Check Your Understanding

Definitions and Proofs

Definition: A topological space X with topology T_X is *Hausdorff* if for every $x, y \in X$ with $x \neq y$, there are $A, B \in T_X$ such that $x \in A, y \in B$, and $A \cap B = \emptyset$.

Problem 1: Is \mathbb{N} with $T_{\mathbb{N}} = \mathcal{P}(\mathbb{N})$ Hausdorff? Prove you are correct.

Problem 2: Prove $\{\emptyset, \mathbb{N}\}$ is a topology on \mathbb{N} .

Problem 3: Is \mathbb{N} with $T_{\mathbb{N}}$ Hausdorff? Prove you are correct!

Definition: A subset $X \subset \mathbb{N}$ is cofinite if $\{n \in \mathbb{N} : n \notin X\}$ is finite.

Problem 4: Is the set of cofinite subsets of \mathbb{N} a topology on \mathbb{N} ? Prove you are correct!