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Abstract

This paper examines continuous and homogenous mappings from an Euclidean space to

itself. A new concept weak indecomposability is introduced. A mapping is called weakly in-

decomposable if whenever one vector dominates another in some but not all the components

then the images of these two vectors are not equal in one of the components where equality

held originally for some iterate of the mapping. For nonnegative square matrices, the two

concepts weak indecomposability and indecomposability are equivalent. For nonlinear map-

pings, weak indecomposability is strictly weaker than indecomposability. The existence of

a positive eigenvalue is proved under monotonicity and weak indecomposability. The cor-

responding eigenvector is also positive. This eigenvalue dominates all other eigenvalues in

modulus. Bounds for this dominant eigenvalue are given. Subsequently monotonicity is

weakened to weak monotonicity. Analogous results are obtained for weakly monotone and

weakly indecomposable mappings.
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1 Introduction

The Perron-Frobenius theorem for nonnegative square matrices originated with a series of writ-

ings by Perron (1907a, 1907b) and Frobenius (1908, 1909, 1912). It asserts that such a matrix

has a nonnegative eigenvalue and the corresponding eigenvector is also nonnegative. The eigen-

value dominates any other eigenvalue in modulus and is often referred to as the dominant

eigenvalue or the Frobenius root. In addition, if the matrix is indecomposable then both the

eigenvalue and the eigenvector are positive. This result has been of considerable interest in

various �elds.

In economics, the Perron-Frobenius theorem is the principal tool in the analysis of linear

input-output models. It has led to further studies in matrix theory such as Debreu and Herstein

(1953) and McKenzie (1960). In the context of input-output models, the dominant eigenvalue

of the input matrix determines the rate of growth and the eigenvector corresponds to a balanced

growth path.

Solow and Samuelson (1953) considered a more general production system by dropping the

additivity assumption for matrices and obtained a balanced growth path for all the sectors in

the economy. In this nonlinear setting, Morishima (1964) and Morishima and Fujimoto (1974)

proved the existence of a positive eigenvalue and a positive eigenvector under indecomposabil-

ity. Kohlberg (1982) showed that if the mapping is primitive, in addition to existence, repeated

iterations take any semipositive vector to the positive eigenvector. Bounds for the dominant

eigenvalue were obtained in Rath (1986). The monograph by Lemmens and Nussbaum (2012)

contains an excellent account of the developments in nonlinear mappings and various appli-

cations. The Krein-Rutman theorem is an important result related to the Perron-Frobenius

theorem. Chang (2014) presents a unifying approach to both the results.

In the context of production, indecomposability means a strong linkage among the di�erent

production sectors. In the linear case, joint production is not possible and inputs are combined

in �xed proportions to produce a unit of a single good. The inputs are combined linearly to

produce a positive output vector. Indecomposability in this context, i.e., each good needs every

other good directly or indirectly for its production, is a compelling assumption.

In nonlinear systems, however, joint production is possible and the input requirement for
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each con�guration of outputs is speci�ed. A speci�c output vector may be produced using

its own input requirements, but can also be produced by combining the outputs of several

other production processes. Suppose that from a prespeci�ed output vector, the outputs of

some but not all the goods are increased. To require an increase in the input requirement

of at least one of the goods whose output has been held �xed seems to be too strong in this

context. Some production processes may exhibit this property but other processes might not.

The overall production structure may have a high level of dependence among all the goods

but the dependence may be less strong among speci�c individual production processes. The

production processes might be interrelated in a notion weaker than indecomposability.

Another important notion in production is monotonicity. Higher output levels means higher

input levels of all the inputs. This implies free disposal of inputs, but really means more. Since

the production structure is quite general, higher output levels might be attained by increasing

the inputs of some of the goods but reducing the inputs of the remaining goods. In other words,

the production structure need not be monotonic.

Unfortunately, non-monotonicity and indecomposability may be incompatible sometimes.

This strengthens the case for a notion weaker than indecomposability. In this paper, we relax

both the notions indecomposability and monotonicity. Indecomposability is weakened to weak

indecomposability and monotonicity is weakened to weak monotonicity. Consider a mapping

from an Euclidean space to itself. The mapping is weakly indecomposable if whenever one

vector dominates another in some but not all the components then the images of these two

vectors are not equal in one of the components where equality held originally for some iterate

of the mapping. Weak monotonicity has two parts. (I) If one vector dominates another, then

the same relationship holds between the images for some iterate of the mapping. (II) In certain

regions of the Euclidean space and for every iterate of the mapping, there is dominance among

the images of the absolute value of the vector, the vector itself and the negative of the absolute

value of the vector.

In terms of results we obtain the following. If the mapping is monotonic and weakly inde-

composable then it has a positive eigenvalue and the corresponding eigenvector is also positive.

This eigenvalue dominates all other eigenvalues in modulus. Bounds for this dominant eigen-

value are given. Thus, in the presence of monotonicity, indecomposability can be relaxed to
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weak indecomposability, yet all the results obtain with full generality. Subsequently monotonic-

ity is weakened to weak monotonicity. Analogous results are obtained for weakly monotone and

weakly indecomposable mappings.

The paper is organized as follows. In the next section the basic notations and some com-

mon assumptions in the literature are listed. Section 3 points out the con�ict between non-

monotonicity and indecomposability. It also contains the notion of weak indecomposability

and a motivating example. Section 4 explores the implications of monotonicity and weak in-

decomposability. Theorem 1 there is the Perron-Frobenius theorem under these conditions.

Theorem 2 provides bounds for the dominant eigenvalue. Section 5 introduces the notion of

weak monotonicity and discusses the implications of weak monotonicity and weak indecom-

posability. Theorems 3 and 5 there are the counterparts of Theorems 1 and 2 under weak

monotonicity and weak indecomposability. Section 6 concludes the paper. Details of some

examples and proofs of the results are relegated to Appendices A and B.

2 Notations and some common assumptions

For a positive integer L, RL is the L-dimensional Euclidean space and RL
+ its nonnegative

orthant. If x ∈ RL then ∥ x ∥ =
∑L

i=1 |xi| and |x| = (|x1|, . . . , |xL|) ∈ RL
+. The unit simplex is

S = {x ∈ RL
+ : ∥ x ∥ = 1}. If x, y ∈ RL, x ≦ y means xi ≤ yi for every i, x ≤ y means x ≦ y but

x ̸= y and x < y means xi < yi for every i. For any two vectors x and y, Ex,y = {i : xi = yi}.

All matrices considered in this paper are nonnegative and square. A matrix A is decom-

posable if there is a nonempty proper subset J of {1, . . . , L} such that aij = 0 for i ̸∈ J and

j ∈ J . A matrix is indecomposable if it is not decomposable and is not the zero matrix of

order 1. Sometimes the word reducible (irreducible) is used for decomposable (indecompos-

able). A matrix A is primitive if for some positive integer p, Ap > 0. Every primitive matrix is

indecomposable but not the converse. Proofs of the Perron-Frobenius theorem with or without

indecomposability can be found in Nikaido (1968).

If A is a matrix then it has two properties: A(αx) = αAx (homogeneity) and A(x + y) =

Ax+Ay (additivity). Nonlinear mappings typically relax the additivity assumption.

Let H : RL −→ RL be a continuous mapping. The following are some of the common
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assumptions made in the literature.

(A1) Homogeneity. H(αx) = αH(x) for any α ∈ R.

(A2) Nonnegativity. H(x) ≧ 0 for all x ≧ 0.

(A3) Monotonicity. If x ≦ y then H(x) ≦ H(y).

(A4) Indecomposability. If L = 1 then H(1) > 0. For L ≥ 2, if x ≤ y and Ex,y is a nonempty

proper subset of {1, . . . , L} then Hi(x) ̸= Hi(y) for some i ∈ Ex,y.

(A5) Primitivity. There is an integer ℓ ≥ 1 such that for any x ≤ y, Hℓ(x) < Hℓ(y).

Monotone mappings are called order-preserving by some authors. Proofs of the Perron-

Frobenius theorem with or without indecomposability can be found in Morishima (1964). If

(A1) and A(2) hold, then a nonnegative eigenvalue and a semipositive eigenvector exist. If

(A3) holds in addition then there are only a �nite number of nonnegative eigenvalues. Under

(A1)−(A4), both the eigenvalue and the eigenvector are positive.

3 The notion of weak indecomposability and an example

A nonnegative matrix mapping is necessarily monotonic. Even though monotonicity is com-

monly assumed in the literature in the nonlinear setting, a nonlinear mapping need not be

monotonic. Non-monotonicity has signi�cant implications for indecomposability, as the follow-

ing illustration shows.

De�ne H : R2
+ −→ R2

+ as H(x) = (|x1 − x2|, x1 + x2).1 Let x = (2, 1) and y = (2, 2).

Then H(x) = (1, 3) and H(y) = (0, 4), so H is not monotone. H is not indecomposable either.

Let 0 < ϵ < x1 = y1, x2 = x1 − ϵ and y2 = y1 + ϵ. Then x ≤ y, H(x) = (ϵ, 2x1 − ϵ) and

H(y) = (ϵ, 2y1 + ϵ). Since Ex,y = {1} and H1(x) = H1(y), indecomposability is violated.

This suggests that non-monotonicity and indecomposability will often be in con�ict. This

makes the case for a relaxed notion of indecomposability to encompass a wider class of mappings.

Moreover, in the presence of monotonicity, such a notion should preserve the important results

of indecomposable mappings.

(A6) Weak indecomposability. If L = 1 then H(1) > 0. For L ≥ 2, if x ≤ y and Ex,y is a

1This mapping is extended to R2 in Example 5. Many properties of the extended mapping are studied there.
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nonempty proper subset of {1, . . . , L}, then for some integer k ≥ 1, Hk
i (x) ̸= Hk

i (y) for some

i ∈ Ex,y. (In general, the integer k above will depend upon x and y.)

Two inter-connections are immediate. (1) Every indecomposable mapping is weakly inde-

composable. This follows by taking k = 1 for every x ≤ y in (A6). (2) A primitive mapping is

weakly indecomposable. This follows by taking k = ℓ for every x ≤ y in (A6).

The mapping in the example below is monotonic and weakly indecomposable but neither

indecomposable nor primitive. It demonstrates that weak indecomposability is weaker than

both indecomposability and primitivity for nonlinear mappings.

Example 1 Consider the following regions in R2: W1 = {x ∈ R2
+ : x1 ≥ x2}, W2 = {x ∈ R2

+ :

x2 > x1}, W3 = {x ∈ R2 : x1 < 0, x2 > 0} and W = W1 ∪W2 ∪W3. De�ne H : R2 −→ R2 as

follows.

H(x) = (2x2, x1) if x ∈ W1

= (x1 + x2, x2) if x ∈ W2

= (x2, x1 + x2) if x ∈ W3

= −H(−x) if x ̸∈ W .

The nonnegativity of H is obvious. Continuity and homogeneity are relatively easy to verify

and we skip the details. For monotonicity, if x ≤ y then H(x) ≤ H(y). Moreover, for any pair

of vectors x and y in RL, either k = 1, or k = 2 in the de�nition of weak indecomposability.

Monotonicity and weak indecomposability are veri�ed in subsection A.1.

We will show that H is neither indecomposable nor primitive. Consider x and y such

that 0 < x1 < y1 < y2 = x2. Then x ≤ y and both are in W2. H(x) = (x1 + x2, x2) and

H(y) = (y1 + y2, y2). Since x2 = y2 and H2(x) = H2(y), H is not indecomposable.

To show that H is not primitive, consider x and y such that 0 < x1 = x2 = y2 = y1/2. Then

x ≤ y and both are in W1. H(x) = (2x2, x1) ∈ W1 and H2(x) = (2x1, 2x2) ∈ W1. Inductively

it can be shown that Ht(x) ∈ W1 for every t, Ht(x) =
(
2(t+1)/2x2, 2

(t−1)/2x1
)
if t is odd and

Ht(x) =
(
2t/2x1, 2

t/2x2
)
if t is even. Similar properties hold for y: Ht(y) ∈ W1 for every t,

Ht(y) =
(
2(t+1)/2y2, 2

(t−1)/2y1
)
if t is odd and Ht(y) =

(
2t/2y1, 2

t/2y2
)
if t is even.
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Notice that if t is odd then Ht
1(x) = Ht

1(y) and if t is even then Ht
2(x) = Ht

2(y). Thus

Ht(x) < Ht(y) never holds, which shows that H is not primitive.

We now address the eigenvalue problem: H(x) = λx, x ̸= 0. H has two eigenvalues

λ∗ =
√
2 and λ̄ = (1 −

√
5)/2. The corresponding eigenvectors are x∗ =

(√
2, 1

)
and x̄ =(

−(
√
5 + 1)/2, 1

)
. The reasoning is as follows.

Since eigenvectors are sign independent (by homogeneity), we will assume that an eigen-

vector of H belongs to W . (1) If x ∈ W2 then H(x) ∈ W1. So, H cannot have an eigenvector

in W2. (2) Suppose that x ∈ W1. Then (λx1, λx2) = (2x2, x1). If x2 = 0 then x1 = 0, a

contradiction. Let x2 = 1. Then x1 = λ and λ2 = 2. This yields λ∗ and x∗. (3) Suppose that

x ∈ W3. Then (λx1, λx2) = (x2, x1 + x2). Since x2 > 0 and x1 < 0, λ < 0. Let x2 = 1. Then

λ = x1 + 1, or x1 = λ− 1. From λx1 = 1 we get λ(λ− 1) = 1. This gives λ̄ and x̄.

Notice that λ∗ > 0, x∗ > 0, λ∗ ≥ |λ̄| and x̄ ̸≥ 0. These are consequences of Theorem 1 below.

4 Implications of monotonicity and weak indecomposability

Throughout this section, monotonicity and weak indecomposability are assumed. The main re-

sults are Theorems 1 and 2. These are direct generalizations of results under indecomposability.

First we prove some auxiliary results.

It was mentioned in the preceding section that indecomposability implies weak indecompos-

ability. Example 1 showed that the converse does not hold for nonlinear, monotonic mappings.

However, in the linear case the two concepts are equivalent.

Proposition 1 A matrix is indecomposable i� it is weakly indecomposable.

It is well known that if a mapping is monotonic and indecomposable, then the image of a

semipositive (resp. positive) vector is semipositive (resp. positive). These conclusions are valid

under weak indecomposability as well. The proofs, however, are more intricate.

Lemma 1 Suppose that (A1)−(A3) and (A6) hold. Then H(x) ≥ 0 if x ≥ 0 and H(x) > 0 if

x > 0.
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Theorem 1 Suppose that (A1)−(A3) and (A6) hold.

(i) There exist λ∗ > 0 and x∗ > 0 such that H(x∗) = λ∗x∗.

(ii) x∗ is unique up to scalar multiplication.

(iii) If λ ̸= λ∗ then there is no x ≥ 0 such that H(x) = λx.

(iv) λ∗ ≥ |λ̄| for any eigenvalue λ̄ of H.

In the proof, Brouwer's �xed point theorem is used to establish (i). (iii) shows that x∗ is

the only nonnegative eigenvector of H. λ∗ is called the dominant eigenvalue because of (iv).

Theorem 2 Suppose that (A1)−(A3) and (A6) hold. Then for any x > 0,

min
i

Hi(x)

xi
≤ λ∗ ≤ max

i

Hi(x)

xi
.

If x = x∗ then both inequalities become equalities. If x ̸= x∗ then both the inequalities are

strict.

For monotone and indecomposable mappings these bounds were obtained in Rath (1986).

Let e denote the vector all of whose components are 1. It is obvious from the theorem that

miniHi(e) ≤ λ∗ ≤ maxiHi(e). In the matrix case this is equivalent to the statement that

the dominant eigenvalue of an indecomposable matrix lies between the minimal and maximal

column (row) sums.

Corollary 1 x > H(x) for some x > 0 i� λ∗ < 1.

If λ∗ < 1 then x∗ > H(x∗). If x > H(x) for some x > 0 then λ∗ ≤ maxi(Hi(x)/xi) < 1.

This is a very important result and is commonly known as the viability condition. In an

economic system, the gross output of each commodity exceeds its total input requirement, so

the net output vector is positive. The system is viable, i.e., capable of economic growth. If x∗

is the output vector then this is the balanced growth path and the rate of balanced growth is

(1/λ∗)− 1.

Recall that a primitive matrix is always indecomposable. In the following example, the map-

ping is monotonic and primitive (and hence weakly indecomposable), but not indecomposable.
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Thus, unlike the linear case, monotonicity and primitivity do not imply indecomposability.2

Example 2 This example is a simple variant of Example 1. De�ne H̄ : R2 −→ R2 by H̄(x) =

x+H(x), where H is as in Example 1.

For ease of reference note that, H̄(z) = (z1 +2z2, z1 + z2) if z ∈ W1, H̄(z) = (2z1 + z2, 2z2)

if z ∈ W2 and H̄(z) = (z1 + z2, z1 + 2z2) if z ∈ W3. Also note that if z ̸∈ W then H̄(z) =

z +H(z) = −(−z)−H(−z) = −(−z +H(−z)) = −H̄(−z).

Since H is continuous, nonnegative, homogenous and monotonic, H̄ inherits these proper-

ties. Furthermore, since x ≤ y ⇒ H(x) ≤ H(y), it follows that H̄(x) ≤ H̄(y) if x ≤ y. H̄ is not

indecomposable. Consider x and y such that 0 < x1 < y1 < y2 = x2. Then x ≤ y and both are

in W2. H̄(x) = (2x1 + x2, 2x2) and H̄(y) = (2y1 + y2, 2y2). Since x2 = y2 and H̄2(x) = H̄2(y),

H̄ is not indecomposable. H̄ is primitive (and hence weakly indecomposable) with ℓ = 3. Some

further details are given in subsection A.6.

Here we show that ℓ cannot be reduced to 2 in this example. Let x = (1, 6) and y = (2, 6).

Then both x and y are in W2, H̄(x) = (8, 12) and H̄(y) = (10, 12). Both H̄(x) and H̄(y)

are in W2. So, H̄2(x) = (28, 24) and H̄2(y) = (32, 24). Both H̄2(x) and H̄2(y) are in W1,

H̄3(x) = (76, 52) and H̄3(y) = (80, 56). It is important to observe that H̄2(x) = H̄2(y) and

H̄2
2 (x) = H̄2

2 (y).

In terms of the eigenvalues of H̄, clearly H and H̄ have the same eigenvectors and their

eigenvalues di�er by 1. So, the eigenvalues of H̄ are
√
2+1 and (3−

√
5)/2. The corresponding

eigenvectors are
(√

2, 1
)
and

(
−(

√
5 + 1)/2, 1

)
.

5 Implications of weak monotonicity and weak indecomposabil-

ity

In the previous section, monotonicity played an important role in the proof of Lemma 1 and

consequently in establishing Theorems 1 and 2. In this section we relax monotonicity to weak

monotonicity. However, this relaxed notion is not adequate to obtain the desired results and

we will supplement it with other conditions. Let R2
− = −R2

+.

2It was noted in Rath (1986) that a primitive mapping need not be indecomposable. That mapping was
non-monotonic, however.
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(A7) Weak monotonicity. (I) If x, y ∈ RL
+, x ≤ y and x ̸< y then for some integer p ≥ 1,

Hp(x) ≦ Hp(y). (The integer p, in general will depend upon x and y).

(II) If x ̸∈ RL
+ ∪ RL

− then for every integer t ≥ 1, Ht(|x|) ≧ Ht(x) ≧ Ht(−|x|).

We will refer these two parts as WM I and WM II respectively. If monotonicity holds then

weak monotonicity holds. The converse is not true, as any of the examples below show. A

primitive mapping satis�es WM I, the integer ℓ in the de�nition of primitivity can serve the

role of p. Notice that WM I and WM II refer to distinct regions of RL. In the latter, the

restriction to x ̸∈ RL
+ ∪ RL

− is meaningful. If x ∈ RL
+ ∪ RL

− then the condition is automatically

ful�lled. If x ∈ RL
+, then |x| = x. So, Ht(|x|) = Ht(x) and each belongs to RL

+. Moreover,

Ht(−|x|) ≦ 0 for every t. Similarly, for x ∈ RL
−.

Next we introduce anther condition.

(A8) Iterative semipositivity. For some z̄ ∈ RL
+, H

t(z̄) ̸= 0 for every integer t ≥ 1.

How restrictive is this condition? Possibly not very. It de�nitely rules out the mapping

which is identically zero on the nonnegative orthant. Otherwise, it is fairly general. If the

mapping is weakly indecomposable and monotone then it holds for every z̄ ≥ 0 by Lemma 1.

A primitive mapping satis�es this condition as well. Let z̄ ≥ 0 be given. Choose x such that

0 ≤ x ≤ z̄. Then Hℓ(x) < Hℓ(z̄) and for every m ≥ 1, Hmℓ(x) < Hmℓ(z̄). So, Ht(z̄) ̸= 0 for

every integer t ≥ 1. If this condition does not hold then the mapping eventually becomes zero

for some integer at any x. If x is a semipositive eigenvector then zero is the only corresponding

eigenvalue. This condition plays a key role in establishing Lemma 2.

5.1 Existence of a positive eigenvalue

Lemma 2 Suppose that (A1), (A2), (A6), WM I and (A8) hold. Then H(x) ≥ 0 if x ≥ 0.

Unlike Lemma 1, one cannot claim that if x > 0 then H(x) > 0. The examples below

demonstrate this.

Theorem 3 Suppose that (A1), (A2) and (A6)−(A8) hold.

(i) There exist λ∗ > 0 and x∗ > 0 such that H(x∗) = λ∗x∗.
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(ii) x∗ is unique up to scalar multiplication.

(iii) If λ ̸= λ∗ then there is no x ≥ 0 such that H(x) = λx.

(iv) λ∗ ≥ |λ̄| for any eigenvalue λ̄ of H.

In the proof, Brouwer's �xed point theorem is used to establish (i). Also in the proof,

WM II is needed only in part (iv).

For primitive mappings part (iv) can be strengthened.

Theorem 4 Suppose that (A1), (A2) and (A5) hold. Then conclusions (i)−(iii) of Theorem 3

hold. Part (iv) of Theorem 3 holds with strict inequality for any eigenvalue λ̄ distinct from λ∗.

Primitivity implies weak indecomposability, WM I and iterative semipositivity. So, (i)−(iii)

follow immediately. Only (iv) requires a di�erent proof and is given in subsection B.3. It asserts

that under primitivity, the dominant eigenvalue strictly dominates every other eigenvalue in

modulus.3

5.2 Bounds for the eigenvalue

Theorem 2 in the preceding section provided certain bounds for the dominant eigenvalue of

weakly indecomposable and monotone mappings. One would like to prove a similar result when

monotonicity is relaxed to weak monotonicity. An extra condition is needed. Given H, de�ne

G as G(x) = x+H(x).

(A9) G-property. (I) If x, y ∈ RL
+, x ≤ y and x ̸< y then for some integer k ≥ 1 and i ∈ Ex,y,

Gk
i (x) < Gk

i (y).

(II) Let x > 0 and α and β be positive constants. If αx ≧ G(x) then αG(x) ≧ G2(x). If

βx ≦ G(x) then βG(x) ≦ G2(x).

(I) is somewhat stronger than weak indecomposability of G on the nonnegative orthant.

Here, the direction of inequality is speci�cally given. Notice that if G is primitive on the

nonnegative orthant then (I) automatically holds. The main reasons that we impose conditions

3For primitive mappings from RL
+ to itself, Kohlberg (1982) has proved the uniqueness of λ∗ and x∗ and that

repeated iterations of the mapping take any semipositive vector to the positive eigenvector.
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on G and not on H are as follows. Even if x > 0, then H(x) need not be positive. On the other

hand, Gt(x) > 0 for any t ≥ 1. In the absence of monotonicity, the weak indecomposability

condition (on H) states that certain components be unequal. It does not give an inequality in

any direction. On the other hand, G may have some additional property and the direction of

inequality may be more speci�c.

Theorem 5 Suppose that (A1), (A2) and (A6)−(A8) hold. Suppose that (a) either G is

primitive on RL
+, or (b) (A9) holds. Then for any x > 0,

min
i

Hi(x)

xi
≤ λ∗ ≤ max

i

Hi(x)

xi
.

If x = x∗ then both inequalities become equalities. If x ̸= x∗ then both the inequalities are

strict.

Corollary 2 x > H(x) for some x > 0 i� λ∗ < 1.

The proof and the interpretations are the same as Corollary 1

5.3 Examples with weak monotonicity and weak indecomposability

Three examples are given below. In each case G is primitive on RL
+. In Examples 3 and 4 the

G-property (A9) holds but it is violated in Example 5. So, primitivity of G does not imply the

G-property. The mappings are weakly indecomposable in all these examples. In Examples 3

and 5 weak monotonicity is satis�ed and all the conclusions of Theorems 3 and 5 hold in these

two examples. Example 4 satis�es only WM I but violates WM II. Part (iv) of Theorem 3 does

not hold in this case. This underscores the importance of WM II in ensuring that the positive

eigenvalue is dominant.

Example 3 Let W1 = {x ∈ R2
+ : x1 ≥ x2}, W2 = {x ∈ R2

+ : x2 > x1}, W3 = {x ∈ R2 : x1 <

0, x2 > 0, x1 + x2 > 0}, W4 = {x ∈ R2 : x1 < 0, x2 > 0, x1 + x2 ≤ 0} and W = ∪4
i=1Wi.

De�ne H : R2 −→ R2 as follows.
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H(x) = (0, x1 + x2) if x ∈ W1 ∪W4

= (x2 − x1, x1 + x2) if x ∈ W2

= (x1 + x2, x1 + x2) if x ∈ W3

= −H(−x) if x ̸∈ W .

This mapping is not monotone. Let 0 < x1 < y1 < x2 = y2. Then H(x) = (x2−x1, x1+x2)

and H(y) = (y2 − y1, y1 + y2). Since x ≤ y and H1(x) > H1(y), monotonicity is violated. Let

0 < x2 < y2 < x1 = y1. Then H(x) = (0, x1 + x2) and H(y) = (0, y1 + y2). Since Ex,y = {1}

and H1(x) = H1(y), indecomposability is violated.

To show that H is not primitive, consider x and y such that 0 < x1 < y1 < x2 = y2. Then

x ≤ y and both are inW2. H(x) = (x2−x1, x1+x2) ∈ W2 andH2(x) = (2x1, 2x2) ∈ W2. Induc-

tively it can be shown thatHt(x) ∈ W2 for every t,Ht(x) =
(
2(t−1)/2(x2 − x1), 2

(t−1)/2(x1 + x2)
)

if t is odd and Ht(x) =
(
2t/2x1, 2

t/2x2
)
if t is even. Similar properties hold for y: Ht(y) ∈ W2

for every t, Ht(y) =
(
2(t−1)/2(y2 − y1), 2

(t−1)/2(y1 + y2)
)
if t is odd and Ht(y) =

(
2t/2y1, 2

t/2y2
)

if t is even. Notice that if t is odd then Ht
1(x) > Ht

1(y) and if t is even then Ht
2(x) = Ht

2(y).

Thus Ht(x) < Ht(y) never holds, which shows that H is not primitive.

(A8) is veri�ed as follows. Take 0 < x1 < x2. Then x ∈ W2, H(x) > 0 and H1(x) < H2(x),

i.e., H(x) ∈ W2. Subsequent iterations have this property, i.e., for any t ≥ 1, Ht(x) > 0 and

Ht
1(x) < Ht

2(x), which means Ht(x) ∈ W2. So, any such x can serve as z̄ in (A8).

This mapping satis�es weak monotonicity (with p either 1, or 2) and weak indecomposability

(with k either 1, or 2). Furthermore, G is primitive (with ℓ = 2) on RL
+ and G-property holds.

Therefore, the conclusions of Theorems 3 and 5 hold.

H has two eigenvalues, λ∗ =
√
2 and λ̄ = 0. The corresponding eigenvectors are x∗ =

(
√
2− 1, 1) and x̄ = (−1, 1).

Example 4 This example is a variant of Example 3. WM II is violated in this example. Let

the sets Wi's and W be as in Example 3. De�ne H : R2 −→ R2 as follows.
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H(x) = (0, x1 + x2) if x ∈ W1

= (x2 − x1, x1 + x2) if x ∈ W2

= (x2 − 2x1, 4x1 + x2) if x ∈ W3

= (3x2, x1 − 2x2) if x ∈ W4

= −H(−x) if x ̸∈ W .

Notice that on R2
+, this mapping and the one in Example 3 coincide. So, we can conclude

that none of monotonicity, indecomposability and primitivity hold in this example. Further-

more, G is primitive on RL
+ and G-property holds. WM I and (A8) also follow. This mapping

satis�es weak indecomposability, but violates WM II.

As in Example 3, λ∗ =
√
2 and x∗ = (

√
2 − 1, 1) satis�es λ∗x∗ = H(x∗). Notice that if

x̄ = (−1, 1) then H(x̄) = (3,−3). So, −3 is an eigenvalue of H with the associated eigenvector

x̄. Since | − 3| >
√
2, (iv) of Theorem 3 does not hold.

To see the failure of WM II, consider x̄ again. Then H(x̄) = (3,−3), |x̄| = (1, 1) and

H(|x̄|) = (0, 2). Neither H(|x̄|) ≧ H(x̄), nor H(x̄) ≧ H(−|x̄|) holds.

Example 5 Let W1 = {x ∈ R2 : x1 < 0, x2 > 0} and W = R2
+ ∪W1. De�ne H : R2 −→ R2 as

follows.

H(x) = (|x1 − x2|, x1 + x2) if x ∈ R2
+

= (x1 + x2, x1 + x2) if x ∈ W1

= −H(−x) if x ̸∈ W .

As mentioned in section 3, H is neither monotone nor indecomposable. To show that H is

not primitive, consider x = (1, 2) and y = (2, 2). Then H(x) = (1, 3) and H2(x) = (2, 4).

Inductively it can be shown that Ht(x) =
(
2(t−1)/2, 2(t−1)/2 × 3

)
if t is odd and Ht(x) =(

2t/2, 2(t+2)/2
)
if t is even. Similarly, H(y) = (0, 4) and H2(y) = (4, 4). Inductively it can be

shown that Ht(y) =
(
0, 2(t+3)/2

)
if t is odd and Ht(y) =

(
2(t+2)/2, 2(t+2)/2

)
if t is even. If t is

odd then Ht
1(x) > Ht

1(y) and if t is even then Ht
2(x) = Ht

2(y). So, H
t(x) < Ht(y) never holds.
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This mapping satis�es weak monotonicity and weak indecomposability. (A8) follows form

Example 3. Furthermore, G is primitive on R2
+. Thus, all the conclusions of Theorems 3 and 5

hold. This example does not satisfy (A9).

There are two eigenvalues, λ∗ =
√
2 and λ̄ = 0. The corresponding eigenvectors are

x∗ = (
√
2− 1, 1) and x̄ = (−1, 1).

6 Conclusion

In this paper two weaker notions are proposed, indecomposability has been weakened to weak

indecomposability and monotonicity has been weakened to monotonicity. Two versions of the

Perron-Frobenius theorem have been proved, with monotonicity and weak indecomposability

and with weak monotonicity and weak indecomposability. This has widened the applicability

of Perron-Frobenius theory.

Often the mapping H is de�ned on a cone of a vector space to itself, depending on emphasis.

In our context that would have meant that H : RL
+ −→ RL

+. In that case, from (i)−(iii) of

Theorems 1, 3 and 4, λ∗ and x∗ are unique. Part (iv) of the theorems become irrelevant. The

task would have been a lot easier in the sense that much fewer cases would have been examined

in the examples pertaining to the property of the mappings.

However, λ∗ ≥ |λ̄| is an interesting and important result in matrix theory. It is this result

that gives λ∗ its name dominant eigenvalue. That is the main reason we wanted to explore

Perron-Frobenius theory in its entirety. Some key insights have emerged. Theorem 1 shows that

in the presence of monotonicity indecomposability can be weakened to weak indecomposability

without sacri�cing any of the results. If monotonicity is relaxed, then weak monotonicity (II)

is the relevant condition to obtain this result.

In terms of the bounds for the dominant eigenvalue, the analysis is of course con�ned to Rn
+.

No di�culty was encountered in the presence of monotonicity. Without it, further conditions

are needed to obtain the bounds.

There is an open problem pertaining to primitivity which is worthy of attention. It is well

known that if A is an indecomposable matrix then (I +A)L−1 is a positive matrix. Therefore,

I + A is a primitive matrix with ℓ ≤ L − 1. Given a nonlinear mapping H, de�ne G as
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G(x) = x + H(x). It is also known that if H is indecomposable and monotonic then G is

primitive with ℓ ≤ L− 1. This mapping has played an important role in our analysis. However,

not much is known about its properties when H is weakly indecomposable. Example 2 shows

that if H is weakly indecomposable then G need not be indecomposable. In the examples, when

needed, we have found that G is primitive. Any general result pertaining to primitivity of G

when H is only weakly indecomposable will be useful in future.

Appendix A

A.1 Monotonicity and weak indecomposability in Example 1

We will verify monotonicity and weak indecomposability of H on R2
+ together. We will assume

that x ≤ y and show that H(x) ≤ H(y). On some occasions, H(x) < H(y). In that case, weak

indecomposablity is automatically satis�ed. On other occasions, we will show that either H, or

H2 satis�es the relevant inequalities for weak indecomposability. Cases (1)−(5) below examine

situations when x and y are in W .

(1) x, y ∈ W1, or x, y ∈ W2, or x, y ∈ W3. Suppose that x, y ∈ W1. Then H(x) = (2x2, x1) and

H(y) = (2y2, y1). Since x ≤ y, H(x) ≤ H(y). If Ex,y = {1} then x2 < y2 and H1(x) = 2x2 <

2y2 = H1(y). If Ex,y = {2} then x1 < y1 and H2(x) = x1 < y1 = H2(y).

Suppose that x, y ∈ W3. Then H(x) = (x2, x1 + x2) and H(y) = (y2, y1 + y2). Clearly,

H(x) ≤ H(y). If Ex,y = {1} then H1(x) = x2 < y2 = H1(y) and if Ex,y = {2} then H2(x) =

x1 + x2 < y1 + y2 = H2(y).

Suppose that x, y ∈ W2. Then H(x) = (x1 + x2, x2) ∈ W1 and H(y) = (y1 + y2, y2) ∈ W1.

Since x ≤ y, H(x) ≤ H(y). H2(x) = (2x2, x1 + x2) and H2(y) = (2y2, y1 + y2). If Ex,y = {1}

then H1(x) = x1 + x2 < y1 + y2 = H1(y) and if Ex,y = {2} then H2
2 (x) = x1 + x2 < y1 + y2 =

H2
2 (y).

(2) x ∈ W1, y ∈ W2. Then x2 ≤ x1 ≤ y1 < y2, H(x) = (2x2, x1) and H(y) = (y1 + y2, y2).

H1(x) = 2x2 ≤ 2x1 ≤ 2y1 < y1 + y2 = H1(y) and H2(x) = x1 ≤ y1 < y2 = H2(y). Thus,

H(x) < H(y). This implies weak indecomposablity.

(3) x ∈ W2, y ∈ W1. Then x1 < x2 ≤ y2 ≤ y1, H(x) = (x1 + x2, x2) and H(y) = (2y2, y1).
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H1(x) = x1 + x2 < 2x2 ≤ 2y2 = H1(y) and H2(x) = x2 ≤ y2 ≤ y1 = H2(y). So, H(x) ≤ H(y).

Observe that H(x) ∈ W1, so H2(x) = (2x2, x1 + x2). If 2y2 ≥ y1 then H(y) ∈ W1 and

H2(y) = (2y1, 2y2), but if 2y2 < y1 then H(y) ∈ W2 and H2(y) = (y1 + 2y2, y1).

Since x1 < y1, Ex,y = {1} cannot hold. Assume that Ex,y = {2}. If 2y2 ≥ y1 then H2
2 (x) =

x1 + x2 < 2x2 = 2y2 = H2
2 (y). If 2y2 < y1 then H2

2 (x) = x1 + x2 < 2x2 = 2y2 < y1 = H2
2 (y).

(4) x ∈ W3, y ∈ W1 ∪W2. Since x ∈ W3, x1 < 0 < x2 and H(x) = (x2, x1 + x2).

Let y ∈ W1. Then H(y) = (2y2, y1). H1(x) = x2 ≤ y2 < 2y2 = H1(y) and H2(x) =

x1 + x2 < x2 ≤ y2 ≤ y1 = H2(y). Thus, H(x) < H(y). Weak indecomposability follows.

Now suppose that y ∈ W2. Then H(y) = (y1+ y2, y2). H1(x) = x2 ≤ y2 ≤ y1+ y2 = H1(y)

and H2(x) = x1 + x2 < x2 ≤ y2 = H2(y). Since x1 < 0 ≤ y1, Ex,y = {1} cannot hold. If

Ex,y = {2} then we have shown that H2(x) < H2(y).

(5) x ∈ W1 ∪ W2, y ∈ W3. Note that x1 ≥ 0 and y1 < 0. So, x ≤ y cannot hold, i.e., this

possibility does not arise.

(6) x ̸∈ W , y ̸∈ W . x ≤ y implies that −x ≥ −y. Moreover, −x ∈ W and −y ∈ W . Above we

have shown that H(−x) ≥ H(−y). So, H(x) = −H(−x) ≤ −H(−y) = H(y).

Note that E−x,−y = Ex,y. We have shown that if E−x,−y = {i}, i = 1, 2; then ei-

ther Hi(−x) > Hi(−y), or H2
i (−x) > H2

i (−y). Note that H(x) = −H(−x) and H2(x) =

H(H(x)) = H(−H(−x)) = −H(H(−x)) = −H2(−x)). Similarly, H(y) = −H(−y) and

H2(y) = −H2(−y)). Therefore, either Hi(x) = −Hi(−x) < −Hi(−y) = Hi(y), or H2
i (x) =

−H2
i (−x) < −H2

i (−y) = H2
i (y) for Ex,y = {i}.

(7) x ∈ W , y ̸∈ W . If x ∈ W1 ∪ W2 then 0 ≦ x ≤ y. So, y ∈ W1 ∪ W2, a contradiction. If

x ∈ W3 then 0 < x2 ≤ y2 means y ∈ W , a contradiction. Thus, this possibility does not arise.

(8) x ̸∈ W , y ∈ W . Suppose that −x ∈ W3. Then −x1 < 0 and −x2 > 0, i.e., x1 > 0 and

x2 < 0. H(−x) = (−x2,−x1 − x2) and H(x) = (x2, x1 + x2). Since x1 > 0, y ∈ W1 ∪W2.

If y ∈ W1 then H(y) = (2y2, y1). H1(x) = x2 < 0 ≤ 2y2 = H1(y) and H2(x) = x1 + x2 <

x1 ≤ y1 = H2(y). If y ∈ W2 then H(y) = (y1 + y2, y2). H1(x) = x2 < 0 ≤ y1 + y2 = H1(y)

and H2(x) = x1 + x2 < x1 ≤ y1 < y2 = H2(y). Thus, in any case, H(x) < H(y). Weak

indecomposability follows.
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Suppose that −x ∈ W2. Then −x2 > −x1 ≥ 0, i.e., x2 < x1 ≤ 0. H(−x) = (−x1−x2,−x2)

and H(x) = (x1 + x2, x2) < 0. If y ∈ W1 ∪W2 then H(y) ≧ 0. So, H(x) < H(y). If y ∈ W3

then H(y) = (y2, y1 + y2). H1(x) = x1 + x2 < 0 < y2 = H1(y) and H2(x) = x2 < x1 ≤ y1 <

y1 + y2 = H2(y). So, H(x) < H(y).

Lastly suppose that −x ∈ W1. Then −x1 ≥ −x2 ≥ 0, i.e., x1 ≤ x2 ≤ 0. Since x ̸= 0,

x1 < 0. H(−x) = (−2x2,−x1) and H(x) = (2x2, x1) ≤ 0. If y ∈ W1 ∪W2 then H(y) ≧ 0. So,

H(x) ≤ H(y). Since x1 < 0, Ex,y ̸= {1}. If Ex,y = {2} then H2(x) = x1 < 0 ≤ H2(y).

If y ∈ W3 then H(y) = (y2, y1 + y2). H1(x) = 2x2 ≤ 0 < y2 = H1(y) and H2(x) = x1 ≤

y1 < y1 + y2 = H2(y). So, H(x) < H(y).

We have shown that H is monotonic and weakly indecomposable on R2.

A.2 Proof of Proposition 1

It su�ces to show that weak indecomposability implies indecomposability. Assume that a

matrix A is decomposable. Then there is a nonempty proper subset J of {1, . . . , L} such that

aij = 0 for i ̸∈ J and j ∈ J . Let x and y be such that 0 < xj < yj if j ∈ J and 0 ≤ xj = yj if

j ̸∈ J . Then x ≤ y and Ex,y = Jc.

Let i ∈ Ex,y = Jc. Then

(Ay)i − (Ax)i =
∑
j∈J

aij(yj − xj) +
∑
j ̸∈J

aij(yj − xj) =
∑
j∈J

aij(yj − xj).

The last equality follows from the fact that xj = yj for every j ̸∈ J . Since aij = 0 for i ∈ Jc

and j ∈ J , (Ay)i − (Ax)i = 0.

Now suppose that for some integer m ≥ 1, (Amx)j = (Amy)j for every j ̸∈ J . Consider

Am+1x and Am+1y. If i ∈ Jc then

(Am+1y)i − (Am+1x)i =
∑
j∈J

aij [(A
my)j − (Amx)j ] +

∑
j ̸∈J

aij [(A
my)j − (Amx)j ]

=
∑
j∈J

aij [(A
my)j − (Amx)j ].

The last equality follows from the fact that (Amx)j = (Amy)j for every j ̸∈ J . Since aij = 0
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for i ∈ Jc and j ∈ J , (Am+1y)i − (Am+1x)i = 0.

This shows that A is not weakly indecomposable.

A.3 Proof of Lemma 1

First suppose that x ≥ 0 and for some j, xj = 0. Then E0,x is a nonempty proper subset of

{1, . . . , L}. Weak indecomposability implies that for some k ≥ 1, 0 = Hk
i (0) ̸= Hk

i (x) for some

i ∈ E0,x. Since Hk(x) ̸= 0, H(x) ̸= 0 and by nonnegativity H(x) ≥ 0. Now suppose that x > 0.

Then there exists z ≥ 0 such that zj = 0 for some j and z ≤ x. From above, H(z) ≥ 0 and by

(A3), H(x) ≧ H(z) ≥ 0. We have shown that H(x) ≥ 0 if x ≥ 0.

To show that H(x) > 0 when x > 0, we �rst construct a vector w ≥ 0 such that H(w) > 0.

Fix a component i ∈ {1, . . . , L}. De�ne zi ∈ RL
+ as: zii = 0 and zij > 0 if j ̸= i. Then

E0,zi = {i}. By nonnegativity and weak indecomposability, there is an integer ki ≥ 1 such that

0 < Hki
i (zi). Let wi = zi if ki = 1 and wi = Hki−1(zi) if ki > 1. In either case, Hi(w

i) > 0.

Such a wi ∈ RL
+ can be constructed for each i ∈ {1, . . . , L}. Let w =

∑L
i=1w

i. Then w ≧ wi

for each i and by monotonicity, H(w) ≧ H(wi). Since Hi(w
i) > 0 for each i, H(w) > 0.

Now let x > 0 be given. Then there is θ > 0 such that θw < x. By homogeneity, H(θw) > 0

and by monotonicity, H(x) ≧ H(θw) > 0.

A.4 Proof of Theorem 1

(i) If x ≥ 0 then ∥ H(x) ∥ > 0 by Lemma 1. De�ne a mapping F from S to itself by

F (x) = H(x)/ ∥ H(x) ∥. Then F is continuous. By Brouwer's �xed point theorem it has a

�xed point x∗. Let λ∗ = ∥ F (x∗) ∥ > 0. Then λ∗x∗ = H(x∗).

Suppose that x∗j = 0 for some j. Then E0,x∗ is a nonempty proper subset of {1, . . . , L}. By

weak indecomposability, there exists k ≥ 1 such that Hk
i (0) ̸= Hk

i (x
∗) for some i ∈ E0,x∗ , i.e.,

0 ̸= (λ∗)kx∗i . This is a contradiction since x∗i = 0. Therefore, x∗ > 0.

(ii) Suppose that there is x̄ ̸= 0 such that λ∗x̄ = H(x̄) and x̄ is not a scalar multiple of x∗.

Since eigenvectors are sign independent, without loss of generality we can assume that x̄j > 0

for some j. Let J = {j : x̄j > 0} and θ = max{x̄j/x∗j : j ∈ J} > 0. Then θx∗ ≧ x̄ with equality

holding for some j ∈ J . If θx∗ = x̄ then x̄ is a scalar multiple of x∗, a contradiction. Therefore,
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θx∗ ≥ x̄ and Ex̄,θx∗ is a nonempty proper subset of {1, . . . , L}.

By weak indecomposability, there exists k ≥ 1 such that Hk
i (x̄) ̸= Hk

i (θx
∗) for some

i ∈ Ex̄,θx∗ , i.e., (λ∗)kx̄i ̸= (λ∗)kθx∗i . This is a contradiction since x̄i = θx∗i > 0. So, x∗ is unique

up to scalar multiplication.

Henceforth, to facilitate presentation, we will take x∗ to be scalar independent.

(iii) Suppose for some λ ̸= λ∗ and x ≥ 0, H(x) = λx. By Lemma 1, H(x) ≥ 0, i.e.,

λ > 0. Suppose that x ̸> 0. Then E0,x is a nonempty proper subset of {1, . . . , L}. Weak

indecomposability implies that for some k ≥ 1 and i ∈ E0,x, 0 ̸= Hk
i (x) = λkxi = 0, a

contradiction. So, x > 0.

Since λ ̸= λ∗, x is not a scalar multiple of x∗. Take x ≤ x∗, x ̸< x∗. By monotonicity,

λx = H(x) ≦ H(x∗) = λ∗x∗. Since xi = x∗i > 0 for some i, λ ≤ λ∗. Similarly, take x∗ ≤ x,

x∗ ̸< x. Then λ∗x∗ = H(x∗) ≦ H(x) = λx and λ∗ ≤ λ. Thus, λ = λ∗. This contradiction

proves the claim.

(iv) Suppose that for some x̄ ̸= 0, H(x̄) = λ̄x̄. We have |x̄| ≧ x̄ ≧ −|x̄|. Choose x∗ such

that x∗ ≧ |x̄| with equality holding in at least one component.

By (A1)−(A3), H(x∗) ≧ H(|x̄|) ≧ H(x̄) ≧ H(−|x̄|) = −H(|x̄|). This implies H(x∗) ≧

H(|x̄|) ≧ |H(x̄)|. Since H(x∗) = λ∗x∗ and |H(x̄)| = |λ̄x̄| = |λ̄||x̄|, λ∗x∗ ≥ |λ̄||x̄|. For some i,

x∗i = |x̄|i > 0. So, λ∗ ≥ |λ̄|.

This completes the proof.

A.5 Proof of Theorem 2

If x = x∗ then λ∗ = Hi(x
∗)/x∗i for every i and there is nothing to prove. Suppose that x > 0

and x ̸= x∗. By Lemma 1, H(x) > 0 and repeated applications give Hm(x) > 0 for m > 1.

First we will show that λ∗ < maxi[Hi(x)/xi]. Let θ1 = maxi[Hi(x)/xi] and for m > 1,

θm = maxi[H
m
i (x)/Hm−1

i (x)]. That {θm} is a non-increasing sequence is seen as follows. Since

θ1x ≧ H(x), θ1H(x) ≧ H2(x) by homogeneity and monotonicity. Therefore, θ1 ≥ H2
i (x)/Hi(x)

for every i, i.e., θ1 ≥ θ2. For any m > 1, θmHm−1(x) ≧ Hm(x) implies that θmHm(x) ≧

Hm+1(x), so θm ≥ θm+1.
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Let x∗ be such that x∗ ≤ x, x∗ ̸< x. Then Ex∗,x is a nonempty proper subset of {1, . . . , L}.

By weak indecomposability, there is k ≥ 1 such that Hk
j (x

∗) < Hk
j (x) for some j ∈ Ex∗,x.

We can suppose without loss of generality that Hm
j (x∗) = Hm

j (x) for every m < k. Then,

Hk
j (x

∗)/Hk−1
j (x∗) < Hk

j (x)/H
k−1
j (x) ≤ θk ≤ θ1. Since Hm

j (x∗) = (λ∗)mx∗j for every m,

Hk
j (x

∗)/Hk−1
j (x∗) = λ∗. Therefore, λ∗ < θ1 = maxi[Hi(x)/xi].

The arguments to establish mini[Hi(x)/xi] < λ∗ are analogous. Let σ1 = mini[Hi(x)/xi]

and for m > 1, σm = mini[H
m
i (x)/Hm−1

i (x)]. It is easy to show that {σm} is a non-decreasing

sequence.

Choose x∗ such that x ≤ x∗, x ̸< x∗. Then Ex,x∗ is a nonempty proper subset of {1, . . . , L}.

By weak indecomposability, there is k′ ≥ 1 such that Hk′
j (x∗) > Hk′

j (x)) for some j ∈ Ex,x∗ .

We can suppose without loss of generality that Hm
j (x∗) = Hm

j (x) for every m < k′. Therefore,

Hk′
j (x∗)/Hk′−1

j (x∗) > Hk′
j (x)/Hk′−1

j (x) ≥ σk′ ≥ σ1. Since Hk′
j (x∗)/Hk′−1

j (x∗) = λ∗, λ∗ > σ1 =

mini[Hi(x)/xi].

A.6 Primitivity in Example 2

Since H̄(z) = z +H(z), H̄(z) = (z1 + 2z2, z1 + z2) if z ∈ W1, H̄(z) = (2z1 + z2, 2z2) if z ∈ W2

and H̄(z) = (z1 + z2, z1 + 2z2) if z ∈ W3. Also note that if z ̸∈ W then H̄(z) = z + H(z) =

−(−z)−H(−z) = −(−z +H(−z)) = −H̄(−z).

Before examining primitivity, we prove a claim pertaining to this example.

Claim 1 (i) H̄ maps W1 to itself. If z ∈ W2 then H̄(z) can either be in W2 but can be in W1.

In either case, H̄2(z) ∈ W1.

(ii) If u < v then H̄(u) < H̄(v).

(iii) If for some u, v ∈ R2 and t ≥ 1, H̄t(u) < H̄t(v) then H̄m(u) < H̄m(v) for every m ≥ t.

Proof (i) If z ∈ W1, then H̄(z) = (z1 + 2z2, z1 + z2). Since z2 ≥ 0, H̄1(z) ≥ H̄2(z) and

H̄(z) ∈ W1. If z ∈ W2 then H̄(z) = (2z1 + z2, 2z2). If 2z1 ≥ z2 then H̄(z) ∈ W1 and

H̄2(z) ∈ W1. If 2z1 < z2 then H̄(z) ∈ W2. Since H
(
H̄(z)

)
= (2z1 + 3z2, 2z2) and H̄2(z) =

H̄(z) +H
(
H̄(z)

)
= (4z1 + 4z2, 4z2) ∈ W1.
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(ii) Since u < v, by the monotonicity of H, H(u) ≦ H(v). Therefore, H̄(u) = u+H(u) <

v +H(v) = H̄(v).

(iii) Suppose that H̄t(u) < H̄t(v). By the monotonicity of H, H(H̄t(u)) ≦ H(H̄t(v)). So,

H̄t+1(u) = H̄
(
H̄t(u)

)
= H̄t(u) +H

(
H̄t(u)

)
< H̄t(v) +H

(
H̄t(v)

)
= H̄t+1(v).

This completes the proof.

To show that H̄ is primitive, one needs to show that if x ≤ y then H̄3(x) < H̄3(y). Because

of Claim 1 (iii), it su�ces to show that H̄m(x) < H̄m(y) for some 1 ≤ m ≤ 3. If x < y then

Claim 1 (ii) shows that H̄(x) < H̄(y) and there is nothing more to prove. Henceforth, we will

suppose that x ≤ y and x ̸< y.

Several cases were examined to show the weak indecomposability of H in Example 1.

Primitivity of H̄ can be established by examining those cases. We will illustrate only one.

Suppose that x ∈ W1 and y ∈ W2. Then x2 ≤ x1 ≤ y1 < y2, H̄(x) = (x1 + 2x2, x1 + x2)

and H̄(y) = (2y1 + y2, 2y2). H̄1(x) = x1 + 2x2 ≤ 3x1 ≤ 3y1 < 2y1 + y2 = H̄1(y) and

H̄2(x) = x1 + x2 ≤ 2x1 ≤ 2y1 < 2y2 = H̄2(y). So, H̄(x) < H̄(y). Claim 1 implies that

H̄3(x) < H̄3(y).

Appendix B

B.1 Proof of Lemma 2

First suppose that x ≥ 0 and for some j, xj = 0. Then E0,x is a nonempty proper subset of

{1, . . . , L}. By nonnegativity, H(x) ≧ 0. Weak indecomposability implies that for some k ≥ 1,

0 = Hk
i (0) ̸= Hk

i (x) for some i ∈ E0,x. Since Hk(x) ̸= 0, H(x) ̸= 0 and H(x) ≥ 0.

Now let x > 0. Consider z̄ in (A8). If z̄ is a scalar multiple of x then H(x) ≥ 0. If z̄ is not

a scalar multiple of x then for some θ > 0, θz̄ ≤ x and θz̄ ̸< x. By WM I, Hp(θz̄) ≦ Hp(x)

for some p ≥ 1. Since Hp(θz̄) = θHp(z̄) ≥ 0, Hp(x) ≥ 0. So, H(x) ̸= 0 and by nonnegativity

H(x) ≥ 0.
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B.2 Proof of Theorem 3

(i) If x ≥ 0 then ∥ H(x) ∥ > 0 by Lemma 2. De�ne a mapping F from S to itself by

F (x) = H(x)/ ∥ H(x) ∥. Then F is continuous. By Brouwer's �xed point theorem it has a

�xed point x∗. Let λ∗ = ∥ H(x∗) ∥ > 0. Then λ∗x∗ = H(x∗).

Suppose that x∗j = 0 for some j. Then E0,x∗ is a nonempty proper subset of {1, . . . , L}. By

weak indecomposability, there exists k ≥ 1 such that Hk
i (0) ̸= Hk

i (x
∗) for some i ∈ E0,x∗ , i.e.,

0 ̸= (λ∗)kx∗i . This is a contradiction since x∗i = 0. Therefore, x∗ > 0.

(ii) Suppose that there is z ̸= 0 such that λ∗z = H(z) and z is not a scalar multiple of x∗.

Without loss of generality we can assume that zj > 0 for some j. Let J = {j : zj > 0} and

θ = max{zj/x∗j : j ∈ J} > 0. Then θx∗ ≧ z with equality holding for some j ∈ J . If θx∗ = z

then z is a scalar multiple of x∗, a contradiction. Therefore, θx∗ ≥ z and Ez,θx∗ is a nonempty

proper subset of {1, . . . , L}.

By weak indecomposability, there exists k ≥ 1 such that Hk
i (z) ̸= Hk

i (θx
∗) for some

i ∈ Ez,θx∗ , i.e., (λ∗)kzi ̸= (λ∗)kθx∗i . This is a contradiction since zi = θx∗i > 0. This shows that

x∗ is unique up to scalar multiplication.

(iii) Suppose for some λ ̸= λ∗ and x ≥ 0, H(x) = λx. By Lemma 2, H(x) ≥ 0, i.e.,

λ > 0. Suppose that x ̸> 0. Then E0,x is a nonempty proper subset of {1, . . . , L}. Weak

indecomposability implies that for some k ≥ 1 and i ∈ E0,x, 0 ̸= Hk
i (x) = λkxi = 0, a

contradiction. So, x > 0.

Since λ ̸= λ∗, x is not a scalar multiple of x∗. Take x ≤ x∗, x ̸< x∗. By weak monotonicity,

for some p ≥ 1, Hp(x) ≦ Hp(x∗), i.e, λpx ≦ (λ∗)px∗. Since xi = x∗i > 0 for some i, λ ≤ λ∗.

Similarly, take x∗ ≤ x, x∗ ̸< x. By weak monotonicity, for some p′ ≥ 1, Hp′(x∗) ≦ Hp′(x), i.e,

(λ∗)p
′
x∗ ≦ λp′x. Since x∗i = xi > 0 for some i, λ∗ ≤ λ. Thus, λ = λ∗. This contradiction proves

the claim.

(iv) Suppose that for some x̄ ̸= 0, H(x̄) = λ̄x̄. Since eigenvectors are sign independent, we

can assume that x̄i > 0 for some i. So, x̄ ̸∈ RL
−. If x̄ ≥ 0 then (iii) of the theorem ensures that

λ̄ = λ∗ and there is nothing to prove. So, assume that x̄ ̸∈ RL
+ ∪ RL

−.

Choose x∗ such that x∗ ≧ |x̄|, x∗ ̸> |x̄|. Suppose that x∗ = |x̄|. Then H(x∗) = H(|x̄|) and

by WM II, H(|x̄|) ≧ H(x̄) ≧ H(−|x̄|) = −H(|x̄|). So, H(x∗) ≧ |H(x̄)|. Since H(x∗) = λ∗x∗,
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|H(x̄)| = |λ̄x̄| = |λ̄||x̄| and x∗i = |x̄|i > 0 for some i, λ∗ ≥ |λ̄|.

Now suppose that x∗ ≥ |x̄|. By WM I, Hp(x∗) ≧ Hp(|x̄|) for some p ≥ 1. By WM II,

Hp(|x̄|) ≧ Hp(x̄) ≧ Hp(−|x̄|) = −Hp(|x̄|). These yield, Hp(x∗) ≧ |Hp(x̄)|, i.e., (λ∗)px∗ ≧

|λ̄|p|x̄|. Since x∗i = |x̄|i > 0 for some i, λ∗ ≥ |λ̄|.

This completes the proof.

B.3 Proof of Theorem 4

Suppose that for some x̄ ̸= 0 and λ̄ ̸= λ∗, H(x̄) = λ̄x̄. Since eigenvectors are sign independent,

we can assume that x̄i > 0 for some i. If x̄ ≥ 0 then (iii) of the theorem ensures that λ̄ = λ∗,

a contradiction. So, |x̄| ≥ x̄. Since x̄i > 0 for some i, x̄ ≥ −|x̄|.

Choose x∗ such that x∗ ≧ |x̄|, x∗ ̸> |x̄|. Since H is primitive, there is ℓ ≥ 1 such that

Hℓ(x∗) ≧ Hℓ(|x̄|) > Hℓ(x̄) > Hℓ(−|x̄|) = −Hℓ(|x̄|). So, Hℓ(|x̄|) > |Hℓ(x̄)| and Hℓ(x∗) >

|Hℓ(x̄)|. The last inequality gives (λ∗)ℓx∗ > |λ̄|ℓ|x̄|. Since x∗i = |x̄|i > 0 for some i, λ∗ > |λ̄|.

B.4 Proof of Theorem 5

If x = x∗ then λ∗ = Hi(x
∗)/x∗i for every i and there is nothing to prove. Henceforth, we will

work with the mapping G. Since G(x) = x +H(x), G and H have the same eigenvectors and

their eigenvalues di�er by 1. So, x∗ is an eigenvector of G associated with the eigenvalue λ∗+1.

Moreover, if x > 0 then for any i, Gi(x)/xi = (xi + Hi(x)/xi = 1 + (Hi(x)/xi). So, we need

show that if x > 0 and x ̸= x∗ mini(Gi(x)/xi) < λ∗ + 1 < maxi(Gi(x)/xi).

If G is primitive on RL
+ then the result has been proved in Theorem 2 of Rath (1986).

Below we work with (A9). If x > 0 then G(x) > 0 and repeated applications give Gm(x) > 0

for m > 1.

First we will show that λ∗ +1 < maxi(Gi(x)/xi). Let θ1 = maxi(Gi(x)/xi) and for m > 1,

θm = maxi(G
m
i (x)/Gm−1

i (x)). That {θm} is a non-increasing sequence is seen as follows. Since

θ1x ≧ G(x), θ1G(x) ≧ G2(x) by (A9). Therefore, θ1 ≥ G2
i (x)/Gi(x) for every i, i.e., θ1 ≥ θ2.

For any m > 1, θmGm−1(x) ≧ Gm(x) implies that θmGm(x) ≧ Gm+1(x), so θm ≥ θm+1.

Let x∗ be such that x∗ ≤ x, x∗ ̸< x. Then Ex∗,x is a nonempty proper subset of {1, . . . , L}.
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By (A9), there is k ≥ 1 such that Gk
j (x

∗) < Gk
j (x) for some j ∈ Ex∗,x. We can suppose without

loss of generality that Gm
j (x∗) ≥ Gm

j (x) for every m < k.

Therefore, Gk
i (x

∗)/Gk−1
i (x∗) < Gk

i (x)/G
k−1
i (x) ≤ θk ≤ θ1. Since Gm

j (x∗) = (λ∗ + 1)mx∗j

for every m, Gk
j (x

∗)/Gk−1
j (x∗) = λ∗ + 1. Therefore, λ∗ + 1 < θ1 = maxi(Gi(x)/xi).

The arguments to establishmini(Gi(x)/xi) < λ∗+1 are analogous. Let σ1 = mini(Gi(x)/xi)

and for m > 1, σm = mini(G
m
i (x)/Gm−1

i (x)). Using (A9), it is easy to show that {σm} is a

non-decreasing sequence.

Choose x∗ such that x ≤ x∗, x ̸< x∗. Then Ex,x∗ is a nonempty proper subset of

{1, . . . , L}. By (A9), there is k′ ≥ 1 such that Gk′
j (x

∗) > Gk′
j (x)) for some j ∈ Ex,x∗ .

We can suppose without loss of generality that Gm
j (x∗) ≤ Gm

j (x) for every m < k′. There-

fore, Gk′
j (x

∗)/Gk′−1
j (x∗) > Gk′

j (x)/G
k′−1
j (x) ≥ σk′ ≥ σ1. Since Gk′

j (x
∗)/Gk′−1

j (x∗) = λ∗ + 1,

λ∗ + 1 > σ1 = mini(Gi(x)/xi).

B.5 Weak monotonicity and weak indecomposability in Example 3

B.6 Weak monotonicity and weak indecomposability in Example 4

B.7 Weak monotonicity and weak indecomposability in Example 5
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