreme endpoints of the market. As A/b decreases the locations

gradually move inwards to approximately (1/4, 3/4). The model then implies that duopolists

never agglomerate. Thus elastic demand and quadratic costs paid per unit of good bought

limit the extent of differentiation.

One explanation for this phenomenon of extreme locations can be given as follows. As the

reservation price rises, this model gradually approximates the two stage model with inelastic

demand. The unique equilibrium locations of the latter model are at the extremes. So for

large reservation price, one still obtains extreme locations in this model as well.

However, for low A/b, the issue is a lot more intricate. To contrast the settings when

demand is inelastic and elastic, first consider the case of inelastic demand. When consumers’

demand is price inelastic, the profit of firm 1 can be written as p1z (price times the market

share). Of course, the market share is determined by own price, more importantly it depends

on the price differential of the two firms. As a firm moves away from its rival, its price goes up

or competition is softened. This also affects the market share (because of the price changes).

So, the net effect on profit depends on these two countervailing effects. As it turns out in the

inelastic demand case, the increase in price offsets the loss in market share. So, profit does

increase because of the price increase as the firm moves away from its rival. This results in

extreme locations.

In contrast, when consumers’ demand is linear in price, the profit of firm 1 can be written

as p1(A− p1)z− p1T , where p1T represents the value of aggregate transportation cost in the

duopolist’s market segment. When demand is price elastic, the contribution of high price to

profit is restricted by price-inversed low demand and by the value of total transportation cost.

Hence, competition on demand and market share becomes more important than achieving a

high price by locating apart.

The parameters A and b determine the relative magnitudes of the effect of higher price

and lower demand and market share on profit. Thus, a move away from its rival may not

be always profitable for a firm and so location choices can be in the interior of the market

segment. Another interesting feature of the model is that customers paying transportation
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cost per unit of good purchased imposes a lower bound on the degree of differentiation. Since

transportation cost now affects demand, this has direct consequence for the profit of the

firm through the lower demand of the consumers. This makes agglomeration an unattractive

option for the firms since they would lose too much of demand from the periphery of the

market segment.

The paper is organized as follows. The next section specifies consumers’ preferences and

derives the demand functions for differentiated product. The demand functions of duopolists

are derived in Section 3. The existence of Nash equilibrium in prices for fixed locations of

the firms is proved in section 4. Section 5 provides the results from numerical simulations

for equilibrium locations. Section 6 concludes.

2 Demand for Differentiated Products

There are two goods. Good 1 is to be thought of as a (Hicksian) composite good and good 2

is a differentiated product. A consumer’s utility from buying qh and qd units of the two

goods is assumed to be u(qh, qd) = qh + ρ1qd − ρ2q
2
d − qdfd. The function fd captures the

notion of transportation cost paid per unit of good 2 bought. The budget constraint is

phqh + pdqd = m. ph is normalized to 1. pd can vary, and in particular, may be zero.

The utility function is strictly quasiconcave in the two goods. Utility maximization subject

to budget constraint yields the demand functions: qh = m − pd[(ρ1 − pd − fd)/2ρ2] and

qd = (ρ1 − pd − fd)/2ρ2 whenever positive and zero otherwise.

Now suppose that the consumers are uniformly distributed over the unit interval [0, 1]

and the two producers of differentiated products are located at x1 and x2, x1 ≤ x2. Each

consumer’s problem is to decide which product to buy and how much. Minor modifications

in the utility function can take into account the two differentiated products at different

locations. The quantity of the differentiated products are now denoted by q1 and q2 (cor-

responding to firm locations at x1, x2) and the prices by p1 and p2. Let the utilities of

consumer t while consuming products 1 and 2 be u1(qh, q1) = qh + ρ1q1 − ρ2q
2
1 − q1f1(t) and

u2(qh, q2) = qh + ρ1q2 − ρ2q
2
2 − q2f2(t).

The functions f1 and f2 capture the utility loss of consumer t from consuming a product at
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a different location. From above, the demand of a consumer of the two differentiated products

is q1 = (ρ1 − p1 − f1(t))/(2ρ2) and q2 = (ρ1 − p2 − f2(t))/(2ρ2). The corresponding indirect

utility functions are u∗
1 = m+(ρ1 − p1 − f1(t)) q1 − ρ2q

2
1 and u∗

2 = m+(ρ1 − p2 − f2(t)) q2 −
ρ2q

2
2, where q1 and q2 are demand functions defined earlier. Consumers for which u∗

1 ≥ u∗
2

buy from firm 1 and others buy from firm 2.

At this stage, it is worthwhile to note two alternative interpretations. In the preceding

paragraph it is assumed that the indifferent consumer, for whom u∗
1 = u∗

2, buys from firm 1.

Alternatively, one can postulate that the indifferent consumer chooses randomly between the

two firms. The subsequent analysis is unaffected by this assumption. The preceding analysis

interprets the transportation cost as a cost in utility. Instead, if the transportation cost is

included in the budget constraint, then the utility function becomes u(qh, qd) = qh + ρ1qd

− ρ2q
2
d and the budget constraint becomes phqh + pdqd + qdfd = m. It is readily checked

that, by including fd in the budget constraint, qd remains identical whereas qh is different,

depending now on fd. Of more significance is the fact that u∗
1 and u∗

2 given above remain

the same and the subsequent analysis is obviously not affected.

Typically, ρ1, ρ2, f1 and f2 would be functions of t, x1 and x2. However, the model

becomes almost intractable at that level of generality. So, for simplicity let ρ1 = A and ρ2

= 1/2. Furthermore, let f1(t) = b(t− x1)
2 and f2(t) = b(t− x2)

2.

The constant A plays the role of the reservation price of the consumers. The trans-

portation cost parameter is b and the transportation cost is quadratic and paid per unit of

differentiated product purchased.

Now q1 = A− p1 − b(t− x1)
2 and q2 = A− p2 − b(t− x2)

2. Solving u∗
1 = u∗

2 for t, which

now becomes [A− p1 − b(t− x1)
2]q1 − 1

2
q21 = [A− p2 − b(t− x2)

2]q2 − 1
2
q22, gives the identity

of marginal consumer denoted by z. The market shares of the two firms are z and 1− z and

the expression for z is given in the next section.

3 The Model

From the preceding discussion the model can be described as follows. The consumers are

uniformly distributed over the unit interval [0, 1]. The reservation price of the consumers is
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A. The transportation cost parameter is b. The transportation cost is quadratic and paid

per unit of good purchased. Throughout it is assumed that A ≥ b.

The producers are located at x1 and x2, x1 ≤ x2. The production costs are zero. The

market shares of the two firms are z and 1 − z respectively. Each consumer t ∈ [0, z] buys

A− p1 − b(t− x1)
2 units from firm 1 and each consumer t ∈ [z, 1] buys A− p2 − b(t− x2)

2

units from firm 2. Notice that demand of a consumer in either segment of the market now

depends on own location and location of the supplier in the corresponding markets. Firms

set uniform price pi per unit of quantity sold and collect pi [A− pi − b(t− xi)
2] amount of

profit from a consumer located at t. Therefore, when x1 < x2,

z =
p2 − p1

2b(x2 − x1)
+

x1 + x2

2

D1(p1, p2) =

∫ z

0

[
A− p1 − b(t− x1)

2
]
dt

D2(p1, p2) =

∫ 1

z

[
A− p2 − b(t− x2)

2
]
dt

π1(p1, p2) = p1D1(p1, p2) =

∫ z

0

p1
[
A− p1 − b(t− x1)

2
]
dt

π2(p1, p2) = p2D2(p1, p2) =

∫ 1

z

p2
[
A− p2 − b(t− x2)

2
]
dt

The main difference between this model and models with perfectly inelastic demand is the

following. The demand of each consumer is inversely related and varies continuously with

the delivered price. An increase in price affects the firm’s demand in two ways, the market

share diminishes and the quantity sold to each consumer diminishes. Had consumer demand

been completely inelastic, firm demand would be affected only through loss in market share.

The difference between this specification and one where the quadratic transportation

cost is paid only once is that in the latter case the demand functions of each consumers

are not affected by transportation cost parameter and the only effect it induces is through

identity of marginal consumer. In the current model the transportation cost parameter

effects both individual demand and identity of indifferent consumer since it is paid for each

unit purchased.
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4 Existence of Nash Equilibrium in Prices

The purpose of this section is to prove the existence of a Nash equilibrium in prices for any

given pair of locations. For fixed locations of the firms, a Nash equilibrium is a pair of prices

(p∗1, p
∗
2) such that π1(p

∗
1, p

∗
2) ≥ π1(p1, p

∗
2) for all p1 and π2(p

∗
1, p

∗
2) ≥ π2(p

∗
1, p2) for all p2. If x1

= x2 then a zero price for each firm is the unique Nash equilibrium. So, for the remainder

of the section it is assumed that x1 < x2.

We can further describe the tradeoff firms are facing. From the profit function of firm 1,

its derivative with respect to p1 is∫ z

0

[
A− 2p1 − b(t− x1)

2
]
dt+ p1θ

∂z

∂p1

The first term measures marginal change in profits by slightly increasing price while holding

the market share constant. Notice that the integrand refers to the consumer located at t and

integrating over all consumers in the market segment of firm 1 corresponds to the aggregated

marginal effect. The second term measures marginal decrease in profits that is due to loss

in the market share by setting higher prices. Therefore, the firm tries to set price such that

the effect of a loss in the market share is exactly balanced out by the effect of aggregate

marginal increase in profits from it’s market segment.

The next theorem deals with existence of the price equilibrium in the second stage of the

game.

Theorem 1. Let x1 < x2 be given. The profit functions π1(·, ·) and π2(·, ·) are strictly quasi-

concave in their own arguments. Consequently for each pair of locations a Nash equilibrium

in prices exists. The Nash equilibrium prices are (implicitly) given by the following pair of

first order conditions.

(A− 2p1 − η1)z −
p1

2b(x2 − x1)
θ = 0 (1)

(A− 2p2 − η2)(1− z)− p2
2b(x2 − x1)

θ = 0 (2)

where η1 = b/3[(z− x1)
2 − (z− x1)x1 + x2

1], η2 = b/3[(1− x2)
2 +(1− x1)(z− x2)+ (z− x2)

2]

and θ = A− p1 − b(z − x1)
2.
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Appendix 1 shows that the profit functions are strictly quasiconcave. In addition, using

a contraction argument, it can be shown that the Nash equilibrium prices are unique. The

details are given in the same appendix.

Unfortunately, it is not possible to solve for Nash equilibrium prices explicitly, however

the following can be shown.

Lemma 1. If 1− x1 − x2 = 0, then p2 = p1 and z = 1/2. If 1− x1 − x2 > 0, then p2 > p1

and (x1 + x2) /2 < z < 1/2. If 1− x1 − x2 < 0, then p2 < p1 and (x1 + x2) /2 > z > 1/2.

The sketch of the proof is given in Appendix 2. The lemma plays a crucial role in

characterizing equilibrium locations.

5 Equilibrium Locations

The firms choose locations in the first stage and compete in prices in the second stage.

The existence of Nash equilibrium prices for any given pair of locations was proved in the

preceding section. In this section, we provide results from the numerical simulations, draw

a conjecture and discuss a possible way to prove existence and uniqueness.

Denote by π̃1(x1, x2) and π̃2(x1, x2) the Nash equilibrium profits of the two firms at loca-

tions x1 and x2. So,

π̃1(x1, x2) =

∫ z

0

p1
[
A− p1 − b(t− x1)

2
]
dt

π̃2(x1, x2) =

∫ 1

z

p1
[
A− p2 − b(t− x2)

2
]
dt

where p1 and p2 are the Nash equilibrium prices at the locations (x1, x2) and z and 1− z are

the corresponding market shares. An equilibrium pair of locations is such that each profit

function is maximized given the location choice of the other firm. Using the expression for

π̃1(x1, x2) and π̃2(x1, x2) one can analyze the tradeoff firms are facing when deciding where

to locate. For example, for firm 1 the derivative of profit with respect to it’s own location
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can be written as:

∂π̃1

∂x1

=
∂π1

∂p2

∂p2
∂x1

+
∂π1

∂x2

= p1θ
∂z

∂p2

∂p2
∂x1

+

∫ z

0

p1 [2b(t− x1)] dt+ p1θ
∂z

∂x1

The first term corresponds to the indirect channel when firm 1 changes it’s location. This

itself has two effects. First, it induces endogenous change in second firm’s price choice.

Second, the change in competitor’s price affects the profit of firm 1 through change in the

market share. By moving closer towards its competitor firm 1 induces a more aggressive

price competition. Notice that indeed, two effects come into play, when firm 2 changes it’s

price it induces change in market share of firm 1, this is further dampened/amplified by

pricing decision of the competitor.

The second and third terms capture the direct effect of change in location on first stage

profits. The second term captures the aggregate marginal effect on demand through trans-

portation cost when market share is held constant. The third term accounts for the direct

effect induced from a change in market share as result of the firm changing it’s location.

Finally, notice that own price effect is irrelevant due to the fact that firm is reoptimizing

for each new location decision. See Appendix 3 for derivations of first order conditions and

comparative statics expressions for prices.

The issue of existence of equilibrium locations is not quite straightforward. Part of the

difficulty is caused by the fact that one does not have explicit solutions for Nash equilibrium

prices. Furthermore, it is not clear whether the functions π̃1(·, ·) and π̃2(·, ·) are quasiconcave
in their own arguments. Thus one cannot appeal to any well known existence argument and

has to resort to indirect means to prove existence. At the end of this section we outline one

possible way to show existence of the equilibrium, although we were not able to provide the

poof.

The following conjecture summarizes the results from numerical simulations.

Conjecture 1. There is a unique equilibrium pair of locations (x∗
1, x

∗
2). These locations are

symmetric, x∗
1 = 1 − x∗

2. There is a constant C (approx: 7.5170) such that if A/b ≥ C then

the equilibrium locations are at the extreme endpoints of the market, x∗
1 = 0. If A/b ∈ [1, C)

then the equilibrium locations are interior, x∗
1 ∈ (0, 0.2676].
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The constant C is obtained from numerical simulations. We normalize A to unity and vary

b. For each value of transportation cost parameter the algorithm converges to a symmetric

location equilibrium irrespective of the initial guess. As b decreases towards zero, x∗
1 also

decreases towards zero and as b goes to A, x∗
1 converges to approximately 0.2676. This is

illustrated in the following figure.

Figure 1: Symmetric equilibrium locations

The issue of nonextreme locations can be briefly examined. Consider the Nash equilibrium

profit of firm 1, π̃1(x1, x2), at any given pair of locations x1 and x2. Then, as we argued

earlier, the marginal effect of change in the own location can be decomposed into two effects:

the effect due to price change and the effect due to competitors change in market share.

Numerical simulations show that ∂p2/∂x1 < 0. Suppose that b is low, so that the second

effect is negligible, then first effect dominates (indeed, ∂z/∂p2 is high in such case) and

the profits are decreasing in x1, therefore firms choose to locate at the extremes of the

market. On the other hand, if b is high enough so that second effect is not negligible, then

firms choose locations such that they balance these two countervailing forces resulting in an
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interior location choice. The magnitude of A/b is what determines the relative strength of

these two effects, if A/b is high enough then firms locate at the extremes, when A/b decreases

firms locate inside the market.

The remainder of this section is devoted to an outline of a possible structure of a proof of

the Conjecture 1. It can be shown that ∂π̃1/∂x1 = −V1K1 and ∂π̃2/∂x2 = V2K2. All of these

K1, K2, V1, V2 are functions of the locations x1 and x2. Furthermore, V1 and V2 are positive.

The details are given in Appendix 3. So, the signs of the derivatives are determined by K1

and K2. At symmetric locations, K1 and K2 are identical. Then consider the following two

conjectures.

Claim 1. K2 −K1 has the same sign as 1− x1 − x2.

Conjecture 2. ∂(K1 +K2)/∂x1 > 0 and ∂(K1 +K2)/∂x2 < 0 whenever K1 +K2 is zero.

These are akin to first and second order conditions. Using Conjecture 1 one could show

that the model cannot have asymmetric equilibrium locations, i.e., 1 − x1 − x2 ̸= 0 cannot

hold at an equilibrium. This can be seen as follows.

Suppose there is an equilibrium with 1 − x1 − x2 > 0. Since x2 < 1, ∂π̃2/∂x2 must be

zero, i.e., K2 = 0. From Claim 1, K2−K1 > 0. So, K1 < 0 which implies that ∂π̃1/∂x1 > 0.

So, firm 1 changes its location. The case 1−x1−x2 < 0 is handled in an analogous manner.

From the preceding discussion, we could rule out any asymmetric equilibrium. This

leaves only symmetric location pairs as candidates for equilibrium. Conjecture 2 now would

provides the sufficient conditions for existence, that is, the symmetric locations are indeed

equilibrium locations. Consider any pair of locations (x∗
1, x

∗
2) given in Claim 1. If x∗

1 > 0

then K1 + K2 = 0, if x∗
1 = 0 then K1 + K2 ≥ 0. Keep x∗

2 fixed. From Conjecture 2, if

firm 1 chooses a location x1 just to the right of x∗
1 then K1 +K2 > 0 at locations x1 and x∗

2.

Conjecture 2 further ensures that K1+K2 > 0 at all locations x1 to the right of x∗
1. For any

such x1, 1− x1 − x∗
2 < 0. So, from Claim 1, K2 −K1 < 0. So, K1 > 0 and ∂π̃1/∂x1 < 0 (at

all locations x1 to the right of x∗
1).

Now suppose that x∗
1 > 0. Then K1 +K2 = 0. At a location x1 to the immediate left of

x∗
1, K1+K2 < 0 by Conjecture 2 and K1+K2 < 0 for all locations x1 to the left of x∗

1. Now

1− x1 − x∗
2 > 0, so K2 −K1 > 0 from Claim 1. Thus K1 < 0 and ∂π̃1/∂x1 > 0.

Therefore, this would show that x∗
1 is the optimal location of firm 1 given x∗

2. Similarly,
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x∗
2 is the optimal location of firm 2 given x∗

1. So the pair (x∗
1, x

∗
2) given in Conjecture 1 would

be the unique equilibrium locations in this model.

6 Conclusion

This paper has dealt with a situation where the transportation cost is quadratic and paid

per unit of the quantity purchased. Consumers’ demand is linear in delivered price. The

results are: there is a Nash equilibrium in prices for each location pair and the unique

symmetric equilibrium locations depend on the relative magnitudes of the reservation price,

A, and the transportation cost parameter, b. Through numerical simulations we found a

constant C ≈ 7.5170 such that if A/b ≥ C the equilibrium locations are at the extremes

of the market. As A/b decreases to unity, the locations gradually move from the endpoints

towards (0.2676, 0.7324), slightly more than a quarter of a market length. Interestingly, these

locations are close to socially optimal locations.

This phenomenon is quite different from the existing results in the literature. If demand

is assumed to be completely inelastic, then the firms locate at the extreme endpoints of the

market [d’Aspremont et al. (1979), Neven (1985)]. If prices are assumed to be identical

irrespective of locations, then the firms agglomerate at the center [Anderson et al. (1992)].

Hamilton et al. (1994) have examined a model of quantity competition. They assume

elastic demand, linear transportation cost and that the transportation cost is paid for every

unit of the product. Barring the issue of existence of pure strategy equilibrium in the second

stage (due to linear transportation cost), they claim that the firms nearly agglomerate for

low transportation costs and move away from the center of the market as transportation

costs rise. This is in direct contrast with the result obtained in this paper. In the model

examined above, for lower transportation costs (higher A/b) the firms locate at the extreme

endpoints of the market and for higher transportation costs (lower A/b) the firms gradually

move towards location slightly more than a quarter distance of their market periphery.

We also contrast these results with Rath and Zhao (2001). Their setup is similar to ours,

except that in their specification, the transportation cost is paid only once. In their model

the ratio A2/b determines the equilibrium locations. In both models when the transportation

cost is sufficiently low, firms locate at the extremes. However, in contrast to their result, in
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our model firms never agglomerate at the center. When transportation cost is sufficiently

high, firms locate approximately at (0.2676, 0.7324). We interpret this difference as follows.

In our model the transportation cost is paid on every unit bought. This further lowers

the quantity demanded through the quadratic transportation cost paid per product. By

agglomerating at the center firms forgo suboptimally high amount of profits from the edge

of the market.
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Appendix 1.

It is shown below that the profit functions π1 and π2 are strictly quasiconcave in their

own arguments.

From the definition of z one obtains: ∂z/∂p1 = −1/[2b(x2−x1)] and ∂z/∂p2 = 1/[2b(x2−
x1)]. Therefore, the first and second order derivatives can be written as:

∂π1

∂p1
= (A− 2p1 − η1)z −

p1
2b(x2 − x1)

θ

∂π2

∂p2
= (A− 2p2 − η2)(1− z)− p2

2b(x2 − x1)
θ

∂2π1

∂p21
= −2

(
θ − p1

2b(x2 − x1)
+ z

)
− p1

2b(x2 − x1)
× z − x1

x2 − x1

∂2π2

∂p22
= −2

(
θ − p2

2b(x2 − x1)
+ 1− z

)
+

p2
2b(x2 − x1)

× z − x2

x2 − x1

where η1, η2 and θ are defined in the statement of Theorem 1.

We show that ∂2π1/∂p
2
1 is negative when ∂π1/∂p1 is zero. The second-order condition can

be rewritten as

z +
A− 2p1

2b(x2 − x1)
− b(z − x1)

2

2b(x2 − x1)
+

bp1(z − x1)

[2b(x2 − x1)]2
> 0.

We will show that this is positive when ∂π1/∂p1 is zero.

First suppose that z − x1 ≥ 0. Suppose further that z > p1/[2b(x2 − x1)]. Then the

expression is positive since A− p1 − b(z − x1)
2 is nonnegative.

Next suppose that z ≤ p1/[2b(x2 − x1)]. Then −(z − x1)
2 + [p1(z − x1)/[2b(x2 − x1)]] ≥

−(z − x1)
2 + z(z − x1) = (z − x1)(z − z + x1) ≥ 0.

Therefore, suppose that z − x1 < 0. The fact that ∂π1/∂p1 = 0 is actually needed here.

First note that when ∂π1/∂p1 = 0, A−2p1−(b/3)[(z−x1)
2−(z−x1)x1+x2

1] ≥ 0. Moreover,

(z−x1)
2−(z−x1)z+(1/3)z2 = (1/3)[(z−x1)

2−(z−x1)x1+x2
1]. When z−x1 < 0, (z−x1)

2

< (1/3)[(z − x1)
2 − (z − x1)x1 + x2

1]. Therefore, A− p1 − b(z − x1)
2 ≥ A− 2p1 − b(z − x1)

2

≥ A− 2p1 − (b/3)[(z − x1)
2 − (z − x1)x1 + x2

1]. This means, z ≥ p1/[2b(x2 − x1)].
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Since z − x1 < 0, p1(z − x1)/[2b(x2 − x1)] ≥ z(z − x1). Therefore, it suffices to show that

z +
A− 2p1

2b(x2 − x1)
− b(z − x1)

2

2b(x2 − x1)
+

bz(z − x1)

2b(x2 − x1)

is positive. From above, A− 2p1 − b(z− x1)
2 + bz(z− x1) = A− 2p1 − (b/3)[(z− x1)

2 − (z−
x1)x1 + x2

1] + (b/3)z2 ≥ 0.

Analogous arguments applies to firm 2. This shows that Nash equilibrium in prices exist.

The contraction argument. The remainder of the Appendix is devoted to the uniqueness

issue. From (1) it can be shown that

∂p1
∂p2

=
θ + p1 [(z − x2)/(x2 − x1)]

2 [θ + 2b(x2 − x1)z] + p1 [(z − x2)/(x2 − x1)]− p1
.

The denominator is positive by the second order condition of firm 1. It can be shown that

the numerator is positive and the ratio is less than 1. A similar argument applies to firm 2.

Therefore, the best response mapping is a contraction, hence the price equilibrium is unique.
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Appendix 2.

This appendix provides a sketch of the proof for Lemma 1.

Taking the difference of (2) and (1), one can show that

p2 − p1
b(x2 − x1)

=
β1 + β2 − (b/3) + (b/2)(x2 − x1)

θ + β1 + β2 + (b/6) + (3b/2)(x2 − x1)
(1− x1 − x2)

where, βi = A − 2pi − ηi, i = 1, 2. Clearly, the denominator positive. It can be shown that

the numerator is positive as well.
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Appendix 3.

This Appendix provides the expressions for ∂π̃1/∂x1 and ∂π̃2/∂x2.

The Nash equilibrium prices p1 and p2 are functions of x1 and x2. Denote ∂pi/∂xj by wij;

i, j = 1, 2.

Applying implicit function theorem to first-order conditions (1) and (2) gives the com-

parative statics expressions wij:

wij =

[
−∂2πj

∂p2j

∂2πi

∂xj∂pi
+

∂2πi

∂pj∂pi

∂2πj

∂xj∂pj

]
/Γ

where

Γ =
∂2π1

∂p21

∂2π2

∂p22
− ∂2π1

∂p2∂p1

∂2π2

∂p1∂p2

is the determinant of Jacobian matrix of best response mapping and is positive by contrac-

tion.

The first order conditions for the maximization are:

∂π̃1

∂x1

=
∂π1

∂p2

∂p2
∂x1

+
∂π1

∂x1

= p1

[
θ

(
w21

2b(x2 − x1)
+

z − x1

x2 − x1

)
+ b (z − x1)

2 − bx2
1

]
∂π̃2

∂x2

=
∂π2

∂p1

∂p1
∂x2

+
∂π2

∂x2

= p2

[
θ

(
w12

2b(x2 − x1)
+

x2 − z

x2 − x1

)
− b (z − x2)

2 + b (1− x2)
2

]
and K1 and K2 in section 5 are defined from the above expressions.
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