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L2 SERRE DUALITY ON DOMAINS IN COMPLEX MANIFOLDS

AND APPLICATIONS

DEBRAJ CHAKRABARTI AND MEI-CHI SHAW

Abstract. An L2 version of the Serre duality on domains in complex man-
ifolds involving duality of Hilbert space realizations of the ∂-operator is es-
tablished. This duality is used to study the solution of the ∂-equation with
prescribed support. Applications are given to ∂-closed extension of forms, as
well as to Bochner-Hartogs type extension of CR functions.

1. Introduction

A fundamental result in the theory of complex manifolds is Serre’s duality the-
orem. This establishes a duality between the cohomology of a complex manifold Ω
and the cohomology of Ω with compact supports, provided the Cauchy-Riemann
operator ∂ has closed range in appropriate degrees.

More precisely, this can be stated as follows: let E be a holomorphic vector
bundle on Ω, let Hp,q(Ω, E) denote the (p, q)-th Dolbeault cohomology group for E-
valued forms on Ω, and let Hp,q

comp(Ω, E) denote the (p, q)-th Dolbeault cohomology
group with compact support. Let E∗ denote the holomorphic vector bundle on Ω
dual to the bundle E, and let n = dimC Ω. Then (we assume that all manifolds in
this paper are countable at infinity):

Serre Duality Theorem. Suppose that each of the two operators

(1) C∞
p,q−1(Ω, E)

∂E−−→ C∞
p,q(Ω, E)

∂E−−→ C∞
p,q+1(Ω, E)

has closed range with respect to the natural Fréchet topology. Then the dual of
the topological vector space Hp,q(Ω, E) (with the quotient Fréchet topology) can be
canonically identified with the space Hn−p,n−q

comp (Ω, E∗) with the quotient topology,
where we endow spaces of compactly supported forms with the natural inductive
limit topology.

In fact, the condition that the two maps in (1) have closed range is also necessary
for the duality theorem to hold (see [9]; see also [26, 27, 28] for further results of
this type).

Serre’s original proof [35] is based on sheaf theory and the theory of topological
vector spaces. A different approach to this result, in the case when Ω is a compact
complex manifold, was given by Kodaira using Hodge theory (see [23] or [7]). In
this note we extend Kodaira’s method to non-compact Hermitian manifolds to
obtain an L2 analog of the Serre duality. Special cases of Serre-duality using L2
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3530 DEBRAJ CHAKRABARTI AND MEI-CHI SHAW

methods have appeared before in many contexts (see [25], or [11, Theorem 5.1.7]
and [19, 20], for example). The L2-Serre duality between the maximal and minimal
realizations of the ∂-operator is also used in the study of the ∂-operator on compact
complex spaces (see e.g. [31, Proposition 1.3]) and more general duality results
(of the type discussed in §3.6 below) are used as well in these investigations (see
[33, Chapter 5]). Our treatment aims to streamline and systematize these results,
with emphasis on non-compact manifolds, and to point out its close relation with
the choice of L2-realizations of the Cauchy-Riemann operator ∂, or alternatively,
the choice of boundary conditions for the L2-realizations of the formal complex
Laplacian ∂EϑE + ϑE∂E .

The L2-duality can be interpreted in many ways. At one level, it is a duality
between the standard �-Laplacian with ∂-Neumann boundary conditions and the
�c-Laplacian with dual (“∂-Dirichlet”) boundary conditions. Using another ap-
proach, results regarding the solution of the ∂-equation in L2 can be converted to
statements regarding the solution of the ∂c-equation. This leads to a solution of
the ∂-Cauchy problem, i.e., a solution of the ∂-equation with prescribed support.
At the heart of the matter lies the existence of a duality between Hilbert space
realizations of the ∂-operator. This is explained in §3.6. However, for clarity of ex-
position, we concentrate on the classical duality between the well-known maximal
and minimal realizations of ∂ in the rest of the paper.

As an application of the duality principle, we consider the problem of ∂-closed
extension of forms. It is well known that solving the ∂-equation with a weight can
be interpreted as solving ∂ with bundle-valued forms (see [8]). The weight function
φ corresponds to the metric for the trivial line bundle with a metric under which
the length of the vector 1 at the point z is e−φ(z). It was used by Hörmander
to study the weighted ∂-Neumann operator by using weight functions which are
strictly plurisubharmonic in a neighborhood of a pseudoconvex domain. When
the boundary is smooth, one can also use the smooth weight functions to study the
boundary regularity for pseudoconvex domains (see [24]) or pseudoconcave domains
(see [36, 37]) in a Stein manifold. In this paper we will use the Serre duality to
study the ∂ problems with singular weight functions. The use of singular weight
functions allows us to obtain the existence and regularity problem on pseudoconcave
domains with Lipschitz boundary in Stein manifolds. The use of singular weights
has the advantage that it only requires the boundary to be Lipschitz. Even when
the boundary is smooth, the use of singular weight functions gives the regularity
results much more directly (cf. the proof in [37] or [2, Chapter 9]). This method is
also useful when the manifold is not Stein, as in the case of the complex projective
space CP

n. In this case, any pseudoconconvex domain in CP
n is Stein, but CPn is

not Stein. In recent years these problems have been studied by many people (see
[15, 4, 3]), and are all variants of the Serre duality results.

The plan of this paper is as follows. In §2, we recall basic definitions from
complex differential geometry and functional analysis. This material can be found
in standard texts, e.g. [12, 43, 14]. Next, in §3 we discuss several avatars of the L2-
duality theorem: at the level of Laplacians, at the level of cohomology and for the ∂
and ∂c problems. We discuss a general form of the duality theorem using the notion
of dual realizations of the ∂ operator on vector bundles. In §4, we apply the results
of §3 to trivial line bundles with singular metrics on pseudoconvex domains. This
leads to results on the ∂-closed extension of forms from pseudoconcave domains. In
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L2 SERRE DUALITY 3531

the last section, we use the L2-duality results to discuss the holomorphic extension
of CR forms from the boundary of a Lipschitz domain in a complex manifold. We
obtain a proof of the Bochner-Hartogs extension theorem using duality.

2. Notation and preliminaries

Throughout this article, Ω will denote a Hermitian manifold, and E a holomor-
phic vector bundle on Ω.

2.1. Differential operators on Hilbert spaces. The metrics on Ω and E induce
an inner product (, ) on the space D(Ω, E) of smooth compactly supported sections
of E over Ω. The inner product is given by

(2) (f, g) =

∫
Ω

〈f, g〉dV,

where 〈, 〉 is the inner product in the metric of the bundle E, and dV denotes the
volume form induced by the metric of Ω. This allows us to define the Hilbert
space L2(Ω, E) of square integrable sections of E over Ω in the usual way, as the
completion of the space of smooth compactly supported sections of E over Ω under
the inner product (2).

Let A be a differential operator acting on sections of E, i.e. A : C∞(Ω, E) →
C∞(Ω, E), and let A′ be the formal adjoint of A with respect to the inner product
(2). Recall that this means that for smooth sections f, g of E over Ω, at least one
of which is compactly supported, we have

(3) (Af, g) = (f,A′g).

The well-known facts that A′ exists, that it is also a differential operator acting on
sections of E, and that A′ has the same order as A follow from a direct computation
in local coordinates using integration by parts. It is clear that (A′)′ = A, i.e. the
formal adjoint of A′ is A.

By an operator T from a Hilbert space H1 to another Hilbert space H2 we mean
a C-linear map from a linear subspace Dom(T ) of H1 into H2. We use the notation
T : H1 ��� H2 to denote the fact that T is defined on a subspace of H1 (rather than
on all of H1 when we write T : H1 → H2). Recall that such an operator is said to
be closed if its graph is closed as a subspace of the product Hilbert space H1 × H2.

The differential operator A gives rise to several closed operators on the Hilbert
space L2(Ω, E).

1. The weak maximal realization Amax: we say for f, g ∈ L2(Ω, E) that Af = g
in the weak sense if for all test sections φ ∈ D(Ω, E) we have that

(4) (f,A′φ) = (g, φ).

(This can be rephrased in terms of the action of A on distributional sections of
E, but we will not need this.) The weak maximal realization Amax is the densely-
defined closed (cf. Lemma 1) linear operator on L2(Ω, E) with domain Dom(Amax)
consisting of all f ∈ L2(Ω, E) such that Af ∈ L2(Ω, E), where Af is taken in the
weak sense. On Dom(Amax), we define Amaxf = Af in the weak sense.

2. The strong minimal realization Amin is the closure of the densely defined
operator AD on L2(Ω, E), where AD denotes the restriction of A to the space of
compactly supported sections D(Ω, E). More precisely, Dom(Amin) consists of those
f ∈ L2(Ω, E) for which there is a g ∈ L2(Ω, E) and a sequence {fν} ⊂ D(Ω, E)
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3532 DEBRAJ CHAKRABARTI AND MEI-CHI SHAW

such that fν → f and Afν → g in L2(Ω, E). We set Aminf = g. The fact that AD
is closeable is a standard result in functional analysis (see [14]).

More generally, a closed realization of the differential operator A is a closed
operator Ã : L2(Ω, E) ��� L2(Ω, E) which extends the operator Amin. Such an
operator satisfies

Amin ⊆ Ã ⊆ Amax.

Note that if Ω is complete in its Hermitian metric (in particular if Ω is compact),
then the space D(Ω, E) of compactly supported smooth sections of E is dense in
Dom(Amax) in the graph norm, and it follows that Amax = Amin and that there is a
unique closed realization of A as a Hilbert-space operator. We are more interested
in the case when Ω is not complete, e.g., when Ω is a relatively compact domain in
a larger Hermitian manifold.

We now recall the following well-known fact, which follows immediately from (4)
(see [14, Lemma 4.3]):

Lemma 1. As operators on L2(Ω, E), the weak maximal realization Amax of the
differential operator A and the strong minimal realization A′

min of its formal adjoint
A′ are Hilbert space adjoints, i.e. we have Amax = (A′

min)
∗
(note that this implies

that Amax is closed) and also A′
min = (Amax)

∗.

Proof. Let A′
D denote the restriction of A′ to the compactly supported smooth

sections D(Ω, E). Then A′
D is a densely defined linear operator on L2(Ω, E) and

its closure is A′
D = A′

min. For a fixed f ∈ L2(Ω, E), consider the linear map on
Dom(AD) = D(Ω, E) given by φ �→ (f,A′φ). The definition of Dom(Amax) shows
that this map is bounded on Dom(A′

D) if and only if f ∈ Dom(Amax). It now follows
that (A′

D)
∗ = Amax. By taking the closure, we conclude that (A′

min)
∗ = Amax. Since

T ∗∗ = T it follows that A′
min = (Amax)

∗
. �

We note parenthetically that all the definitions and results of this section also
hold in the simpler situation when Ω is a Riemannian manifold, and E is a complex
vector bundle, and are independent of the holomorphic structure of Ω and E.

2.2. Bundle-valued forms. We recall the standard construction of forms on Ω
with values in E . Recall that an E-valued (p, q)-form on Ω is a section of the bundle
Λp,qT ∗(Ω)⊗E, where Λp,qT ∗(Ω) is the bundle of C-valued forms of bidegree (p, q)
(see [43] for details). We denote by C∞

p,q(Ω, E) the space of E-valued (p, q)-forms

of class C∞, so that if {eα}kα=1 is a local frame of E, then locally any element φ of
C∞
p,q(Ω) has a representation

(5) φ =
∑
α

φα ⊗ eα,

where the φα are (C-valued) (p, q)-forms with smooth coefficients.
It is well known that the operator ∂ gives rise to an operator ∂ ⊗ IE = ∂E :

C∞
p,q(Ω, E) → C∞

p,q+1(Ω, E), via the prescription

(6) ∂Eφ =
∑
α

(∂φα)⊗ eα.

See [12] for details of this construction. For each p with 0 ≤ p ≤ n, this gives rise
to a complex (C∞

p,∗(Ω, E), ∂E) of E-valued forms on Ω.
With the holomorphic vector bundle E → Ω we can associate the dual bundle

E∗ → Ω, which is a holomorphic vector bundle over Ω, such that over a point
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L2 SERRE DUALITY 3533

x ∈ Ω, the fiber (E∗)x of E∗ coincides with the dual vector space (Ex)
∗ of the

fiber Ex of E. One then has a natural isomorphism of bundles E ∼= (E∗)∗, and
we will always make this identification. If E is endowed with a Hermitian bundle
metric, this induces a Hermitian bundle metric on E∗ in a natural way, via the
identification of E and E∗ given by the Hermitian product on each fiber.

We can also define a wedge product

∧ : C∞
p,q(Ω, E)⊗ C∞

p′,q′(Ω, E
∗) → C∞

p+p′,q+q′(Ω)

of an E-valued (p, q)-form and an E∗-valued (p′, q′)-form with value an ordinary
(i.e. C-valued) (p + p′, q + q′)-form in the following way. Suppose that {eα}kα=1

is a local frame for the bundle E over some open set in Ω, and let {fα}kα=1 be
a frame of E∗. Given φ ∈ C∞

p,q(Ω, E) and an ψ ∈ C∞
p′,q′(Ω, E

∗), we locally write

φ =
∑

α φα ⊗ eα and ψ =
∑

β ψ
β ⊗ fβ , and define pointwise

(7) φ ∧ ψ =
∑
α,β

fβ(eα)φ
α ∧ ψβ .

This extends by bilinearity to a wedge product on C∞
∗,∗(Ω, E)⊗ C∞

∗,∗(Ω, E
∗).

If E is a holomorphic vector bundle on Ω, define a linear operator σE on
C∞
∗,∗(Ω, E) as follows: let φ be a form of bidegree (p, q). Then we set

(8) σEφ = (−1)p+qφ

and extend linearly to C∞
∗,∗(Ω, E). Clearly (σE)

2 is the identity map on C∞
∗,∗(Ω, E).

Further, if T is any R-linear operator from C∞
∗,∗(Ω, E) to C∞

∗,∗(Ω, F ) (where F is
another holomorphic vector bundle on Ω) of degree d, i.e., if for a homogeneous
form f we have deg(Tf)− deg(f) = d, then we have the relation

σF T = (−1)d T σE .

It is easy to see that the wedge product defined in (7) satisfies the Leibniz formula

(9) ∂(φ ∧ ψ) = ∂Eφ ∧ ψ + σEφ ∧ ∂E∗ψ.

We note here that the Hermitian metric on Ω and the bundle metric on E have
not played any role in this section.

2.3. The space L2
∗(Ω, E). We now use the fact that the manifold Ω has been

endowed with a Hermitian metric which we denote by g, i.e., each tangent space
TxΩ has been endowed a Hermitian inner product gx(·, ·), which depends smoothly
on the base point x, and also the fact the holomorphic vector bundle E has been
endowed with a Hermitian metric h, i.e. for each x ∈ Ω, hx is a Hermitian product
on the fiber Ex of E over x. The dual bundle E∗ can be endowed with a Hermitian
metric in the natural way.

The bundle Λp,qT ∗Ω⊗E has a natural Hermitian inner product (cf. (10) below),
so we can construct the space L2

p,q(Ω, E) = L2(Ω,Λp,qT ∗Ω⊗E) of square integrable

E-valued forms using the method of §2.1. We let L2
∗(Ω, E) be the orthogonal direct

sum of the Hilbert spaces L2
p,q(Ω, E) for 0 ≤ p, q ≤ n.

We write the pointwise inner product on the space of E-valued forms. Let φ be
as in (5), and let ψ be another (p, q)-form with local representation

ψ =
∑
β

ψβ ⊗ eβ ,
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3534 DEBRAJ CHAKRABARTI AND MEI-CHI SHAW

with respect to the same local frame. The pointwise inner product of the E-valued
(p, q) forms φ and ψ is given by

(10) 〈φ, ψ〉x =
∑
α,β

〈φα, ψβ〉x hx(eα, eβ)

at each point x in the open set where the frame {eα} is defined, where by 〈, 〉 on
the right-hand side the standard pointwise inner product on C-valued (p, q)-forms
is meant (see [2]). It is not difficult to see that this definition is independent of the
choice of the local frame. We extend (10) to a pointwise inner product on C∞

∗,∗(Ω, E)
by declaring that forms of different bidegree are pointwise orthogonal.

2.4. The Hodge star. The pointwise inner product (10) and the wedge prod-
uct (7) can be related by the Hodge-star operator, the map �E : C∞

p,q(Ω, E) →
C∞
n−p,n−q(Ω, E

∗), defined by

(11) 〈φ, ψ〉dV = φ ∧ �Eψ,

where dV is the volume form on Ω induced by the Hermitian metric g. It is easy to
check that (11) defines �E as an R-linear and C-antilinear map, i.e., for a C-valued
function f and an E-valued form φ, we have �E(fφ) = f �E φ. We note that

(12) �E∗ �E = σE

and that

(13) σE∗ �E = �E σE ,

where σE , σE∗ are as in (8).
Let ϑE : C∞

∗,∗(Ω, E) → C∞
∗,∗(Ω, E) denote the formal adjoint of ∂E . We recall the

well-known formula for ϑE , and take this opportunity to point out that the formula
for ϑE given in the popular reference [12, p. 152] has a typographical error.

Lemma 2. The following formula holds:

(14) ϑE = − �E∗ ∂E∗ �E .

Proof. It is sufficient to consider the case when the smooth forms φ and ψ are of
bidegree (p, q − 1) and (p, q) respectively and at least one of them has compact
support and compute

(∂Eφ, ψ)Ω =

∫
Ω

∂Eφ ∧ �Eψ

=

∫
Ω

(
∂(φ ∧ �Eψ)− σEφ ∧ ∂E∗ �E ψ

)
(using (9))

= −(−1)p+q−1

∫
Ω

φ ∧ ∂E∗ �E ψ (using Stokes’ formula)

= −
∫
Ω

φ ∧ (−1)(n−p)+(n−q+1)∂E∗ �E ψ

= −
∫
Ω

φ ∧ σE∗∂E∗ �E ψ

= −
∫
Ω

φ ∧ �E �E∗ ∂E∗ �E ψ (using (12))

= (φ,− �E∗ ∂E∗ �E ψ)Ω. �

Licensed to Univ of Notre Dame. Prepared on Mon Nov 18 15:51:37 EST 2013 for download from IP 129.74.250.206.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



L2 SERRE DUALITY 3535

Corollary 1. We also have the formula

(15) ∂E = �E∗ ϑE∗ �E .

Proof. Using (14), we compute

�EϑE�E∗ = − �E �E∗∂E∗ �E �E∗

= −σE∗∂E∗σE∗

= ∂E∗ .

The result follows by replacing E with E∗. �

3. Duality

3.1. The basic observation. According to the conventions of multidimensional
complex analysis, we adopt the following notation: we write

∂E for (∂E)max, the weak maximal realization of ∂E on L2
∗(Ω, E),

∂c,E for (∂E)min, the strong minimal realization of ∂E on L2
∗(Ω, E),

ϑE for (ϑE)max, the weak maximal realization of ϑE on L2
∗(Ω, E),

∂
∗
E for (ϑE)min, the strong minimal realization of ϑE on L2

∗(Ω, E).

By Lemma 1, the operators ∂E and ∂
∗
E are Hilbert space adjoints to each other, as

are the operators ∂c,E and ϑE .
The operator σE defined in (8) extends from the space D∗(Ω, E) of compactly

supported forms to give rise to a unitary operator on L2
∗(Ω, E). Similarly the

Hodge-Star operator �E defined in (11) extends from D∗(Ω, E) to give rise to a
conjugate-linear self-isometry of L2

∗(Ω, E). We continue to denote these Hilbert
space realizations by σE and �E respectively. We are now ready to prove the main
observation behind the use of the Hodge-� operator in L2 theory:

Proposition 1. Let Ω be a Hermitian manifold, and E a holomorphic vector bundle

on Ω equipped with a Hermitian metric. Let ∂E , ∂
∗
E , ϑE∗ , ∂c,E∗ be the Hilbert space

realizations as defined above, and let f ∈ L2
∗(Ω, E):

(1) f ∈ Dom(∂
∗
E) if and only if �Ef ∈ Dom(∂c,E∗). Also on Dom(∂

∗
E) we have

the relation

(16) ∂
∗
E = − �E∗ ∂c,E∗ �E .

(2) f ∈ Dom(∂E) if and only if �Ef ∈ Dom(ϑE∗). On Dom(∂E) we have the
relation

(17) ∂E = �E∗ ϑE∗ �E .

Proof. The results are obtained by taking the minimal and maximal realizations of
(14) and (15) respectively.

To justify (16), we note that if f ∈ Dom(∂
∗
E), there is a sequence {fν} in

D(Ω, E) such that fν → f in L2
∗(Ω, E) and ϑEfν → ∂

∗
Ef also in L2

∗(Ω, E). Note
that �Efν ∈ D∗(Ω, E

∗), since fν is compactly supported. Further, since �E ex-
tends to an isometry of L2

∗(Ω, E) with L2
∗(Ω, E

∗), it follows that �Efν → �Ef in
L2(Ω, E∗). From (14) relating the formal adjoints, it also follows that ∂E∗(�Efν) =

−(�E∗)−1ϑEfν → −(�E∗)−1∂
∗
Ef . Consequently, �Ef ∈ Dom(∂c,E∗), and (16)

holds. The converse assertion (where if �Ef ∈ Dom(∂c,E∗), then f ∈ Dom(∂
∗
E)) is

proved similarly.
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3536 DEBRAJ CHAKRABARTI AND MEI-CHI SHAW

For (17), suppose that f ∈ Dom(∂E). This means that f ∈ L2
∗(Ω, E) and

∂E ∈ L2
∗(Ω, E) (where ∂E is taken in the weak sense). Since �E is an isometry

of the Hilbert space L2
∗(Ω, E) with the Hilbert space L2

∗(Ω, E
∗), it follows that

�Ef ∈ L2
∗(Ω, E

∗). From (15) we see that in the weak sense, we have ∂Ef =
�E∗ϑE∗(�Ef). Consequently, ϑE∗(�Ef) = (�E∗)−1∂Ef ∈ L2(Ω, E∗). It follows
that �Ef ∈ Dom(ϑE∗) and (17) holds. The converse (if �Ef ∈ Dom(ϑE∗), then
f ∈ Dom(∂E)) is proved the same way. �

3.2. Duality of Laplacians. Recall that the ∂-Laplacian on E-valued forms on
Ω is the operator �E on L2

∗(Ω, E) defined by

�E = ∂E∂E∗ + ∂E∗∂E ,

with domain

Dom(�E) =
{
f ∈ L2

∗(Ω, E) | f ∈ Dom(∂E) ∩Dom(∂
∗
E),

∂Ef ∈ Dom(∂
∗
E), ∂

∗
Ef ∈ Dom(∂E)

}
.

The ∂c-Laplacian on E-valued forms is the operator

�c
E = ∂c,E∂

∗
c,E + ∂

∗
c,E∂c,E

= ∂c,EϑE + ϑE∂c,E

on L2
∗(Ω, E) with domain

Dom(�c
E) =

{
f ∈ L2

∗(Ω, E) | f ∈ Dom(∂c,E) ∩Dom(ϑE),

∂c,Ef ∈ Dom(ϑE), ϑEf ∈ Dom(∂c,E)
}
.

Each � and �c
E is a non-negative self-adjoint operator on L2

∗(Ω, E). Note that on
the subspace D∗(Ω, E) of compactly supported E-valued forms both �E and �c

E

coincide with the “formal Laplacian” ∂EϑE + ϑE∂E . However, in general it is not
true that �c

E and �E are equal. By [1, Lemma 3.1(2)], we have �E = �c
E if and

only if ∂E = ∂c,E . This happens if Ω is either compact or complete.

We define the spaces of E-valued ∂-Harmonic and ∂c-Harmonic formsHp,q(Ω, E)
and Hc

p,q(Ω, E) by

Hp,q(Ω, E) = ker(�E) ∩ L2
p,q(Ω, E)

and

Hc
p,q(Ω, E) = ker(�c

E) ∩ L2
p,q(Ω, E).

It is easy to see that

Hp,q(Ω, E) = ker(∂E) ∩ ker(∂
∗
E) ∩ L2

p,q(Ω, E)

=
{
f ∈ Dom(∂E) ∩Dom(∂

∗
E) ∩ L2

p,q(Ω, E) | ∂Ef = ∂
∗
Ef = 0

}
and similarly that

Hc
p,q(Ω, E) = ker(∂c,E) ∩ ker(ϑE) ∩ L2

p,q(Ω, E)

=
{
f ∈ Dom(∂c,E) ∩Dom(ϑE) ∩ L2

p,q(Ω, E) | ∂c,Ef = ϑEf = 0
}
.

The following is now easy to prove.
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Theorem 1. Let f ∈ L2
∗(Ω, E). Then, f ∈ Dom(�E) if and only if �Ef ∈

Dom(�c
E∗). Further, we have the relation

(18) �E �E = �c
E∗ �E .

Also, the restriction of the map �E to Hp,q(Ω, E) gives rise to an isomorphism

(19) Hp,q(Ω, E) ∼= Hc
n−p,n−q(Ω, E

∗).

Proof. On the space{
f ∈ L2

∗(Ω, E) | f ∈ Dom(∂E), ∂Ef ∈ Dom(∂
∗
E)

}
we have, using (16) and (17),

∂
∗
E∂E = − �E∗ ∂c,E∗ �E �E∗ϑE∗�E

= − �E∗ ∂c,E∗σE∗ϑE∗�E

= �E∗σE∗∂c,E∗ϑE∗ �E .

Similarly, we have on{
f ∈ L2

∗(Ω, E) | f ∈ Dom(∂
∗
E), ∂

∗
Ef ∈ Dom(∂E)

}
the relation

∂E∂
∗
E = �E∗σE∗ϑE∗∂c,E∗ �E .

Combining, we have on Dom(�E):

�E = �E∗σE∗�c
E∗ �E .

Equation (18) follows by pre-composing with �E and using (12). �

It follows that the self-adjoint operators �E and �c
E∗ are isospectral: a number

λ ∈ R belongs to the spectrum of �E if and only if λ belongs to the spectrum of
�c

E∗ . Let {Eλ}λ∈R be a spectral family of orthogonal projections from L2
∗(Ω, E) to

itself (cf. [32, Chapters VII, VIII]) such that we have the spectral representation

�E =

∫
R

λdEλ.

If {Fλ}λ∈R is defined by

Fλ = σE∗ �E Eλ�E∗ ,

then Fλ is an orthogonal projection on L2
∗(Ω, E

∗) and we have the spectral repre-
sentation

�c
E∗ =

∫
R

λdFλ.

These statements are purely formal consequences of (18).

3.3. Closed-range property. In order to apply L2-theory to solve the ∂-equation,
we first need to show that the ∂-operator has closed range. In this section we
consider the consequences of this hypothesis on the ∂c-operator.

Recall that the notation T : H1 ��� H2 means that T is a linear operator defined
on a linear subspace Dom(T ) of H1 and taking values in H2. Further, for nota-
tional simplicity, we will use ∂E to denote the restriction ∂E |L2

p,q(Ω), when p, q are

given, rather than introduce new subscripts, and we adopt the same convention for

∂c,E , ϑE , and ∂
∗
E . We first note the following fact.
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Lemma 3. If any one of the operators in the following list of Hilbert space operators
has closed range, it follows that all the others also have closed range:

(20)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂E : L2

p,q(Ω, E) ��� L2
p,q+1(Ω, E),

∂
∗
E : L2

p,q+1(Ω, E) ��� L2
p,q(Ω, E),

∂c,E∗ : L2
n−p,n−q−1(Ω, E

∗) ��� L2
n−p,n−q(Ω, E

∗),

ϑE∗ : L2
n−p,n−q(Ω, E

∗) ��� L2
n−p,n−q−1(Ω, E

∗).

Proof. Thanks to the well-known fact that a closed densely-defined operator has
closed range if and only if its adjoint has closed range (see [19, Theorem 1.1.1] or [2,

Lemma 4.1.1]), it follows that ∂E has closed range if and only if ∂
∗
E has closed range

and that ∂c,E∗ has closed range if and only if ϑE∗ has closed range. To complete

the proof, we need to show that ∂
∗
E has closed range if and only if ∂c,E∗ has closed

range. Now, (16) shows that for f ∈ Dom(∂
∗
E), we have

∥∥∥∂∗
Ef

∥∥∥ =
∥∥∂c,E∗(�Ef)

∥∥,
in particular, f ∈ ker(∂

∗
E) if and only if �Ef ∈ ker(∂c,E∗). This means that the

inequality
∥∥∥∂∗

Ef
∥∥∥ ≥ C ‖f‖ holds for all f ∈ ker(∂

∗
E)

⊥ if and only if the inequality∥∥∂c,E∗g
∥∥ ≥ C ‖g‖ holds for all g ∈ ker(∂c,E∗)⊥. Again by [2, Lemma 4.1.1] it

follows that ∂
∗
E has closed range if and only if ∂c,E∗ has closed range. �

3.4. Duality of cohomologies. We define the L2-cohomology as the quotient vec-
tor space

Hp,q
L2 (Ω, E) =

ker(∂E) ∩ L2
p,q(Ω, E)

img(∂E) ∩ L2
p,q(Ω, E)

.

Similarly, the L2-cohomology with the minimal realization is defined to the space

Hp,q
c,L2(Ω, E) =

ker(∂c,E) ∩ L2
p,q(Ω, E)

img(∂c,E) ∩ L2
p,q(Ω, E)

.

If ∂E (resp. ∂c,E) has closed range, Hp,q
L2 (Ω, E) (resp. Hp,q

c.L2(Ω, E)) is a Hilbert
space with the quotient norm.

Let

[·] : ker(∂E) ∩ L2
p,q(Ω, E) → Hp,q

L2 (Ω, E)

and

[·]c : ker(∂c.E) ∩ L2
p,q(Ω, E) → Hp,q

c.L2(Ω, E)

denote the respective natural projections onto the quotient spaces. The following
result was first observed by Kodaira:

Lemma 4. Let η (resp. ηc) denote the restriction of [·] (resp. [·]c) to the vector
space of ∂E-harmonic forms Hp,q(Ω, E) (resp. the vector space of ∂c,E-harmonic
forms Hc

p,q(Ω, E)). Then:
(i) η (resp. ηc) is injective.
(ii) If η (resp. ηc) is also surjective, then img(∂E : L2

p,q−1(Ω, E) ��� L2
p,q(Ω, E))

(resp. img(∂c,E : L2
p,q−1(Ω, E) ��� L2

p,q(Ω, E))) is closed.

Proof. We write the proof only for the operator η. The proof for ηc is similar.
(i) Note that if q = 0 this is obvious, since img

(
∂E : L2

p,q−1(Ω, E) ��� L2
p,q(Ω, E)

)
= 0. Assuming q ≥ 1, we note that ker(η) = ker(∂E) ∩ ker(∂

∗
E) ∩ img(∂E), and
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therefore a form in ker(η) can be written as ∂g, with ∂
∗
(∂g) = 0. Then

0 = (∂
∗
E(∂Eg), g)

=
∥∥∂g∥∥2 .

(ii) Since η is an isomorphism, we can identify the harmonic space Hp,q(Ω, E)
with the cohomology space Hp,q

L2 (Ω, E). Since Hp,q(Ω, E) is a closed subspace of the

Hilbert space L2
p,q(Ω, E), the space Hp,q

L2 (Ω, E) also becomes a Hilbert space. We

can think of the map [·] as an operator from the Hilbert space ker(∂E)∩L2
p,q(Ω, E)

to the Hilbert space Hp,q
L2 (Ω, E). Since η is surjective, every element of ker(∂E)

can be written as f + ∂g, where f ∈ Hp,q(Ω, E). According to the identification of

Hp,q(Ω, E) and Hp,q
L2 (Ω, E), we have [f + ∂Eg] = f . Since

∥∥f + ∂Eg
∥∥2 = ‖f‖2 +∥∥∂g∥∥2 ≥ ‖f‖2, then

∥∥[f + ∂g]
∥∥ ≤

∥∥f + ∂g
∥∥ and it follows that [·] is in fact a

bounded map. Therefore ker[.] = img(∂E) ∩ L2
p,q(Ω, E) is closed, which was to be

shown. �

Theorem 2 (L2 Serre duality on non-compact manifolds). The following are equiv-
alent:

(1) The two operators

L2
p,q−1(Ω, E)

∂E��� L2
p,q(Ω, E)

∂E��� L2
p,q+1(Ω, E)

have closed range.
(2) The map �E : L2

p,q(Ω, E) → L2
n−p,n−q(Ω, E

∗) induces a conjugate-linear
isomorphism of Hilbert spaces

(21) τ = ηc ◦ �E ◦ η−1 : Hp,q
L2 (Ω, E) → Hn−p,n−q

c,L2 (Ω, E∗).

So we can identify the Hilbert space dual of Hp,q
L2 (Ω, E) with Hn−p,n−q

c,L2 (Ω, E∗).

We note here that condition (1) is in fact the necessary and sufficient condition
for the existence of the ∂-Neumann operator NE

p,q, defined as the inverse (modulo
kernel) of the �E operator on (p, q)-forms.

Proof. In the diagram

Hp,q(Ω, E)
�E−−−−→ Hc

n−p,n−q(Ω, E
∗)

η

⏐⏐� ηc

⏐⏐�
Hp,q

L2 (Ω, E)
τ−−−−→ Hn−p,n−q

c,L2 (Ω, E∗)

the map �E is known to be an isomorphism from Hp,q(Ω, E) to Hc
n−p,n−q(Ω, E) by

Theorem 1 (see equation (19)). Therefore, the map τ will also be an isomorphism if
and only if both η and ηc are isomorphisms. Thanks to Lemma 4 this is equivalent to
the two maps ∂E : L2

p,q−1(Ω, E) ��� L2
p,q(Ω, E) and ∂c,E∗ : L2

n−p,n−q−1(Ω, E
∗) ���

L2
n−p,n−q(Ω, E

∗) having closed range. Since by Lemma 3 the second map has closed

range if and only if ∂E : L2
p,q(Ω, E) → L2

p,q+1(Ω, E) has closed range, the result
follows. �
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3.5. Duality of the ∂-problem and the ∂c-problem. We can use the duality
principle to solve the equation ∂cu = f , provided we know how to solve ∂u = f :

Theorem 3. Suppose that for some 0 ≤ p ≤ n and 0 ≤ q ≤ n − 1, the operator
∂E∗ : L2

n−p,n−q−1(Ω, E
∗) ��� L2

n−p,n−q(Ω, E
∗) has closed range. Then the range

img(∂c,E)∩L2
p,q+1(Ω, E) is closed. The condition that f ∈ img(∂c,E)∩L2

p,q+1(Ω, E)

is equivalent to the following: for every g ∈ ker(∂E∗)∩L2
n−p,n−q−1(Ω, E

∗), we have

(22)

∫
Ω

f ∧ g = 0.

If Ω is a relatively compact pseudoconvex domain in a Stein manifold and q �= n−1,
it is further equivalent to the condition ∂c,Ef = 0.

Proof. Since ∂E∗ has closed range on L2
n−p,n−q−1(Ω, E

∗), from Hilbert space the-

ory, it follows that there is a bounded solution operator K from L2
n−p,n−q(Ω, E

∗)

to L2
n−p,n−q−1(Ω, E

∗) such that ∂E∗K = I (the identity map) on img(∂E∗), and

K∂E∗ = I−B on Dom(∂E∗), where

B : L2
n−p,n−q−1(Ω, E

∗) → ker(∂E∗) ∩ L2
n−p,n−q−1(Ω, E

∗)

is the generalized Bergman projection. Set

Kc = − �E∗ K∗�E ,

whereK∗ denotes the bounded operator from L2
n−p,n−q−1(Ω, E

∗) to L2
n−p,n−q(Ω, E

∗)
which is the Hilbert space adjoint of the operator K defined above.

Now let f ∈ img(∂c,E) ∩ L2
p,q+1(Ω, E). Note that this means �Ef ∈ img(∂

∗
E∗) =

ker(∂E∗)⊥. It follows that B(�Ef) = 0.
We set u = Kcf . This is well defined, since �Ef ∈ L2

n−p,n−q−1(Ω, E
∗), which is

the domain of K∗, and we have ‖u‖ ≤ C ‖f‖. Also, from (16) we have ∂c,E�E∗ =

− (�E)
−1

∂
∗
E∗ . Therefore,

∂c,Eu = −∂c,E �E∗ K∗ �E f

= (�E)
−1 ∂

∗
E∗K∗ �E f

= (�E)
−1 (K∂E∗

)∗
�E f since K is bounded

= (�E)
−1 (I−B)∗ �E f

= f − (�E)
−1 B(�Ef) B is self-adjoint

= f.

We note that g ∈ ker(∂E∗) ∩ L2
n−p,n−q−1(Ω, E

∗) if and only if �E∗g ∈ ker(ϑE) ∩
L2
p,q+1(Ω, E). Since img(∂c,E) = ker(∂

∗
c,E)

⊥ = ker(ϑ∗
E)

⊥, it follows that f ∈
img(∂c,E) if and only if for each g ∈ ker(∂E∗) we have (f, �E∗g) = 0, i.e.,

0 =

∫
Ω

f ∧ �E �E∗ g

=

∫
Ω

f ∧ σE∗g

= (−1)2n−p−q−1

∫
Ω

f ∧ g,

which proves (22).
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Now assume Ω is in a Stein manifold. Then, we know that Hp,q
L2 (Ω, E∗) = 0,

provided q �= 0. By the L2-Serre duality, Hp,q+1
c,L2 (Ω, E) = 0, unless q + 1 = n. In

other words, if q �= n− 1, if f ∈ img(∂c,E) ∩ L2
p,q+1(Ω, E), then

f ∈ ker(∂c,E : L2
p,q(Ω, E) ��� L2

p,q+1(Ω, E)).

This completes the proof. �

3.6. Duality of realizations of the ∂ operator. We now discuss an abstract
version of L2-duality which generalizes the duality of ∂E and ∂c,E∗ discussed in
the previous sections. The proofs of the statements made below are parallel to the
proofs of corresponding statements (for ∂E and ∂c,E∗) in the previous sections, and
are omitted.

Let E be a vector bundle over Ω and let D : L2
∗(Ω, E) ��� L2

∗(Ω, E) be a
realization of ∂E , acting on E-valued forms. Then D satisfies ∂c,E ⊆ D ⊆ ∂E .
We define an operator D∨ on the Hilbert space L2

∗(Ω, E
∗) by setting

D∨ = �E D∗ �E∗ ,

where D∗ : L2
∗(Ω, E) ��� L2

∗(Ω, E) is the Hilbert space adjoint of the operator D.
Then the following is easy to prove using relations (14) and (15):

Lemma 5.

(1) D∨ is a realization of the operator ∂E∗ on the Hilbert space L2
∗(Ω, E

∗), and
its domain is �E(Dom(D∗)).

(2) (∂E)
∨ = ∂c,E∗ and (∂c,E)

∨ = ∂E∗ .
(3) The map D �→ D∨ is a one-to-one correspondence of the closed realizations

of ∂E with the closed realizations of ∂E∗ .

We can refer to D∨ as the realization of ∂E∗ dual to the realization D of ∂E .
From now on we will assume that the realization D of the ∂E operator is closed.
Note that then ker(D) is a closed subspace of L2

∗(Ω, E).
We define the cohomology groups of the bundle E, with respect to the (closed)

realization D, as

Hp,q
L2 (Ω, E;D) =

ker(D) ∩ L2
p,q(Ω, E)

img(D) ∩ L2
p,q(Ω, E)

.

This becomes a Hilbert space if img(D) is closed in L2
p,q(Ω, E).

Then, we can state the following generalized version of Serre duality, with exactly
the same proof:

Theorem 4. The following are equivalent for a closed realization D of ∂E:
(1) The two operators

L2
p,q−1(Ω, E)

D��� L2
p,q(Ω, E)

D��� L2
p,q+1(Ω, E)

have closed range.
(2) The map �E : L2

p,q(Ω, E) → L2
n−p,n−q(Ω, E

∗) induces a conjugate-linear iso-

morphism of the cohomology Hilbert spaceHp,q
L2 (Ω, E;D) with Hn−p,n−q

L2 (Ω, E∗;D∨).

We give an example of a closed realization of ∂ which is strictly intermediate
between the maximal and minimal realizations. We consider a domain Ω in a
product Hermitian manifold M1 × M2 such that Ω is the product of smoothly
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bounded, relatively compact domains Ω1 � M1 and Ω2 � M2. We endow Ω with
the product Hermitian metric derived from M1 and M2.

If H1 and H2 are Hilbert spaces, we denote by H1⊗̂H2 the Hilbert tensor product
of H1 and H2, i.e., the completion of the algebraic tensor product H1⊗H2 under the
norm induced by the natural inner product defined on decomposable tensors by

(x⊗ y, z ⊗ w) = (x, z)H1
(y, w)H2

,

and extended linearly. For details see [42, §3.4]. An example of Hilbert tensor
products is the space L2

∗(Ω) of square integrable forms on the product Hermitian
manifold Ω = Ω1 × Ω2. In fact,

L2
∗(Ω) = L2

∗(Ω1)⊗̂L2
∗(Ω2)

if we make the natural identification f ⊗ g = π∗
1f ∧ π∗

2g, where πj : Ω → Ωj is the
natural projection.

If T1 : H1 ��� H′
1 and T2 : H2 ��� H′

2 are closed densely-defined operators,
we can define an operator T1 ⊗ T2 : Dom(T1) ⊗ Dom(T2) ��� H′

1 ⊗ H′
2, which on

decomposable tensors takes the form (T1⊗T2)(x⊗y) = T1x⊗T2y. It is well known
that provided T1 and T2 are closed, the operator T1 ⊗ T2 is closable. The closure,
denoted by T1⊗̂T2, is a closed densely defined operator from H1⊗̂H2 to H′

1⊗̂H′
2.

We let ∂
j
: L2

∗(Ωj) ��� L2
∗(Ωj) denote the maximal realization of the ∂-operator

acting of C-valued forms on Ωj . Similarly, we let ∂
j

c : L
2
∗(Ωj) ��� L2

∗(Ωj) denote the

minimal realization of the ∂-operator. Consider the operator D on L2
∗(Ω) defined

by

D = ∂
1⊗̂I2 + σ1⊗̂∂

2

c ,

where I2 is the identity map on L2
∗(Ω2) and σ1 is the (bounded self-adjoint) operator

on L2
∗(Ω1) which, when restricted to L2

p,q(Ω1), is multiplication by (−1)p+q. Using
the techniques of [5, 6] the following properties of D can be established:

• D is a closed densely-defined operator on L2
∗(Ω).

• D is a realization of ∂ on Ω, and it is strictly intermediate between the
maximal and the minimal realization. We may think of D as being the
realization which is maximal on the factor Ω1 and minimal on the factor
Ω2.

• Suppose that the maximal realization ∂
j
has closed range on L2

∗(Ωj) for

j = 1 and 2. By duality, ∂
j

c has closed range in L2
∗(Ωj) as well. Using

either of the methods of proof used in [5, Theorem 1.1] or [6, Theorem 1.2],
we can conclude that the operator D also has closed range. Further, we
have the Künneth formula

H∗
L2(Ω;D) = H∗

L2(Ω1; ∂
1
)⊗̂H∗

L2(Ω2; ∂
2

c)

= H∗
L2(Ω1)⊗̂H∗

c,L2(Ω2).(23)

• The dual realization D∨ is the one which is minimal on Ω1 and maximal
on Ω2; it can be represented as

D∨ = ∂
1

c⊗̂I2 + σ1⊗̂∂
2
.
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Provided ∂ has closed range in each of Ω1 and Ω2, the operator D∨ again
has closed range, and the Künneth formula holds:

H∗
L2(Ω;D∨) = H∗

L2(Ω1; ∂
1

c)⊗̂H∗
L2(Ω2; ∂

2
)

= H∗
c,L2(Ω1)⊗̂H∗

L2(Ω2).

Suppose that dimC Ωj = nj , and set n = n1 + n2 = dimC(Ω). We have
by Serre duality that Hn−p,n−q(Ω;D∨) ∼= Hp,q(Ω;D) via the map �. Note
that this could also be deduced from the knowledge of Serre duality on the
factors: indeed for each (p1, q1) we have

Hp1,q1
L2 (Ω1) ∼= Hn1−p1,n2−q1

c,L2 (Ω1),

and for each (p2, q2) we have Hn2−p2,n2−q2
L2 (Ω2) ∼= Hp2,q2

c,L2 (Ω2). Therefore,

Hn−p,n−q(Ω;D∨) =
⊕

p1+p2=p
q1+q2=q

(
Hn1−p1,n2−q1

c,L2 (Ω1)⊗̂Hn2−p2,n2−q2
L2 (Ω2)

)
∼=

⊕
p1+p2=p
q1+q2=q

Hp1,q1
L2 (Ω1)⊗̂Hp2,q2

c,L2 (Ω2)

= Hp,q
L2 (Ω;D).

4. ∂-closed extension of forms

In this section, we assume that Ω is a relatively compact domain in a Hermitian
manifold X. We assume that the holomorphic vector bundle E is defined on all of
X.

Proposition 2. Let Ω be a relatively compact domain with Lipschitz boundary in
a Hermitian manifold X. Then a form f ∈ Dom(∂c,E) if and only if both f0 and

∂(f0) are in L2
∗(Ω, E), where f0 denotes the form obtained by extending the form

f by 0 on X \ Ω. We in fact have (∂cf)
0 = ∂(f0) in the distribution sense.

Proof. By definition, given f ∈ Dom(∂c,E), there is a sequence {fν} of smooth

E-valued forms with compact support in Ω such that fν → f and ∂fν → ∂cf ,
both in L2

∗(Ω, E). Then clearly (fν)
0 → f0 and ∂((fν)

0) → ∂f in L2
∗(Ω). It is also

easy to see that ∂((fν)
0) → ∂((f)0) in the distribution sense in X. To see that

∂((f)0) = (∂f)0, we use integration-by-parts (since bΩ is Lipschitz) to have that
for any φ ∈ C1

∗(X),

((∂cf)
0, φ)X = (∂f, φ)Ω

= lim
ν→∞

(∂fν , φ)Ω

= lim
ν→∞

(fν , ϑφ)Ω

= (f0, ϑφ)X

= (∂((f)0), φ)X .

This proves the “only if” part of the result.
Now assume that both f0 and ∂(f0) are in L2

∗(Ω, E). To show that f ∈
Dom(∂c,E), we need to construct a sequence fν ∈ D(Ω, E) which converges in

the graph norm corresponding to ∂ to f . By a partition of unity, this is a local
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problem near each z ∈ bΩ, and we can assume that E is a trivial bundle near z.
By the assumption on the boundary, for any point z ∈ bΩ, there is a neighborhood
ω of z in X, and for ε ≥ 0, a continuous one parameter family tε of biholomorphic
maps from ω into X such that Ω∩ω is compactly contained in Ω, and tε converges
to the identity map on ω as ε → 0+. In local coordinates near z, the map tε is
simply the translation by an amount ε in the inward normal direction. Then we
can approximate f0 locally by f (ε), where

f (ε) = (t−1
ε )∗f0

is the pullback of f0 by the inverse t−1
ε of tε. A partition of unity argument now

gives a form f (ε) ∈ L2
∗(X,E) such that f (ε) is supported inside Ω and, as ε → 0+,{

f (ε) → f0 in L2
∗(X,E),

∂f (ε) → ∂f0 in L2
∗(X,E).

Since bΩ is Lipschitz, we can apply Friedrichs’ lemma (see [18] or Lemma 4.3.2 in
[2]) to the form f (ε) to construct the sequence {fν} in D(Ω, E). �

4.1. Use of singular weights. Let X be any Hermitian manifold, and let Ω � X
be a domain in X. We assume that Ω is pseudoconvex, and for z ∈ Ω, let δ be a
distance function on Ω. We will assume that δ satisfies the strong Oka’s lemma:

(24) i∂∂(− log δ) ≥ cω,

where c > 0 and ω is a positive (1,1)-form on X.
Such a distance function always exists on a Stein manifold. For example, if

Ω is a pseudoconvex domain in Cn, we can take δ(z) to be δ0e
−t|z|2 , where δ0 is

the Euclidean distance from z to to bΩ and t > 0. The distance function δ is
comparable to δ0. For each t > 0, let Et denote the trivial line bundle C × Ω
on Ω with pointwise Hermitian inner product 〈u, v〉z = (δ(z))tuv, where u, v ∈ C

are supposed to be in the fiber over the point z ∈ Ω. On a Stein manifold, we
can take δ to be δ0e

−tφ for sufficiently large t, where δ0 is the distance function
to the boundary with respect to the Hermitian metric on X and φ is a smooth
strictly plurisubharmonic function on X. In classical terminology of Hörmander,
this corresponds to the use of the weight function φt = −t log δ. The dual bundle
(Et)

∗ with dual metric can be naturally identified with E−t, i.e. the weight t log δ.
We will denote

(25) L2
p,q(Ω, δ

t) = L2
p,q(Ω, Et)

in conformity with the classical notation. Note that for t > 0, the function δ−t

blows up at the boundary of Ω. If t ≥ 1, a form in L2
p,q(Ω, δ

−t) smooth up to the
boundary vanishes on the boundary. We have the following:

Proposition 3. Let Ω be a relatively compact pseudoconvex domain with Lipschitz
boundary in a Hermitian Stein manifold X of dimension n ≥ 2. Suppose that
f ∈ L2

(p,q)(Ω, δ
−t) for some t ≥ 0, where 0 ≤ p ≤ n and 1 ≤ q < n. Assuming that
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(in the sense of distributions) ∂f = 0 in X with f = 0 outside Ω, then there exists
ut ∈ L2

(p,q−1)(Ω, δ
−t) with ut = 0 outside Ω satisfying ∂ut = f in the distribution

sense in X.
For q = n, if we assume that f satisfies

(26)

∫
Ω

f ∧ g = 0 for every g ∈ ker(∂) ∩ L2
(n−p,0)(Ω, δ

t),

the same result holds.

Proof. Using the notation Et as in (25) it follows that for any t > 0, the map
∂E∗

t
has closed range in each degree following Hörmander’s L2 method [19] with

weights since the weight function satisfies the strong Oka’s lemma (see [16]). This is
equivalent to the ∂-problem on the pseudoconvex domain Ω in the bundle E∗

t = E−t,
i.e., with plurisubharmonic weight −t log δ. The result now follows by combining
the solution of the ∂c problem as given by Theorem 3 and the characterization of
the ∂c-operator as given by Proposition 2. �

For real s, denote by W s(Ω) the Sobolev space of functions on Ω with s deriva-
tives in L2. Let W s

0 (Ω) be the space of completion of C∞
0 (Ω) functions under the

W s(Ω)-norm.

Lemma 6. Let Ω be a bounded domain with Lipschitz boundary in Rn and let ρ
be a distance function. For any s ≥ 0, if f ∈ W s(Ω) and ρ−s+αDαf ∈ L2(Ω) for
every multi-integer α with |α| ≤ s, then f ∈ W s

0 (Ω) and f0 ∈ W s(Rn), where f0 is
the extension of f to be zero outside Ω.

Proof. When the boundary is smooth and s is an integer, this is proved in [29,
Chapter 1, Theorem 11.8]. We first note that when s ≤ 1

2 , the space W s and W s
0

are equal (see [29, Chapter 1, Theorem 11.1] or Grisvard [13]). When s �= k + 1
2 ,

where k = 0, 1, 2, . . . , the lemma follows from [29, Section 11.2 and Theorem 11.4]
for smooth domains.

To see that when s = k + 1
2 holds, we first prove it for k = 0. Let f ∈ W

1
2 (Ω)

and ρ−
1
2 f ∈ L2(Ω). We only need to show that f0 is in W

1
2 (Rn). Notice that for

0 ≤ s ≤ 1
2 , the extension operator u ∈ W s(Ω) = W s

0 (Ω) → u0 is continuous only

when s < 1
2 , but is not continuous from W

1
2 (Ω) to W

1
2 (Rn) (see [29]). However, if

f satisfies ρ−
1
2 f ∈ L2(Ω), then f ∈ W

1
2
00(Ω), which is a proper subset of W

1
2 (Ω) =

W
1
2
0 (Ω) (for the definition and properties of W

1
2
00, see Theorem 11.7, Chapter 1

in [29]). The extension operator f → f0 is continuous from W s
0 (Ω) to W s(Rn)

when s = 0 and s = 1. Thus from the interpolation theorem, it is continuous from

W
1
2
00(Ω) to W

1
2 (Rn) since W

1
2
00(Ω) is the interpolation space of W 0(Ω) and W 1

0 (Ω).
The case for k > 0 follows from induction.

The lemma also holds for Lipschitz domains since we can exhaust any Lipschitz
domain Ω by smooth subdomains Ων (see Lemma 0.3 in [38]). This is clear when the
domain is star-shaped and the general case follows from using a partition of unity
(see [13] for the corresponding properties for Sobolev spaces on Lipschitz domains).

�

Combining Proposition 3 and Lemma 6, we have the following regularity results
on solving ∂ with prescribed support.
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Proposition 4. Let Ω � X be a pseudoconvex domain with Lipschitz boundary
in a Stein manifold of dimension n ≥ 3 with a Hermitian metric. Suppose that
0 ≤ p ≤ n and 1 ≤ q ≤ n and that f is a (p, q)-form with W s

0 (Ω) ∩ L2(Ω, δ−2s)
coefficients, where s ≥ 0. We assume that

(1) for 1 ≤ q < n, f satisfies f ∈ Dom(∂c) and ∂cf = 0,
(2) for q = n, f satisfies

(27)

∫
Ω

f ∧ g = 0 for every g ∈ ker(∂) ∩ L2
n−p,0(Ω, δ

2s).

Then there exists a (p, q− 1)-form u ∈ L2
p,0(Ω, δ

−2s)∩Dom(∂c) with W s
0 (Ω) coeffi-

cients satisfying ∂cu = f in X.

We remark that when s − 1
2 is not a non-negative integer, the assumption f ∈

W s
0 (Ω) implies that f ∈ L2(Ω, δ−2s) (see [29]). The pairing in (27) is well defined

between the two spaces L2(Ω, δ2s) and L2(Ω, δ−2s).

Theorem 5. Let X be a Stein manifold and let Ω � X be a relatively compact
pseudoconvex domain with Lipschitz boundary. Let Ω+ = X \ Ω.

Then for any f ∈ W s
p,q(Ω

+), where q ≤ n − 2, with s ≥ 1 such that ∂f = 0 in

Ω+, there exists F ∈ W s−1
p,q (X) with F |Ω+ = f and ∂f = 0 on X.

For q = n− 1, we assume that

(28)

∫
bΩ

f ∧ g = 0 for every g ∈ ker(∂) ∩ L2
n−p,0(Ω, δ

2(s−1)),

and the same conclusion holds.

Proof. Since Ω has Lipschitz boundary, there is a bounded extension operator from
W s(Ω+) to W s(X) for all s ≥ 0 (see e.g. [13]). Let f̃ ∈ W s

p,q(X) be the extension

of f so that f̃ |Ω+ = f with ‖f̃‖W s(X) ≤ C‖f‖W s(Ω+). We have ∂f̃ ∈ W s−1
0 (Ω) ∩

L2(Ω, δ−2(s−1)) (see Theorem 11.5 in [29]).

Obviously we have that ∂f̃ ∈ W s−1
0 (Ω) is ∂-closed in Ω. When q = n − 1,

∂f̃ ∈ W s−1
p,n (Ω) ∩ L2

p,n(Ω, δ
−2(s−1)) and satisfies

(29)

∫
Ω

∂f̃ ∧ g =

∫
bΩ

f ∧ g = 0 for every g ∈ ker(∂) ∩ L2
n−p,0(Ω, δ

2(s−1)).

Notice that both integrals in (29) are well defined by an approximation argument
using Friedrichs’ lemma (see [18] or Lemma 4.3.2 in [2]).

Let t = s − 1 ≥ 0. We define T f̃ by T f̃ = −�(2t)∂̄N2t(�(−2t)∂f̃) in Ω, where
�t = �Et

. From Proposition 3 and Proposition 4, we have that there exists u =

T f̃ ∈ L2(Ω, δ−2t) ∩W t
0(Ω) satisfying ∂(T f̃)0 = ∂f̃ in X.

Define

F = f̃ − (T f̃)0 =

{
f, x ∈ Ω

+
,

f̃ − T f̃ , x ∈ Ω.

Then from Lemma 6, F ∈ W s−1
p,q (X) and F is a ∂-closed extension of f . �
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Corollary 2. Let Ω1 and Ω be two pseudoconvex domains in a Stein manifold χ
with Ω � Ω1 � χ. Let Ω+ = Ω1 \ Ω be the annulus between two pseudoconvex
domains Ω and Ω1. For any f ∈ W s

p,q(Ω
+), where 0 ≤ p ≤ n, 1 ≤ q < n − 1 and

s ≥ 1, such that ∂f = 0 in Ω+, there exists u ∈ W s
(p,q−1)(Ω

+) with ∂u = f in Ω+.

Furthermore, if f ∈ C∞
p,q(Ω

+
), we have u ∈ C∞

p,q−1(Ω
+
).

When q = n, we assume that f satisfies (28) instead; then the same result holds.

We remark that Corollary 2 allows us to solve ∂ smoothly up to the boundary on
pseudoconcave domains with only Lipschitz boundary provided the compatibility
conditions are satisfied. Results of this kind were obtained in [36] for pseudoconcave
domains with smooth boundary. For Lipschitz boundary, see [30] or [15] using
integral kernel methods. This is in sharp contrast with pseudoconvex domains,
where solving ∂ smoothly up to the boundary is known only for pseudoconvex
domains with smooth boundary (see [24]) or domains with a Stein neighborhood
basis (see [10]). If the boundary bΩ is smooth, Theorem 5 and Corollary 2 also
hold for s = 0 (see [37, 38]).

5. Holomorphic extension of CR forms from the boundary

of a complex manifold

In this section we study the holomorphic extension of CR forms from the bound-
ary of a domain in a complex manifold X using our L2-duality. The use of duality in
the study of the holomorphic extension of CR functions with smooth or continuous
data is classical (see [34]) and has been studied by many authors (see [35, 25, 17]).

In what follows, X is a complex manifold and Ω is a relatively compact domain
in X with Lipschitz boundary (see [38] for a general discussion of partial differen-
tial equations on Lipschitz domains and see [39] for a discussion of the tangential
Cauchy-Riemann equations). We will assume that X has been endowed with a Her-
mitian metric and that the spaces L2

p,q(Ω) = L2
p,q(Ω,C) of square integrable forms

are defined with respect to the metric of X restricted to Ω. Observe that the spaces
L2
p,q(Ω) as well as the Sobolev spaces of forms W k

p,q(Ω) are defined independently
of the particular choice of metric on X. Further, it is possible to define Sobolev
spaces on the boundary bΩ in such a way that the usual results on existence of
a trace still hold, e.g. functions in Ω of class W 1(Ω) have traces on bΩ of class

W
1
2 (bΩ) (see [21, 22]).
The main observation, which follows from the duality results in §3, is the follow-

ing:

Proposition 5. For any p, with 0 ≤ p ≤ n, the map

∂c : L
2
p,0(Ω) ��� L2

p,1(Ω)

has closed range.

Proof. Thanks to Lemma 3 this is equivalent to the map ∂ : L2
n−p,n−1(Ω) ���

L2
n−p,n(Ω) having closed range. But it is well known that ∂ has closed range in

this top degree on smooth domains, a fact that is equivalent to the solvability of
the Dirichlet problem for the Laplace-Beltrami operator on such domains (see [11]).
For a proof of the solvability of the Dirichlet problem for domains with Lipschitz
boundary, see [21, 22]. �
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Recall that a holomorphic p-form is a ∂-closed (p, 0)-form. We denote the space
of holomorphic p-forms on Ω by Op(Ω). We deduce a necessary condition for a
(p, 0)-form on bΩ to be the boundary value of a holomorphic p-form on Ω:

Theorem 6. Let f ∈ W
1
2
p,0(bΩ) be a (p, 0)-form on bΩ with coefficients in the

Sobolev space W
1
2 . Then the following are equivalent:

(1) There is a holomorphic p-form F ∈ Op(Ω) ∩W 1(Ω) such that f = F |bΩ.
(2) For all g ∈ L2

n−p,n−1(Ω) ∩ ker(∂), we have

(30)

∫
bΩ

f ∧ g = 0.

(Note that it is easy to show that a ∂-closed form with L2 coefficients has

a trace of class W− 1
2 , and hence the integral above is well defined.)

(3) For any extension f̃ ∈ W 1
p,0(Ω) of f to Ω as a (p, 0)-form with coefficients

in W 1, the form ∂f̃ ∈ L2
p,1(Ω) belongs to the range of ∂c on Ω.

Proof. (1 =⇒ 2) Let g ∈ L2
n−p,n−1(Ω) ∩ ker(∂). By Stoke’s Theorem,∫

bΩ

f ∧ g =

∫
Ω

d(F ∧ g) =

∫
Ω

∂(F ∧ g) = 0.

(2 =⇒ 3) First note that such an extension f̃ always exists, since bΩ is Lipschitz.
Again let g ∈ L2

n−p,n−1(Ω) ∩ ker(∂). By Stoke’s Theorem,∫
Ω

∂f̃ ∧ g =

∫
bΩ

f ∧ g = 0.

Assertion (3) now follows from condition (22) given in Theorem 3 for a form to be
in the range of the ∂c-operator.

(3 =⇒ 1) By Proposition 5, ∂c has closed range in degree (p, 1), and by

hypothesis ∂f̃ is in the range of ∂c. By Theorem 3, we can solve the equation

(31) ∂cu = ∂f̃ ,

with L2 estimates for a (p, 0)-form u. Then F = f̃ − u is holomorphic in Ω. Also,
by Proposition 2 we have that

∂(u0) = (∂u)0 = (∂f̃)0,

where g0 denotes the extension of the form g on Ω to all of X by setting it equal
to 0 on X \ Ω. Since (∂f̃)0 ∈ L2

p,1(X), by elliptic regularity, u0 ∈ W 1
p,0(X). It

follows that u0 has a trace (of class W
1
2 (bΩ)) on the Lipschitz hypersurface bΩ.

Since u0 vanishes identically on X \Ω, it follows that this trace is 0. Consequently,
F ∈ W 1

p,0(Ω) and satisfies F |bΩ = f . �

Let f be a p-form with coefficients in L1(bΩ) which is the boundary value of
a holomorphic p-form F ∈ Op(Ω), then f must be CR, i.e, it must satisfy in the
homogeneous tangential Cauchy-Riemann equations on bΩ in the weak sense. That
is, for each compactly supported smooth (n− p, n− 2)-form φ ∈ Dn−p,n−2(X), we
have

(32)

∫
bΩ

f ∧ ∂φ = 0.

(See [40] for details.)
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It is easy to see that (30) implies (32). But in general, the two conditions are
not equivalent. One condition under which they are equivalent is the following:

Corollary 3. Let Ω be a domain with Lipschitz boundary in a complex manifold X
of complex dimension n ≥ 2. Suppose that Hn−p,n−1

L2 (Ω) = 0. Then every CR form

in f ∈ W
1
2
p,0(bΩ) has a holomorphic extension F to Ω with F ∈ Op(Ω)∩W 1(Ω) and

F = f on bΩ.

Proof. Let g ∈ ker(∂) ∩ L2
n−p,n−1(Ω). By the hypothesis on cohomology, there

is a u ∈ Dom(∂) ∩ L2
n−p,n−2(Ω) such that ∂u = g. Since Ω is Lipschitz, by

Friedrich’s lemma we can find a sequence {uν} ⊂ C∞
n−p,n−2(Ω) such that uν → u in

L2
n−p,n−2(Ω), and ∂uν → g in L2

n−p,n−1(Ω) as ν → ∞. Let φν ∈ Dn−p,n−2(X) be
a smooth compactly supported extension of the form uν to X. Then we have∫

bΩ

f ∧ g = lim

∫
bΩ

f ∧ ∂φν = 0.

The result now follows by Theorem 6. �

The following corollary is another extension result that can be deduced from
Theorem 6:

Corollary 4. Let Ω � X be a domain with connected Lipschitz boundary in a
non-compact connected complex manifold X of complex dimension n ≥ 2. Suppose
that there exists a relatively compact domain Ω′ with Lipschitz boundary such that
Ω � Ω′ � X and

(33) Hn−p,n−1
L2 (Ω′) = 0.

Then every CR form of degree (p, 0) on bΩ of Sobolev class W
1
2 (bΩ) has a holo-

morphic extension to Ω (of class W 1(Ω)).

Proof. Let f̃ be an extension of f to Ω (of class W 1(Ω)) and let

g =

{
∂f̃ on Ω,

0 on Ω′ \ Ω.

We claim that ∂g = 0 on Ω′. Indeed, let u ∈ Dp,1(Ω
′) be a smooth (p, 1)-form

of compact support in Ω′. We have

(∂g, u)L2(Ω′) = (g, ϑu)L2(Ω′)

= (∂f̃ , ϑu)L2(Ω)

=

∫
Ω

∂f̃ ∧ �ϑu

=

∫
Ω

{∂(f̃ ∧ �ϑu)− (−1)p(f̃ ∧ ∂ � ϑu)}.
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Since ∂ � ϑ = −∂ � (�∂�) = ±∂∂� = 0, the second term vanishes, and by Stoke’s
theorem the first integral is equal to∫

bΩ

f̃ ∧ �ϑu = ±
∫
bΩ

f ∧ (�ϑ�)(�u)

= ±
∫
bΩ

f ∧ ∂(�u)

(since ∂ = �ϑ� on compactly supported forms; see (15))

= 0

(since f is CR; see (32)).

As g vanishes near bΩ′ and ∂g = 0, it follows that g ∈ Dom(∂c) on Ω′ and
∂cg = 0. Since ∂ has closed range in Ω for bidegrees (n − p, n − 1) as well as

(n − p, n), it follows by duality from (33) that Hp,1
c,L2(Ω′) = 0. There is then a

u ∈ Dom(∂c) such that ∂cu = g. By Proposition 2, the extensions by 0 satisfy
∂(u0) = (∂u)0 = g0. Since g0 is in L2(X) it follows that u0 ∈ W 1

p,0(X). Further,

u0 is holomorphic on X \Ω and u0 ≡ 0 on X \Ω′. By analytic continuation, u0 ≡ 0

on X \ Ω. Therefore, the trace of u bΩ vanishes, and the form F = f̃ − u on Ω is
holomorphic, of class W 1 and satisfies F = f on bΩ. �

Corollary 5. Let Ω be a domain with Lipschitz boundary in a Stein manifold X
of complex dimension n ≥ 2. Suppose that bΩ is connected. Then for every CR
function on bΩ of class W

1
2 (bΩ) has a holomorphic extension to Ω.

Proof. In the proof of Corollary 4, we let Ω′ be some strongly pseudoconvex domain
in X and Ω � Ω′. Then Hn,n−1

L2 (Ω′) = H0,1
c,L2(Ω′) = 0. The corollary follows. �

When X = Cn and p = 0, this gives the usual Bochner-Hartogs extension
theorem. In this case, the extension function can be written explicitly as

F (z) =

∫
bΩ

B(ζ, z) ∧ f(ζ), z ∈ Ω,

where B is the Bochner-Martinelli kernel. The function F has boundary value f as
z approaches the boundary (see [41] for a proof when the boundary is smooth; in
this case we can allow more singular boundary values than is possible in our results
with Lipschitz boundaries). This is very different from the holomorphic extension
of CR functions in complex manifolds which are not Stein. We will give an example
to show that the extension results on Lipschitz domain is maximal in the sense that
the results might not hold if the Lipschitz condition is dropped.

We will analyze the holomorphic extension of functions on a non-Lipschitz do-
main. Let Ω be the Hartogs triangle in CP

2 defined by

Ω = {[z0, z1, z2] | |z1| < |z2|},

where [z0, z1, z2] denotes the homogeneous coordinates of a point in CP2. As usual
we endow Ω with the restriction of the Fubini-Study metric of CP2.

Proposition 6. Let Ω ⊂ CP2 be the Hartogs triangle. Then we have the following:

(1) The Bergman space of L2 holomorphic functions L2(Ω) ∩ O(Ω) on the do-
main Ω separates points in Ω.
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(2) There exist non-constant functions in the space W 1(Ω) ∩ O(Ω). However,
this space does not separate points in Ω and is not dense in the Bergman
space L2(Ω) ∩ O(Ω).

(3) Let f ∈ W 2(Ω) ∩ O(Ω) be a holomorphic function on Ω which is in the
Sobolev space W 2(Ω). Then f is a constant.

Remark. Statements (1) and (3) above have already been proved in [15]. Regarding
(2), we would like to point out a misleading statement made in that paper, where
it is claimed that W 1(Ω)∩O(Ω) consists of constants only (see item 5 in Example
12.1 in [15]).

Proof. For (1), consider the two holomorphic functions z1
z2

and z0
z2

on Ω which

separate points on Ω, and the first of which is bounded (and therefore square-
integrable in the Fubini-Study metric) on Ω. To see that z0

z2
is in L2(Ω) ∩ O(Ω),

we only need to verify that it is in L2(Ω) near the point [1, 0, 0]. We choose the
coordinate chart U0 = {z0 �= 0} ∩ Ω for Ω with holomorphic coordinates (z, w),
where z = z1

z0
and w = z2

z0
. The function z0

z2
= w−1, and it suffices to show that

w−1 is square-integrable on Ω∩P , where P is the polydisc {|z| < 1, |w| < 1}. More
generally, consider the square-integrability of w−ν , where ν ≥ 1 is an integer. We
have ∫

Ω∩P

1

|wν |2 dV = 4π2

∫∫
r1<r2<1

(
1

r2ν2

)
r2dr2r1dr1

= 4π2

∫ 1

0

(∫ 1

r1

r−2ν+1
2 dr2

)
r1dr1.

When ν = 1 the integral becomes

= 4π2

∫ 1

0

−r1 log r1dr1

< ∞.

If ν > 1, the inner integral evaluates to a constant times (1− r−2ν+2
1 ), the double

integral diverges, and consequently, w−ν �∈ L2(Ω ∩ P ) (cf. [15, Proposition 3]).
On the subset Ω ∩ {z2 �= 0}, introduce the coordinates z̃ = z1

z2
and w̃ = z0

z2
. In

these coordinates the set Ω∩ {z2 �= 0} is represented as the bidisc with one infinite
radius {(z̃, w̃) | |z̃| < 1}, and any function f ∈ O(Ω) has a power series expansion
on this polydisc of the form

f(z̃, w̃) =
∑
μ≥0
ν≥0

Cμ,ν z̃
μw̃ν .

In the coordinate patch Ω ∩ {z0 �= 0}, the natural coordinates are (z, w), where
z = z1

z0
= z̃

w̃ and w = z2
z0

= 1
w̃ . Therefore the holomorphic function f on Ω has a

Laurent expansion on Ω ∩ {z0 �= 0} of the form

f(z, w) =
∑
μ≥0
ν≥0

Cμ,ν

( z

w

)μ

w−ν .

By the symmetry of the Fubini-Study metric, it follows that the terms of the
series are orthogonal, provided they are in L2(Ω∩P ), and therefore, if f ∈ L2(Ω∩P ),
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we have

‖f‖2L2(Ω∩P ) =
∑

μ,ν≥0

|Cμ,ν |2
∥∥∥( z

w

)μ

w−ν
∥∥∥2
L2(Ω∩P )

.

Since z
w = z1

z2
is bounded the computation of ‖w−ν‖L2 in the last paragraph shows

that non-zero terms on the right-hand side are not in L2 if ν ≥ 2, which means
Cμν = 0 if ν ≥ 2. Thus each f ∈ L2(Ω) ∩ O(Ω) has a Laurent expansion of the
form

(34) f(z, w) =
∑
μ≥0

0≤ν≤1

Cμ,ν

( z

w

)μ

w−ν .

Taking a derivative we see that

∂f

∂w
(z, w) =

∑
μ≥0

0≤ν≤1

−(μ+ ν)Cμ,ν

( z

w

)μ

w−(ν+1).

By orthogonality of the terms again, if this is in L2(Ω ∩ P ), then the coefficients
Cμ,1 = 0. It follows that any f ∈ W 1(Ω) ∩ L2(Ω) is of the form

(35) f(z, w) =

∞∑
ν=0

bν

( z

w

)ν

.

Further, it is easily verified that if f is of the above form, then ∂f
∂z ∈ L2(Ω).

Therefore any holomorphic function in W 1(Ω) is a function of z
w alone, and it

follows that W 1(Ω) ∩ O(Ω) does not separate points in Ω. This proves (2).
By taking two derivatives in (35), we obtain

∂2f

∂w2
(z, w) =

∞∑
ν=1

−ν(ν + 1)bν

( z

w

)ν

· 1

w2
.

None of the mutually orthogonal terms is in L2(Ω∩P ), thanks to the computation
of ‖w−ν‖L2 above. It follows that f reduces to a constant and we have (3). �
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Inst. Fourier (Grenoble) 29 (1979), no. 1, xvi, 229–238. MR526786 (80i:32050)

[11] Folland, G. B. and Kohn, J. J.; The Neumann problem for the Cauchy-Riemann complex. An-
nals of Mathematics Studies, No. 75. Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1972. MR0461588 (57:1573)

[12] Griffiths, P. and Harris, J.; Principles of Algebraic Geometry, Wiley and Sons, Inc., New
York, 1978. MR507725 (80b:14001)

[13] Grisvard, P.; Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. MR775683
(86m:35044)

[14] Grubb, G.; Distributions and operators. Graduate Texts in Mathematics, 252. Springer, New
York, 2009. MR2453959 (2010b:46081)

[15] Henkin, G. M. and Iordan, A.; Regularity of ∂ on pseudoconcave compacts and applications,
Asian J. Math., 4 2000, 855-884 (see also Erratum: Asian J. Math. 7 (2003) No. 1, pp. 147-
148). MR2015247 (2004i:32060)

[16] Harrington, P. and Shaw, M.-C.; The strong Oka’s lemma, bounded plurisubharmonic

functions and the ∂-Neumann problem. Asian J. Math. 11 (2007) 127–140. MR2304586
(2009m:32061)

[17] Harvey, F. R, and Lawson, H. B, Jr.; On boundaries of complex analytic varieties. I. Ann. of
Math. (2) 102 (1975), no. 2, 223–290. MR0425173 (54:13130)
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[27] Laurent-Thiébaut, C. and Leiterer, J.; On Serre duality Bull. Sci. Math. 124 (2000), 93–106.
MR1752104 (2001f:32012)
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