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1 Introduction

Let X be a complex manifold. The study of the closed-range property of the Cauchy–Riemann
equations is of fundamental importance both from the sheaf theoretic point of view and the
PDE point of view. In terms of the associated cohomology, it means that the corresponding
cohomology is Hausdorff, hence separated. There are many known results for the Hausdorff
property of such cohomologies in complex manifolds (see in particular [16–18]). For instance,
it is well-known that for a bounded pseudoconvex domain D in C

n , the Dolbeault cohomology
H p,q(D) in the Fréchet space C∞

p,q(D) vanishes for all q > 0. It is also known that the L2

cohomology also vanishes. Much less is known about the cohomologies whose topology
does not have the Hausdorff property, even for domains in C

n (an example is given in [13],
section 14).

In this paper, we study duality of the Cauchy–Riemann complex in various function spaces
and the Hausdorff property of the corresponding cohomologies. Such duality is classical if
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1166 C. Laurent-Thiébaut, M.-C. Shaw

the complex manifold is compact. For domains in a complex manifold with boundary, it has
been established from the Serre duality between the Fréchet spaces and the test forms with
compact support under the inductive limit topology under the closed-range assumption for
the Cauchy–Riemann equations. When the domain has Lipschitz boundary, an L2 version of
the Serre duality has been formulated in [2]. In this paper we will formulate the duality for
the Cauchy–Riemann complex in various function spaces and use the duality to study the
Hausdorff property of Dolbeault cohomology groups.

The plan of the paper is as follows. In Sect. 2, we first explain various duality spaces under
suitable boundary conditions. In Sect. 3 we use the duality to study the Hausdorff property of
the cohomology groups for domains with connected complement. One of the main results in
this paper is to show that if moreover the domain has Lipschitz boundary, the L2 cohomology
H0,1

L2 (D) is either 0 (in this case D is pseudoconvex) or it is not Hausdorff (see Theorem 3.4).

In other words, the Cauchy–Riemann equation ∂̄ does not have closed range from L2(D)

to L2
0,1(D) unless D is pseudoconvex. This result does not seem to have been observed in

the literature (see p. 76 in Folland–Kohn [6] for previous known examples and some related
results in Laufer [10] and Trapani [16]).

In Sect. 4 we study the duality of cohomologies on annulus type domains. When the
domain is the annulus between two pseudoconvex domains with smooth boundaries, it is
known that the L2 cohomologies are Hausdorff. This was proved for the annulus between
two strongly pseudoconvex domains in [6] and between two weakly pseudoconvex domains
in [14] and [15]. But the cohomology groups could be infinite dimensional. When the domain
is the annulus between concentric balls, the cohomologies can be expressed explicitly (see
Hörmander [8]). However, we will show (see Corollary 4.6) that if the smoothness assump-
tion is dropped, the cohomologies could be non-Hausdorff , a contrast between the annulus
between smooth pseudoconvex domains and non-smooth pseudoconvex domains. We also
give some results on sufficient conditions for the Hausdorff property of Dolbeault cohomolo-
gies of annuli between domains.

2 Dual complexes

Let X be an n-dimensional complex manifold and D ⊂ X an open subset of X . We can
define on D several spaces of functions:

• E(D) the space of C∞-smooth functions on D with its classical Fréchet topology,
• C∞(D) the space of the restrictions to D of C∞-smooth functions on X , i.e. the Whitney

space of smooth functions on the closure of D, which can be identified with the quotient
of the space of C∞-smooth functions on X by the ideal of the functions vanishing with
all their derivatives on D, with the quotient topology, which coincides with the Fréchet
topology of uniform convergence on D of the function and of all its derivatives,

• L2(D) the Hilbert space of the L2-functions on D,
• D(D) the space of smooth functions with compact support in D with the usual topology

of inductive limit of Fréchet spaces,
• DD(X) the subspace of D(X) consisting in the functions with support in D, endowed

with the natural Fréchet topology.

Definition 2.1 A cohomological complex of topological vector spaces is a pair (E•, d),
where E• = (Eq)q∈Z is a sequence of locally convex topological vector spaces and
d = (dq)q∈Z is a sequence of closed linear maps dq from Eq into Eq+1 which satisfy
dq+1 ◦ dq = 0.
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Hausdorff property of some Dolbeault cohomology groups 1167

A homological complex of topological vector spaces is a pair (E•, d), where E• =
(Eq)q∈Z is a sequence of locally convex topological vector spaces and d = (dq)q∈Z is a
sequence of closed linear maps dq from Eq+1 into Eq which satisfy dq ◦ dq+1 = 0.

To any cohomological complex we associate cohomology groups (Hq(E•))q∈Z

defined by

Hq(E•) = ker dq/Imdq−1

and endowed with the factor topology and to any homological complex we associate homol-
ogy groups (Hq(E•))q∈Z defined by

Hq(E•) = ker dq−1/Imdq

and endowed with the factor topology.
We will use several cohomological complexes of differential forms associated to the

∂-operator and to the previous functions spaces. For some fixed integer 0 ≤ p ≤ n,

• let us consider the spaces E p,q(D) of C∞-smooth (p, q)-forms on D, set Eq = 0 and
dq ≡ 0, if q < 0, Eq = E p,q(D) and dq = ∂ , if 0 ≤ q ≤ n.

• let us consider the spaces C∞
p,q(D) of C∞-smooth (p, q)-forms on D, set Eq = 0 and

dq ≡ 0, if q < 0, Eq = C∞
p,q(D) and dq = ∂ , if 0 ≤ q ≤ n.

• let us consider the spaces L2
p,q(D) of L2-forms on D, set Eq = 0 and dq ≡ 0, if q < 0,

Eq = L2
p,q(D) and dq = ∂ , the weak maximal realization of ∂ , i.e. the ∂-operator in

the sense of currents, if 0 ≤ q ≤ n. The domain Dom(∂) of ∂ is the space of forms in
L2

p,q(D) such that ∂ f is also in L2
p,q+1(D).

• let us consider the spaces L2
p,q(D) of L2-forms on D, set Eq = 0 and dq ≡ 0, if q < 0,

Eq = L2
p,q(D) and dq = ∂s , the strong L2 closure of ∂ . A form f ∈ Dom(∂s) if and

only if there exists a sequence fν ∈ C∞
p,q(X) such that fν → f and ∂ fν → ∂ f in L2(D)

strongly, if 0 ≤ q ≤ n.
• let us consider the spaces D p,q(D) of C∞-smooth (p, q)-forms with compact support in

D, set Eq = 0 and dq ≡ 0, if q < 0, Eq = D p,q(D) and dq = ∂ , if 0 ≤ q ≤ n.
• let us consider the spaces D p,q

D
(X) of C∞-smooth (p, q)-forms on X with support in D,

set Eq = 0 and dq ≡ 0, if q < 0, Eq = D p,q
D

(X) and dq = ∂ , if 0 ≤ q ≤ n.

The associated cohomology groups will be denoted respectively by H p,q∞ (D), H p,q∞ (D),
H p,q

L2 (D), H p,q
∂s ,L2(D), H p,q

c,∞(D) and H p,q
c,∞(D).

Definition 2.2 The dual complex of a cohomological complex (E•, d) of topological vector
spaces is the homological complex (E ′•, d ′), where E ′• = (E ′

q)q∈Z with E ′
q the strong dual

of Eq and d ′ = (d ′
q)q∈Z with d ′

q the transpose of the map dq .

Next we will study the dual spaces of the spaces of functions we defined at the beginning
of the section. It is well known that the dual space of D(D) is the space D′(D) of distributions
on D and the dual space of E(D) is the space E ′(D) of distributions with compact support
in D.

Let us consider the space C∞(D), by definition the restriction map

R : E(X) → C∞(D)

is continuous and surjective, taking the transpose map t R we get an injection from (C∞(D))′
into E ′(X) the space of distributions with compact support in X . More precisely the image of
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(C∞(D))′ by t R is clearly included in E ′
D
(X), the space of distributions on X with support

contained in D.
Assume D(X \ D) is dense in the space of C∞-smooth functions on X with support

contained in X \ D, which is fulfilled as soon as the boundary of D is sufficiently regular, for
example Lipschitz, then any current T ∈ E ′

D
(X) defines a linear form on C∞(D) by setting,

for f ∈ C∞(D), < T, f >=< T, ˜f >, where ˜f is a C∞-smooth extension of f to X (the
density hypothesis implies that < T, f > is independent of the choice of the extension ˜f of
f ), which is continuous by the open mapping theorem. Consequently, if D has a Lipschitz
boundary, the dual space of C∞(D) is the space E ′

D
(X) of distributions on X with support

contained in D.
Again assume the boundary of D is Lipschitz, then D(D) is a dense subspace in DD(X),

the subspace of D(X) consisting of functions with support in D, endowed with the natural
Fréchet topology then the dual space of DD(X) will be a subspace of D′(D), the space
of distribution on D. Since DD(X) ⊂ D(X) and its topology coincides with the induced
topology by the topology of D(X), any continuous form on DD(X) can be extended as a
distribution on X . The dual of DD(X) is called the space of extendable distribution on D and
denoted by Ď′(D).

We summarize the above discussion in the following lemma.

Lemma 2.3 Let D be a domain with Lipschitz boundary in a manifold X. The dual space
of C∞(D) is the space E ′

D
(X) of distributions on X with support contained in D. The dual

space of DD(X) is the space of extendable distribution on D and denoted by Ď′(D).

The space L2(D) being an Hilbert space is self-dual and moreover the weak maximal
realization of a differential operator and its strong minimal realization are dual to each other
(see [2]).

The dual complexes up to a sign of the previous ones are (E ′•, d ′) with:

• E ′
q = 0 and d ′

q ≡ 0, if q < 0, E ′
q = E ′n−p,n−q(D), the space of currents with compact

support in D, and d ′
q = ∂ , if 0 ≤ q ≤ n.

• E ′
q = 0 and d ′

q ≡ 0, if q < 0, and if D has a Lipschitz boundary, E ′
q = E ′n−p,n−q

D
(X),

the space of currents with compact support in X whose support is contained in D, and
d ′

q = ∂ , if 0 ≤ q ≤ n.
• E ′

q = 0 and d ′
q ≡ 0, if q < 0, E ′

q = L2
n−p,n−q(D), the space of L2-forms on D, and

d ′
q = ∂c, the strong minimal realization of ∂ , if 0 ≤ q ≤ n. A form f ∈ Dom(∂c) if and

only if there exists a sequence fν ∈ Dn−p,n−q(D) such that fν → f and ∂ fν → ∂ f , in
L2 strongly.

• E ′
q = 0 and d ′

q ≡ 0, if q < 0, and if D has a rectifiable boundary, E ′
q = L2

n−p,n−q(X, D),

the space of L2-forms on X with support in D, and d ′
q = ∂ c̃, the weak minimal realization

of ∂ , i.e. the ∂-operator in the sense of currents, if 0 ≤ q ≤ n. The domain Dom(∂ c̃)

of ∂ is the space of forms in L2
n−p,n−q(X) with support in D such that ∂ f is also in

L2
n−p,n−q+1(X).

• E ′
q = 0 and d ′

q ≡ 0, if q < 0, E ′
q = D′n−p,n−q(D), the space of currents on D, and

d ′
q = ∂ , if 0 ≤ q ≤ n.

• E ′
q = 0 and d ′

q ≡ 0, if q < 0, E ′
q = Ďn−p,n−q(X), the space of extendable currents,

and d ′
q = ∂ , if 0 ≤ q ≤ n.
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Hausdorff property of some Dolbeault cohomology groups 1169

The associated homology groups are denoted respectively by Hn−p,n−q
c,cur (D), Hn−p,n−q

c,cur

(D), Hn−p,n−q
c,L2 (D), Hn−p,n−q

c̃,L2 (D), Hn−p,n−q
cur (D) and Ȟn−p,n−q

cur (D).
Let us notice that, if D is a bounded domain with Lipschitz boundary in a complex

hermitian manifold X of dimension n, it follows from the next lemma that, for 0 ≤ p ≤ n
and 1 ≤ q ≤ n, the cohomology groups H p,q

c,L2(D) and H p,q
c̃,L2(D) are isomorphic.

Lemma 2.4 Let D ⊂⊂ X be a relatively compact domain with Lipschitz boundary in a
complex hermitian manifold X. Then a form f ∈ Dom(∂c) if and only if both f 0 and ∂( f 0)

are in L2∗(X), where f 0 denotes the form obtained by extending the form f by 0 on X \ D.
We in fact have (∂c f )0 = ∂( f 0) in the distribution sense.

Proof By definition, given f ∈ Dom(∂c), there is a sequence ( fν)ν∈N of smooth forms with
compact support in D such that fν → f and ∂ fν → ∂c f , both in L2∗(D). Then clearly
( fν)0 → f 0 in L2∗(X). It is also easy to see that ∂( fν)0 → ∂ f 0 in the distribution sense in
X . To see that ∂ f 0 = (∂c f )0, we use integration-by-parts (since ∂ D is Lipschitz) to have
that for any ϕ ∈ C1∗(X)

((∂c f )0, ϕ)X = (∂c f, ϕ)D

= lim
ν→∞(∂ fν, ϕ)D

= lim
ν→∞( fν, ϑϕ)D

= ( f 0, ϑϕ)X

= (∂ f 0, ϕ)X

This proves the “only if” part of the result. Assume now that both f 0 and ∂ f 0 are in L2∗(X).
To show that f ∈ Dom(∂c), we need to construct a sequence ( fν)ν∈N of smooth forms with
compact support in D which converges in the graph norm corresponding to ∂ to f . By a
partition of unity, this is a local problem near each z ∈ ∂ D. By assumption on the boundary,
for any point z ∈ ∂ D, there is a neighborhood U of z in X , and for ε ≥ 0, a continuous one
parameter family tε of biholomorphic maps from U into X such that tε(D ∩U ) is compactly
contained in D, and tε converges to the identity map on U as ε → 0. In local coordinates
near z, the map tε is simply the translation by an amount ε in the inward normal direction.
Then we can approximate f 0 locally by f (ε), where

f (ε) = (t−1
ε )∗ f 0

is the pullback of f 0 by the inverse t−1
ε of tε . A partition of unity argument now gives a form

f (ε) ∈ L2∗(X) such that f (ε) is supported inside D and as ε → 0,

f (ε) → f 0 in L2(X) ∂ f (ε) → ∂ f 0 in L2(X).

Since ∂ D is Lipschitz, we can apply Friedrich’s lemma(see Lemma 4.3.2 in [4]) to the form
f (ε) to construct the sequence ( fν)ν∈N ⊂ D(D). �

The next proposition is a direct consequence of the Hahn-Banach Theorem

Proposition 2.5 Let (E•, d) and (E ′•, d ′) be two dual complexes, then

Imdq = {g ∈ Eq+1 | < g, f >= 0,∀ f ∈ Kerd ′
q}.

Corollary 2.6 Let (E•, d) and (E ′•, d ′) be two dual complexes. Assume Hq+1(E ′•) = 0,
then either Hq+1(E•) = 0 or Hq+1(E•) is not Hausdorff.
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Proof Note that

{g ∈ Eq+1 | < g, f >= 0,∀ f ∈ Kerd ′
q} ⊂ Kerdq+1.

and this inclusion becomes an equality when Hq+1(E ′•) = 0. In that case, it follows from
Proposition 2.5 that if dq has closed range then Hq+1(E•) = 0. �

To end this section let us recall some well-known results about duality for complexes of
topological vector spaces proved in [1], and Serre duality proved in [12] and [13].

Theorem 2.7 Let (E•, d) be a complex of Fréchet-Schwarz-spaces or of dual of Fréchet-
Schwarz-spaces and (E ′•, d ′) its dual complex. Then for each q ∈ Z, Hq+1(E•) is Hausdorff
if and only if Hq(E ′•) is Hausdorff.

Theorem 2.7 will be used in Sect. 4 for the complexes (C∞
p,•(D), ∂) and (D p,•

D
(X), ∂).

For the complex (E p,•(D), ∂), Serre duality (see [12], Theorem 1.1) gives

Theorem 2.8 For all integers p,q with 0 ≤ p ≤ n, 1 ≤ q ≤ n, H p,q∞ (D) is Hausdorff if
and only if Hn−p,n−q+1

c,∞ (D) is Hausdorff.

Finally note that, by the Dolbeault isomorphism, the Dolbeault cohomology groups
H p,q∞ (X) (resp. H p,q

c,∞(X)) and H p,q
cur (X) (resp. H p,q

c,cur (X)) of a complex manifold X are
isomorphic, so we will simply denote them by H p,q(X) (resp. H p,q

c (X)).

3 Hausdorff property for domains with connected complement

Throughout this section X denotes a non-compact n-dimensional complex manifold and
D ⊂⊂ X a relatively compact subset of X such that X \ D is connected.

Lemma 3.1 Assume X satisfies Hn,1
c (X) = 0, then for each current T ∈ E ′n,1(X) with sup-

port contained in D there exists a (n, 0)-current S with compact support in X, whose support
is contained in D, such that ∂S = T . Moreover if T ∈ (L2

loc)
n,1(X) (resp. T ∈ En,1(X)), the

solution S is also in L2
loc(X) (resp. E(X)), hence Hn,1

c̃,L2(D) = 0 (resp. Hn,1
c,∞(D) = 0) and if

the support of T is contained in D, the support of S is also contained in D, i.e. H n,1
c,cur (D) = 0.

Proof Let T ∈ E ′n,1(X) be a current with support contained in D. Since Hn,1
c (X) = 0, there

exists a (n, 0)-current S with compact support in X such that ∂S = T . Since the support
of T is contained in D, the current S is an holomorphic (n, 0)-form on X \ D, moreover S
has compact support in X and hence vanishes on an open subset of X \ D. By the analytic
continuation theorem, the connectedness of X \ D implies that the support of S is contained
in D and if moreover the support of T is contained in D, the support of S is also contained in
D. Assume T ∈ (L2

loc)
n,1(X) (resp. En,1(X)), then the ∂-equation has a solution in L2

loc(X)

(resp.E(X)) and as we are in bidegree (n, 1), two solutions differ by a holomorphic (n, 0)-
form hence the solution S is in L2

loc(X) (resp. E(X)). �
As a direct consequence of Corollary 2.6 and Lemma 3.1, we get

Theorem 3.2 Let X be an n-dimensional complex manifold and D ⊂⊂ X a relatively
compact subset of X such that X \ D is connected. Assume X satisfies Hn,1

c (X) = 0, then
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Hausdorff property of some Dolbeault cohomology groups 1171

(i) Either H0,n−1(D) = 0 or H0,n−1(D) is not Hausdorff;

(ii) If D has a Lipschitz boundary, either H0,n−1∞ (D) = 0 or H0,n−1∞ (D) is not Hausdorff;

(iii) If D has a Lipschitz boundary, either H0,n−1
L2 (D) = 0 or H0,n−1

L2 (D) is not Hausdorff;

(iv) If D has a rectifiable boundary, either H0,n−1
∂s ,L2 (D) = 0 or H0,n−1

∂s ,L2 (D) is not Hausdorff;

(v) If D has a Lipschitz boundary, either Ȟ0,n−1(D) = 0 or Ȟ0,n−1(D) is not Hausdorff.

Corollary 3.3 Let D be a relatively compact open subset of C
2 such that C

2\D is connected,
then either D is pseudoconvex or H0,1(D) is not Hausdorff. If moreover the boundary of D
is Lipschitz, then either D is pseudoconvex or H0,1

L2 (D) is not Hausdorff.

Proof The space C
n satisfies Hn,1

c (Cn) = 0 when n ≥ 2. From the characterization of
pseudoconvexity for open subsets of C

n in terms of vanishing of the Dolbeault cohomology,
an open subset D of C

n is pseudoconvex if and only if H0,q(D) = 0 for all 1 ≤ q ≤ n − 1.
Thus the first part of the theorem is a consequence of Theorem 3.2.

On the other hand, if D ⊂⊂ C
n is bounded pseudoconvex, then H0,q

L2 (D) = 0 for all

1 ≤ q ≤ n − 1 by Hörmander L2-theory. The converse is also true provided D has Lipschitz
boundary or more generally, D satisfies interior(D) = D (see e.g. the remark at the end of
the paper in [7]). �

Note that the first assertion of Corollary 3.3 was already proved by Trapani [16, Theo-
rem 2], where a characterization of Stein domains in a Stein manifold of complex dimension
2 is given.

Theorem 3.4 Let D be a relatively compact open subset of C
2 such that C

2 \ D is connected.
Suppose D is not pseudoconvex. Then ∂̄ : C∞(D) → C∞

0,1(D) does not have closed range.

If moreover the boundary of D is Lipschitz, then ∂̄ : L2(D) → L2
0,1(D) does not have

closed range either.

Next we will compare the cohomologies with smooth data up to the boundary. For pseudo-
convex open subsets of C

2 with Lipschitz boundary, Theorem 3.2 implies that we have
either H0,1∞ (D) = 0 or H0,1∞ (D) is not separated. By the classical Kohn’s theorem [9] for the
∂-problem on pseudoconvex domains with C∞-smooth boundary, we have that H0,1∞ (D) = 0,
when moreover D has C∞-smooth boundary and by Dufresnoy’s result [5] on the ∂-problem
for differentiable forms in the sense of Whitney, we have that H0,1∞ (D) = 0, when moreover
D admits a sufficiently nice Stein neighborhood basis.

Next we will show that there exists an example of pseudoconvex domain D in C
2 such

that the cohomology group H0,1∞ (D) is infinite dimensional. Let T be the Hartogs triangle
in C

2

T = {(z, w) ∈ C
2 | |z| < |w| < 1}

which is pseudoconvex, hence H0,1∞ (T ) = 0.
It follows from a paper by Chaumat and Chollet [3] that for any ζ in the bidisc P = �×�

and ζ ∈ P \ T , their exists a C∞-smooth, ∂-closed (0, 1)-form αζ defined in C
2 \ {ζ } such

that there does not exist any C∞-smooth function β on T such that ∂β = αζ . In particular
the ∂-equation ∂u = αζ cannot be solved in the C∞-smooth category in any neighborhood
of T . Since by an argument due to Laufer [11], the Dolbeault cohomology group H0,1∞ (T ) is
either zero or infinite dimensionnal, we can conclude
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1172 C. Laurent-Thiébaut, M.-C. Shaw

Proposition 3.5 The cohomology group H0,1∞ (T ) is infinite dimensional.

As the boundary of T is not Lipschitz we cannot apply Theorem 3.2 and we do not know if
this group is Hausdorff or not. But if we consider the strong L2(D)-cohomology then either
H0,1

∂s ,L2(T ) = 0 or H0,1
∂s ,L2(T ) is not Hausdorff since the boundary of T is rectifiable.

4 Cohomology in an annulus

Let X be a non-compact n-dimensional complex manifold and D ⊂⊂ X be a relatively
compact subset of X such that X \ D is connected. We will first study the relations between
the Dolbeault cohomology groups of D and some other Dolbeault cohomology groups of
X \ D.

Proposition 4.1 Let X be a non-compact complex manifold of complex dimension n ≥ 2 and
D be a relatively compact domain in X such that X \ D is connected. Assume H n,1

c (X) = 0
and H0,n−1(X) = 0. Then if H0,n

c,∞(X \ D) is Hausdorff, for any neighborhood UD of D such
that X \ UD is connected, there exists a neighborhood VD of D such that VD ⊂⊂ UD and
for each f ∈ E0,n−1(UD) such that ∂ f = 0, there exists u ∈ E0,n−2(VD) such that ∂u = f
on VD.

Proof Let WD ⊂⊂ UD be a neighborhood of D and χ be a C∞-smooth function on X
with compact support in UD and constant equal to 1 on WD and f ∈ E0,n−1(UD) such that
∂ f = 0. Set g = ∂(χ f ). The form g is a ∂-closed (0, n)-form with compact support in
X \ D.

First we want to prove that g belongs to the closure of the image by ∂ of the C∞-smooth
(0, n − 1)-forms with compact support in X \ D. By Proposition 2.5 and by the regularity
of the ∂-operator in complex manifolds, it suffices to prove that

∫

X\D g ∧ θ = 0 for all

holomorphic (n, 0)-forms θ ∈ En,0(X \ D). Since X is not compact, X \ D is connected

and Hn,1
c (X) = 0, by the Hartogs extension phenomenon, the holomorphic (n, 0)-form θ

extends to X in a holomorphic (n, 0)-form ˜θ and
∫

X\D

g ∧ θ =
∫

X\D

∂(χ f ) ∧ ˜θ =
∫

X

χ f ∧ ∂˜θ = 0.

Then it follows from the Hausdorff property of the cohomological group H0,n
c (X \ D)

that their exists a (0, n − 1)-form v of class C∞ with compact support in X \ D such that
∂v = g. Note that by Lemma 2.3 in [12] the support of v depends only of the support of
g which in the present setting is only related to the choice of the function χ . Consider now
the (0, n − 1)-form χ f − v. After extension of v by 0 in D it is defined on the whole X ,
moreover ∂(χ f − v) = 0 on X \ D by definition of v and ∂(χ f − v) = 0 on a neighborhood
of D since suppv ⊂ X \ D and ∂(χ f ) = ∂ f = 0 on WD . Using that H0,n−1(X) = 0, we
get a C∞-smooth (0, n − 2)-form h on X such that χ f − v = ∂h in X , in particular f = ∂h
on VD = WD ∩ (X \ suppv). �

Let us study the converse of Proposition 4.1.

Proposition 4.2 Let X be a complex manifold of complex dimension n such that H0,n
c (X)

is Hausdorff and D be a relatively compact domain in X. If for any neighborhood UD of D
there exists a neighborhood VD of D such that VD ⊂⊂ UD and for each f ∈ E0,n−1(UD)
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such that ∂ f = 0, there exists u ∈ E0,n−2(VD) such that ∂u = f on VD, then H0,n
c,∞(X \ D)

is Hausdorff.

Proof By Theorem 2.7 in [12] it is sufficient to prove that for each compact set K ⊂ X \ D
the space D0,n

K (X \ D) ∩ ∂D0,n−1(X \ D) is topologically closed in the space D0,n(X \ D),

where D0,n
K (X \ D) denotes the space of C∞-smooth (0, n)-forms on X \ D with support in

K . Let K be a fixed compact subset of X \ D.
First we will prove that

D0,n
K (X \ D) ∩ ∂D0,n−1(X \ D) = D0,n

K (X \ D) ∩ ∂D0,n−1(X).

It is clear that

D0,n
K (X \ D) ∩ ∂D0,n−1(X \ D) ⊂ D0,n

K (X \ D) ∩ ∂D0,n−1(X).

For the converse inclusion let f ∈ D0,n
K (X \ D) ∩ ∂D0,n−1(X), then f = ∂g with g ∈

D0,n−1(X). Since supp f ⊂ K , the form g is ∂-closed on some neighborhood UD of D.
From the hypothesis we get that there exists a neighborhood VD of D such that VD ⊂⊂ UD
and a form h ∈ E0,n−2(VD) such that ∂h = g on VD . Choose χ a C∞-smooth function
on X with compact support in VD and such that χ = 1 on a neighborhood of D, then
f = ∂(g − ∂(χh)) and supp(g − ∂(χh)) is a compact subset of X \ D.

The Hausdorff property of the cohomological group H0,n
c (X) implies that for each com-

pact set K ⊂ X the space D0,n
K (X)∩∂D0,n−1(X) is topologically closed in the space D0,n(X).

Since K ⊂ X \ D we get that D0,n
K (X \ D)∩∂D0,n−1(X) is topologically closed in the space

D0,n(X \ D), which ends the proof of the proposition. �
Note that under the hypothesis of Proposition 4.2, we get that if D admits a Stein neigh-

borhood basis then H0,n
c,∞(X \ D) is Hausdorff (A slightly stronger result is proved in section

4 of [12]).

Corollary 4.3 Let X be a Stein manifold of complex dimension n ≥ 2 and D be a relatively
compact domain in X such that X \D is connected. Then Hn,1∞ (X \D) is Hausdorff if and only
if for any neighborhood UD of D such that X \UD is connected, there exists a neighborhood
VD of D such that VD ⊂⊂ UD and for each f ∈ E0,n−1(UD) such that ∂ f = 0, there exists
u ∈ E0,n−2(VD) such that ∂u = f

Proof If X is a Stein manifold of complex dimension n ≥ 2 and D be a relatively compact
domain in X such that X \ D is connected, the hypotheses of Propositions 4.1 and 4.2 are
fulfilled and moreover, by the Serre duality in X \ D, H0,n

c,∞(X \ D) is Hausdorff if and only
if Hn,1∞ (X \ D) is Hausdorff. �

Corollary 4.3 was already proved in [16] as a corollary to a result related to Propositions
4.1 and 4.2 (see [16, Lemmas 8 and 9]).

In the same setting, we are going to consider now the case of the cohomology of closed
subsets.

Proposition 4.4 Let X be a non compact complex manifold of complex dimension n ≥ 2
and D be a relatively compact domain in X with Lipschitz boundary and such that X \ D
is connected. Assume Hn,1

c (X) = 0, H0,n−1(X) = 0 and H0,n
c (X) are Hausdorff, then

H0,n
c,∞(X \ D) is Hausdorff if and only if H0,n−1∞ (D) = 0.
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Proof Assume H0,n
c,∞(X \ D) is Hausdorff. Let f ∈ C∞

0,n−1(D) be a ∂-closed form, then if ˜f

is a C∞-smooth extension with compact support of f to X , the (0, n)-form ∂ ˜f has compact
support in X \ D and satisfies < T, ∂ ˜f >= 0 for all T ∈ Ď′n,0(X \ D) with ∂T = 0, in fact
T is a holomorphic (n, 0)-form on X \ D which extends to X in a holomorphic (n, 0)-form
θ by the Hartogs extension phenomenon since X is not compact, X \ D is connected and
Hn,1

c (X) = 0, hence

< T, ∂ ˜f >=
∫

X

θ ∧ ∂ ˜f =
∫

X

∂θ ∧ ˜f = 0.

By the Hausdorff property of the group H0,n
c,∞(X \ D), there exists a (0, n −1)-form g with

compact support in X \ D such that ∂ ˜f = ∂g. Consequently the form ˜f − g is a ∂-closed
(0, n − 1)-form on X whose restriction to D is equal to f . As H0,n−1(X) = 0, we get
˜f − g = ∂h for some C∞-smooth form h on X and hence f = ∂h on D, which proves that
H0,n−1∞ (D) = 0.

Let us prove the converse. Let f ∈ C∞
0,n(X) be a form with compact support in X \ D

orthogonal to the C∞-smooth (n, 0)-forms on X \ D, which are holomorphic on X \ D. Then,
f is orthogonal to the holomorphic (n, 0)-forms in X and the Hausdorff property of H0,n

c (X)

implies that there exists a C∞-smooth (0, n −1)-form g with compact support in X such that
f = ∂g. The support property of f implies that g restricted to D is a ∂-closed C∞-smooth
(0, n−1)-form on D. Since H0,n−1∞ (D) = 0, we get g = ∂h for some C∞-smooth (0, n−2)-
form on D. Let ˜h be a C∞-smooth extension with compact support of h to X , then g − ∂˜h
has compact support in X \ D and satisfies ∂(g − ∂˜h) = f , which implies that H0,n

c,∞(X \ D)

is Hausdorff. �
Note that Proposition 4.4 also holds for extendable currents and the proof follows the

same lines as the previous one. Using duality on X \ D and Theorem 3.2 we get

Corollary 4.5 Let X be a Stein manifold of complex dimension n ≥ 2 and D be a relatively
compact domain in X with Lipschitz boundary and such that X \ D is connected, then

(i) Ȟn,1(X \ D) is Hausdorff if and only if H0,n−1∞ (D) is Hausdorff;
(ii) Hn,1∞ (X \ D) is Hausdorff if and only if Ȟ0,n−1(D) is Hausdorff.

Let us consider the special example where X = B ⊂ C
2, a ball of radius R ≥ 2 in C

2, then
B is a Stein manifold of dimension 2 and D = � × � is the bidisc, then H0,1∞ (� × �) = 0,
hence Ȟ2,1(B \ (� × �)) is Hausdorff. Similarly, we also have from Corollary 4.3 that
H2,1(B \ � × �) is Hausdorff.

On the other hand, if we consider the Hartogs triangle T ⊂⊂ X = B ⊂ C
2, then using

the result of [3] (see the end of Sect. 3 in this paper) and Proposition 4.1, we get

Corollary 4.6 Let B ⊂ C
2 be a ball of radius R ≥ 2 in C

2 and T the Hartogs triangle, then
both cohomological groups H0,2

c (B \ T ) and H2,1(B \ T ) are not Hausdorff.

We remark that the fact that H2,1(B \ T ) is not Hausdorff follows from the Serre duality.
Now we will extend partially Proposition 4.4 to the L2 setting. Let W 1(D) be the Sobolev

space and denote by H p,q
W 1 (D) the associated cohomology groups.

Proposition 4.7 Let X be a Stein manifold of complex dimension n ≥ 2 and D be a relatively
compact domain in X with Lipschitz boundary and such that X \ D is connected. Then
H0,n

c,L2(X \ D) is Hausdorff if and only if H0,n−1
W 1 (D) = 0.
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Proof Let f ∈ W 1
0,n−1(D) be a ∂-closed form on D, and let ˜f be a W 1 extension with

compact support of f to X . This is possible since the boundary of D is Lipschitz. The
(0, n)-form ∂ ˜f has L2 coefficients and compact support in X \ D. Furthermore, it satisfies

∫

X\D

θ ∧ ∂ ˜f = 0

for all holomorphic (n, 0)-form on X \ D. In fact, since X \ D is connected, by the Hartogs
extension phenomenon, θ extends to X in a holomorphic (n, 0)-form ˜θ and

∫

X\D

θ ∧ ∂ ˜f =
∫

X

˜θ ∧ ∂ ˜f =
∫

X

∂˜θ ∧ ˜f = 0.

By the Hausdorff property of the group H0,n
c,L2(X \ D) = H0,n

c̃,L2(X \ D), there exists a

form g ∈ L2
(0,n−1)(X) with compact support in X \ D such that ∂ ˜f = ∂g. Consequently the

form ˜f − g is a ∂-closed (0, n − 1)-form on X whose restriction to D is equal to f . As X
is Stein, H0,n−1

L2
loc

(X) = 0. Thus we get ˜f − g = ∂h for some L2
loc form h on X . It follows

from the interior regularity for ∂ , we can have h ∈ W 1(D) and hence f = ∂h on D, which
proves that H0,n−1

W 1 (D) = 0.

Conversely let f ∈ L2
0,n(X) with compact support in X \ D, orthogonal to the ∂-closed

(n, 0)-forms L2 in X\D and in particular to the holomorphic (n, 0)-forms in X . The Hausdorff
property of H0,n

c,L2(X) implies that there exists a (0, n−1)-form g ∈ L2
0,n−1(X) with compact

support in X such that f = ∂g. Using the interior regularity, we have g has W 1 coefficients
on D. Since the support of f is contained in X \ D, g is ∂-closed in D and as H0,n−1

W 1 (D) = 0,

we get g = ∂h for some (0, n − 2)-form h in W 1
0,n−2(D). Let ˜h be a W 1 extension of h with

compact support in X , then g − ∂˜h vanishes on D and satisfies ∂(g − ∂˜h) = f . This shows
that H0,n

c,L2(X \ D) is Hausdorff. �

Using the L2-duality between ∂ and ∂c, we get

Corollary 4.8 Let X be a bounded pseudoconvex domain in C
n, n ≥ 2 and D be a relatively

compact domain in X with Lipschitz boundary and such that X \ D is connected, then either
H0,n−1

W 1 (D) = 0 or Hn,1
L2 (X \ D) is not Hausdorff.

We remark that when D is a pseudoconvex domain with C2 boundary, we can further obtain
the duality between L2 cohomologies Hn,n−1

L2 (X \ D) and the Bergman space H0,0
L2 (D) (see

[8,14,15]). However, not much is known when D has only Lipschitz boundary.
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