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Abstract

A sequence of measurable, closed-valued correspondences between metric spaces con-

verges to a correspondence with the same properties. These correspondences need not have

closed graphs. Each element of a convergent sequence of measures gives full measure to the

graph of the associated correspondence. Under a uniform absolute continuity condition, the

limit measure gives full measure to the limit correspondence. An application to the upper

hemicontinuity of the Nash equilibrium correspondence of large games is provided.
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1 Introduction

In equilibrium theory, existence and upper hemicontinuity are two issues of paramount im-

portance. The properties of the underlying correspondences play a crucial role in answers to

these questions. Correspondences with closed graphs help prove the existence of equilibrium

and in addition, if the correspondences satisfy certain limit properties then the equilibrium

correspondences are upper hemicontinuous.

We will be concerned with correspondences between metric spaces. The domain can be

identi�ed with the payo� functions and the range with actions. In general, if the payo�s

are continuous and the space is endowed with the sup-norm topology, then the best reply

correspondences have closed graphs. These also have nice limit properties, which ensure upper

hemicontinuity of the equilibrium correspondence. On the other hand, if the continuous payo�s

are given an alternative topology, or the payo�s are discontinuous then the graphs of the best

reply correspondences may not be closed and need not have desired limit properties. The

objective is to make some progress in this direction.

In recent years there has been a considerable growth in the literature on �nite-player games

with discontinuous payo�s; see Reny (2016) and the articles in the same volume. Carmona and

Podczeck (2014) examines continuum-player games with discontinuous payo�s. The emphasis

in these papers has been the existence of Nash equilibria. Earlier investigations of anonymous

games with discontinuous payo�s include Khan (1989) and Rath (1996). There, existence of

Nash equilibrium distributions was obtained under alternative topologies on the space of payo�

functions but upper hemicontinuity of the equilibrium correspondence was not obtained in all

cases.

In this paper, a limit theorem is obtained for measurable correspondences. A sequence

of measurable, closed-valued correspondences between metric spaces converges to a correspon-

dence with the same properties. These correspondences need not have closed graphs. Each

element of a convergent sequence of measures gives full measure to the graph of the associated

correspondence. Under a uniform absolute continuity condition, the limit measure gives full

measure to the limit correspondence. An example shows that this result need not obtain if the

uniform absolute continuity condition is violated. An application to the upper hemicontinuity

of the Nash equilibrium correspondence of large games is provided.
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The paper is organized as follows. The preliminaries are given in the next section. Section 3

provides the main results. Section 4 gives an illustration with examples. Section 5 contains the

proofs. An application to large games is given in section 6.

2 Preliminary Concepts

The set of positive integers is denoted by N. Let X be a metric space. Denote by Br(·) the

open neighborhood of radius r of a point or set in X. Let {An} be a sequence of sets in X. A

point x ∈ X belongs to Ls(An) if for every neighborhood V of x there are in�nitely many n

with V ∩An 6= ∅. A point x ∈ X belongs to Li(An) if for every neighborhood V of x there is an

integer n̄ such that V ∩An 6= ∅ for all n ≥ n̄. If Li(An) = Ls(An) = A then the set A is called

closed limit of the sequence {An}.

A metric space, such as X, is always endowed with its Borel σ-algebra and all measures

are Borel probability measures. A measure µ is regular if for any measurable set A, µ(A) =

sup{µ(C) : C ⊆ A, C is closed} = inf{µ(U) : A ⊆ U , U is open}. A family of measures {µn}

is tight if for any ε > 0, there exists a compact set Kε ⊆ X such that µn(Kε) > 1− ε for all n.

A sequence of measures {µn} converges weakly to µ if {
∫
f dµn} →

∫
f dµ for every continuous

and bounded real valued function f . Alternative characterizations of weak convergence can be

found in Hildenbrand (1974, p. 48).

Let Y be a metric space. If ρ is a measure on the product space X × Y , the marginals of

ρ (denoted by subscripts) are given by ρX (P ) = ρ(P × Y ) for any measurable subset P of X

and ρY (Q) = ρ(X ×Q) for any measurable subset Q of Y .

A correspondence F : X −→→ Y associates with each x ∈ X a nonempty subset of Y .

F is closed-valued if for every x ∈ X, F (x) is a closed subset of Y . The graph of F is

{(x, y) ∈ X × Y : y ∈ F (x)}. F has a closed graph if its graph is a closed subset of X × Y and

has a measurable graph if its graph is a measurable subset of X × Y . F is measurable if for

every closed subset C of Y , {x ∈ X : F (x)∩C 6= ∅} is a measurable set. F is weakly measurable

if for every open subset G of Y , {x ∈ X : F (x)∩G 6= ∅} is a measurable set. Every measurable

correspondence is weakly measurable and a compact-valued, weakly measurable correspondence

is measurable. If Y is separable, then a closed-valued, weakly measurable correspondence has

a measurable graph. These results can be found in Aliprantis and Border (2006, pp.593−596).
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3 The Results

Proposition 1 Let M be a nonempty Borel subset of a complete separable metric space and

K a nonempty compact metric space. Let Γn, n ∈ N, be correspondences from M to K with

closed graphs in M∗ = M ×K. Let ρ and ρn, n ∈ N, be measures on M∗ such that {ρn} → ρ

and for each n, ρn(Graph of Γn) = 1. Then ρ(Ls(Graph of Γn)) = 1.

In particular, if Γ is a correspondence fromM toK with a measurable graph and Ls(Graph of

Γn) ⊆ Graph of Γ then ρ(Graph of Γ) = 1.

Theorem 1 Let M be a nonempty Borel subset of a complete separable metric space and

K a nonempty compact metric space. Let Γ and Γn, n ∈ N, be measurable, closed-valued

correspondences from M to K such that Ls (Γn(x)) ⊆ Γ(x) for each x ∈M .

Let ρ and ρn, n ∈ N, be measures on the product space M∗ = M × K. Let µ and

µn respectively denote their marginals on M . Suppose that (i) {ρn} → ρ (ii) for each n,

ρn(Graph of Γn) = 1 and (iii) the family {µn} is uniformly absolutely continuous with respect

to some measure η on M , i.e., given ε > 0, ∃ δ > 0 such that η(B) < δ ⇒ µn(B) < ε for every

n. Then ρ(Graph of Γ) = 1.

Proposition 1 serves as an interesting back drop to Theorem 1. Consider the following

two conditions pertaining to limit properties of the sequence {Γn}. (a) Ls(Graph of Γn) ⊆

Graph of Γ. (b) For each x ∈ M , Ls (Γn(x)) ⊆ Γ(x).

If (a) holds, then it can be deduced from weak convergence of measures that ρ(Graph of Γ)

= 1. Lemma 2 in Khan (1989) is relevant here. However, in some contexts, the correspondences

Γns may not be so well-behaved, i.e., (a) may not hold. In that case, ρ(Graph of Γ) may be less

than one. (b) is, of course, signi�cantly weaker than (a), and therefore, more often satis�ed.

Naturally, under (b), additional restrictions on the measures are required to assert that ρ(Graph

of Γ) = 1.

The uniform absolute continuity condition is su�cient to obtain the result. Denoting by

hn the Radon-Nikodym derivative of µn with respect to η, this is equivalent to the statement

that the collection {hn} is uniformly integrable. It needs to be noted that η is any measure on

M and need not be the same as µ, the marginal of ρ on M .

The strategy of the proof is as follows. Consider any neighborhood V of graph of Γ. By
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constructing suitable sequences of sets in V it can be shown that ρ(V ) is 1. The regularity of

ρ then implies that ρ gives unit measure to graph of Γ. Example 2 below shows that if the

uniform absolute continuity condition is relaxed, then the result may not hold.

4 Examples

Two examples are given below. Example 1 is a prelude to the next one, it generates a sequence of

measures which are not uniformly absolutely continuous. These measures are used in Example 2

to demonstrate that the uniform absolutely continuity condition in Theorem 1 cannot be relaxed.

Example 1 Let M = [0, 1], ν the Dirac measure at 0 and λ the Lebesgue measure. De�ne µ

on M by µ = (ν + λ)/2. For each n ∈ N, de�ne a sequence of real valued functions {hn} on M

as follows.

hn(x) = 0 if x = 0

= n+ 1 if 0 < x < 1
n

= 1 if 1
n ≤ x ≤ 1.

For any Borel subset B of M , let µn(B) =
∫
B h

n dµ. For each n, µn is absolutely continuous

with respect to µ. Moreover, for any n, µn((0, 1]) = 1. That {µn} → µ is seen as follows.

Let bd(·) and int(·) be the boundary and interior of a set respectively. Consider a set B

with µ(bd(B)) = 0. Then 0 6∈ bd(B). Therefore, 0 6∈ bd(Bc) as well. Suppose that 0 ∈ B.

Then 0 ∈ int(B), i.e., ∃ N such that [0, 1/N) ⊆ B. If n ≥ N then µn(Bc) = λ(Bc)/2 = µ(Bc).

So, µn(B) = µ(B). Similarly, if 0 ∈ Bc then 0 ∈ int(Bc), i.e., ∃ N such that [0, 1/N) ⊆ Bc. If

n ≥ N then µn(B) = λ(B)/2 = µ(B). This shows that {µn} → µ.

For any integer k ≥ 1, consider the open interval Ak = (0, 1/k). For any k,
∫
Ak
hn dµ ≥

(n + 1)/(2n) ≥ 1/2 for su�ciently large n. Since the λ-measure of Ak, and consequently, the

µ-measure of Ak, can be chosen to be arbitrarily small, this means that {hn} is not uniformly

integrable with respect to µ. Therefore, {µn} is not uniformly absolutely continuous with

respect to µ.

To show that {µn} is not uniformly absolutely continuous with respect to any measure η

on M , consider any measure η on M and the sets Ak considered above. Since Ak+1 ⊆ Ak
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and ∩∞k=1Ak = ∅, limk→∞ η(Ak) = 0. On the other hand, for any k, there exists n such that

µn(Ak) ≥ 1/2.

Example 2 This example shows that the assumption that the collection of marginals of ρn on

M being uniformly absolutely continuous with respect to some measure η on M in Theorem 1

cannot be relaxed.

Let M = [0, 1] and K = {0, 1}. Let f : M −→ K be given by

f(x) = 0 if x = 0

= 1 if x > 0.

Clearly, f does not have a closed graph. Interpret f = Γ = Γn for each n. Let µn and µ be as

de�ned in Example 1. For any Borel set P of M ×K, let

ρn(P ) = µn({x ∈M : (x, 1) ∈ P}), ρ(P ) = µ({x ∈M : (x, 1) ∈ P}).

[The term (x, 1) appearing in the above expressions means the cartesian product of x ∈M and

1 ∈ K. It does not denote an open interval.] It follows that µn is the marginal of ρn on M and

µ is the marginal of ρ on M .

To show that {ρn} → ρ, consider a closed set F inM×K. Then F = (F0×{0})∪(F1×{1}),

where F0 and F1 are closed subsets of M . ρ(F ) = ρ(F1×{1}) = µ(F1) and for any n, ρn(F ) =

ρn(F1 × {1}) = µn(F1). Since {µn} → µ, µ(F1) ≥ limsupn µ
n(F1), i.e., ρ(F ) ≥ limsupn ρ

n(F ).

So, {ρn} → ρ. However, ρn(Graph of f) = 1 and ρ(Graph of f) = 1/2.

A variant of this example is worth noting. Keeping f(x) = Γn(x) = Γ(x) = 1 if x > 0

as above, if we rede�ne f(0) = Γn(0) = 1 for each n, and Γ(0) = 1, or Γ(0) = {0, 1}; then

ρn(Graph of Γn) = 1 for each n and ρ(Graph of Γ) = 1. Now Γn has a closed graph for each

n and the result follows from Proposition 1. The uniform absolute continuity condition is not

needed.

5 Proofs of Proposition 1 and Theorem 1

Proof of Proposition 1 Let C = Ls(Graph of Γn). Then C is a closed subset of M∗.

To show that ρ(C) = 1, suppose to the contrary that ρ(C) < 1. Then for some δ > 0,
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ρ(C) < 1− δ. For each m ∈ N, consider B1/m(C). {B1/m(C)} is a decreasing sequence of sets

and ∩m∈N B1/m(C) = C. So, {ρ(B1/m(C))} → ρ(C). Since ρ(C) < 1 − δ, there exists m̄ such

that for all m ≥ m̄, ρ(B1/m(C)) < 1− δ.

Fix m∗ > m̄ and let D denote the closure of B1/m∗(C). Then D ⊆ B1/m̄(C)) and ρ(D) <

1 − δ. If ρn(D) ≥ 1 − δ for in�nitely many n then limsupn ρ
n(D) ≥ 1 − δ. The closedness of

D implies that ρ(D) ≥ 1 − δ, a contradiction. So, ρn(D) ≥ 1 − δ for at most �nitely many n.

Assume that ρn(D) < 1− δ for all n. It follows that ρn(B1/m∗(C)) < 1− δ for all n.

Since M is a Borel subset of a complete separable metric space and K is a compact metric

space, M∗ = M × K is a Borel subset of a complete separable metric space. So, each of the

measures ρ and ρn, n ∈ N, is tight; Parthasarathy (1967, p. 29). Since {ρn} → ρ, the family of

measures {ρ, ρ1, ρ2, . . .} is tight; Hildenbrand (1974, p. 49). Let 0 < ε < δ. There is a compact

subset Zε of M
∗ such that ρ(Zε) > 1− ε and ρn(Zε) > 1− ε for n ∈ N.

Let P = Zε \ B1/m∗(C). Then P is compact and P ⊆ (B1/m∗(C))c. Since C ⊆ B1/m∗(C),

P is disjoint from C.

For any n ∈ N, ρn(P ) ≥ ρn(Zε) − ρn(B1/m∗(C)) > 1 − ε − (1 − δ) = δ − ε > 0. This

shows that P ∩ Graph of Γn 6= ∅ for each n. Let zn ∈ P ∩ Graph of Γn. Since P is compact,

some subsequence of {zn} converges, say to z ∈ P . Then z ∈ Ls(Graph of Γn). This is a

contradiction since P is disjoint from C = Ls(Graph of Γn). Therefore, ρ(C) = 1.

Proof of Theorem 1 For x ∈M , denote byG(x) andGn(x) the sets {x}×Γ(x) and {x}×Γn(x)

respectively. G and Gn for each n are compact-valued correspondences from M to M∗. That

these are measurable correspondences is seen as follows.

Aliprantis and Border (2006, p. 594) has shown that the cartesian product of a count-

able collection of weakly measurable correspondences from a measurable space to a (common)

separable metric space is weakly measurable. The proof there, however, applies to the case

where the ranges are distinct separable metric spaces. In the present context, only a two-fold

cartesian product is needed. Notice that the identity map x 7−→ x is measurable on M and

by assumption, Γ and Γn from M to K are measurable. Hence, these are weakly measurable.

Thus, G and Gn for each n fromM toM∗ are weakly measurable. Being compact-valued, these

are measurable.

Let V be an open subset of M∗ such that Graph of Γ is a subset of V . Below it is shown
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that ρ(V ) = 1. If V = M∗, then ρ(V ) = 1. Henceforth, suppose that V is a proper subset

of M∗.

For each positive integer m, let

Wm = {x ∈M : B1/m(V c) ∩G(x) = ∅}.

Since B1/m(V c) is an open set and G is weakly measurable, {x ∈ M : B1/m(V c) ∩G(x) 6= ∅}

is a Borel set. So, its complement Wm is a Borel set.

Clearly,Wm ⊆Wm+1. It is shown below that if x ∈M then x ∈Wm for somem. Therefore,

∪∞m=1Wm = M .

Suppose that for some x ∈ M , x 6∈ Wm for any m. Then for some ym ∈ Γ(x) and

zm = (x, ym), zm ∈ B1/m(V c). {ym} is a sequence in Γ(x), which is compact. So, some

subsequence converges, say to y. Without loss of generality assume that the entire sequence

converges. Clearly, y ∈ Γ(x) and z = (x, y) ∈ G(x). Since zm ∈ B1/m(V c) for every m and V c

is closed, z ∈ V c. This is a contradiction since G(x) ⊆ V .

For each positive integer n, let

Wmn = {x ∈Wm : for all k ≥ n, B1/2m(V c) ∩Gk(x) = ∅}.

For k ∈ N, let Umk = {x ∈ Wm : B1/2m(V c) ∩Gk(x) 6= ∅}. Since B1/2m(V c) is an open

set and Gk is weakly measurable, Umk is a Borel set. Fix any n and let U∗mn = ∪k≥nUmk. Then

U∗mn is a Borel set, so its complement Wmn is Borel set.

Clearly, Wmn ⊆ Wm,n+1. Now we show that if x ∈ Wm then x ∈ Wmn for some n. So,

∪∞n=1Wmn = Wm.

Let x ∈Wm. Suppose that x 6∈Wmn for any n. Then there are sequences {n1, n2, . . .} and

{k1, k2, . . .} such that kt ≥ nt and B1/2m(V c) ∩Gkt(x) 6= ∅. So, ∃ yt such that yt ∈ Γkt(x) and

(x, yt) ∈ B1/2m(V c). {yt} is a sequence in K, so some subsequence converges, say to y. Since

{(x, yt)} is a sequence in B1/2m(V c), (x, y) belongs to the closure of B1/2m(V c). The closure of

B1/2m(V c) is a subset of B1/m(V c).

Since Ls(Γi(x)) ⊆ Γ(x), y ∈ Γ(x) and (x, y) ∈ G(x). Since B1/m(V c) ∩G(x) = ∅, this is a

contradiction. So, if x ∈Wm then x ∈Wmn for some n.
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Next it is shown that for any ε > 0, there exist m̄ and n̄ such that, µk(Wm̄n̄) > 1 − ε for

every k. Let ε > 0 be given. Then there exists δ > 0 such that η(B) < δ ⇒ µk(B) < ε for

every k. Since Wm ⊆ Wm+1 and ∪∞m=1Wm = M , there exists N such that for all m ≥ N ,

η(Wm) > 1 − δ. Fix any m̄ ≥ N . Wm̄n ⊆ Wm̄,n+1 and ∪∞n=1Wm̄n = Wm̄. So, for some n̄,

η(Wm̄n̄) > 1− δ. This implies that µk(Wm̄n̄) > 1− ε for every k.

For k ∈ N, let F k = Graph of Γk ∩ (Wm̄n̄ × K). Since ρk(Graph of Γk) = 1, ρk(F k) =

ρk(Wm̄n̄ ×K) = µk(Wm̄n̄) > 1− ε.

Observe that if k ≥ n̄, thenB1/2m̄(V c)∩F k = ∅. Let (x, y) ∈ F k. Then (x, y) ∈ Graph of Γk

and (x, y) ∈Wm̄n̄×K. So, (x, y) ∈ Gk(x) and x ∈Wm̄n̄. If x ∈Wm̄n̄ then B1/2m̄(V c)∩Gk(x) =

∅ for k ≥ n̄. So, if k ≥ n̄ then B1/2m̄(V c) ∩ F k = ∅.

Now we show that ρ(V ) = 1. For each k ∈ N, ρk(F k) > 1−ε. From above, B1/2m̄(V c)∩F k =

∅ if k ≥ n̄. Therefore, for k ≥ n̄, ρk(B1/2m̄(V c)) < ε.

B1/2m̄(V c) is open and since {ρk} → ρ, ρ(B1/2m̄(V c)) ≤ lim infk ρ
k(B1/2m̄(V c)) ≤ ε. This

implies that ρ(V c) ≤ ε. So, ρ(V ) ≥ 1− ε. Since this is true for any ε > 0, ρ(V ) = 1.

That ρ(Graph of Γ) = 1 is established as follows. Since M∗ is a metric space, ρ is regular;

Parthasarathy (1967, p. 27). So, ρ(Graph of Γ) = inf {ρ(V ) : Graph of Γ ⊆ V, V is open}.

Since ρ(V ) = 1 for any open set V containing the Graph of Γ, ρ(Graph of Γ) = 1. This

completes the proof.

6 An Application

In this section, some of the ideas in Theorem 1 are illustrated in the context of large games. Let

A be a compact metric space and M (A) the compact metric space of probability measures on A

under weak convergence of measures. Let U be a set of real valued payo� functions on A×M (A),

suitably metrized. If (T, T , β) is an atomless probability space then a non-anonymous game

is a measurable mapping G from T to U. A Nash equilibrium of G is a measurable function

from T to A such that for almost all t ∈ T , Gt(f(t), β ◦ f−1) ≥ Gt(x, β ◦ f−1) for all x ∈ A.

An anonymous game µ is a probability measure µ on U. A Nash equilibrium distribution

(NED) of µ is a probability measure τ on U × A such that τU = µ and τ(Bτ ) = 1, where

Bτ = {(u, a) ∈ U ×A : u(a, τA) ≥ u(x, τA)} for all x ∈ A.

8



If G is a non-anonymous game and µ = β ◦ G−1 is an anonymous game then the Nash

equilibria of G and the NEDs of µ are intimately related. This aspect is explored in detail in

Khan et al. (2017). In particular, if f is a Nash equilibrium of G then τ = β ◦ (G , f)−1 is an

NED of µ.

In terms of Theorem 1, the metric space U of payo� functions can be identi�ed withM and

the space of actions A can be identi�ed withK. µ and µn there are games. The correspondences

Γ and Γn are the best reply correspondences and their graphs correspond to the sets Bτ , or

Bτn . The measures ρ and ρns there can be interpreted as NEDs.

If X is a metric space and g : X −→ R is a function, then its hypograph is {(x, α) ∈

X × R : g(x) ≥ α}. A function is upper semicontinuous (usc) i� its hypograph is a closed set.

The hypotopology on the space of usc functions can be de�ned as: two functions are close in

the hypotopology if their hypographs are close in the topology of closed convergence (of closed

sets). The topology of closed convergence has been used extensively in the economics literature

as a topology on preferences.

If X is a compact metric space then X ×R is a locally compact separable metric space and

the set of all closed subsets it endowed with the topology of closed convergence is a compact

metrizable space; Hildenbrand (1974, p. 19). It is well known that every compact metric space

is complete and separable and that every subset of a separable metric space is separable.

In what follows, U will be taken to be the space of bounded usc functions on A ×M (A),

endowed with the hypotopology. Any usc function can be identi�ed with its hypograph. So, it

is a subset of a compact metric space. It can be shown that it is a countable union of closed

subsets; see Rath (1996, p. 316), and hence a Borel subset and is separable.

Two examples are given below. In the �rst, the uniform absolute continuity condition is

violated and the conclusion of Theorem 1 does not obtain. In the second, this condition is

satis�ed and the conclusion holds.

Example 3 This example builds upon Example 1 in Rath (1996). The payo� functions in this

example are continuous. Let A = {0, 1} and S = [0, 1]. The set of probability measures on A

can be identi�ed with S, where y ∈ S denotes the probability of 1. Let n ∈ N.
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un(0, y) = 1/2 if y ∈ S

un(1, y) = ny if 0 ≤ y < 1/n

= 1 if 1/n ≤ y.

Also let

u(0, y) = 1/2 if y ∈ S

u(1, y) = 1 if y ∈ S.

It is relatively easy to check that {un} → u in the hypotopology. Let µn be the Dirac measure

on un and µ the Dirac measure on u. Then {µn} → µ. The NEDs of µ and µn are characterized

below.

Notice that u(1, y) > u(0, y) for every y ∈ [0, 1]. So, under u, {1} is always the best

response. Thus, µ has a unique NED τ where τ({u, 1}) = 1. In equilibrium τA({1}) = 1, i.e.,

y = 1.

If y = 0 then un(0, y) = 1/2 > 0 = un(1, y). If y = 1 then un(1, y) = 1 > 1/2 = un(0, y).

If y = 1/2n then un(0, y) = 1/2 = un(1, y). So, for n ∈ N, µn has three NEDs, each denoted

by τn, where: (1) τn({un, 0}) = 1, (2) τn({un, 1}) = 1 and (3) τn({un, 1}) = 1/2n and

τn({un, 0}) = (2n− 1)/2n. In equilibrium, yn = 0, yn = 1 and yn = 1/2n respectively.

Of particular interest is the NED τn given in (1), τn({un, 0}) = 1. As n→∞, the limit of

{τn} is the Dirac measure on (u, 0). This is clearly di�erent from τ , the only NED of µ. This

shows that the conclusion of Theorem 1 does not hold.

The family of games {µn} is not uniformly absolutely continuous. Suppose to the contrary

that the family is uniformly absolutely continuous with respect to η. The absolute continuity

of each µn implies that η({un}) > 0 for each n. Since η is �nite, {η({un})} → 0 as n → ∞.

Let 0 < ε < 1. Suppose ∃ δ such that η(B) < δ ⇒ µn(B) < ε for each n. For in�nitely many

n, η({un}) < δ but µn({un}) = 1 > ε.

Example 4 Let A = {0, 1} and S = [0, 1] where y ∈ S denotes the probability of 1. Let

W = [0, 1] with Lebesgue measure λ. For n ∈ N, de�ne a function Gn : W −→ U as follows.
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Gn
t (0, y) = 1/2 if y ∈ S

Gn
t (1, y) = 1 if y ≥ max{1/n, t}

= t/4 if y < max{1/n, t}.

Also de�ne G : W −→ U as follows.

Gt(0, y) = 1/2 if y ∈ S

Gt(1, y) = 1 if y ≥ t

= t/4 if y < t.

It is easy to check that for any �xed t, Gt and Gn
t for n ∈ N are usc functions.

Claim 1: For each n ∈ N, Gn is a one-to-one, continuous function.

Let t < t′. Choose y such that t < y < t′. Then Gn
t′ (1, y) = t′/4 and Gn

t (1, y) is either t/4,

or 1. So, Gn
t′ 6= Gn

t .

To show that Gn is continuous, let {tk} → t. {Gn
tk
} converges to Gn

t in the hypotopology,

provided that Ls(hypograph of Gn
tk

) ⊆ hypograph of Gn
t ⊆ Li(hypograph of Gn

tk
).

Consider a sequence {(1, yk, αk)} where each term belongs to the hypograph of Gn
tk
. Suppose

that there is a subsequence {kj} such that {(1, ykj , αkj )} converges to (1, y, α). Then the limit

belongs to Ls(hypograph of Gn
tk

).

Suppose that α > t/4. Then for large j, αkj > t/4. Since (1, ykj , αkj ) ∈ hypograph of Gn
tkj
,

Gn
tkj

(1, ykj ) = 1. Therefore, ykj ≥ max{1/n, tkj} which implies that y ≥ max{1/n, t}. Thus,

Gn
t (1, y) = 1 and (1, y, α) ∈ hypograph of Gn

t . Now suppose that α ≤ t/4. Since Gn
t (1, y)

is either t/4, or 1; (1, y, α) ∈ hypograph of Gn
t . This shows that Ls(hypograph of Gn

tk
) ⊆

hypograph of Gn
t .

Now let (1, y, α) ∈ hypograph of Gn
t . Suppose that α > t/4. Then Gn

t (1, y) = 1 and

y ≥ max{1/n, t}. If y = t ≥ 1/n, let yk = tk if tk > t and yk = y if tk < t. In ei-

ther case, Gn
tk

(1, yk) = 1 and (1, yk, α) ∈ hypograph of Gn
tk
. Since {yk} → y, (1, y, α) ∈

Li(hypograph of Gn
tk

).

Continue to assume that α > t/4 but let y > t. Then for large k, y > tk. Since y ≥ 1/n,

11



Gn
tk

(1, y) = 1 and (1, y, α) ∈ hypograph of Gn
tk
. Since this is true for large k, (1, y, α) ∈

Li(hypograph of Gn
tk

).

Now suppose that α ≤ t/4. Let β = (t/4) − α ≥ 0. Since Gn
tk

(1, y) is either tk/4, or

1; (1, y, (tk/4) − β) ∈ hypograph of Gn
tk
. This implies that (1, y, (t/4) − β) = (1, y, α) ∈

Li(hypograph of Gn
tk

). Thus, hypograph of Gn
t ⊆ Li(hypograph of Gn

tk
).

Claim 2: G is a one-to-one, continuous function.

The proof is analogous to that of Claim 1.

Claim 3: If t ≥ 1/n then Gt = Gn
t .

Let t ≥ 1/n. If y ≥ t then Gt(1, y) = 1. Since y ≥ t ≥ 1/n, Gn
t (1, y) = 1, i.e., Gt(1, y) =

Gn
t (1, y). If y < t then Gt(1, y) = t/4. Since t ≥ 1/n, max{1/n, t} = t. So, Gn

t (1, y) = t/4. This

gives Gt(1, y) = Gn
t (1, y).

Let µ = λ ◦ G−1 and µn = λ ◦ (Gn)−1, n ∈ N.

Claim 4: For any Borel subset B of U, µn(B) ≤ µ(B) + (1/n).

Claim 3 is used in the proof.

µn(B) = λ ({t : Gn
t ∈ B})

= λ ({t ≥ 1/n : Gn
t ∈ B}) + λ ({t < 1/n : Gn

t ∈ B})

= λ ({t ≥ 1/n : Gt ∈ B}) + λ ({t < 1/n : Gn
t ∈ B})

≤ µ(B) +
1

n
.

Claim 5: {µn} → µ. The family {µ, µ1, µ2, . . .} is tight.

LetB be a closed subset of U. Then µn(B) ≤ µ(B)+(1/n), which implies that limsupn µ
n(B) ≤

µ(B). So, {µn} → µ.

It follows from Parthasarathy (1967, p. 29) that each of the measures µ and µn, n ∈ N, is

tight. Since {µn} → µ and each of these measures is tight, the family {µ, µ1, µ2, . . .} is tight;

Hildenbrand (1974, p. 49).

Let η = (1/2)µ+ (1/2n+1)µn.

Claim 6: The family {µn} is uniformly absolutely continuous with respect to η.
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Obviously, µ and µn for each n are absolutely continuous with respect to η. Let ε > 0 be

given. Choose N ∈ N such that 1/N < ε. Then there exists δ > 0 such that η(B) < δ implies

µ(B) < ε− (1/N) and µn(B) < ε− (1/N) if n ≤ N . Consider the same δ and let n > N . Then

µn(B) ≤ µ(B) + (1/n) < ε− (1/N) + (1/n) < ε. This completes the proof.

For n ∈ N, de�ne functions fn0 and fny , y ≥ 1/n, from W to A as follows. fn0 (t) = 0 for all

t ∈W . fny (t) = 1 if y ≥ t and fny (t) = 0 if y < t.

Claim 7: For �xed n, fn0 and fny , y ≥ 1/n, are Nash equilibria of Gn. (The proportions of

players choosing 1 are 0 and y respectively.)

If fn0 (t) = 0 for all t, then y = λ ◦ (fn0 )−1({1}) = 0. Gn
t (0, y) = 1/2, and, since y <

max{1/n, t}, Gn
t (1, y) = t/4. Thus, {0} is the only best response and fn0 is a Nash equilibrium.

Consider fny , y ≥ 1/n. If y ≥ t, then Gn
t (1, y) = 1 and if y < t, then Gn

t (1, y) = t/4. Since

Gn
t (0, y) = 1/2, {1} is the best response if y ≥ t and {0} is the best response if y < t. So, fny is

a Nash equilibrium.

For 0 ≤ y ≤ 1, de�ne fy as fy(t) = 1 if y ≥ t and fy(t) = 0 if y < t.

Claim 8: For any y ∈ [0, 1], fy is a Nash equilibrium of G . (The proportion of players choosing

1 is y.)

It is immediate that λ ◦ (fy)
−1({1}) = y. Gt(1, y) = 1 if y ≥ t and Gt(1, y) = t/4 if y < t.

On the other hand, Gt(0, y) = 1/2. So, {1} is the best response if y ≥ t and {0} is the best

response if y < t. Therefore, fy is a Nash equilibrium.

For n ∈ N, let hn be a Nash equilibrium of Gn and ρn = λ ◦ (Gn, hn)−1. It was mentioned

earlier that ρn is an NED of µn = λ ◦ (Gn)−1.

Claim 9: The family {ρn} is tight and contains a convergent subsequence.

It follows that ρnU = µn and ρnA = λ ◦ (hn)−1. It was claimed earlier that the family {µn}

is tight. The family {ρnA} is tight because each of these measures is on the compact set A. The

family {ρn} is tight by Hildenbrand (1974, p. 50). That it contains a convergent subsequence

follows from Hildenbrand (1974, p. 49). We will assume below without loss of generality that

the entire sequence {ρn} converges.

Let Z be the range of G , Zn the range of Gn and Z∗ = Z ∪ (∪n∈NZn). Being the continuous

images of a compact set (Claims 1 and 2), Z and Zn for each n is compact. So, Z∗ is a Borel
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subset of U.

Let 0 ≤ y∗ ≤ 1. To establish the limit property of the correspondence Γ, three cases are

examined below: (i) y∗ = 0, (ii) y∗ = 1 and (iii) 0 < y∗ < 1.

Case 1: y∗ = 0. The correspondences Γ and Γn are de�ned on Z∗. If u = Gt and t = 0 then

Γ(u) = Γn(u) = {1}, n ∈ N. For any other u ∈ Z∗, Γ(u) = Γn(u) = {0}, n ∈ N. Given y∗ = 0,

these are the best responses.

For each n ∈ N, de�ne hn(t) = 0 for each t ∈W . From Claim 7, hn is a Nash equilibrium of

Gn. Let ρn = λ◦ (Gn, hn)−1. Then ρn is an NED of µn, i.e., ρn(Bρn) = 1. Clearly, ρnA({1}) = 0.

Since Graph of Γn coincides with Bρn , ρ
n(Graph of Γn) = 1. The LS condition for Γ is

satis�ed, so ρ(Graph of Γ) = 1 by Theorem 1. The convergence of {ρn} to ρ, implies the

convergence of marginals. So, ρU = µ and ρA({1}) = 0. The Graph of Γ coincides with Bρ, so

ρ is an NED of µ.

Case 2: y∗ = 1. The correspondences Γ and Γn are de�ned on Z∗. For every u ∈ Z∗, let

Γ(u) = Γn(u) = {1}, n ∈ N. For each n ∈ N, de�ne hn(t) = 1 for each t ∈ W . Arguments

similar to above lead to ρ(Graph of Γ) = 1, ρA({1}) = 1 and ρ is an NED of µ.

Case 3: 0 < y∗ < 1. LetN be the smallest integer such that 1/N < y∗. Let Z∗N = Z∪(∪n≥NZn).

The correspondences Γ and Γn for n ≥ N are de�ned on Z∗N . For u ∈ Z∗N , let Γ(u) = Γn(u) =

{1} if u = Gt, or u = Gk
t for k ≥ N and t ≤ y∗. For u ∈ Z∗N , let Γ(u) = Γn(u) = {0} if u = Gt,

or u = Gk
t for k ≥ N and t > y∗. Notice the discontinuities in the correspondences Γ and Γn,

n ≥ N . As a result, these correspondences do not have closed graphs.

For each n ∈ N, de�ne hn(t) = 1 if t ≤ y∗ and hn(t) = 0 if t > y∗. Arguments similar to

above lead to ρ(Graph of Γ) = 1, ρA({1}) = y∗ and ρ is an NED of µ.

There is another force at work as well in this example and that is convergence in distribution.

Let d denote the metric on U × A. Note that in each of the cases considered above, the

functions hn is the same for each n. Let h = hn. The function t 7−→ d((Gn
t , h

n(t)), (Gt, h(t)))

is measurable. Moreover, for any ε > 0, {t : d((Gn
t , h

n(t)), (Gt, h(t))) > ε} ⊆ [0, 1/n). Since

{λ([0, 1/n))} → 0, {(Gn, hn)} → (G , h) in measure. Therefore, the sequence converges in

distribution; Hildenbrand (1974, pp. 51−52). Thus, {ρn} → ρ. Since ρn is an NED of µn and

ρ is an NED of µ, ρn(Graph of Γn) = 1 for each n and ρ(Graph of Γ) = 1.
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