
CHAPTER 1

REAL AND COMPLEX MANIFOLDS

We shall begin by defining holomorphic functions and the Cauchy-Riemann equa-
tions in Cn. In Sections 1.2-1.4 of this chapter we will review the definitions and
various properties of a smooth real or complex manifold. In Section 1.5, the Cauchy-
Riemann complex is introduced on complex manifolds. Section 1.6 is devoted to
the Frobenius theorem. In the last section, in contrast to the Riemann mapping
theorem in one complex variable, we prove the inequivalence between the ball and
the polydisc in several variables.

1.1 Holomorphic Functions in Complex Euclidean Spaces

Let Cn = C × · · · × C denote the n-dimensional complex Euclidean space with
product topology. The coordinates of Cn will be denoted by z = (z1, · · · , zn) with
zj = xj + iyj , 1 ≤ j ≤ n. Thus, Cn can be identified with R2n in a natural manner,
z 7→ (x1, y1, · · · , xn, yn).

Definition 1.1.1. A complex-valued C1 function f(z) defined on an open subset D
of Cn is called holomorphic, denoted by f ∈ O(D), if f(z) is holomorphic in each
variable zj when the other variables are fixed. In other words, f(z) satisfies

(1.1.1)
∂f

∂zj
= 0,

for each j = 1, · · · , n, where

(1.1.2)
∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
is the so-called Cauchy-Riemann operator.

The objective of this book is to study the behavior of holomorphic functions. It
is closely related to the solvability and regularity of the inhomogeneous Cauchy-
Riemann equations

(1.1.3)
∂u

∂zj
= fj , for j = 1, · · · , n,

where fj ’s are given functions.
1
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Some of the properties of holomorphic functions, like power series expansion, do
extend from one variable to several variables. They differ, however, in many impor-
tant aspects. It is therefore, not correct to consider the theory of several complex
variables as a straightforward generalization of that of one complex variable. For
example, in one variable the zero set of a holomorphic function is a discrete set. The
zero set of a holomorphic function in Cn, n ≥ 2, has a real 2n− 2 dimension. In C,
it is trivial to construct a holomorphic function in a domain D which is singular at
one boundary point p ∈ bD. In contrast, in Cn when n ≥ 2, it is not always possible
to construct a holomorphic function in a given domain D ⊂ Cn which is singular
at one boundary point. This leads to the existence of a domain in several variables
such that any holomorphic function defined on this domain can be extended holo-
morphically to a fixed larger set, a feature that does not exist in one variable. In
Chapter 3 we will discuss this phenomenon in detail. Another main difference is
that there is no analog to the Riemann mapping theorem of one complex variable
in higher dimensional spaces. This phenomenon is analyzed in Section 1.7. Many
of these important differences will be further investigated in Chapters 4-6 using
solutions of the inhomogeneous Cauchy-Riemann equations (1.1.3).

There is yet another major difference in solving (1.1.3) in one and several vari-
ables. When n ≥ 2, a compatibility condition must be satisfied in order for Equa-
tions (1.1.3) to be solvable:

(1.1.4)
∂fi

∂zj
=
∂fj

∂zi
, for 1 ≤ i < j ≤ n.

This will be discussed in the next few chapters on bounded domains in Cn.
We recall here the definition concerning the differentiability of the boundary of

a domain.

Definition 1.1.2. A domain D in Rn, n ≥ 2, is said to have Ck (1 ≤ k ≤ ∞)
boundary at the boundary point p if there exists a real-valued Ck function r defined
in some open neighborhood U of p such that D ∩U = {x ∈ U | r(x) < 0}, bD ∩U =
{x ∈ U | r(x) = 0} and dr(x) 6= 0 on bD ∩ U . The function r is called a Ck local
defining function for D near p. If U is an open neighborhood of D, then r is called
a global defining function for D, or simply a defining function for D.

The relationship between two defining functions is clarified in the next lemma.

Lemma 1.1.3. Let r1 and r2 be two local defining functions for D of class Ck

(1 ≤ k ≤ ∞) in a neighborhood U of p ∈ bD. Then there exists a positive Ck−1

function h on U such that
(1) r1 = hr2 on U ,
(2) dr1(x) = h(x)dr2(x) for x ∈ U ∩ bD.

Proof. Since dr2 6= 0 on the boundary near p, after a Ck change of coordinates,
we may assume that p = 0, xn = r2(x) and bD ∩ U = {x ∈ U | xn = 0}. Let
x′ = (x1, · · · , xn−1). Then r1(x′, 0) = 0. By the fundamental theorem of calculus,

r1(x′, xn) = r1(x′, xn)− r1(x′, 0) = xn

∫ 1

0

∂r1
∂xn

(x′, txn)dt.
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This shows r1 = hr2 for some Ck−1 function h on U . For k ≥ 2, we clearly have
(2) and h > 0 on U . When k = 1, (2) also follows directly from the definition of
differentiation at 0. This proves the lemma.

1.2 Real and Complex Manifolds

Let M be a Hausdorff space. M is called a topological manifold of dimension
n if each point p of M has a neighborhood Up homeomorphic to an open subset
Vp in Rn. Let the homeomorphism be given by ϕp : Up → Vp. We call the pair
(Up, ϕp) a coordinate neighborhood of M near p. Since, for any q ∈ Up, ϕp(q) is
a point in Rn, we have the usual Euclidean coordinates (x1(ϕp(q)), · · · , xn(ϕp(q)))
for ϕp(q). We shall call the set (x1(ϕp(q)), · · · , xn(ϕp(q))) the local coordinates for
the points q in Up with respect to the coordinate neighborhood (Up, ϕp), and it will
be abbreviated by (x1(q), · · · , xn(q)), and the n-tuple (x1, · · · , xn) of functions on
Up will be called the local coordinate system on (Up, ϕp).

LetM be a topological manifold, thenM is covered by a family of such coordinate
neighborhoods {(Uα, ϕα)}α∈Λ, where Λ is an index set. If for some α, β in Λ we
have Uαβ = Uα ∩ Uβ 6= ∅, then there is a well-defined homeomorphism

fβα = ϕβ ◦ ϕ−1
α : ϕα(Uαβ)→ ϕβ(Uαβ).

These will be called the transition functions with respect to the coordinate neigh-
borhood system {(Uα, ϕα)}α∈Λ. Obviously, we have fβα = f−1

αβ . Now we give the
definition of a differentiable manifold.

Definition 1.2.1. Let M be a topological manifold together with a coordinate neigh-
borhood system {(Uα, ϕα)}α∈Λ. We call M an n-dimensional differentiable manifold
of class Cr, or a Cr manifold, 1 ≤ r ≤ ∞, if all of the corresponding transition
functions are of class Cr. If r = ∞, we call M a smooth manifold. If all of the
corresponding transition functions are real analytic, M will be called a real analytic
manifold, or a Cω manifold.

Next we define complex manifolds.

Definition 1.2.2. Let M be a topological manifold together with a coordinate neigh-
borhood system {(Uα, ϕα)}α∈Λ, where ϕα(Uα) = Vα are open sets in Cn. M is called
a complex manifold of complex dimension n if the transition function fβα = ϕβ◦ϕ−1

α

is holomorphic on ϕα(Uαβ) ⊂ Cn, whenever Uαβ = Uα ∩ Uβ 6= ∅ for all α, β.

It follows that a complex manifold is automatically a real analytic manifold. Here
are some important examples of real and complex manifolds.

Example 1.2.3. Any connected open subset M of Rn is a real analytic manifold.
The local chart (M, ι) is simply the induced one given by the identity mapping
ι from M into Rn. Similarly, any connected open subset M of Cn is a complex
manifold of complex dimension n.

Example 1.2.4 (Real projective space, RPn). Define an equivalence relation
on the set Rn+1 \ {0}. Two points x and y in Rn+1 \ {0} are said to be equivalent
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if there is a nonzero real number λ ∈ R∗ = R \ {0} such that x = λy. The set of
equivalence classes given by this equivalence relation is called the real projective
space RPn of dimension n. In other words, RPn can be identified with the space
of all lines passing through the origin in Rn+1. The mapping π from Rn+1 \ {0}
onto RPn so that π(x) is the equivalence class containing the point x is continuous,
provided that RPn is equipped with the quotient topology, namely, a subset U of
RPn is open if and only if π−1(U) is open in Rn+1 \ {0}. Since π also maps the
compact set Sn onto RPn, we see that RPn is compact.

The coordinate neighborhood system {(Uj , ϕj)}n+1
j=1 is constructed as follows: for

each p ∈ RPn pick an element x = (x1, · · · , xn+1) ∈ Rn+1 \ {0} such that π(x) = p.
The point p can be represented by the corresponding homogeneous coordinates
[x1 : x2 : · · · : xn+1]. This representation is clearly independent of the choice of x.
Let Uj = {[x1 : · · · : xj : · · · : xn+1]|xj 6= 0} be an open subset of RPn, and the
homeomorphism ϕj from Uj onto Rn is given by

ϕj([x1 : · · · : xj : · · · : xn+1])

= (x1/xj , · · · , xj−1/xj , xj+1/xj , · · · , xn+1/xj).

Hence, if Ui ∩ Uj = Uij 6= ∅, say, i < j, then the transition function fij is

fij(y) = ϕi ◦ ϕ−1
j (y)

= ϕi([y1 : · · · : yj−1 : 1 : yj : · · · : yn])

=
(
y1
yi
, · · · , yi−1

yi
,
yi+1

yi
, · · · , yj−1

yi
,

1
yi
,
yj

yi
, · · · , yn

yi

)
.

It follows that the real projective space RPn is a real analytic compact manifold.

Example 1.2.5 (Complex projective space, CPn). If C is substituted for R
in the definition of the real projective space RPn, we will end up with a compact
complex manifold of complex dimension n which we call the complex projective
space and denote by CPn.

Example 1.2.6 (Riemann surface). A Riemann surface M is by definition a
complex manifold of complex dimension one. Hence, any open subset U of C is a
Riemann surface. Complex projective space CP1 is a compact Riemann surface,
also known as the Riemann sphere.

From now on we shall concentrate on complex manifolds, unless the contrary is
stated explicitly in the text. Let f be a continuous complex-valued function defined
on an open subset U of a complex manifold M , and let p be a point in U . We
say that f is holomorphic at p if there exists a small open neighborhood V of p,
contained in U ∩Uα for some local coordinate neighborhood Uα, such that f ◦ϕα

−1

is holomorphic on the open subset ϕα(V ) in Cn. Clearly, the above definition of
holomorphic functions at a point p ∈ U is independent of the choice of the local
coordinate system (Uα, ϕα). The function f is said to be holomorphic on U if f
is holomorphic at every point p ∈ U . In particular, the local coordinate functions
zi, 1 ≤ i ≤ n, on Uα of a complex manifold are holomorphic.

Let M and N be two complex manifolds of complex dimensions m and n with
local coordinate systems {(Uα, ϕα)}α∈Λ and {(Vβ , ψβ)}β∈Γ respectively, and let f be
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a continuous mapping from M into N . We shall say that f defines a holomorphic
mapping at p ∈ M , if there exists an open neighborhood Up of p, contained in
a local coordinate neighborhood Uα, with f(Up) contained in a local coordinate
neighborhood Vβ such that ψβ ◦f ◦ϕ−1

α defines a holomorphic mapping from ϕα(Up)
into ψβ(Vβ). The definition is easily seen to be independent of the choice of the
local coordinate systems.

If f is a holomorphic mapping between two complex manifolds M and N of
equal dimensions such that f is one-to-one, onto and the inverse mapping f−1 is
also holomorphic, then f will be called a biholomorphic map or a biholomorphism
from M onto N .

1.3 Tangent Spaces and the Hermitian Metric

Let Cn be identified with R2n via the map (z1, · · · , zn) 7→ (x1, y1, · · · , xn, yn).
For any point p ∈ Cn the tangent space Tp(Cn) is spanned by(

∂

∂x1

)
p

,

(
∂

∂y1

)
p

, · · · ,
(

∂

∂xn

)
p

,

(
∂

∂yn

)
p

.

Define an R-linear map J from Tp(Cn) onto itself by

J

(
∂

∂xj

)
p

=
(

∂

∂yj

)
p

, J

(
∂

∂yj

)
p

= −
(

∂

∂xj

)
p

,

for all j = 1, · · · , n. Obviously, we have J2 = −1, and J is called the complex
structure on Cn.

The complex structure J induces a natural splitting of the complexified tangent
space CTp(Cn) = Tp(Cn)⊗RC. First we extend J to the whole complexified tangent
space by J(x⊗α) = (Jx)⊗α. It follows that J is a C-linear map from CTp(Cn) onto
itself with J2 = −1, and the eigenvalues of J are i and −i. Denote by T 1,0

p (Cn)
and T 0,1

p (Cn) the eigenspaces of J corresponding to i and −i respectively. It is

easily verified that T 0,1
p (Cn) = T 1,0

p (Cn) and T 1,0
p (Cn) ∩ T 0,1

p (Cn) = {0}, and that
T 1,0

p (Cn) is spanned by (
∂

∂z1

)
p

, · · · ,
(

∂

∂zn

)
p

,

where (∂/∂zj)p = 1
2 (∂/∂xj − i∂/∂yj)p for 1 ≤ j ≤ n. Any vector v ∈ T 1,0

p (Cn) is
called a vector of type (1, 0), and we call v ∈ T 0,1

p (Cn) a vector of type (0, 1). The
space T 1,0

p (Cn) is called the holomorphic tangent space at p.
Let CT ∗p (Cn) be the dual space of CTp(Cn). By duality, J also induces a splitting

on
CT ∗p (Cn) = Λ1,0

p (Cn)⊕ Λ0,1
p (Cn),

where Λ1,0
p (Cn) and Λ0,1

p (Cn) are eigenspaces corresponding to the eigenvalues i and
−i respectively. It is easy to see that the vectors (dz1)p, · · · , (dzn)p span Λ1,0

p (Cn)
and the space Λ0,1

p (Cn) is spanned by (dz1)p,· · · ,(dzn)p.
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Let M be a complex manifold of complex dimension n and p be a point of M .
Let (z1, · · · , zn) be a local coordinate system near p with zj = xj +iyj , j = 1, · · · , n.
Then the real tangent space Tp(M) is spanned by

(∂/∂x1)p, (∂/∂y1)p, · · · , (∂/∂xn)p, (∂/∂yn)p.

Define as before an R-linear map J from Tp(M) onto itself by

J

(
∂

∂xj

)
p

=
(

∂

∂yj

)
p

, J

(
∂

∂yj

)
p

= −
(

∂

∂xj

)
p

,

for 1 ≤ j ≤ n. We observe that the definition of J is independent of the choice
of the local coordinates (z1, · · · , zn) and that J2 = −1. Therefore, an argument
similar to the one given above shows that

CTp(M) = Tp(M)⊗R C = T 1,0
p (M)⊕ T 0,1

p (M),

and
CT ∗p (M) = Λ1,0

p (M)⊕ Λ0,1
p (M).

Next we introduce a Hermitian metric on M . By that, we mean at each point p ∈
M , a Hermitian inner product hp(u, v) is defined for u, v ∈ T 1,0

p (M). If (z1, · · · , zn)
is a local coordinate system on a neighborhood U of p, then

hij(p) = hp

(
∂

∂zi
,
∂

∂zj

)
is a complex-valued function on U , and (hij(p))n

i,j=1 is a positive definite Hermitian
matrix defined for each point p of U . We shall assume the metric is smooth; namely,
that all the hij ’s vary smoothly on M . Then, we extend the metric to the whole
complexified tangent space in a natural way by requiring T 1,0(M) to be orthogonal
to T 0,1(M). If a complex manifold M is equipped with a Hermitian metric h, we
shall call (M,h) a Hermitian manifold.

1.4 Vector Bundles

Let M be a smooth manifold of real dimension n. The union of all the tan-
gent spaces Tp(M), p ∈M , inherits a natural geometric structure called the vector
bundle.

Definition 1.4.1. Let E and M be two smooth manifolds. E is called a vector
bundle over M of rank k if there exists a smooth mapping π, called the projection
map, from E onto M such that the following conditions are satisfied:

(1) For each p ∈M , Ep = π−1(p) is a vector space over R of dimension k. Ep

is called the fibre space over p.
(2) For each p ∈ M , there exists an open neighborhood U containing p and a

diffeomorphism
h : π−1(U)→ U × Rk,

such that h(π−1(q)) = {q}×Rk and the restriction hq : π−1(q)→ {q}×Rk ≡
Rk is a linear isomorphism, for every q ∈ U .
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The pair (U, h) is called a local trivialization.
When k = 1, E is also called a line bundle over M .

For a vector bundle π : E → M , the manifold E is called the total space and
M is called the base space, and E is called a vector bundle over M . Notice that
if two local trivializations (Uα, hα) and (Uβ , hβ) have nonempty intersection, i.e.,
Uα∩Uβ 6=∅, then a map gαβ is induced on Uα∩Uβ :

gαβ : Uα∩Uβ → GL(k,R),

such that
gαβ(p) = (hα)p ◦ (hβ)−1

p : Rk → Rk.

The matrices gαβ ’s are called transition matrices. Clearly, they are smooth and
satisfy the following conditions:

(1) gαβ = g−1
βα ,

(2) gαβ ◦ gβγ ◦ gγα = I,

where I is the identity matrix of rank k.
Let E be a vector bundle over M , and let U be an open subset of M . Any smooth

mapping s from U to E such that π ◦ s = idU , where idU is the identity mapping
on U , will be called a section over U . The space of all the sections over U will be
denoted by Γ(U,E).

Notice that the concept of vector bundle can obviously be defined for other cate-
gories. For instance, if E and M are complex manifolds and the fibers are complex
vector spaces, then one can define a holomorphic vector bundle E over M by re-
quiring the morphisms and the transition matrices to be holomorphic mappings.

Here are some typical examples of vector bundles.

Example 1.4.2 (Tangent Bundles). Let M be a manifold of real dimension n.
The set formed by the disjoint union of all tangent spaces Tp(M) of p ∈M , namely,

T (M) = ∪
p∈M

Tp(M),

has a natural vector bundle structure of rank n over M . The local coordinate
neighborhoods of T (M) and the local trivializations of the bundle are given by the
local coordinate systems of M as follows: let (x1, · · · , xn) be a local coordinate
system on U of M , and let p ∈ U . Then any tangent vector v at p can be written
as

v =
n∑

i=1

vi(x)
(

∂

∂xi

)
p

.

Thus, we obtain a map φ from π−1(U) onto U × Rn by

φ : π−1(U)→ U × Rn,

(p, v) 7→ (p, v1(x), · · · , vn(x)).

If two local coordinate systems have nontrivial intersection, then the transition
matrix is clearly defined by the Jacobian matrix, with respect to these two local



8 Real and Complex Manifolds

coordinate systems, which by definition is smooth. It is also clear that any global
section s in Γ(M,T (M)) is a smooth vector field X defined on M .

Next, we can also form a new vector bundle from a given one. The most important
examples of such algebraically derived vector bundles are those originating from the
tangent bundle T (M). For instance, by considering the dual space and the exterior
algebra of the tangent space Tp(M), we obtain the following new vector bundles:

Example 1.4.3 (Cotangent Bundle). Let M be a smooth manifold of real
dimension n. The fibre of the cotangent bundle, T ∗(M), at each point p ∈ M is
the R-linear dual space of Tp(M), denoted by T ∗p (M). Clearly, T ∗(M) is a vector
bundle of rank n over M . A section s of this bundle over an open set U of M is
called a smooth 1-form over U . We also have the complexified cotangent bundle,
denoted by Λ1(M) = T ∗(M)⊗R C, over M .

Example 1.4.4 (Exterior Algebra Bundles). Let M be a complex manifold
of complex dimension n. Then the exterior algebra bundles over M are the vector
bundles Λr(M) whose fibers at each point z0 ∈M are the wedge product of degree
r of Λ1

p(M), and

Λ(M) =
2n
⊕

r=0
Λr(M).

Any smooth section s of Λr(M) over an open subset U of M is a smooth r-form
on U . If, at each point z0 of M , we take the wedge product of p copies of Λ1,0(M)
and q copies of Λ0,1(M), where p ≤ n and q ≤ n, we obtain the vector bundle of
bidegree (p, q), denoted by Λp,q(M), and we have

Λr(M) = ⊕
p+q=r

Λp,q(M).

Smooth sections of Λp,q(M), denoted by C∞(p,q)(M), are called (p, q)-forms on M .

1.5 Exterior Derivatives and the Cauchy-Riemann Complex

Let M be a complex manifold of complex dimension n, and let (z1, · · · , zn) be
a local coordinate system on an open neighborhood U of a point p of M , with
zj = xj + iyj for 1 ≤ j ≤ n. Let f be a C1 complex-valued function defined on M .
Then, locally on U one can express df as

(1.5.1)

df =
n∑

j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj

=
n∑

j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂zj
dzj ,

where we have used the notation

∂f

∂zj
=

1
2

(
∂f

∂xj
− i ∂f

∂yj

)
,

∂f

∂zj
=

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
,
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and
dzj = dxj + idyj , dzj = dxj − idyj ,

for 1 ≤ j ≤ n. Define the operators ∂ and ∂ on functions by

∂f =
n∑

j=1

∂f

∂zj
dzj , and ∂f =

n∑
j=1

∂f

∂zj
dzj .

Then, (1.5.1) can be written as

df = ∂f + ∂f.

This means that the differential df of a C1 function f on U can be decomposed into
the sum of a (1, 0)-form ∂f and (0, 1)-form ∂f .

It is easily verified that the definitions of ∂ and ∂ are invariant under holomorphic
change of coordinates. Hence, the operators ∂ and ∂ are well defined for functions
on a complex manifold. A C1 complex-valued function on a complex manifold is
holomorphic if and only if

∂f = 0.

Next we extend the definition of the operators ∂ and ∂ to differential forms of
arbitrary degree. Let f be a (p, q)-form on U . Write f as

f =
∑

|I|=p,|J|=q

fIJdz
I ∧ dzJ ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are multiindices of length p and q
respectively, dzI = dzi1 ∧ · · · ∧ dzip

, dzJ = dzj1 ∧ · · · ∧ dzjq
.

The exterior derivative df of f is then defined by

df =
∑
I,J

dfI,J ∧ dzI ∧ dzJ

= ∂f + ∂f,

where ∂f and ∂f are defined by

∂f =
∑
I,J

∂fI,J ∧ dzI ∧ dzJ , ∂f =
∑
I,J

∂fI,J ∧ dzI ∧ dzJ ,

which are of type (p+ 1, q) and (p, q + 1) respectively.
Since the transition matrices of a complex manifold M are holomorphic, the

operators ∂ and ∂ are well defined for (p, q)-forms on M , and we have

d = ∂ + ∂.

Since
0 = d2f = ∂2f + (∂∂ + ∂∂)f + ∂

2
f
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and all terms are of different types, we obtain

(1.5.2) ∂2 = 0, ∂∂ + ∂∂ = 0, ∂
2

= 0.

Since

(1.5.3) ∂
2

= 0,

It follows that the sequence

0→ Λp,0(M) ∂−→Λp,1(M) ∂−→ · · · ∂−→Λp,n−1(M) ∂−→Λp,n(M)→ 0,

for 0 ≤ p ≤ n, is a complex. This is called the Cauchy-Riemann complex. Denote
∂p,q = ∂ : Λp,q(M)→ Λp,q+1(M). It follows that the image of ∂p,q lies in the kernel
of ∂p,q+1. To measure the exactness of the sequence, we have to solve the following
inhomogeneous equation

(1.5.4) ∂u = f,

under the compatibility condition

(1.5.5) ∂f = 0.

The solvability of the ∂-equation as well as the smoothness of the solution is one of
the main issues throughout this book.

1.6 The Frobenius Theorem

Let U be an open neighborhood of the origin in Rn, and let k be an integer with
1 ≤ k < n. Then, the set Nc = {x = (x1, · · · , xn) ∈ U | xk+1 = ck+1, · · · , xn =
cn}, where c = (ck+1, · · · , cn) ∈ Rn−k is a constant vector, forms a k dimensional
submanifold of U . By a submanifold we mean that Nc is a closed subset of U and Nc

forms a manifold itself. Notice that Nc1 ∩Nc2 = ∅ if c1 6= c2. Also ∪c∈Rn−kNc = U .
With such a submanifold structure, we shall say that U is foliated by k dimensional
submanifolds Nc, and call Nc a leaf of the foliation.

Let X1, · · · , Xk be k linearly independent vector fields on U such that they are
tangent to some Nc, c ∈ Rn−k, everywhere. Since the restriction of the vector field
Xi, 1 ≤ i ≤ k to each Nc defines a vector field on Nc, it is easily seen that the
commutator [Xi, Xj ] = XiXj − XjXi, 1 ≤ i, j ≤ k, is still a smooth vector field
tangent to Nc everywhere on U . It follows that on U we have

(1.6.1) [Xi, Xj ] =
k∑

l=1

aijl(x)Xl,

where aijl(x) ∈ C∞(U).
In this section we shall show that condition (1.6.1) is also sufficient for a man-

ifold to be foliated locally by submanifolds whose tangent vectors are spanned by
X ′

is. Since the result is purely local, we shall formulate the theorem in an open
neighborhood U of the origin in Rn.



1.6 The Frobenius Theorem 11

Theorem 1.6.1 (Frobenius). Let X1, · · · , Xk, 1 ≤ k < n, be smooth vector fields
defined in an open neighborhood U of the origin in Rn. If

(1) X1(0), · · · , Xk(0) are linearly independent, and
(2) [Xi, Xj ] =

∑k
l=1 aijl(x)Xl, 1 ≤ i, j ≤ k, for some aijl(x) ∈ C∞(U),

then there exist new local coordinates (y1, · · · , yn) in some open neighborhood V of
the origin such that

Xi =
k∑

j=1

bij(y)
∂

∂yj
, i = 1, · · · , k,

where (bij(y)) is an invertible matrix. In other words, V is foliated by the k-
dimensional submanifolds {y ∈ V | yi = ci, i = k + 1, · · · , n}.
Proof. The theorem will be proved by induction on the dimension n of the ambient
space. When n = 1, the assertion is obviously true. Let us assume that the assertion
is valid up to dimension n− 1.

First, we may simplify the vector field X1(x) = (a1(x), · · · , an(x)). From the
basic existence theorem for a system of first order ordinary differential equation,
through every point p in a small open neighborhood of the origin, there exists
exactly one integral curve γ(t) = (γ1(t), · · · , γn(t)), where t ∈ (−δ, δ) for some real
number δ > 0, such that

dγi

dt
(t) = ai(γ(t)), i = 1, · · · , n.

It follows that for any smooth function f in a small neighborhood V of 0,

X1f(γ(t)) =
k∑

i=1

ai(γ(t))
∂f(γ(t))
∂xi

=
∂f(γ(t))

∂t
.

Locally one can introduce new independent variables, also denoted by (x1, · · · , xn),
which straighten out the integral curves so that X1 = ∂/∂x1. Next, by subtracting
a multiple of X1 from Xi for 2 ≤ i ≤ k, we may also assume that

Xi(x) =
n∑

l=2

cil(x)
∂

∂xl
, i = 2, · · · , k.

Denote x′ = (x2, · · · , xn). On the submanifold V ∩ {x = (x1, x
′) | x1 = 0}, these

vector fields X2(0, x′), · · · , Xk(0, x′), satisfy both conditions (1) and (2) in an open
neighborhood of the origin in Rn−1. Hence, by the induction hypotheses, there exist
new local coordinates near the origin in Rn−1, denoted also by x′ = (x2, · · · , xn),
such that cil(0, x′) = 0 for 2 ≤ i ≤ k and l > k. For 2 ≤ i ≤ k and 2 ≤ l ≤ n, we
have

∂cil
∂x1

(x) = X1Xi(xl) = [X1, Xi](xl)

=
k∑

α=2

a1iα(x)Xα(xl)

=
k∑

α=2

a1iα(x)cαl(x).
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Hence, the uniqueness part of the Cauchy problem for a system of first order ordi-
nary differential equations implies that cil(x) ≡ 0 for l > k in an open neighborhood
V of the origin. This completes the proof of the theorem.

It should be pointed out that the existence of the local coordinates (y1, · · · , yn)
guaranteed by the Frobenius theorem is not unique. Suppose that there are k
smooth vector fields X1, · · · , Xk defined in some open neighborhood of the origin in
Rn such that conditions (1) and (2) of Theorem 1.6.1 are satisfied. Let us consider
a system of overdetermined partial differential equations

(1.6.2) Xju = fj , j = 1, · · · , k,

where the data fj ’s are smooth functions given in an open neighborhood of the
origin. It is clear from condition (2) that the system (1.6.2) is solvable only if the
given data satisfy the following compatibility condition

(1.6.3) Xifj −Xjfi =
k∑

l=1

aijl(x)fl(x), 1 ≤ i, j ≤ k.

With the aid of Theorem 1.6.1, the next theorem shows that condition (1.6.3) is, in
fact, also sufficient for the solvability of (1.6.2).

Theorem 1.6.2. Under the same hypotheses as in Theorem 1.6.1, let f1, · · · , fk be
smooth functions defined on U . Then, the system (1.6.2) has a smooth solution u in
an open neighborhood of the origin if and only if the compatibility conditions (1.6.3)
are satisfied. Furthermore, if H is a closed submanifold of U through the origin of
dimension n−k such that the tangent plane of H at the origin is complementary to
the space spanned by X1(0), · · · , Xk(0) , then given any smooth function uh on H,
there exists an unique solution u to the equations (1.6.2) in an open neighborhood
of the origin with u|H = uh.

Notice that in the language of partial differential equations, the hypothesis on
H is equivalent to stating that the manifold H is noncharacteristic with respect to
X1, · · · , Xk, or that, geometrically, H is transversal to the leaves of the foliation
defined by the vector fields X1, · · · , Xk in some open neighborhood of the origin.

Proof. Notice first that conditions (1) and (2) of Theorem 1.6.1 and equations
(1.6.2),(1.6.3) are invariant if we change variables or make linear combinations of the
equations. Hence, by Theorem 1.6.1, we may thus assume that Xj(x) = ∂/∂xj , j =
1, · · · , k. It follows that aijl(x) ≡ 0 for all 1 ≤ i, j, l ≤ k, and equation (1.6.3) is
reduced to

(1.6.4)
∂fj

∂xi
− ∂fi

∂xj
= 0, 1 ≤ i, j ≤ k.

Let us write the local coordinates x = (x′, x′′) with x′ = (x1, · · · , xk) and x′′ =
(xk+1, · · · , xn). Then, locally in some open neighborhood of the origin one may
express H as a graph over an open subset V containing the origin in Rn−k, namely,
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H is defined by x′ = h(x′′) where h(x′′) is a smooth function on V . Now, for each
fixed x′′ ∈ V ,

k∑
j=1

fj(x′, x′′)dxj

is a differential of x′ which in turn by (1.6.4) is closed. Hence, the line integral

(1.6.5) u(x) =
∫ x′

h(x′′)

k∑
j=1

fj(x′, x′′)dxj + uh(h(x′′), x′′),

is well-defined, i.e., independent of the paths in x′-space from h(x′′) to x′. Obviously,
(1.6.5) defines the unique solution u which is equal to the initial datum uh on H to
the equations (1.6.2). This completes the proof of the theorem.

Now we turn to the complex analog of the Frobenius theorem. Let L1, · · · , Lk,
1 ≤ k < n, be type (1, 0) vector fields defined in some open neighborhood U of
the origin in Cn such that L1, · · · , Lk are linearly independent over C on U . If
there exist local holomorphic coordinates (z1, · · · , zn) on U such that L1, · · · , Lk

are tangent to the k dimensional complex submanifolds Nc = {(z1, · · · , zn) ∈
Cn|zk+1 = c1, · · · , zn = cn−k} for c = (c1, · · · , cn−k) ∈ Cn−k, then we see imme-
diately that the subbundle E spanned by L1, · · · , Lk is closed under the Lie bracket
operation, and so is the subbundle E⊕ E.

Conversely, if both the subbundles E and E ⊕ E are closed respectively under
the Lie bracket operation, then locally on U one may introduce new holomorphic
coordinates (w1, · · · , wn) so that U is foliated by the complex submanifolds Nc =
{(w1, · · · , wn) ∈ Cn| wk+1 = c1, · · · , wn = cn−k} for c = (c1, · · · , cn−k) ∈ Cn−k,
and E = T 1,0(Nc). This is the so-called complex Frobenius theorem which can be
deduced from the Newlander-Nirenberg theorem proved in Chapter 5. When k = 1,
this will be proved in Chapter 2.

1.7 Inequivalence between the Ball and the Polydisc in Cn

In one complex variable the Riemann mapping theorem states that any simply
connected region not equal to the whole complex plane is biholomorphically equiv-
alent to the unit disc.

However, the situation is completely different in higher dimensional spaces. Let
4 = {z ∈ C| |z| < 1} and Bn = {(z1, · · · , zn) ∈ Cn| |z1|2 + · · · + |zn|2 < 1}. The
following theorem shows that an analog of the Riemann mapping theorem in several
variables is impossible.

Theorem 1.7.1 (Poincaré). There exists no biholomorphic map

f : 4n → Bn, for n ≥ 2,

where 4n is the Cartesian product of n copies of 4 in Cn.

Proof. We shall assume that n = 2. The proof is the same for n > 2. Suppose
that f = (f1, f2) : 42 → B2 is a biholomorphism. Let (z, w) be the coordinates
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in C2. For any point sequence {zj} in 4 with |zj | → 1 as j → ∞, the sequence
gj(w) = f(zj , w) : 4 → B2 is uniformly bounded. Hence, by Montel’s theorem,
there is a subsequence, still denoted by gj(w), that converges uniformly on compact
subsets of 4 to a holomorphic map g(w) = (g1(w), g2(w)) : 4 → B2. Since f is a
biholomorphism, we must have |g(w)|2 = 1 for all w ∈ 4. Hence, |g′(w)| = 0 for all
w ∈ 4 which implies g′(w) ≡ 0 on 4. It follows that

(1.7.1) lim
j→∞

fw(zj , w) = g′(w) ≡ 0.

Equation (1.7.1) implies that for each fixed w ∈ 4, fw(z, w), when viewed as a
function of z alone, is continuous up to the boundary with boundary value identically
equal to zero. Therefore, by the maximum modulus principle we get

fw(z, w) ≡ 0, for all (z, w) ∈ 42.

This implies f is independent of w, a contradiction to the fact that f is a biholo-
morphic map. This completes the proof of the theorem.

Thus, according to Theorem 1.7.1, the classification problem in several variables
is considerably more complicated than in one variable. An approach towards the
classification of certain domains in Cn, n ≥ 2, will be discussed in Section 6.3.

NOTES

For a general background on complex manifolds, the reader may consult books
by S. S. Chern [Cher 2], J. Morrow and K. Kodaira [MoKo 1] and R. O. Wells [Wel
1]. For a proof of the complex Frobenius theorem, the reader is referred to [Nir 1].
See also [Hör 5]. The inequivalence between the polydisc and the unit ball was first
discovered by H. Poincaré by counting the dimensions of the automorphism groups
of both domains. The proof of Theorem 1.7.1 that we present here is based on the
ideas of R. Remmert and K. Stein [ReSt 1]. See also [Nar 1] and [Ran 6].
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CHAPTER 2

THE CAUCHY INTEGRAL FORMULA

AND ITS APPLICATIONS

The main task of this chapter is to study the solvability and regularity of the
Cauchy-Riemann operator on the complex plane. We will first show that the so-
lution to the Cauchy-Riemann operator can be obtained via the Cauchy integral
formula. Then we shall prove the Plemelj jump formula associated with the Cauchy
transform. As an application of the Cauchy integral formula, given a (p, q)-form f
on a polydisc satisfying the compatibility condition ∂f = 0, we will solve the inho-
mogeneous ∂-equation, ∂u = f , on a relatively smaller polydisc in several complex
variables.

Next we shall present the Bochner-Martinelli formula which can be viewed as a
generalization of the Cauchy integral formula in several variables. Then, in a similar
manner, we will prove the jump formula associated with the Bochner-Martinelli
transform.

In Section 2.3, we will determine when a first-order partial differential equation
in two real variables is locally equivalent to the Cauchy-Riemann equation.

2.1 The Cauchy Integral Formula

All functions in this chapter are complex-valued unless otherwise stated. Then
the following formula, known as Cauchy’s integral formula, holds:

Theorem 2.1.1. Let D be a bounded open set in C with C1 boundary bD. If
u ∈ C1(D), we have

(2.1.1) u(z) =
1

2πi

(∫
bD

u(ζ)
ζ − z

dζ +
∫∫

D

∂u
∂ζ

ζ − z
dζ ∧ dζ

)
for any z ∈ D.

Proof. The proof is an easy consequence of Stokes’ theorem. Let ε be any small
positive number less than the distance from z to the boundary of D. Denote by
Bε(z) the open disc centered at z with radius ε. Applying Stokes’ theorem to the
form u(ζ)dζ/(ζ − z) on the punctured domain Dε = D \Bε(z), we obtain∫

bD

u(ζ)
ζ − z

dζ − i
∫ 2π

0

u(z + εeiθ) dθ =
∫∫

Dε

∂u
∂ζ

ζ − z
dζ ∧ dζ.

Letting ε→ 0, we have (2.1.1).

Next we show how to apply the Cauchy integral formula to solve the Cauchy-
Riemann equation.
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Theorem 2.1.2. Let D be a bounded domain in C, and let f ∈ Ck(D) for k ≥ 1.
Define

(2.1.2) u(z) =
1

2πi

∫∫
D

f(ζ)
ζ − z

dζ ∧ dζ.

Then u(z) is in Ck(D) and satisfies

(2.1.3)
∂u

∂z
= f(z)

on D. When k = 0, u defined by (2.1.2) is in C(D) and satisfies (2.1.3) in the
distribution sense.

Proof. For the case k ≥ 1, we first assume f ∈ Ck
0 (C). Setting −η = ζ − z, we have

u(z) =
−1
2πi

∫∫
C

f(z − η)
η

dη ∧ dη.

Differentiation under the integral sign gives that u ∈ Ck(C). Using Theorem 2.1.1
we obtain

∂u

∂z
(z) =

1
2πi

∫∫ ∂f

∂ζ

ζ − z
dζ ∧ dζ = f(z).

For the general situation, let z0 ∈ D, and let χ be a cut-off function, 0 ≤ χ ≤ 1,
χ ≡ 1 in some neighborhood V of z0 and suppχ ⊂ D. Thus,

u(z) =
1

2πi

∫∫
D

f(ζ)
ζ − z

dζ ∧ dζ

=
1

2πi

∫∫
D

χ(ζ)f(ζ)
ζ − z

dζ ∧ dζ +
1

2πi

∫∫
D

(1− χ(ζ))f(ζ)
ζ − z

dζ ∧ dζ

≡ u1(z) + u2(z).

It is easy to see that u2(z) is holomorphic in V . Hence, from the previous argument
for D = C, we obtain

∂u

∂z
=
∂u1

∂z
+
∂u2

∂z
= χ(z)f(z) = f(z),

for z ∈ V .
To prove the case for k = 0, we observe that 1/(ζ − z) is an integrable kernel

after changing to polar coordinates. The following estimate holds for u defined by
(2.1.2):

‖ u ‖∞ ≤ C ‖ f ‖∞ .

Approximate f by fn ∈ C1(D) in the sup norm on D. Define un by (2.1.2) with
respect to fn. Then un converges to u uniformly on D. This shows that u ∈ C(D).
Also, in the distribution sense, we have ∂u/∂z = f , by letting n pass to infinity.
This proves the theorem.
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We recall that a function f defined in some domain D contained in Rn is said to
be Hölder continuous of order λ, 0 < λ < 1, denoted by f ∈ Cλ(D), if for any two
distinct points x1 and x2 in D, we have

|f(x1)− f(x2)| ≤ K|x1 − x2|λ,

where the constant K is independent of x1 and x2. When λ is equal to 1, f is called
Lipschitz. The space of Lipschitz continuous function on D is denoted by Λ1(D).
Notice that C1(D) ⊂ Λ1(D) ⊂ Cλ(D) ⊂ C(D). A function f is said to be Hölder
continuous of order k+ λ with k ∈ N and 0 < λ < 1, if all the partial derivatives of
f of order k are Hölder continuous of order λ.

For any continuous function f on the boundary, the Cauchy transform of f , i.e.,

(2.1.4) F (z) =
1

2πi

∫
bD

f(ζ)
ζ − z

dζ for z ∈ C \ bD,

defines a holomorphic function F (z) off the boundary. The Cauchy transform F (z)
and the given data f on the boundary are related by the so-called Plemelj jump
formula as shown in the following theorem.

Theorem 2.1.3 (Jump formula). Let D be a bounded domain in C with Ck+1

boundary, k ∈ N, such that C \D is connected, and let f be a Ck function defined
on the boundary. Define F (z) as in (2.1.4), and set F−(z) = F (z) for z ∈ D and
F+(z) = F (z) for z /∈ D. Then, for any given 0 < ε < 1, F−(z) ∈ Ck−ε(D)∩O(D)
and F+(z) ∈ Ck−ε(C \D) ∩ O(C \D) and

(2.1.5) f(z) = F−(z)− F+(z) for z ∈ bD.

In particular, if D has C∞ boundary and f is smooth on bD, then both F−(z) and
F+(z) are smooth up to the boundary.

Proof. First we prove the identity (2.1.5). Let fe(z) be any Ck extension of f to
the whole complex plane. Then, we have, for z ∈ D,

(2.1.6) F−(z)− fe(z) =
1

2πi

∫
bD

f(ζ)− fe(z)
ζ − z

dζ,

and, for z ∈ C \D,

(2.1.7) F+(z) =
1

2πi

∫
bD

f(ζ)− fe(z)
ζ − z

dζ.

Since f is, at least, of class C1 on the boundary, the integral on the right-hand sides
of (2.1.6) and (2.1.7) defines a continuous function on the whole complex plane.
Therefore, letting z approach the same point on the boundary from either sides, we
obtain

f(z) = F−(z)− F+(z) for z ∈ bD.

This proves (2.1.5).
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For the regularity of F−(z) and F+(z) near the boundary we shall invoke the
Hardy-Littlewood lemma (see Theorem C.1 in the Appendix). It is clear that,
without loss of generality, we may assume that f is compactly supported in a
boundary coordinate chart, with ∂r/∂z 6= 0 on this coordinate chart, where r is a
Ck+1 defining function for D. When k = 1, using (2.1.6), we have

(2.1.8)
|d(F−(z)− fe(z))| .

∫
bD

|dfe(z)|
|z − ζ|

ds(ζ) +
∫

bD

|f(ζ)− fe(z)|
|z − ζ|2

ds(ζ)

.
∫

bD

1
|z − ζ|

ds(ζ).

Here, A . B means there is an universal constant C, independent of A and B,
such that A ≤ CB. For any given ε > 0, to show F−(z) ∈ C1−ε(D), it suffices
to estimate (2.1.8) over a small neighborhood U of π(z) on the boundary, where
π(z) is the projection of z on the boundary. Let d(z) be the distance from z to the
boundary. If z is sufficiently close to the boundary, it is easily seen that, for ζ ∈ U ,
|z − ζ| is equivalent to d(z) + s(ζ), where s(ζ) is the distance from ζ to π(z) along
the boundary. It follows that∫

U

ds(ζ)
|z − ζ|

≤ d(z)−ε
∫

U

ds(ζ)
|z − ζ|1−ε

. d(z)−ε
∫ 1

0

ds(ζ)
(d(z) + s(ζ))1−ε

. d(z)−ε
.

This proves that F−(z) ∈ C1−ε(D). Similarly, we have F+(z) ∈ C1−ε(C \D).
For k > 1, observe that

(2.1.9) Tz =
∂

∂z
− ∂r

∂z
(
∂r

∂z
)−1 ∂

∂z

satisfies Tz(r) = 0. Hence, Tz is a tangential vector field with Ck coefficients along
the level sets of r. Then, integration by parts shows, for z ∈ D,

∂

∂z
F−(z) =

1
2πi

∫
bD

f(ζ)
∂

∂z

(
1

ζ − z

)
dζ

= − 1
2πi

∫
bD

f(ζ)
∂

∂ζ

(
1

ζ − z

)
dζ

= − 1
2πi

∫
bD

f(ζ)Tζ

(
1

ζ − z

)
dζ

=
1

2πi

∫
bD

T ∗ζ f(ζ)
(

1
ζ − z

)
dζ,

where T ∗ζ is a first order differential operator with Ck−1 coefficients on the boundary.
It follows that

(2.1.10)
∂k

∂zk
F−(z) =

1
2πi

∫
bD

(T ∗ζ )kf(ζ)
(

1
ζ − z

)
dζ.



2.1 The Cauchy Integral Formula 19

Since f is of class Ck on the boundary, a similar argument shows that, for any small
ε > 0, we have ∣∣∣∣ ∂k

∂zk
F−(z)

∣∣∣∣ . d(z)−ε
.

This proves F−(z) ∈ Ck−ε(D) from the Hardy-Littlewood lemma. Similarly, we
have F+(z) ∈ Ck−ε(C \D). The proof of the theorem is now complete.

Corollary 2.1.4. Under the same hypotheses as in Theorem 2.1.3, f is the restric-
tion of a holomorphic function F ∈ Ck−ε(D) ∩O(D) if and only if f is orthogonal
to {zm}∞m=0 on the boundary, namely,

(2.1.11)
∫

bD

f(z)zm dz = 0 for m ∈ {0} ∪ N.

Proof. Assume that f is orthogonal to {zm}∞m=0 on the boundary. If z satisfies
|z| > |ζ| for all ζ ∈ bD, we have

F+(z) =
1

2πi

∫
bD

f(ζ)
ζ − z

dζ

=
−1
2πi

∞∑
m=0

(∫
bD

f(ζ)ζm dζ

)
z−m−1

= 0.

Since F+(z) is holomorphic on C \ D from Theorem 2.1.3, the identity theorem
shows that F+(z) ≡ 0 for all z ∈ C \D. It is now clear from the jump formula that
F−(z) is a Ck−ε holomorphic extension of f to D.

Conversely, if f is the restriction of a function in Ck−ε(D)∩O(D), we must have
F+(z) ≡ 0 on C \D. Thus, by reversing the above arguments for z outside a large
disc centered at the origin, we have

∞∑
m=0

(∫
bD

f(ζ)ζm dζ

)
z−m−1 = 0.

This implies ∫
bD

f(ζ)ζm dζ = 0 for m ∈ {0} ∪ N,

and hence proves the corollary.

Combining with Theorem 2.1.2, the arguments for proving Corollary 2.1.4 can be
applied, almost verbatim, to obtain necessary and sufficient conditions for solving
the ∂-equation with compactly supported solution, via the Cauchy integral formula
in C.

Corollary 2.1.5. Let the domain D be as in Theorem 2.1.3, and let f ∈ Ck(D),
k ≥ 1. Define u(z) by (2.1.2). Then u(z) satisfies ∂u/∂z = f in C and is supported
in D if and only if ∫∫

D

f(ζ)ζm dζ ∧ dζ = 0 for m ∈ {0} ∪ N.
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As an application, we will apply the Cauchy integral formula to solve the ∂-
equation on a polydisc in Cn, n ≥ 2. By a polydisc P (ζ; r) centered at ζ =
(ζ1, · · · , ζn) with multiradii r = (r1, · · · , rn) in Cn, we mean P (ζ; r) =

∏n
j=1Drj

(ζj)
where Drj

(ζj) = {z ∈ C| |z − ζj | < rj}. Let P ′(ζ; r′) =
∏n

j=1Dr′j
(ζj) be another

polydisc with r′j < rj for 1 ≤ j ≤ n. Then, we have the following result:

Theorem 2.1.6. Let P and P ′ be defined as above with ζ = 0, and let f be a
smooth (p, q+ 1)-form, p ≥ 0, q ≥ 0, defined on P , which satisfies the compatibility
condition ∂f = 0. Then there exists a smooth (p, q)-form u on P ′ such that ∂u = f .

Note that we have solved the ∂-equation on any slightly smaller subdomain P ′.
In fact, it will be clear later that the ∂-equation can be solved on the whole polydisc.

Proof. Write f as
f =

∑′

|I|=p,|J|=q+1

fIJ dzI ∧ dzJ ,

where the prime means that we sum over only increasing multiindices. We shall
inductively prove the following statement:

Sk : The assertion holds if f involves only (0, 1)-forms from the set

{dz1, · · · , dzk−1 and dzk}.

When k = n, Sn gives the desired result.
Sk obviously holds when 0 ≤ k ≤ q, since f is of type (p, q + 1). Hence, we

assume the statement is valid up to Sk−1 for some k with k−1 ≥ q, and we proceed
to prove the statement Sk. Write

f = dzk ∧ β + α,

where β is a (p, q)-form and α is a (p, q + 1)-form, and both α and β involve only
(0, 1)-forms from dz1, · · · , dzk−1. Express

β =
∑′

|I|=p,|J|=q

βIJ dzI ∧ dzJ .

It is easy to see by type consideration that ∂βIJ/∂zj = 0 for j > k and all I, J .
Now choose a cut-off function χ(zk) ∈ C∞0 (Drk

) such that 0 ≤ χ ≤ 1 and χ ≡ 1
in some open neighborhood of Dr′k

. Then Theorem 2.1.2 shows that, for each I, J ,
the function

BIJ(z) =
1

2πi

∫∫
C

χ(ζk)βIJ(z1, · · · , zk−1, ζk, zk+1, · · · , zn)
ζk − zk

dζk ∧ dζk

is smooth and solves the ∂-equation

∂BIJ

∂zk
= χ(zk)βIJ(z) = βIJ(z)
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on some neighborhood of P ′. We also have, for j > k and all I, J ,

∂BIJ

∂zj
(z) = 0.

Put
B =

∑′

|I|=p,|J|=q

BIJ dzI ∧ dzJ ,

then

∂B =
∑′

|I|=p,|J|=q

( n∑
j=1

∂BIJ

∂zj
dzj

)
∧ dzI ∧ dzJ

= dzk ∧ β + α0,

where α0 is a (p, q + 1)-form that involves only (0, 1)-forms from dz1, · · · , dzk−1.
Hence,

f − ∂B = α− α0

is a smooth (p, q + 1)-form which is ∂-closed and involves only (0, 1)-forms from
dz1, · · · , dzk−1. It follows now from the induction hypotheses that there exists a
smooth (p, q)-form u0 that satisfies

∂u0 = α− α0 = f − ∂B.

Clearly, u = u0 +B is a solution of ∂u = f , and the proof is complete.

Theorem 2.1.7 (Cauchy integral formula for polydiscs). Let P (η; r) be a
polydisc in Cn, n ≥ 2. Suppose that f is continuous on P (η; r) and holomorphic in
P (η; r). Then for any z ∈ P (η; r),

f(z) =
1

(2πi)n

∫
|ζn−ηn|=rn

· · ·
∫
|ζ1−η1|=r1

f(ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1 · · · dζn.

Proof. It is easily seen that the integral representation of f(z) is obtained by re-
peated application of the Cauchy integral formula in one variable. This proves the
theorem.

Here are some easy consequences of Theorem 2.1.7:

Theorem 2.1.8 (Cauchy estimates). Under the same hypotheses as in Theorem
2.1.7. Suppose that |f | ≤M for all z ∈ P (η; r). Then∣∣∣∣( ∂

∂z

)α

f(η)
∣∣∣∣ ≤ Mα!

rα1
1 · · · rnαn

,

where α = (α1, · · · , αn) is a multiindex with αj ∈ {0} ∪ N, α! = α1! · · ·αn! and(
∂
∂z

)α =
(

∂
∂z1

)α1 · · ·
(

∂
∂zn

)αn
.
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Theorem 2.1.9. If f is holomorphic in D ⊂ Cn, then locally near any point w in
D, f has a power series representation. In particular, f is real analytic.

By a power series representation for f near w, we mean

f(z) =
∑
α

aα(z − w)α

such that the series converges absolutely in some open neighborhood of w. Here
the summation is over multiindices α and (z − w)α = (z1 − w1)α1 · · · (zn − wn)αn .
It follows now from the power series expansion of holomorphic functions, we have

Theorem 2.1.10 (Identity Theorem). Let f and g be two holomorphic functions
defined on a connected open set D ⊂ Cn. If f and g coincide on an open subset of
D, then f = g on D.

2.2 The Bochner-Martinelli Formula

In this section, we shall extend the Cauchy kernel from the complex plane to
higher dimensional space. Define the Bochner-Martinelli kernel by

(2.2.1) B(ζ, z) =
(n− 1)!
(2πi)n

1
|ζ − z|2n

n∑
j=1

(ζj − zj)dζj ∧ ( ∧
k 6=j

dζk ∧ dζk),

for ζ = (ζ1, · · · , ζn), z = (z1, · · · , zn) ∈ Cn and ζ 6= z. B(ζ, z) is a form of type
(n, n− 1) in ζ. It is clear that when n = 1,

B(ζ, z) =
1

2πi
1

ζ − z
dζ

which is the Cauchy kernel in C.
The following theorem is a generalized version of the Cauchy integral formula in

several variables.

Theorem 2.2.1. Let D be a bounded domain with C1 boundary in Cn, n ≥ 2, and
let f ∈ C1(D). Then

(2.2.2) f(z) =
∫

bD

f(ζ)B(ζ, z)−
∫

D

∂f ∧B(ζ, z) for z ∈ D,

and

(2.2.3) 0 =
∫

bD

f(ζ)B(ζ, z)−
∫

D

∂f ∧B(ζ, z) for z /∈ D.

Proof. A direct calculation shows that ∂ζB(ζ, z) = 0 for ζ 6= z. Since B(ζ, z) is of
type (n, n− 1) in ζ, by Stokes’ theorem we have, for z ∈ D,∫

bD

f(ζ)B(ζ, z) =
∫

Dε(z)

d(f(ζ)B(ζ, z)) +
∫

bBε(z)

f(ζ)B(ζ, z)

=
∫

Dε(z)

∂f(ζ) ∧B(ζ, z) +
∫

bBε(z)

f(ζ)B(ζ, z),
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where Bε(z) = {ζ ∈ Cn| |ζ − z| < ε} for small ε > 0 and Dε(z) = D \Bε(z). Using
homogeneity of the kernel and Stokes’ theorem, we easily get∫

bBε(z)

B(ζ, z) =
(n− 1)!
(2πi)n

n∑
j=1

∫
bBε(0)

ζj

|ζ|2n
dζj ∧ ( ∧

k 6=j
dζk ∧ dζk)

=
(n− 1)!
(2πi)n

1
ε2n

n∑
j=1

∫
Bε(0)

dζj ∧ dζj ∧ ( ∧
k 6=j

dζk ∧ dζk)

= 1,

for all ε > 0. Now, letting ε→ 0, we obtain

f(z) =
∫

bD

f(ζ)B(ζ, z)−
∫

D

∂f(ζ) ∧B(ζ, z).

This proves (2.2.2).
Now for the proof of (2.2.3), since z /∈ D, the kernel is regular on D. Hence, an

application of Stokes’ theorem gives∫
bD

f(ζ)B(ζ, z) =
∫

D

∂f(ζ) ∧B(ζ, z).

This proves (2.2.3) and hence the theorem.

An immediate consequence of Theorem 2.2.1 is the following reproducing prop-
erty of the Bochner-Martinelli kernel for holomorphic functions:

Corollary 2.2.2. Let D be a bounded domain with C1 boundary in Cn, n ≥ 2. For
any f ∈ O(D) ∩ C(D), we have

(2.2.4) f(z) =
∫

bD

f(ζ)B(ζ, z) for z ∈ D.

The integral (2.2.4) is zero if z /∈ D.

Proof. First we assume that f ∈ C1(D). Then the assertion follows immediately
from Theorem 2.2.1. The general case now follows from approximation. This proves
the corollary.

Thus, the Bochner-Martinelli kernel also enjoys the reproducing property for
holomorphic functions, although B(ζ, z) is no longer holomorphic in z.

A more systematic treatment of kernels in several variables will be given in Chap-
ter 11 where a reproducing kernel holomorphic in z variables will be constructed
for convex domains.

Theorem 2.2.3 (Jump formula). Let D be a bounded domain in Cn, n ≥ 2, with
connected C1 boundary, and let f be a C1 function defined on the boundary. Define

F (z) =
∫

bD

f(ζ)B(ζ, z) for z ∈ Cn \ bD,
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and let F−(z) = F (z) for z ∈ D and F+(z) = F (z) for z /∈ D. Then, for any small
ε > 0, we have F−(z) ∈ C1−ε(D), F+(z) ∈ C1−ε(Cn \D) and

(2.2.5) f(z) = F−(z)− F+(z) for z ∈ bD.

Equation (2.2.5) is the so-called jump formula associated with the Bochner-
Martinelli transform. When n = 1, this is the Plemelj jump formula proved in
Theorem 2.1.3 where F− and F+ are also holomorphic.

Proof. Let fe(z) be any C1 extension of f to the whole space. Then, for any z ∈ D,
we have

(2.2.6) F−(z)− fe(z) =
∫

bD

(f(ζ)− fe(z))B(ζ, z).

Since
|B(ζ, z)| . |z − ζ|1−2n

from the definition of Bochner-Martinelli kernel, the right-hand side of (2.2.6) de-
fines a continuous function on the whole space. Thus, we have F−(z) ∈ C(D). For
z /∈ D, we get

(2.2.7) F+(z) =
∫

bD

(f(ζ)− fe(z))B(ζ, z).

Letting z tend to the same point on the boundary from either side, we obtain

f(z) = F−(z)− F+(z) for z ∈ bD.

This proves (2.2.5).
For the regularity of F−(z) and F+(z) we again use the Hardy-Littlewood lemma

(see Theorem C.1 in the Appendix). Thus, we need to estimate the differential of
F−(z). An easy exercise shows that

|d(F−(z)− fe(z))|

≤
∫

bD

|dfe(z)||B(ζ, z)|+
∫

bD

|f(ζ)− fe(z)||dB(ζ, z)|

.
∫

bD

1
|z − ζ|2n−1

dσ(ζ)

. d(z)−ε
,

for any small ε > 0, where d(z) is the distance from z to the boundary of D. This
proves that F−(z) ∈ C1−ε(D). Using (2.2.7), we obtain through a similar argument
the same assertion for F+(z). This proves the theorem.
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2.3 The Cauchy-Riemann Operator in C

Let

(2.3.1) X = X1 + iX2

be a first order partial differential operator defined in some open neighborhood U
of the origin in R2, where

(2.3.2) Xj = aj(x, y)
∂

∂x
+ bj(x, y)

∂

∂y
, j = 1, 2,

and aj(x, y), bj(x, y) are real-valued functions on U . We wish to study the solvability
of such operator. If X1 and X2 are linearly dependent everywhere on U , then X1

and X2 will be multiples of the same first order operator X0 with real coefficients
in some neighborhood of the origin. It follows that X is reduced to

(2.3.3) X = λ(z)X0,

and the solvability of (2.3.3) will then follow from the basic theory of the ordinary
differential equations.

Thus, let us assume that X1 and X2 are linearly independent everywhere on U .
The most famous operator of this type is the Cauchy-Riemann operator,

(2.3.4)
∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

In Theorem 2.1.2, we have shown how to obtain a solution for the inhomogeneous
Cauchy-Riemann equation via the Cauchy integral formula.

As another application of the Cauchy integral formula, we shall show that, under
certain regularity hypotheses on the coefficients aj(x, y) and bj(x, y), locally one
may introduce a new holomorphic coordinate w so that X can be converted to the
Cauchy-Riemann operator in w. Hence, one can deduce the solvability of X from
the knowledge of the Cauchy-Riemann operator. More precisely, we will prove the
following theorem.

Theorem 2.3.1. Let X be given as in (2.3.1) and (2.3.2) in some open neigh-
borhood U of the origin in R2. Suppose that the coefficients aj(x, y) and bj(x, y),
j = 1, 2, are Hölder continuous of order λ, 0 < λ < 1. Then there exists a new local
holomorphic coordinate w in some neighborhood of the origin so that

X(w) =
∂

∂w
.

By a linear transformation on x, y with constant coefficients we may assume that
the operator X takes the following form

(2.3.5) X(z) =
∂

∂z
− a(z) ∂

∂z
,
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with a(0) = 0, and that a(z) is Hölder continuous of order λ. Hence, the assertion
of Theorem 2.3.1 is equivalent to the existence of a solution w(z) to the equation

wz(z)− a(z)wz(z) = 0,

or, in terms of the partial differential operator Z,

(2.3.6) wz(z) = Zw(z),

where Z = a(z)(∂/∂z), with wz(0) 6= 0.
We shall use an iteration process to construct a solution to equation (2.3.6) for

the remaining parts of this section. This is where one needs Hölder regularity for
the coefficients of X. We shall first prove some lemmas and estimates that are
needed in the sequel. We denote by DR = BR(0) the disc centered at the origin
with radius R in R2.

Lemma 2.3.2. Let ζ = (a, b) ∈ DR. Put r = |z − ζ|. Then, for any λ > 0, we
have

(2.3.7)
∫∫

DR

rλ

r2
dxdy ≤ 2π

λ
(2R)λ.

Proof. This is obvious if we apply polar coordinates to the disc centered at ζ with
radius 2R.

Lemma 2.3.3. Let 0 < ε1, ε2 ≤ 1 with ε1 + ε2 6= 2. Then, for any two distinct
points ζ1 and ζ2 contained in DR, we have

i

2

∫∫
DR

dz ∧ dz
|z − ζ1|2−ε1 |z − ζ2|2−ε2

≤ c(ε1, ε2)
1

|ζ1 − ζ2|2−ε1−ε2
.

What is essential in this lemma is that the constant c(ε1, ε2) depends only on ε1
and ε2, but not on ζ1 and ζ2.

Proof. By changing to polar coordinates it is easy to see that the integral exists.
For the estimate of the integral, let 2δ = |ζ1 − ζ2| and

41 = {z ∈ DR| |z − ζ1| < δ},
42 = {z ∈ DR| |z − ζ2| < δ},
43 = DR \ {41 ∪42}.

Then, by changing to polar coordinates, the integral over 41 can be estimated as
follows:

i

2

∫∫
41

dz ∧ dz
|z − ζ1|2−ε1 |z − ζ2|2−ε2

≤ 2πδε2−2

∫ δ

0

rε1−1dr =
2π
ε1
δε1+ε2−2.

Similarly, we have the estimate over 42,

i

2

∫∫
42

dz ∧ dz
|z − ζ1|2−ε1 |z − ζ2|2−ε2

≤ 2π
ε2
δε1+ε2−2.
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Both estimates are of the desired form. For the estimate over 43, note that the
function (z − ζ1)/(z − ζ2) is smooth on 43. Hence, we obtain

1
3
≤
∣∣∣∣z − ζ1z − ζ2

∣∣∣∣ ≤ 3, for z ∈ 43.

It follows we have

i

2

∫∫
43

dz ∧ dz
|z − ζ1|2−ε1 |z − ζ2|2−ε2

≤ 32−ε2

∫∫
43

dxdy

|z − ζ1|4−ε1−ε2

≤ 32−ε2

∫∫
C\41

dxdy

|z − ζ1|4−ε1−ε2

≤ 2π32−ε2

∫ ∞

δ

rε1+ε2−3dr

=
2π32−ε2

2− ε1 − ε2
δε1+ε2−2.

This completes the proof of Lemma 2.3.3.

The following lemma is the key for the regularity of the ∂-equation.

Lemma 2.3.4. Let f(z) be a complex-valued continuous function defined on DR

which satisfies

(2.3.8) |f(z1)− f(z2)| ≤ B|z1 − z2|λ,

for any two points z1, z2 ∈ DR, where λ,B are positive constants with 0 < λ < 1.
Define the function F (ζ) for ζ ∈ DR by

F (ζ) =
1

2πi

∫∫
DR

f(z)
z − ζ

dz ∧ dz.

Then F ∈ C1+λ(DR). If |f(z)| ≤ A for all z ∈ DR, then we have
(1) Fζ and Fζ exist, and Fζ(ζ) = f(ζ), ζ ∈ DR.
(2) |F (ζ)| ≤ 4RA, ζ ∈ DR.
(3) |Fζ(ζ)| ≤ ( 2λ+1

λ )RλB, ζ ∈ DR.
(4) |F (ζ1)− F (ζ2)| ≤ 2(A+ ( 2λ+1

λ )RλB)|ζ1 − ζ2|, ζ1, ζ2 ∈ DR.
(5) |Fζ(ζ1)− Fζ(ζ2)| ≤ µ(λ)B|ζ1 − ζ2|λ, ζ1, ζ2 ∈ DR.

where µ(λ) > 0 is independent of ζ1 and ζ2.

Proof. The existence of Fζ and the equality Fζ(ζ) = f(ζ) are guaranteed by Theo-
rem 2.1.2. To prove the existence of Fζ(ζ), we write

F (ζ) =
1

2πi

∫∫
DR

f(z)− f(ζ)
z − ζ

dz ∧ dz +
f(ζ)
2πi

∫∫
DR

1
z − ζ

dz ∧ dz.

Note that by Cauchy’s integral formula (2.1.1), we get

ζ =
1

2πi

∫∫
DR

1
z − ζ

dz ∧ dz.
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Hence, if f ∈ C1(D), we clearly have

(2.3.9) Fζ(ζ) =
1

2πi

∫∫
DR

f(z)− f(ζ)
(z − ζ)2

dz ∧ dz.

In general, if f is only Hölder continuous of order λ, 0 < λ < 1, we approximate f
by functions in C1(D) to get (2.3.9). This proves (1).

Estimate (2) then follows from (2.1.2) and Lemma 2.3.2 with λ = 1 since

|F (ζ)| ≤ A

π

∫∫
DR

1
|z − ζ|

dxdy ≤ 4RA.

Similarly, from (2.3.8) and (2.3.9) we have

|Fζ(ζ)| ≤
B

π

∫∫
DR

|z − ζ|λ

|z − ζ|2
dxdy ≤

(
2λ+1

λ

)
RλB.

This gives (3). Now (4) follows immediately from the Mean Value Theorem and
estimate (3).

Finally, we estimate (5). Let ζ1 and ζ2 be two fixed distinct points in DR, and
set

β =
f(ζ2)− f(ζ1)

ζ1 − ζ2
.

By the assumption (2.3.8) on f(ζ), we have

|β| ≤ B|ζ1 − ζ2|λ−1.

Set f̂(z) = f(z) + βz, then we have

F̂ (ζ) ≡ 1
2πi

∫∫
DR

f̂(z)
z − ζ

dz ∧ dz = F (ζ)− βR2 + β|ζ|2.

It follows that
F̂ζ(ζ) = Fζ(ζ) + βζ.

Note also that the definition of β gives the following:

(1) f̂(ζ1) = f̂(ζ2),
(2) f̂(z)− f̂(ζ1) = f(z)− f(ζ1) + β(z − ζ1),
(3) f̂(z)− f̂(ζ2) = f(z)− f(ζ2) + β(z − ζ2),

Based on these observations, we obtain

2πi(F̂ζ(ζ1)− F̂ζ(ζ2))

=
∫∫

DR

(
f̂(z)− f̂(ζ1)

(z − ζ1)2
− f̂(z)− f̂(ζ2)

(z − ζ2)2

)
dz ∧ dz

=
∫∫

DR

(f̂(z)− f̂(ζ1))(ζ1 − ζ2)((z − ζ1) + (z − ζ2))
(z − ζ1)2(z − ζ2)2

dz ∧ dz
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= (ζ1 − ζ2)
∫∫

DR

f(z)− f(ζ2)
(z − ζ1)(z − ζ2)2

dz ∧ dz

+ (ζ1 − ζ2)
∫∫

DR

f(z)− f(ζ1)
(z − ζ1)2(z − ζ2)

dz ∧ dz

+ 2β(ζ1 − ζ2)
∫∫

DR

1
(z − ζ1)(z − ζ2)

dz ∧ dz

= I1 + I2 + I3.

By Lemma 2.3.3 the term I1 can be estimated by

|I1| ≤ 2B|ζ1 − ζ2|
∫∫

DR

dxdy

|z − ζ2|2−λ|z − ζ1|
≤ c(λ)B|ζ1 − ζ2|λ,

where the constant c(λ) depends only on λ. A similar estimate holds for I2. The
term I3 can be written as

I3 = 2β(ζ1 − ζ2)
∫∫

DR

1
(z − ζ1)(z − ζ2)

dz ∧ dz

= 2β
∫∫

DR

(
1

z − ζ1
− 1
z − ζ2

)
dz ∧ dz

= (4πi)β(ζ1 − ζ2).

Hence, we have
|I3| ≤ 4πB|ζ1 − ζ2|λ.

These estimates together show that

|Fζ(ζ1)− Fζ(ζ2)| ≤ |F̂ζ(ζ1)− F̂ζ(ζ2)|+ |β||ζ1 − ζ2|
≤ µ(λ)B|ζ1 − ζ2|λ.

The constant µ(λ) is obviously independent of ζ1 and ζ2, and the proof of Lemma
2.3.4 is now complete.

With the aid of Lemma 2.3.4 we now prove the following existence and uniqueness
theorem of an integro-differential equation from which Theorem 2.3.1 will follow.

Proposition 2.3.5. Let

(2.3.10) Zw = a(z)wz,

be a partial differential operator whose coefficient a(z) is Hölder continuous of order
λ, 0 < λ < 1, and vanishes at z = 0. Then the equation

(2.3.11) 2πiw(ζ)−
∫∫

DR

Zw(z)
z − ζ

dz ∧ dz = σ(ζ), ζ ∈ DR,

where σ(ζ) is a holomorphic function with σ(0) = 0, has exactly one solution w(z) ∈
C1+λ(DR), provided that R is sufficiently small.
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Before proceeding to the proof of this proposition, based on Lemma 2.3.4, we shall
first make some further estimates of integrals. The hypotheses of the proposition
imply the existence of a number M > 0 so that the following estimates hold,

(2.3.12) 1 < M, |σ(ζ)| ≤M,

(2.3.13) |h(ζ1)− h(ζ2)| ≤M |ζ1 − ζ2|λ,

(2.3.14) |Zσ(ζ1)− Zσ(ζ2)| ≤
M2

2λ
|ζ1 − ζ2|λ,

where ζ, ζ1, ζ2 denote any three points of DR and h(z) stands for the functions a(z)
and σ(z). Since a(z) and Zσ(z) both vanish at z = 0, we have

(2.3.15) |a(ζ)| ≤M |ζ|λ ≤MRλ,

and

(2.3.16) |Zσ(ζ)| ≤M2Rλ.

Now we consider the function F (ζ) defined in Lemma 2.3.4 and using the notation
of the lemma, we obtain

(2.3.17) |ZF (ζ)| = |a(ζ)Fζ | ≤
(

2λ+1

λ

)
MR2λB,

and

(2.3.18)

|ZF (ζ1)− ZF (ζ2)|
= |a(ζ1)Fζ(ζ1)− a(ζ2)Fζ(ζ2)|

≤M |ζ1 − ζ2|λ
(

2λ+1

λ

)
RλB +MRλµ(λ)B|ζ1 − ζ2|λ

≤M |ζ1 − ζ2|λg(R)B,

where

g(R) =
((

2λ+1

λ

)
+ µ(λ)

)
Rλ,

is a function of R which tends to zero as R approaches zero.

Proof of Proposition 2.3.5. Based on the estimates obtained above, we shall first
prove the existence of a solution to (2.3.11) by successive approximations. In order
to make the iteration converge, we shall choose the radius R to be sufficiently small
so that it satisfies

(2.3.19) 4Rλ ≤ 1 and 22−λ

(
1 +

2
λ

)
R1−λ ≤ 1.
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Denote by c > 0 another universal constant such that

(2.3.20) µ(λ) +
2λ+1

λ
≤ c.

Now we construct a sequence of functions {wj(ζ)}∞j=0 to generate a solution of
(2.3.11). We first set

(2.3.21) 2πiw0(ζ) = σ(ζ),

and inductively define for ζ ∈ DR,

(2.3.22) 2πiwn+1(ζ) =
∫∫

DR

Zwn(z)
z − ζ

dz ∧ dz, n = 0, 1, 2, · · · .

Claim 2.3.6. The functions {wj(ζ)}∞j=0 satisfy the following estimates:

(1) |wn(ζ)| ≤M(cMRλ)n, ζ ∈ DR.
(2) |Zwn(ζ)| ≤M(cMRλ)n+1, ζ ∈ DR.
(3) |wn(ζ1)− wn(ζ2)| ≤M(cMRλ)n|ζ1 − ζ2|λ, ζ1, ζ2 ∈ DR.
(4) |Zwn(ζ1)− Zwn(ζ2)| ≤ ( cM2

2λ )(cMRλ)n|ζ1 − ζ2|λ. ζ1, ζ2 ∈ DR.

In particular, estimate (4) of the claim implies that the function under the integral
sign in (2.3.22) is Hölder continuous of order λ, thus allowing the definition of the
next integral, and the iteration continues.

Proof of the claim. The claim will be proved by an induction on n. The initial
step n = 0 follows easily from (2.3.12),(2.3.13),(2.3.14) and (2.3.16). Hence, let us
assume that the claim is valid up to step n and proceed to prove the statement for
n+ 1.

By estimates (2) and (4) of Lemma 2.3.4, the choice of R in (2.3.19) and the
induction hypotheses, we obtain

|wn+1(ζ)| ≤ 4RM(cMRλ)n+1 ≤M(cMRλ)n+1,

and

|wn+1(ζ1)− wn+1(ζ2)|

≤ 2|ζ1 − ζ2|
(
M(cMRλ)n+1 +

(
2λ+1

λ

)
Rλ

(
cM2

2λ

)
(cMRλ)n

)
= M(cMRλ)n+1|ζ1 − ζ2|λ

(
1 +

2
λ

)
2|ζ1 − ζ2|1−λ

≤M(cMRλ)n+1|ζ1 − ζ2|λ
(

22−λ

(
1 +

2
λ

)
R1−λ

)
≤M(cMRλ)n+1|ζ1 − ζ2|λ.

This proves (1) and (3) of the claim for n+ 1.
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Next, we apply (2.3.17), (2.3.19) and (2.3.20) and the induction hypotheses to
get (2) for n+ 1,

|Zwn+1(ζ)| ≤
(

2λ+1

λ

)
MR2λ(

cM2

2λ
)
(
cMRλ

)n

= M(cMRλ)n+2

(
2
λc

)
≤M(cMRλ)n+2.

Estimate (4) of the claim for n + 1 can be obtained from (2.3.18), (2.3.19) and
(2.3.20) as follows:

|Zwn+1(ζ1)− Zwn+1(ζ2)| ≤
(
cM2

2λ

)
(cMRλ)n+1|ζ1 − ζ2|λ

(
1
cRλ

)
g(R)

≤
(
cM2

2λ

)
(cMRλ)n+1|ζ1 − ζ2|λ.

This completes the induction procedure, and hence the proof of the claim.

We return to the proof of Proposition 2.3.5. In addition to (2.3.19), let the radius
R of the domain be chosen so small that it also satisfies cMRλ < 1. It follows that
the series

(2.3.23)
∞∑

j=0

wj(z)

converges absolutely and uniformly in DR, and defines a solution w(z) ∈ C1+λ(DR)
which satisfies (2.3.11).

For the uniqueness of the solution when R is sufficiently small, let η(z) be another
solution of (2.3.11) such that Zη(z) satisfies a Hölder condition of order λ. Then
the function

ŵ(z) = w(z)− η(z)

satisfies the equation

(2.3.24) 2πiŵ(ζ) =
∫∫

DR

Zŵ(z)
z − ζ

dz ∧ dz.

Put
A = A(R) = sup

ζ∈DR

|Zŵ(ζ)|,

and

B = B(R) = sup
ζ1,ζ2∈DR

ζ1 6=ζ2

|Zŵ(ζ1)− Zŵ(ζ2)|
|ζ1 − ζ2|λ

.

Obviously, A and B will in general depend on R, and both decrease as R tends to
zero. Then, from (2.3.17) and (2.3.18) we obtain

A ≤
(

2λ+1

λ

)
MR2λB,
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and
B ≤Mg(R)B.

Since g(R) approaches zero when R tends to zero, we must have B = 0 for suffi-
ciently small R. This implies A = 0 when R is sufficiently small. Hence w(z) = η(z)
on DR for some sufficiently small R. This proves the uniqueness part of the propo-
sition, and the proof of Proposition 2.3.5 is now complete.

Proof of Theorem 2.3.1. We are now in a position to prove Theorem 2.3.1. To solve
equation (2.3.6) we set σ(z) = z in the statement of Proposition 2.3.5. Then there
exists a unique solution w(z) ∈ C1+λ(DR) to the equation

2πiw(ζ)−
∫∫

DR

Zw(z)
z − ζ

dz ∧ dz = ζ, for ζ ∈ DR,

with wζ(0) 6= 0 if R is sufficiently small. Since Zw(z) satisfies a Hölder condition
of order λ, we see by Lemma 2.3.4 that w(z) satisfies equation (2.3.6). This proves
Theorem 2.3.1.

NOTES

The Plemelj jump formula associated with the Cauchy transform was proved in
[Ple 1]. Theorem 2.1.6 which is the analog of the Poincaré lemma for the ∂ operator
is often known as the Dolbeault-Grothendieck lemma (see [Dol 1,2]).

Theorem 2.2.1 is a special case of the so-called Bochner-Martinelli-Koppelman
formula due to W. Koppelman [Kop 1]. Corollary 2.2.2 concerning the reproducing
property of the Bochner-Martinelli kernel for holomorphic functions was discovered
independently by S. Bochner [Boc 1] and E. Martinelli [Mar 1]. The jump for-
mula stated in Theorem 2.2.3, which extends the jump formula associated with the
Cauchy transform on the complex plane, can be found in [HaLa 1]. See also the
book by R. M. Range [Ran 6] for more discussions.

Theorem 2.3.1 is known to geometers as the theorem of Korn and Lichtenstein
which states that given a Riemannian metric

ds2 = g11(x, y)dx2 + 2g12(x, y)dxdy + g22(x, y)dy2,

in some open neighborhood U of the origin in R2, where the coefficient functions
gij(x, y), 1 ≤ i, j ≤ 2, are Hölder continuous of order λ, 0 < λ < 1, we have
near every point there is a neighborhood whose local coordinates are isothermal
parameters. By isothermal parameters we mean that, under new local coordinates,
the metric ds2 takes the following normal form

ds2 = λ(u, v)(du2 + dv2),

for some λ(u, v) > 0. If the coefficient functions gij(x, y), 1 ≤ i, j ≤ 2, are as-
sumed to be continuous only, then the Riemannian metric ds2 cannot always be
transformed to the normal form. A counterexample was found by P. Hartman and
A. Wintner [HaWi 1]. The proof we present here for Theorem 2.3.1 is essentially
taken from [Cher 1] and [Ber 1]. See also Chapter IV of the book, Volume II, by R.
Courant and D. Hilbert [CoHi 1].
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CHAPTER 3

HOLOMORPHIC EXTENSION

AND PSEUDOCONVEXITY

Let M be a Ck hypersurface in Cn, and let p be a point on M , where k ∈ N.
By this we mean that there exists a Ck real-valued defining function ρ and an open
neighborhood U of p such that M ∩ U = {z ∈ U |ρ(z) = 0} and dρ(z) 6= 0 on
M ∩U . M divides U into two sides, U+ and U−, where U+ = {z ∈ U |ρ(z) > 0} and
U− = {z ∈ U |ρ(z) < 0}. Define by L, a type (0, 1) vector field on M , such that

L =
n∑

j=1

aj(z)
∂

∂zj
on M ∩ U,

where the a′js satisfy

n∑
j=1

aj(z)
∂ρ

∂zj
(z) = 0 for all z ∈M ∩ U.

Any such vector field L on M is called a tangential Cauchy-Riemann equation.
Suppose that f ∈ C1(U−) ∩ O(U−). By continuity, we see that Lf = 0 on M ∩ U .
This shows that the restriction of a holomorphic function f to a hypersurface will
automatically satisfy the homogeneous tangential Cauchy-Riemann equations.

Definition 3.0.1. Let M be a C1 hypersurface in Cn, n ≥ 2. A C1 function f
on M is called a CR function if f satisfies the homogeneous tangential Cauchy-
Riemann equations

n∑
j=1

aj
∂f

∂zj
(z) = 0, z ∈M,

for all a = (a1, · · · , an) ∈ Cn with
∑n

j=1 aj(∂ρ/∂zj)(z) = 0, z ∈ M , where ρ(z) is
a C1 defining function for M .

The restriction of a holomorphic function f to a hypersurface is a CR function.
Conversely, given any CR function f on M , can one extend f holomorphically into
one side of M? This is the so-called holomorphic extension of CR functions. In
general, the converse part is not true.

For instance, let M be defined by y1 = 0 in Cn, where zj = xj + iyj , 1 ≤ j ≤
n. Consider a real-valued smooth function f(x1, z2, · · · , zn) = f(x1), which is
independent of z2, · · · , zn, in some open neighborhood of the origin. Suppose that
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f(x1) is not real analytic at the origin. Note that f(x1, z2, · · · , zn) is annihilated by
the tangential type (0, 1) vector fields ∂/∂z2, · · · , ∂/∂zn, hence f is a CR function
on M . Still, f can not be holomorphically extended to some open neighborhood of
the origin, or to just one side of the hypersurface M .

In this chapter, we first consider the problem of global holomorphic extension
of a CR function on a compact hypersurface. We then study the local one-sided
holomorphic extension of a CR function. In Sections 4 and 5, we define plurisub-
harmonic functions, pseudoconvex domains and domains of holomorphy. We study
their relations with each other, and give several equivalent definitions of pseudocon-
vexity. Finally, we discuss the Levi problem and its relations with the ∂̄-equation.

3.1 The Hartogs Extension Theorem

One of the major differences between one and several complex variables is the
so-called Hartogs extension theorem, which states that if a bounded domain D in
Cn, n ≥ 2, has connected boundary, then any holomorphic function f(z) defined
in some open neighborhood of the boundary bD can be holomorphically extended
to the entire domain D. This sort of extension phenomenon fails in one complex
variable. For instance, f(z) = 1/z is holomorphic on the entire complex plane
except the origin, but there is no way to extend it as an entire function.

We consider the inhomogeneous Cauchy-Riemann equations in Cn

(3.1.1) ∂u = f,

where f is a (0,1)-form of class Ck with k ≥ 1. Write f as f =
∑n

j=1 fjdzj . Since
∂ is a complex, a necessary condition for solving the ∂-equation is ∂f = 0. More
explicitly, the equation (3.1.1) is overdetermined. In order to solve (3.1.1) for some
function u, it is necessary that the fi’s satisfy the following compatibility conditions:

(3.1.2)
∂fj

∂zk
=
∂fk

∂zj
,

for all 1 ≤ j < k ≤ n.
First we prove the following theorem:

Theorem 3.1.1. Let fj ∈ Ck
0 (Cn), n ≥ 2, j = 1, · · · , n, and let k ≥ 1 be a positive

integer such that (3.1.2) is satisfied. Then there is a function u ∈ Ck
0 (Cn) satisfying

(3.1.1). When k = 0, if (3.1.2) is satisfied in the distribution sense, then there exists
a function u ∈ C0(Cn) such that u satisfies (3.1.1) in the distribution sense.

Proof. For k ≥ 1, set

u(z) =
1

2πi

∫
C

f1(ζ, z2, · · · , zn)
ζ − z1

dζ ∧ dζ

=
1

2πi

∫
C

f1(ζ + z1, z2, · · · , zn)
ζ

dζ ∧ dζ.

It is easily seen that u ∈ Ck(Cn) from differentiation under the integral sign. We
also have u(z) = 0 when |z2|+ · · ·+ |zn| is sufficiently large, since f vanishes on the
set.
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By Theorem 2.1.2, we have
∂u

∂z1
= f1(z).

For j > 1, using the compatibility condition (3.1.2), we obtain

∂u

∂zj
=

1
2πi

∫
C

∂fj

∂ζ
(ζ, z2, · · · , zn)

ζ − z1
dζ ∧ dζ = fj(z).

Hence, u(z) is a solution to the ∂-equation (3.1.1). In particular, u is holomorphic on
the unbounded component of the complement of the support of f . Since u(z) = 0
when |z2| + · · · + |zn| is sufficiently large, we see from the Identity Theorem for
holomorphic functions that u must be zero on the unbounded component of the
complement of the support of f . This completes the proof of the theorem for k ≥ 1.

When k = 0, define u(z) by the same equation. We see that u ∈ C0(Cn), and
that u(z) = 0 when |z2|+ · · ·+ |zn| is sufficiently large.

By Theorem 2.1.2,
∂u

∂z1
= f1(z).

For j > 1, let φ ∈ C∞0 (Cn). Then, using ( , )Cn to denote the pairing between
distributions and test functions, we have(

∂u

∂zj
, φ

)
Cn

=
(
u,− ∂φ

∂zj

)
Cn

= −
∫

Cn

(
1

2πi

∫
C

f1(ζ + z1, z2, · · · , zn)
ζ

dζ ∧ dζ
)
∂φ

∂zj
dλ(z)

=
−1
2πi

∫
C

1
ζ

(∫
Cn

f1(ζ + z1, z2, · · · , zn)
∂φ

∂zj
dλ(z)

)
dζ ∧ dζ

=
1

2πi

∫
C

1
ζ

(
∂f1
∂zj

(ζ + z1, z2, · · · , zn), φ
)

Cn

dζ ∧ dζ

=
1

2πi

∫
C

1
ζ

(
∂fj

∂z1
(ζ + z1, z2, · · · , zn), φ

)
Cn

dζ ∧ dζ

=
−1
2πi

∫
C

1
ζ

(∫
Cn

fj(ζ + z1, z2, · · · , zn)
∂φ

∂z1
dλ(z)

)
dζ ∧ dζ

= −
∫

Cn

(
1

2πi

∫
C

fj(ζ + z1, z2, · · · , zn)
ζ

dζ ∧ dζ
)
∂φ

∂z1
dλ(z)

=
(

∂

∂z1

(
1

2πi

∫
C

fj(ζ, z2, · · · , zn)
ζ − z1

dζ ∧ dζ
)
, φ

)
Cn

=
(
fj , φ

)
Cn ,

where the last equality is again guaranteed by Theorem 2.1.2. Hence,

∂u

∂zj
= fj(z),

for j > 1 in the distribution sense. One shows, similarly, that u must vanish on
the unbounded component of the complement of the support of f . This proves the
theorem.
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Theorem 3.1.2 (Hartogs). Let D be a bounded domain in Cn with n ≥ 2, and
let K be a compact subset of D so that D \K is connected. Then any holomorphic
function f defined on D \K can be extended holomorphically to D.

Proof. Choose a cut-off function χ ∈ C∞0 (D) such that χ = 1 in some open neigh-
borhood of K. Then −f(∂χ) ∈ C∞(0,1)(C

n) satisfies the compatibility conditions,
and it has compact support. By Theorem 3.1.1 there is a u ∈ C∞0 (Cn) such that

∂u = −f∂χ,

and that u = 0 in some open neighborhood of Cn \D. Then, it is easily seen that

F = (1− χ)f − u

is the desired holomorphic extension of f .

Theorem 3.1.1 is the key for proving the Hartogs extension theorem. The hy-
pothesis n ≥ 2 made in Theorem 3.1.1 is crucial. Using Corollary 2.1.5 it is clear
that in general, we cannot solve the equation ∂u/∂z = f for a solution with compact
support in C when the given function f has compact support.

Next, we prove another version of the holomorphic extension theorem which is
an easy application of the Cauchy integral formula.

Theorem 3.1.3. Let f be a continuous function on a domain D in Cn, and let S
be a smooth real hypersurface in Cn. Suppose that f is holomorphic in D \S. Then
f is holomorphic on D.

Proof. It suffices to show f is holomorphic near each p ∈ D ∩ S. Let us fix such a
point p. We may assume that p is the origin, and that locally near p, the hypersur-
face S is realized as a graph which can be represented as

S = {(z1 = x+ iy, z′) ∈ C× Cn−1| y = φ(x, z′)},

for some smooth function φ such that φ(0) = 0 and dφ(0) = 0.
Hence, for any small β > 0, there exists a δβ > 0 and a polydisc Uβ in Cn−1

centered at the origin, such that

|φ(x, z′)| < β

for all |x| < δβ and z′ ∈ Uβ . Let β1 > 0 be sufficiently small, and let β2 > β1 be a
positive number sufficiently close to β1, then we may assume that V0 × Uβ1 , where

V0 = {z1 ∈ C| |x| < δβ1 and β1 < y < β2}

is contained in D \ S. Thus, f ∈ O(V0 × Uβ1).
Next, for each z′ ∈ Uβ1 , f(z1, z′) is continuous on

V = {z1 ∈ C| |x| < δβ1 and |y| < β2}

and holomorphic on V except for the smooth curve y = φ(x, z′). By Morera’s
theorem in one complex variable, f(z1, z′) is holomorphic in z1 on V . Now choose
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a contour of integration Γ in Uβ1 . Namely, let Γ = Γ2 × · · · ×Γn, where Γj = {zj ∈
C| |zj | = rj}, for 2 ≤ j ≤ n, so that Γ ⊂ Uβ1 .

Define

F (z1, z′) =
1

(2πi)n−1

∫
Γ

f(z1, ζ ′)
(ζ2 − z2) · · · (ζn − zn)

dζ2 · · · dζn.

It is easily seen that F (z1, z′) is holomorphic on V × U , where U = D2 × · · · ×Dn

and Dj = {zj ∈ C| |zj | < rj}. Since for (z1, z′) ∈ V0 × U , we have

F (z1, z′) = f(z1, z′).

Since f is continuous, it follows from the Identity Theorem that f is holomorphic
on V × U . The proof of the theorem is now complete.

3.2 The Holomorphic Extension Theorem from a Compact Hypersurface

In this section we shall prove a generalized version of the Hartogs extension
theorem. The following lemma is useful.

Lemma 3.2.1. Let M be a Ck hypersurface with a Ck defining function r, k ≥ 1.
Then any CR function of class Ck on M can be extended to a Ck−1 function f̃ in
some open neighborhood of M such that ∂̄f̃ = 0 on M .

Proof. We first extend f to a Ck function in some open neighborhood of M , still
denoted by f . Since f is CR on M , we have

Lif = 0, on M, i = 1, · · · , n− 1,

where L1, · · · , Ln−1 forms a basis of the tangential Cauchy Riemann equations. Let
r be a defining function for M such that |dr| = 1 on M . Then we simply modify f
to be f̃ = f − 4r(Lnf), where Ln =

∑n
j=1(∂r/∂zj)(∂/∂zj) is the type (1, 0) vector

field transversal to the boundary everywhere. When k ≥ 2, we have that r(Lnf) is
a Ck−1 function and

(3.2.1) Lnf̃ = (Lnf)− 4(Lnr)(Lnf) = 0 on M.

This proves ∂̄f̃ = 0 on M .
When k = 1, (Lnf) is only a C0 function but it is easy to check, from the

definition, that r(Lnf) is C1 on M and (3.2.1) still holds. This proves the lemma.

Theorem 3.2.2. Let D be a bounded domain in Cn, n ≥ 2, with connected C1

boundary. Let f be a CR function of class C1 defined on bD. Then, for any small
ε > 0, f extends holomorphically to a function F ∈ C1−ε(D) ∩ O(D) such that
F |bD = f .

Proof. We define F−(z) and F+(z) as the Bochner-Martinelli transform of f on D
and Cn \D. From Theorem 2.2.3, we have F− ∈ C1−ε(D), F+ ∈ C1−ε(Cn \D) and

f(z) = F−(z)− F+(z) for z ∈ bD.
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We will first show that F−(z) ∈ O(D) and F+(z) ∈ O(Cn \D). Define B(ζ, z) by
(2.2.1) and

B1(ζ, z)

= − n− 1
(2πi)n

( n∑
j=1

ζj − zj

|ζ − z|2n
dζj

)
∧
( n∑

j=1

dζj ∧ dζj
)n−2

∧
( n∑

j=1

dzj ∧ dζj
)
.

Then we have

(3.2.2) ∂zB(ζ, z) + ∂ζB1(ζ, z) = 0, for ζ 6= z.

Identity (3.2.2) is proved by a straightforward calculation as follows: For ζ 6= z,

− ∂zB(ζ, z)

=
(n− 1)!
(2πi)n

n∑
j=1

dzj ∧ dζj
|ζ − z|2n

∧ ( ∧
k 6=j

dζk ∧ dζk)

− n!
(2πi)n

n∑
j=1

(
n∑

l=1

(ζj − zj)(ζl − zl)
|ζ − z|2n+2

dzl ∧ dζj

)
∧ ( ∧

k 6=j
dζk ∧ dζk)

= − n− 1
(2πi)n

1
|ζ − z|2n

( n∑
j=1

dzj ∧ dζj
)
∧
( n∑

j=1

dζj ∧ dζj
)n−1

−n(n− 1)
(2πi)n

∑
j 6=l

(ζj − zj)(ζl − zl)
|ζ − z|2n+2

dzl ∧ dζj ∧ dζl ∧ dζl


∧
( n∑

j=1

dζj ∧ dζj
)n−2

+
n!

(2πi)n

n∑
j=1

(
1

|ζ − z|2n
− |ζj − zj |2

|ζ − z|2n+2

)
dzj ∧ dζj ∧ ( ∧

k 6=j
dζk ∧ dζk)
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= − n− 1
(2πi)n

1
|ζ − z|2n

( n∑
j=1

dzj ∧ dζj
)
∧ (

n∑
j=1

dζj ∧ dζj)n−1

+
n(n− 1)
(2πi)n

∑
j 6=l

(ζj − zj)(ζl − zl)
|ζ − z|2n+2

dζl ∧ dζj ∧ dzl ∧ dζl


∧
( n∑

j=1

dζj ∧ dζj
)n−2

+
n(n− 1)
(2πi)n

 n∑
j=1

|ζj − zj |2

|ζ − z|2n+2
dζj ∧ dζj

 ∧ ( n∑
j=1

dzj ∧ dζj
)

∧
( n∑

j=1

dζj ∧ dζj
)n−2

= − n− 1
(2πi)n

1
|ζ − z|2n

( n∑
j=1

dζj ∧ dζj
)n−1

∧
( n∑

j=1

dzj ∧ dζj
)

+
n(n− 1)
(2πi)n

 n∑
j=1

n∑
l=1

(ζj − zj)(ζl − zl)
|ζ − z|2n+2

dζl ∧ dζj

 ∧ ( n∑
j=1

dζj ∧ dζj
)n−2

∧
( n∑

j=1

dzj ∧ dζj
)

= ∂ζB1(ζ, z).

This proves (3.2.2).
Since f is a CR function of class C1 on bD, using Lemma 3.2.1, one can extend

f to be a continuous function in some open neighborhood of the boundary so that
f is differentiable at bD and ∂f = 0 on bD. It follows now from (3.2.2) that for
z ∈ D, we have

∂zF−(z) =
∫

bD

f(ζ)∂zB(ζ, z)

= −
∫

bD

f(ζ)∂ζB1(ζ, z)

= −
∫

bD

∂ζ(f(ζ)B1(ζ, z))

= −
∫

bD

dζ(f(ζ)B1(ζ, z))

= 0.

Thus, F−(z) ∈ O(D) and, similarly, F+(z) ∈ O(Cn \D).
Finally, we claim F+(z) ≡ 0. We let |z2| + · · · + |zn| be sufficiently large, then

F+(·, z2, · · · , zn) is an entire function in z1 which tends to zero as |z1| tends to
infinity. Thus, by Liouville’s theorem F+(z) ≡ 0 if |z2|+ · · ·+ |zn| is large enough.



3.3 A Local Extension Theorem 41

It follows now from the identity theorem that F+(z) ≡ 0. Setting F = F−, we have
F−|bD = f and this proves the theorem.

3.3 A Local Extension Theorem

The result in this section deals with the local one-sided holomorphic extension of
a smooth CR function defined on some neighborhood of p on M . It turns out that
this question is related to the geometry of the domain. In particular, it is related
to the so-called Levi form of the domain.

Definition 3.3.1. Let D be a bounded domain in Cn with n ≥ 2, and let r be a C2

defining function for D. The Hermitian form

(3.3.1) Lp(r; t) =
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk, p ∈ bD,

defined for all t = (t1, · · · , tn) ∈ Cn with
∑n

j=1 tj(∂r/∂zj)(p) = 0 is called the Levi
form of the function r at the point p, denoted by Lp(r; t).

If ρ is another C2 defining function for D, then ρ = hr for some C1 function
h with h > 0 on some open neighborhood of bD. Hence, for p ∈ bD and t =
(t1, · · · , tn) ∈ Cn with

∑n
j=1 tj(∂r/∂zj)(p) = 0, we have

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)tjtk =

n∑
j,k=1

∂r

∂zj
(p)

∂h

∂zk
(p)tjtk +

n∑
j,k=1

∂h

∂zj
(p)

∂r

∂zk
(p)tjtk

+ h(p)
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk

= h(p)
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk.

This shows that the Levi form associated with D is independent of the defining
function up to a positive factor. In particular, the number of positive and negative
eigenvalues of the Levi form are independent of the choice of the defining function.

For p ∈ bD, let

T 1,0
p (bD) = {t = (t1, · · · , tn) ∈ Cn|

n∑
j=1

tj(∂r/∂zj)(p) = 0}.

Then T 1,0
p (bD) is the space of type (1, 0) vector fields which are tangent to the

boundary at the point p. Smooth sections in T 0,1(bD) are the tangential Cauchy-
Riemann operators defined in the introduction. By definition, the Levi form is
applied only to the tangential type (1, 0) vector fields. We now state and prove the
local extension theorem for CR functions.
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Theorem 3.3.2. Let r be a C2 defining function for a hypersurface M in a neigh-
borhood U of p where p ∈ M . Assume that the Levi form Lp(r; t) < 0 for some
t ∈ T 1,0

p (M). Then there exists a neighborhood U ′ ⊂ U of p such that for any
CR function f(z) of class C2 on M ∩ U ′, one can find an F (z) ∈ C0(U

′
+),

where U
′
+ = {z ∈ U ′|r(z) ≥ 0}, so that F = f on M ∩ U ′ and ∂F = 0 on

U ′+ = {z ∈ U ′|r(z) > 0}.

Proof. First we introduce new local coordinates near p. By a linear coordinate
change we may assume that p = 0 and that the Taylor expansion at 0 gives

r(z) = yn +A(z) +O(|z|3),

where zn = xn + iyn and

A(z) =
n∑

j,k=1

∂2r

∂zj∂zk
(0)zjzk + Re

( n∑
j,k=1

∂2r

∂zj∂zk
(0)zjzk

)
.

Consider the following holomorphic coordinate change. Let

wj = zj for 1 ≤ j ≤ n− 1,

wn = zn + i
n∑

j,k=1

∂2r

∂zj∂zk
(0)zjzk.

Then the Taylor expansion becomes

r(w) = Imwn +
n∑

j,k=1

∂2r

∂wj∂wk
(0)wjwk +O(|w|3).

Therefore, we may assume that we are working in a local coordinate system z =
(z1, · · · , zn) so that

r(z) = Imzn +
n∑

j,k=1

Mjkzjzk +O(|z|3),

where (Mjk) is a Hermitian symmetric matrix. The hypothesis on the Levi form im-
plies that the submatrix (Mjk)n−1

j,k=1 is not positive semidefinite. Hence, by another
linear change of coordinates, we may assume that M11 < 0. Notice that

r(z1, 0, · · · , 0) = M11|z1|2 +O(|z1|3).

Thus, we can first choose δ > 0, and then ε > 0 so that

∂2r

∂z1∂z1
(z) < 0

on
U ′ = {z ∈ Cn| |z1| < δ and |z2|+ · · ·+ |zn| < ε} ⊂ U,
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and r(z) < 0 on the part of the boundary where |z1| = δ. For any fixed z′ =
(z2, · · · , zn) with |z2| + · · · + |zn| < ε, the set of all z1 with |z1| < δ such that
r(z1, z′) < 0 must be connected. Otherwise, r(z1, z′) will attain a local minimum
at some point |z1| < δ and we will have 4z1r(z1, z

′) ≥ 0. This is a contradiction.
Consider now, a CR function f of class C2 on U ′ ∩M . Using Lemma 3.2.1,

extend f to U ′+, also denoted by f , so that f ∈ C1(U
′
+) and satisfies ∂f = 0 on

U ′ ∩M . If we write

∂f = g =
n∑

j=1

gjdzj ,

then gj ∈ C(U
′
+) and gj = 0 on the boundary U ′ ∩M .

The gj
′s, extending by zero outside U ′+, will be viewed as functions defined on

W = C × V , where V = {z′ = (z2, · · · , zn) ∈ Cn−1||z2| + · · · + |zn| < ε}. For any
z′ ∈ V , define

(3.3.2) G(z1, z′) =
1

2πi

∫
C

g1(ζ, z′)
ζ − z1

dζ ∧ dζ.

We have immediately that G(z) ∈ C0(W ). Since ∂g = 0 in the sense of distribution,
Theorem 3.1.1 implies ∂G = g in the distribution sense.

Similarly, (∂G/∂zj)(z) = 0 on W \ U ′+ for 1 ≤ j ≤ n. It follows that G is
holomorphic on W \U ′+. Also, notice that for any sufficiently small positive number
0 < η << 1, there is a small open neighborhood V0 of (0, · · · , 0,−iη) in Cn−1 =
{z′ = (z2, · · · , zn)} such that C× V0 is contained in W and r(z1, z′) < 0 on C× V0.
It implies that G(z) ≡ 0 on C × V0. Hence, by the identity theorem, G(z) ≡ 0 on
W \U ′+. In particular, G(z) = 0 on {z ∈ U ′| r(z) = 0}. Now the function F = f−G
is in C0(U

′
+) with F = f on {z ∈ U ′| r(z) = 0} and satisfies ∂F = 0 on U ′+. This

proves the theorem.

Theorem 3.3.2 states that if the Levi form associated with the hypersurface M
has one nonzero eigenvalue, then we have one-sided holomorphic extension of the
CR functions. In particular, if the Levi form has eigenvalues of opposite signs,
then the given CR function f(z) on M can be extended holomorphically to both
sides, say, F+(z) and F−(z) respectively, such that F+(z)|M = F−(z)|M = f(z) on
M . Hence, by Theorem 3.1.3, F+(z) and F−(z) can be patched together to form a
holomorphic function defined in some open neighborhood of the reference point p
in Cn.

3.4 Pseudoconvexity

Let D be a bounded domain in Cn with n ≥ 2. In this section we define the
concept of pseudoconvexity. We also discuss the relations between pseudoconvexity
and plurisubharmonic functions.

Definition 3.4.1. Let D be a bounded domain in Cn with n ≥ 2, and let r be a C2

defining function for D. D is called pseudoconvex, or Levi pseudoconvex, at p ∈ bD,
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if the Levi form

(3.4.1) Lp(r; t) =
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk ≥ 0

for all t ∈ T 1,0
p (bD). The domain D is said to be strictly (or strongly) pseudoconvex

at p, if the Levi form (3.4.1) is strictly positive for all such t 6= 0. D is called a
(Levi) pseudoconvex domain if D is (Levi) pseudoconvex at every boundary point
of D. D is called a strictly (or strongly) pseudoconvex domain if D is strictly (or
strongly) pseudoconvex at every boundary point of D.

Note that Definition 3.4.1 is clearly independent of the choice of the defining
function r.

Definition 3.4.2. A function φ defined on an open set D ⊂ Cn, n ≥ 2, with values
in [−∞,+∞) is called plurisubharmonic if

(1) φ is upper semicontinuous,
(2) for any z ∈ D and w ∈ Cn, φ(z + τw) is subharmonic in τ ∈ C whenever
{z + τw| τ ∈ C} ⊂ D.

Theorem 3.4.3. A C2 real-valued function φ on D is plurisubharmonic if and only
if

(3.4.2)
n∑

j,k=1

∂2φ

∂zj∂zk
(z)tjtk ≥ 0,

for all t = (t1, · · · , tn) ∈ Cn and all z ∈ D.

Proof. The assertion follows immediately from the nonnegativeness of the Laplacian
of the subharmonic function φ(z + τw) in τ ∈ C whenever it is defined.

If (3.4.2) is strictly positive, we shall call φ a strictly plurisubharmonic function.
It is obvious from Definition 3.4.2 that any plurisubharmonic function satisfies the
submean value property on each complex line where it is defined. The following
theorem shows that there always exists a strictly plurisubharmonic defining function
for any strongly pseudoconvex domain.

Theorem 3.4.4. Let D be a bounded strongly pseudoconvex domain in Cn, n ≥ 2,
with a Ck (2 ≤ k ≤ ∞) defining function r(z). Then there exists a Ck (2 ≤ k ≤ ∞)
strictly plurisubharmonic defining function for D.

Proof. For any λ > 0, set

ρ(z) = eλr − 1 for z ∈ D.

We will show that ρ(z) is the desired strictly plurisubharmonic defining function
for D if λ is chosen to be sufficiently large.

First, ρ is a Ck defining function for D since

∇ρ(z) = λ∇r(z) 6= 0 for z ∈ bD.
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Next, we calculate the Levi form of ρ(z) for z ∈ bD to get that

n∑
j,k=1

∂2ρ

∂zj∂zk
(z)tjtk = λ

n∑
j,k=1

∂2r

∂zj∂zk
(z)tjtk + λ2

∣∣ n∑
j=1

∂r

∂zj
(z)tj

∣∣2,
for t ∈ Cn. By homogeneity, we may assume that |t| = 1. Since D is of strong
pseudoconvexity, by continuity there exists an ε > 0 such that

n∑
j,k=1

(
∂2ρ

∂zj∂zk
)(z)tjtk > 0

on the set {(z, t) | z ∈ bD, t ∈ Cn, |t| = 1, |
∑n

j=1(∂r/∂zj)(z)tj | < ε}. On the other
hand, if t ∈ Cn is of unit length and satisfies |

∑n
j=1(∂r/∂zj)(z)tj | ≥ ε

2 for z ∈ bD,
we may also achieve

∑n
j,k=1(∂

2ρ/∂zj∂zk)(z)tjtk > 0 simply by choosing λ to be
sufficiently large. This shows that ρ is strictly plurisubharmonic near the boundary
by continuity if λ is large enough. This proves the theorem.

We recall that a bounded domain D ⊂ RN with C2 boundary is called strictly
convex if there is a C2 defining function ρ for D such that

N∑
j,k=1

∂2ρ

∂xj∂xk
(p)tjtk > 0, p ∈ bD,

for all t = (t1, · · · , tN ) ∈ RN with
∑N

j=1 ∂ρ/∂xj(p)tj = 0.

Corollary 3.4.5. Let D be a bounded pseudoconvex domain with C2 boundary in
Cn, n ≥ 2. Then D is strongly pseudoconvex if and only if D is locally biholomor-
phically equivalent to a strictly convex domain near every boundary point.

Proof. Suppose first that D is strongly pseudoconvex. By Theorem 3.4.4 there is
a C2 strictly plurisubharmonic defining function r(z) for D. Let p be a boundary
point. After a holomorphic coordinate change as we did in Theorem 3.3.2, we may
assume that p is the origin and the defining function takes the following form

r(z) = Rezn +
n∑

j,k=1

∂2r

∂zj∂zk
(0)zjzk +O(|z|3).

Since the quadratic term is positive by hypothesis for any z 6= 0, it is now easy
to see that D is strictly convex near p. The other direction is trivially true. This
proves the corollary.

Definition 3.4.6. A function ϕ : D → R on an open subset D in Rn is called an
exhaustion function for D if for every c ∈ R the set {x ∈ D| ϕ(x) < c} is relatively
compact in D.

Clearly, if ϕ is an exhaustion function for D, then ϕ(x) → ∞ as x → bD. This
condition is also sufficient if the domain D is bounded. Next, we show the exis-
tence of a smooth strictly plurisubharmonic exhaustion function on a pseudoconvex
domain. Let dD(z) denote the Euclidean distance from z ∈ D to bD.
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Theorem 3.4.7. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2, with a
C2 boundary. Then −log(dD(z)) is plurisubharmonic near the boundary.

Proof. First set

(3.4.3) r(z) =
{ −dD(z) = −dist(z, bD), for z ∈ D,

dist(z, bD), for z /∈ D.

Then it follows from the implicit function theorem that r(z) is a C2 defining function
for D in some small open neighborhood of the boundary. Hence the Levi form
defined by r is positive semidefinite.

If −log(dD(z)) is not plurisubharmonic near the boundary, then

∂2

∂τ∂τ
logdD(z + τw)|τ=0 > 0

for some w ∈ Cn and z close to the boundary where dD(z) is C2. Expand logdD(z+
τw) at τ = 0 to get

logdD(z + τw) = log(dD(z)) + Re(ατ + βτ2) + γ|τ |2 +O(|τ |3),

for small τ . Here α, β ∈ C, γ > 0 are constants. Choose η ∈ Cn such that z+η ∈ bD
and |η| = dD(z). Then consider the analytic disc

4δ = {z(τ) = z + τw + ηeατ+βτ2
| |τ | ≤ δ}

for some sufficiently small δ > 0. Using Taylor’s expansion, for |τ | ≤ δ, τ 6= 0, we
get

dD(z(τ)) ≥ dD(z + τw)− |η||eατ+βτ2
|

≥ |η|(e
γ
2 |τ |

2
− 1)|eατ+βτ2

|
> 0,

if δ is small enough. Since z(0) = z + η ∈ bD, this implies that 4δ is tangent to
the boundary at z(0). Hence,

∂

∂τ
dD(z(τ))|τ=0 = 0 and

∂2

∂τ∂τ
dD(z(τ))|τ=0 > 0.

From the definition of r, this means

n∑
k=1

∂r

∂zk
(z + η)z′k(0) = 0 and

n∑
j,k=1

∂2r

∂zj∂zk
(z + η)z′j(0)z′k(0) < 0.

This contradicts the nonnegativeness of the Levi form at z(0) = z + η. Hence
−log(dD(z)) is plurisubharmonic near the boundary. This proves the theorem.
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Corollary 3.4.8. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2, with
a C2 boundary. Then there exists a smooth strictly plurisubharmonic exhaustion
function on D.

Proof. By Theorem 3.4.7, −log(dD(z)) is a C2 plurisubharmonic function for z ∈ D
near the boundary. Let η(z) be a C2 function on D such that η(z) = −log(dD(z)) on
U ∩D, where U is an open neighborhood of bD. We may assume that −log(dD(z))
is plurisubharmonic on U ∩D. Then it is easily seen that

λ(z) = η(z) +M |z|2

is a C2 strictly plurisubharmonic exhaustion function on D if M is chosen large
enough.

The next step is to regularize λ(z). For each j ∈ N, we set Dj = {z ∈ D|λ(z) <
j}, then Dj ⊂⊂ D. Choose a function χ(z) = χ(|z|) ∈ C∞0 (B(0; 1)) such that
χ(z) ≥ 0 and

∫
χ(z)dV = 1. Set χε(z) = ε−2nχ(z/ε). For z ∈ Dj , the function

λε(z) =
∫
λ(z − ζ)χε(ζ)dV (ζ) =

∫
λ(z − εζ)χ(ζ)dV (ζ)

is defined and smooth on Dj if ε is sufficiently small. Since λ is strictly plurisub-
harmonic of class C2, it is clear that λε(z) is strictly plurisubharmonic and, by the
submean value property, λε1 ≤ λε2 if ε1 < ε2, and λε(z) converges uniformly to λ(z)
on any compact subset of D.

Therefore, by extending λε(z) in a smooth manner to D, we see that there are
functions λεj (z) ∈ C∞(D) for j ∈ N such that λεj (z) is strictly plurisubharmonic
on Dj+2, λ(z) < λε1(z) < λ(z) + 1 on D2 and λ(z) < λεj

(z) < λ(z) + 1 on Dj for
j ≥ 2. It follows that

λεj
(z)− j + 1 < 0 on Dj−2 for j ≥ 3,

and
λεj (z)− j + 1 > 0 on Dj −Dj−1 for j ≥ 3.

Now choose a β(x) ∈ C∞(R) with β(x) = 0 for x ≤ 0 and β(x), β′(x), β′′(x)
positive for x > 0. Then, β(λεj (z)− j + 1) ≥ 0 and β(λεj (z)− j + 1) ≡ 0 on Dj−2.
A direct computation shows that β(λεj

(z)−j+1) is plurisubharmonic on Dj+2 and
strictly plurisubharmonic on Dj−Dj−1. Thus, one may choose inductively mj ∈ N
so that, for k ≥ 3,

ϕk(z) = λε1(z) +
k∑

j=3

mjβ(λεj
(z)− j + 1)

is strictly plurisubharmonic and ϕk(z) ≥ λ(z) on Dk. Clearly, ϕk(z) = ϕk−1(z) on
Dk−2. Thus, ϕ(z) = limk→∞ ϕk(z) is the desired smooth strictly plurisubharmonic
exhaustion function on D. This completes the proof of Corollary 3.4.8.

Now if D is a bounded pseudoconvex domain in Cn with a C2 boundary, accord-
ing to Corollary 3.4.8, there exists a smooth strictly plurisubharmonic exhaustion
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function ϕ(z) on D. Define Dc = {z ∈ D| ϕ(z) < c} for every c ∈ R. It follows
from Sard’s Theorem that, for almost every c ∈ R, Dc is a strictly pseudoconvex
domain with smooth boundary. In other words, any bounded pseudoconvex domain
D in Cn with a C2 boundary can be exhausted by a sequence of smooth bounded
strictly pseudoconvex domains Dc.

When the domain D does not have smooth boundary or D is not bounded, we
define pseudoconvexity by the following

Definition 3.4.9. An open domain D in Cn is called pseudoconvex if there exists
a smooth strictly plurisubharmonic exhaustion function ϕ(z) on D.

Theorem 3.4.10. Let D be a pseudoconvex domain in Cn, n ≥ 2, in the sense of
Definition 3.4.9. Then −log(dD(z)) is plurisubharmonic and continuous on D.

Proof. Let ϕ be a smooth plurisubharmonic exhaustion function on D. We shall
show that if z0 is a point in D and w ∈ Cn is a nonzero vector, then −logdD(z0+τw)
is subharmonic in τ ∈ C whenever z0 + τw ∈ D. Choose δ > 0 so that

40 = {z0 + τw| |τ | ≤ δ} ⊆ D,
and let f(τ) be a holomorphic polynomial such that

(3.4.4) −logdD(z0 + τw) ≤ Ref(τ) for |τ | = δ.

We want to show that

−logdD(z0 + τw) ≤ Ref(τ) for |τ | ≤ δ.
Equation (3.4.4) is equivalent to

(3.4.5) dD(z0 + τw) ≥ |e−f(τ)| for |τ | = δ.

Now, for any η ∈ Cn with |η| < 1, we consider the mapping with 0 ≤ t ≤ 1,

(3.4.6) τ 7→ z0 + τw + tηe−f(τ) for |τ | ≤ δ.
The image of (3.4.6) is an analytic disc. Let 4t = {z0 + τw + tηe−f(τ)| |τ | ≤ δ}.

Set E = {t ∈ [0, 1]| 4t ⊆ D}. Clearly, 0 ∈ E and E is open. To show that E is
closed, set K = ∪0≤t≤1b4t. Estimate (3.4.5) implies that K is a compact subset of
D. Now, if 4t ⊆ D for some t, ϕ(z0 + τw + tηe−f(τ)) would define a subharmonic
function in some open neighborhood of the closure of the unit disc in C. Therefore,
by the maximum principle for subharmonic functions and the exhaustion property
of ϕ, we see that 4t must be contained in {z ∈ D| ϕ(z) ≤ supKϕ}, a compact
subset of D. It follows that E is closed, and hence E = [0, 1]. This implies, for any
η ∈ Cn with |η| < 1 and |τ | ≤ δ, that

z0 + τw + ηe−f(τ) ∈ D.
Thus, we have

dD(z0 + τw) ≥ |e−f(τ)| for |τ | ≤ δ,
or equivalently,

−logdD(z0 + τw) ≤ Ref(τ) for |τ | ≤ δ.
Hence, −logdD(z0 + τw) is subharmonic in τ ∈ C whenever z0 + τw ∈ D. This
proves the theorem.

The equivalence between Definitions 3.4.1 and 3.4.9 on domains with smooth
boundaries is proved in the following theorem.



3.4 Pseudoconvexity 49

Theorem 3.4.11. Let D be a bounded domain in Cn, n ≥ 2, with C2 bound-
ary. Then D is Levi pseudoconvex if and only if D is pseudoconvex according to
Definition 3.4.9.

Proof. If D is Levi pseudoconvex, then by Corollary 3.4.8 D is pseudoconvex in the
sense of Definition 3.4.9.

On the other hand, assume D is pseudoconvex according to Definition 3.4.9.
Define r by(3.4.3). Then r(z) is a C2 defining function for D in some small open
neighborhood of the boundary.

Now Theorem 3.4.10 asserts that −log(dD(z)) is a C2 plurisubharmonic function
if z ∈ D is sufficiently close to the boundary. Thus, following from the plurisubhar-
monicity of −log(dD(z)), we obtain that

n∑
j,k=1

(
− 1
dD

∂2dD

∂zjzk
ajak

)
+

1
d2

D

∣∣∣∣ n∑
j=1

∂dD

∂zj
aj

∣∣∣∣2 ≥ 0,

for any a ∈ Cn and z ∈ D sufficiently close to bD. Therefore,

n∑
j,k=1

∂2r

∂zjzk
(z)ajak ≥ 0 if

n∑
j=1

∂r

∂zj
(z)aj = 0.

Passing to the limit, we obtain the desired assertion. This proves the theorem.

We note that by Definition 3.4.9 every pseudoconvex domain D can be exhausted
by strictly pseudoconvex domains, i.e.,

D = ∪Dν ,

where Dν ⊂⊂ Dν+1 ⊂⊂ D and each Dν is a strictly pseudoconvex domain.
To end this section we show that there always exists a bounded strictly plurisub-

harmonic exhaustion function on any smooth bounded pseudoconvex domain.

Theorem 3.4.12. Let D ⊂ Cn, n ≥ 2, be a smooth bounded pseudoconvex domain.
Let r be a smooth defining function for D. Then there exist constants K > 0 and
0 < η0 < 1, such that for any η with 0 < η ≤ η0, ρ = −(−re−K|z|2)η is a smooth
bounded strictly plurisubharmonic exhaustion function on D.

Note that ρ is continuous on D and vanishes on bD.

Proof. We first assume that z ∈ D with |r(z)| ≤ ε for some small ε > 0. With
ρ = −(−re−K|z|2)η, a direct calculation shows, for t ∈ Cn,

Lz(ρ; t) = η(−r)η−2e−ηK|z|2
(
Kr2

(
|t|2 − ηK

∣∣∣∣ n∑
j=1

zjtj

∣∣∣∣2)

+ (−r)
(
Lz(r; t)− 2ηKRe

( n∑
i=1

∂r

∂zi
ti

)( n∑
j=1

zjtj

))

+ (1− η)
∣∣∣∣ n∑
i=1

∂r

∂zi
ti

∣∣∣∣2).
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For each z with |r(z)| ≤ ε and t = (t1, · · · , tn) ∈ Cn, write t = tτ + tν , where
tν = (tν1 , · · · , tνn) with

tνk =
(∑n

j=1 tj
∂r
∂zj

(z)∑n
j=1 |

∂r
∂zj

(z)|2

)
∂r

∂zk
(z),

and tτ = (tτ1 , · · · , tτn) ∈ T τ
z = {a ∈ Cn|

∑n
j=1(∂r/∂zj)(z)aj = 0}. Such a decompo-

sition is clearly smooth when ε is sufficiently small. Also, let π(z) be the projection
of z along the normal on the boundary. Obviously, π is smooth for small ε. Then
the Levi form of r at z is

Lz(r; tτ ) =
n∑

i,j=1

∂2r

∂zi∂zj
(z)tτi (z)tτj (z)

=
n∑

i,j=1

∂2r

∂zi∂zj
(z)(ti − tνi (z))(tj − tνj (z))

=
n∑

i,j=1

bij(z)titj ,

where bij(z) is defined by the last equality. Hence, by pseudoconvexity of the
domain, we have

(3.4.7)

Lz(r; tτ (z)) ≥ Lz(r; tτ (z))− Lπ(z)(r; tτ (π(z)))

=
n∑

i,j=1

(bij(z)− bij(π(z)))titj

≥ −C|r(z)||t|2,

for some constant C > 0. Since

(3.4.8) |tν | = O

(∣∣∣∣ n∑
i=1

∂r

∂zi
ti

∣∣∣∣),
(3.4.7) and (3.4.8) together imply

Lz(r; t) ≥ −C|r(z)||t|2 − C|t|
∣∣∣∣ n∑
j=1

∂r

∂zj
tj

∣∣∣∣.
Hence

Lz(ρ; t) ≥ η(−r)η−2e−ηK|z|2
(
Kr2(1− CηK)|t|2

− Cr2|t|2 + Cr|t|
∣∣∣∣ n∑
j=1

∂r

∂zj
tj

∣∣∣∣+ (1− η)
∣∣∣∣ n∑
j=1

∂r

∂zj
tj

∣∣∣∣2),
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for some constant C > 0. Since

C|r||t|
∣∣∣∣ n∑
j=1

∂r

∂zj
tj

∣∣∣∣ ≤ 1
4

∣∣∣∣ n∑
j=1

∂r

∂zj
tj

∣∣∣∣2 + C1r
2|t|2,

we have

Lz(ρ; t) ≥ η(−r)η−2e−ηK|z|2
(
Kr2(1− CηK)|t|2

− (C + C1)r2|t|2 +
(

3
4
− η
)∣∣∣∣ n∑

j=1

∂r

∂zj
tj

∣∣∣∣2).
Now, if we first choose K > 2(C + C1) + 10 and then η to be sufficiently small so
that η < 1/4 and CηK < 1/2, we have

Lz(ρ; t) > 0, for t ∈ Cn \ {0}.

For this case we may take η0 = min(1/4, 1/(2CK)).
If |r(z)| ≥ ε, the situation is even simpler. This proves the theorem.

3.5 Domains of Holomorphy

Throughout this section, D will denote a domain in Cn, n ≥ 1. Here we give the
definition of a domain of holomorphy.

Definition 3.5.1. A domain D in Cn is called a domain of holomorphy if we
cannot find two nonempty open sets D1 and D2 in Cn with the following properties:

(1) D1 is connected, D1 * D and D2 ⊂ D1 ∩D.
(2) For every f ∈ O(D) there is a f̃ ∈ O(D1) satisfying f = f̃ on D2.

According to Hartogs’ theorem (Theorem 3.1.2), if we remove a compact subset
K from the unit ball B(0; 1) in Cn, n ≥ 2, such that B(0; 1) \K is connected, then
the remaining set B(0; 1) \K is not a domain of holomorphy. Also, from Theorem
3.3.2, if the Levi form of a smooth bounded domain D in Cn, n ≥ 2, has one
negative eigenvalue, then D is not a domain of holomorphy.

In this section, we shall characterize the domain of holomorphy in Cn for n ≥ 2.
Let K be a compact subset of D. Define the holomorphically convex hull K̂D of K
in D by

(3.5.1) K̂D = {z ∈ D| |f(z)| ≤ sup
K
|f |, for all f ∈ O(D)}.

A compact subsetK ofD is called holomorphically convex if K̂D = K. We obviously

have K̂D = ̂̂
KD. Using f(z) = exp(a1z1 + · · ·+ anzn) with ai ∈ C for i = 1, · · · , n,

it is clear that K̂D must be contained in the geometrically convex hull of K, and
is a closed subset of D. However, K̂D in general is not a closed subset of Cn,
i.e., K̂D in general is not a compact subset of D. In one complex variable K̂D

is obtained from K by filling up all the bounded components of the complement
Kc. For higher dimensional spaces, the situation is more subtle. In addition to the
concept of holomorphically convex hull, we define:
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Definition 3.5.2. A domain D in Cn is called holomorphically convex if K̂D is
relatively compact in D for every compact subset K of D.

The main task of this section is to prove the following characterization of domains
of holomorphy.

Theorem 3.5.3. Let D be a domain in Cn, n ≥ 2. The following statements are
equivalent:

(1) D is a domain of holomorphy.
(2) dist(K,Dc) = dist(K̂D, D

c) for every compact subset K in D, where dist(K,
Dc) denotes the distance between K and Dc = Cn \D.

(3) D is holomorphically convex.
(4) There exists a holomorphic function f on D which is singular at every bound-

ary point of D.

Proof. (2) ⇒ (3) and (4) ⇒ (1) are obvious. We need to show (1) ⇒ (2) and (3)
⇒ (4).

If P (0; r) is a polydisc centered at zero with multiradii r = (r1, · · · , rn), for each
z ∈ D, we set

dr(z) = sup{λ > 0| {z}+ λP (0; r) ⊂ D}.

To prove (1) ⇒ (2), we first show:

Lemma 3.5.4. Let K be a compact subset of a domain D in Cn, and let f ∈ O(D).
Suppose that

|f(z)| ≤ dr(z) for z ∈ K.

Let ζ be a fixed point in K̂D. Then any h ∈ O(D) extends holomorphically to
D ∪ {{ζ}+ |f(ζ)|P (0; r)}.

Proof. For each 0 < t < 1, the union of the polydiscs with centers at z ∈ K

(3.5.2) Kt = ∪
z∈K
{{z}+ t|f(z)|P (0; r)}

is a compact subset of D. Hence, for any h ∈ O(D), there exists Mt > 0 such that
|h(z)| ≤Mt on Kt. Using Cauchy’s estimates of h, we obtain

(3.5.3)
|∂

αh
∂zα (z)|t|α||f(z)||α|rα

α!
≤Mt

for z ∈ K and all multiindices α = (α1, · · · , αn) with |α| = α1 + · · · + αn. Since
(∂αh/∂zα)(z)f(z)|α| is holomorphic on D, by definition, (3.5.3) also holds for z ∈
K̂D. Letting t tend to one, we see that h(z) extends holomorphically to D∪{{ζ}+
|f(ζ)|P (0; r)}. This proves the lemma.

We write

dist(z,Dc) = sup{r > 0 | z + aw ∈ D, for all w ∈ Cn, |w| ≤ 1 and

a ∈ C, |a| < r}
= inf

|w|≤1
dw(z),
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where
dw(z) = sup{r > 0 | z + aw ∈ D, for all a ∈ C, |a| < r}.

Fix a w, we may assume that w = (1, 0, · · · , 0). Denote by Pj = P (0; r(j)) the
polydisc with multiradii r(j) = (1, 1/j, · · · , 1/j) for j ∈ N. Then it is easily seen
that

lim
j→∞

dr(j)(z) = dw(z).

Thus, given ε > 0, if j is sufficiently large, we have

(3.5.4) dist(K,Dc) ≤ (1 + ε)dr(j)(z), z ∈ K.

We let f(z) = dist(K,Dc)/(1 + ε) be the constant function. Since D is a domain of
holomorphy, using estimate (3.5.4), Lemma 3.5.4 shows that

dist(K,Dc) ≤ (1 + ε)dr(j)(ζ) ≤ (1 + ε)dw(ζ), for all ζ ∈ K̂D.

Letting ε tend to zero, we get

dist(K,Dc) ≤ inf
ζ∈ bKD

( inf
|w|≤1

dw(ζ))

= inf
ζ∈ bKD

dist(ζ,Dc)

= dist(K̂D, D
c).

This proves that (1) ⇒ (2).
Finally, we show (3)⇒ (4). Assume that D is holomorphically convex. Let P be

the set containing all points in D with rational coordinates. Clearly, P is countable
and dense in D. Let {ζi}∞i=1 be a sequence of points in D such that every point
belonging to P appears infinitely many times in the sequence. Now, we exhaust
D by a sequence of increasingly holomorphically convex compact subsets {Kj}∞j=1

of D with Kj ⊂
o

Kj+1, where
o

Kj+1 is the interior of Kj+1. For each i, denote
by Pζi

the largest polydisc of the form Pζi
= {ζi} + ηP (0; 1) that is contained in

D, where η > 0 and P (0; 1) is the polydisc centered at the origin with multiradii

r = (1, · · · , 1). Then, inductively for each j, pick a zj ∈ (Pζj
\Knj

)∩
o

Knj+1 , where
{Knj} is a suitable subsequence of {Kj}, and a fj(z) ∈ O(D) satisfying

|fj(z)| <
1
2j
, z ∈ Knj

,

and

|fj(zj)| ≥
j−1∑
i=1

|fi(zj)|+ j + 1.

It follows that

h(z) =
∞∑

j=1

fj(z)
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defines a holomorphic function on D and that

|h(zj)| ≥ |fj(zj)| −
j−1∑
i=1

|fi(zj)| −
∞∑

i=j+1

|fi(zj)| ≥ j,

which implies h(z) is singular at every boundary point of D. Otherwise, if h(z)
extends holomorphically across some boundary point, then h(z) would be bounded
on P ζi for some ζi. Obviously, it contradicts the construction of h. This proves (3)
⇒ (4), and, hence the theorem.

We see from Theorem 3.5.3 that the concept of domains of holomorphy is equiva-
lent to that of holomorphic convexity. With this characterization, the next theorem
shows that a domain of holomorphy is pseudoconvex.

Theorem 3.5.5. If D is a domain of holomorphy, then D is pseudoconvex in the
sense of Definition 3.4.9.

Proof. Let D be a domain of holomorphy and {Kj}∞j=1 be a sequence of increas-
ingly holomorphically convex compact subsets of D which exhausts D. We may

assume that Kj ⊂
o

Kj+1 for all j. Then, by hypothesis, for each j ∈ N there exist
fj1, · · · , fjmj

∈ O(D) such that the function φj(z) =
∑mj

k=1 |fjk(z)|2 satisfies

(3.5.5) φj(z) <
1
2j

for z ∈ Kj ,

and
φj(z) > j for z ∈ Kj+2 \

o

Kj+1.

Hence,

ϕ(z) =
∞∑

j=1

φj(z)

is a continuous exhaustion function defined on D. In fact, ϕ(z) is real analytic. It
can be seen easily from (3.5.5) that the series

∞∑
j=1

(mj∑
k=1

fjk(z)fjk(w)
)

converges uniformly on compact subsets of D × D∗, where D∗ = {z | z ∈ D} de-
notes the conjugate domain of D. Thus the series defines a holomorphic function on
D ×D∗. By substituting z for w in the above series, we obtain the real analyticity
of ϕ(z) on D, and that one can differentiate ϕ(z) term by term. Obviously, ϕ(z)
is plurisubharmonic on D. It follows that |z|2 + ϕ(z) is a smooth strictly plurisub-
harmonic exhaustion function on D, and by definition, D is pseudoconvex. This
proves the theorem.
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3.6 The Levi Problem and the ∂̄ Equation

Let D be a pseudoconvex domain in Cn with n ≥ 2. One of the major problems
in complex analysis is to show that a pseudoconvex domain D is a domain of
holomorphy. Near each boundary point p ∈ bD, one must find a holomorphic
function f(z) onD which cannot be continued holomorphically near p. This problem
is called the Levi problem for D at p. It involves the construction of a holomorphic
function with certain specific local properties.

If the domain D is strongly pseudoconvex with C∞ boundary bD and p ∈ bD,
one can construct a local holomorphic function f in an open neighborhood U of
p, such that f is holomorphic in U ∩ D, f ∈ C(D ∩ U \ {p}) and f(z) → ∞ as
z ∈ D approaches p. In fact f can be easily obtained as follows: let r be a strictly
plurisubharmonic defining function for D and we assume that p = 0. Let

F (z) = −2
n∑

i=1

∂r

∂zi
(0)zi −

n∑
i,j=1

∂2r

∂zi∂zj
(0)zizj .

F (z) is holomorphic, and it is called the Levi polynomial of r at 0. Using Taylor’s
expansion at 0, there exists a sufficiently small neighborhood U of 0 and C > 0
such that for any z ∈ D ∩ U ,

ReF (z) = −r(z) +
n∑

i,j=1

∂2r

∂zi∂z̄j
(0)ziz̄j +O(|z|3) ≥ C|z|2.

Thus, F (z) 6= 0 when z ∈ D ∩ U \ {0}. Setting

f =
1
F
,

it is easily seen that f is locally a holomorphic function which cannot be extended
holomorphically across 0.

Global holomorphic functions cannot be obtained simply by employing smooth
cut-off functions to patch together the local holomorphic data, since the cut-off
functions are no longer holomorphic. Let χ be a cut-off function such that χ ∈
C∞0 (U) and χ = 1 in a neighborhood of 0. We note that χf is not holomorphic in
D. However, if χf can be corrected by solving a ∂̄-equation, then the Levi problem
will be solved.

Let us consider the (0,1)-form g defined by

g = ∂̄(χf) = (∂̄χ)f.

This form g can obviously be extended smoothly up to the boundary. It is easy
to see that g is a ∂̄-closed form in D and g ∈ C∞(0,1)(D). If we can find a solution
u ∈ C∞(D) such that

(3.6.1) ∂̄u = g in D,
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then we define for z ∈ D,

h(z) = χ(z)f(z)− u(z).

It follows that h is holomorphic in D, h ∈ C∞(D \{0}) and h is singular at 0. Thus
one can solve the Levi problem for strongly pseudoconvex domains provided one
can solve equation (3.6.1) with solutions smooth up to the boundary.

Problems of this sort are among the most difficult in complex analysis and they
are the main topics of the next three chapters. In Chapter 4, we will solve the Levi
problem using the L2 estimate method for ∂̄ (Hörmander’s solution) on pseudo-
convex domains (Theorem 4.5.2). In Chapter 5, we study the boundary regularity
for ∂̄ on strongly pseudoconvex domains. This gives another solution (Kohn’s so-
lution) of the Levi problem on complex manifolds (Theorem 5.3.11). In Chapter 6,
we further investigate the boundary regularity of ∂̄ on pseudoconvex domains with
smooth boundaries for other applications.

NOTES

Theorem 3.1.2 is a theorem due to F. Hartogs [Har 1]. The present proof of The-
orem 3.1.2 as pointed out by L. Ehrenpreis [Ehr 2] is essentially based on Theorem
3.1.1, i.e., the existence of compactly supported solutions to the Cauchy-Riemann
equation. The proof of Theorem 3.1.3 is based on an idea of F. Hartogs [Har 1].

Using a more delicate proof found in Harvey and Lawson [HaLa 1], one can prove
Theorem 3.2.2 in an optimal way. Namely, if the domain D has Ck (1 ≤ k ≤ ∞)
boundary and f is a CR function of class Ck on the boundary, then the holomorphic
extension F is also in Ck(D). See also the book by R. M. Range [Ran 6].

Theorem 3.3.2 is concerned with the local one-sided holomorphic extension of CR
functions which is essentially due to H. Lewy [Lew 1]. Another way to prove the
local extension theorem for the CR functions is to invoke the result discovered by
Baouendi and Treves [BaTr 1]. This is the so-called analytic disc method. See the
books by A. Boggess [Bog 2] and M. S. Baouendi, P. Ebenfelt and L. P. Rothschild
[BER 1] for details and the references therein.

Corollary 3.4.5 in general is false for weakly pseudoconvex domains. A coun-
terexample was discovered by J. J. Kohn and L. Nirenberg [KoNi 3]. The concept
of plurisubharmonicity (Definition 3.4.2) was first introduced in two variables by K.
Oka [Oka 1], and by K. Oka [Oka 2] and P. Lelong [Lel 1] in arbitrary dimension. It
was K. Oka [Oka 1] who first proved the plurisubharmonicity of −log(dD(z)) for a
pseudoconvex domain (Theorem 3.4.10) in C2. Later, similar results were obtained
independently by K. Oka [Oka 2], P. Lelong [Lel 2] and H. Bremermann [Bre 2]
in Cn. The existence of a Hölder bounded strictly plurisubharmonic exhaustion
function on a C2 bounded pseudoconvex domain was first proved by K. Diederich
and J. E. Fornaess [DiFo 2]. The proof we present here for Theorem 3.4.12, based
on an idea of J. J. Kohn [Koh 6], is due to R. M. Range [Ran 4].

The characterization of domains of holomorphy in Theorem 3.5.3 is due to H.
Cartan and P. Thullen [CaTh 1]. For more discussion on pseudoconvexity and
domains of holomorphy, we refer the reader to the books by L. Hörmander [Hör 9]
and R. M. Range [Ran 6].
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CHAPTER 4

L2 THEORY FOR ∂̄

ON PSEUDOCONVEX DOMAINS

Let D be a domain in Cn. We study the existence of solutions of the Cauchy-
Riemann equations

(4.0.1) ∂̄u = f in D,

where f is a (p, q)-form and u is a (p, q−1)-form on D, 0 ≤ p ≤ n, 1 ≤ q ≤ n. Since
∂̄2 = 0, it is necessary that

(4.0.2) ∂̄f = 0 in D

in order for equation (4.0.1) to be solvable.
In this chapter, we prove Hörmander’s L2 existence theorems for the ∂̄ oper-

ator on pseudoconvex domains in Cn. To study Equation (4.0.1), Hilbert space
techniques are used in the context of the ∂̄-Neumann problem. First, we set up
the ∂̄-Neumann problem with weights and derive the basic a priori estimates of
Morrey-Kohn-Hörmander. We then choose suitable weight functions in order to
obtain existence theorems with L2 estimates.

The L2 existence theorems for ∂̄ also give existence theorems for the ∂̄-Neumann
operator. We will conclude the chapter with a discussion of existence theorems in
other function spaces. The solution of the Levi problem will be given at the end.

4.1 Unbounded Operators in Hilbert Spaces

We shall use Hilbert space techniques to study the ∂̄ operator. To do this we
need to formulate the ∂̄ operator as a linear, closed, densely defined operator from
one Hilbert space to another. This will be done in the next section. We first discuss
some basic facts for unbounded operators in Hilbert spaces.

Let H1 and H2 be two Hilbert spaces and let T : H1 → H2 be a linear, closed,
densely defined operator. We recall that T is closed if and only if the graph of
T is closed. The domain of definition for T is denoted by Dom(T ). If T is an
unbounded operator, Dom(T ) is a proper subset of H1 by the closed graph theorem.
The norms in H1, H2 are denoted by ‖ ‖1, ‖ ‖2, respectively. Then the adjoint of
T , T ∗ : H2 → H1 is also a linear, closed, densely defined operator and T ∗∗ = T .
(See [RiNa 1].)
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We use Ker(T ) and R(T ) to denote the kernel and the range of T respectively.
Since T is a closed operator, Ker(T ) is closed. Let R(T ) denote the closure of the
range of T . By the definition of the adjoint operator, it is easy to see that

(4.1.1) H1 = Ker(T )⊕R(T ∗)

and

(4.1.2) H2 = Ker(T ∗)⊕R(T ).

In later applications, the operator T will be a system of differential operators
associated with the Cauchy-Riemann equations and H1,H2 will be spaces of forms
with L2 coefficients. To solve Equation (4.0.1) in the Hilbert space sense is to
show that the range of T is closed. Using (4.1.2), the range of T is then equal to
Ker(T ∗)⊥.

In order to show that the range of T is closed, we use the following lemma for
unbounded operators in Hilbert spaces to reduce the proof to verifying an estimate.

Lemma 4.1.1. Let T : H1 → H2 be a linear, closed, densely defined operator.
The following conditions on T are equivalent:

(1) R(T ) is closed.
(2) There is a constant C such that

(4.1.3) ‖ f ‖1 ≤ C ‖ Tf ‖2 for all f ∈ Dom(T ) ∩R(T ∗).

(3) R(T ∗) is closed.
(4) There is a constant C such that

(4.1.4) ‖ f ‖2 ≤ C ‖ T ∗f ‖1 for all f ∈ Dom(T ∗) ∩R(T ).

The best constants in (4.1.3) and (4.1.4) are the same.

Proof. We assume that (1) holds. From (4.1.1),

T : Dom(T ) ∩R(T ∗)→ R(T )

is one-to-one, and its inverse

T−1 : R(T )→ Dom(T ) ∩R(T ∗)

is well-defined and is also a closed operator. Thus from the closed graph theorem,
T−1 is continuous and this proves (2). It is obvious that (2) implies (1). Similarly,
(3) and (4) are equivalent.

To prove that (2) implies (4), notice that

|(g, Tf)2| = |(T ∗g, f)1| ≤ C ‖ T ∗g ‖1‖ Tf ‖2,

for g ∈ Dom(T ∗) and f ∈ Dom(T ) ∩R(T ∗). Thus

|(g, h)2| ≤ C ‖ T ∗g ‖1‖ h ‖2, for g ∈ Dom(T ∗) and h ∈ R(T ),
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which implies (4). Similarly, (4) implies (2).

4.2 The ∂-Neumann Problem

Let D be a bounded domain in Cn, n ≥ 2, not necessarily with a smooth bound-
ary. Let C∞(p,q)(D) denote the smooth (p, q)-forms on D, where 0 ≤ p ≤ n, 0 ≤ q ≤
n. We use C∞(p,q)(D) to denote the smooth (p, q)-forms on D, i.e., the restriction
of smooth (p, q)-forms in Cn to D. Let (z1, · · · , zn) be the complex coordinates for
Cn. Then any (p, q)-form f ∈ C∞(p,q)(D) can be expressed as

(4.2.0) f =
∑
I,J

′fI,Jdz
I ∧ dz̄J ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are multiindices and dzI = dzi1 ∧ · · · ∧
dzip

, dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq
. The notation

∑′ means the summation over strictly
increasing multiindices and the fI,J ’s are defined for arbitrary I and J so that they
are antisymmetric. The operator

∂̄ = ∂̄(p,q) : C∞(p,q)(D)→ C∞(p,q+1)(D)

is defined by

(4.2.1) ∂̄f =
∑
I,J

′
n∑

k=1

∂fI,J

∂z̄k
dz̄k ∧ dzI ∧ dz̄J .

Let L2(D) denote the space of square integrable functions on D with respect to
the Lebesgue measure in Cn such that the volume element is dV = indz1 ∧ dz̄1 ∧
· · · ∧ dzn ∧ dz̄n. This volume element differs from the usual Euclidean measure by a
factor of 2n and it is more suitable for our purpose. We use L2

(p,q)(D) to denote the
space of (p, q)-forms whose coefficients are in L2(D). If f =

∑′
I,J fI,Jdz

I ∧ dz̄J ,
g =

∑′
I,J gI,Jdz

I ∧ dz̄J are two (p, q)-forms in L2
(p,q)(D), we define

〈f, g〉 =
∑
I,J

′〈fI,J , gI,J〉, |f |2 = 〈f, f〉 =
∑
I,J

′|fI,J |2,

‖ f ‖2=
∫

D

〈f, f〉dV =
∑
I,J

′
∫

D

|fI,J |2dV.

We use ( , )D to denote the inner product in L2
(p,q)(D) and when there is no

danger of confusion, we drop the subscript D in the notation. If φ is a continuous
function in D, then L2(D,φ) is the space of functions in D which are square inte-
grable with respect to the weight function e−φ. The norm in L2

(p,q)(D,φ) is defined
by

‖f‖2φ =
∫

D

|f |2e−φdV, f ∈ L2
(p,q)(D,φ).



4.2 The ∂-Neumann Problem 61

The inner product in L2
(p,q)(D,φ) is denoted by ( , )φ. Notice that the space

L2
(p,q)(D,φ) is equal to L2

(p,q)(D) if φ is continuous on D. Let L2(D, loc) denote the
space of locally square integrable functions. A function f is in L2(D, loc) if and only
if f is in L2(K) for every compact subset K of D. L2

(p,q)(D, loc) is defined similarly.
When there is no danger of confusion, we also use L2(D) to denote L2

(p,q)(D).
The formal adjoint of ∂̄ : C∞(p,q−1)(D) → C∞(p,q)(D), 1 ≤ q ≤ n, under the usual

L2 norm is denoted by ϑ, where

ϑ = ϑ(p,q) : C∞(p,q)(D)→ C∞(p,q−1)(D).

The operator ϑ is defined by the requirement that

(4.2.2) (ϑf, g) = (f, ∂̄g)

for all smooth g ∈ C∞(p,q−1)(D) with compact support in D. If f is expressed by
(4.2.0) and g =

∑′
|I|=p,|K|=q−1gI,Kdz

I ∧ dz̄K , we have

(f, ∂̄g) = (−1)p
∑
I,K

′
n∑

k=1

(
fI,kK ,

∂gI,K

∂z̄k

)

= (−1)p+1
∑
I,K

′
n∑

k=1

(
∂fI,kK

∂zk
, gI,K

)
= (ϑf, g).

Therefore, ϑ can be expressed explicitly by

(4.2.3) ϑf = (−1)p−1
∑
I,K

′
n∑

j=1

∂fI,jK

∂zj
dzI ∧ dz̄K ,

where I and K are multiindices with |I| = p and |K| = q − 1. It is easy to check
that ∂̄2 = ϑ2 = 0. Let ϑφ be the formal adjoint of ∂̄ under the L2(D,φ) norm, i.e.,

(4.2.4) (ϑφf, g)φ = (f, ∂̄g)φ

for every compactly supported g ∈ C∞(p,q−1)(D). We have the following relation
between ϑ and ϑφ: for any f ∈ C∞(p,q)(D),

(4.2.5) ϑφf = eφϑ(e−φf).

Thus ∂̄, ϑ and ϑφ are systems of first order differential operators.
We take the (weak) L2 closure of the unbounded differential operator ∂̄, still

denoted by ∂̄. Let

∂̄ = ∂̄p,q−1 : L2
(p,q−1)(D,φ)→ L2

(p,q)(D,φ)

be the maximal closure of the Cauchy-Riemannn operator defined as follows: an
element u ∈ L2

(p,q−1)(D,φ) is in the domain of ∂̄ if ∂̄u, defined in the distribution
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sense, belongs to L2
(p,q)(D,φ). Then ∂̄ defines a linear, closed, densely defined

operator. ∂̄ is closed since differentiation is a continuous operation in distribution
theory. It is densely defined since Dom(∂̄) contains all the compactly supported
smooth (p, q − 1)-forms. If D is bounded, any f ∈ C∞(p,q−1)(D) is in Dom(∂̄).

The Hilbert space adjoint of ∂̄, denoted by ∂̄∗φ, is a linear, closed, densely defined
operator and

∂̄∗φ : L2
(p,q)(D,φ)→ L2

(p,q−1)(D,φ).

When φ = 0, we denote the adjoint by ∂̄∗. Let Dom(∂̄∗) and Dom(∂̄∗φ) denote the
domains for ∂̄∗ and ∂̄∗φ, respectively. An element f belongs to Dom(∂̄∗φ) if there
exists a g ∈ L2

(p,q−1)(D,φ) such that for every ψ ∈ Dom(∂̄) ∩ L2
(p,q−1)(D,φ), we

have
(f, ∂̄ψ)φ = (g, ψ)φ.

We then define ∂̄∗φf = g. Note that if f ∈ Dom(∂̄∗φ), then it follows from (4.2.4)
that ∂̄∗φf = ϑφf where ϑφ is defined in the distribution sense in D.

If D is bounded, we have C∞(p,q−1)(D) ⊂ Dom(∂̄). However, not every element
in C∞(p,q)(D) is in Dom(∂̄∗φ). Any element in Dom(∂̄∗) (or Dom(∂̄∗φ)) must satisfy
certain boundary conditions in the weak sense. If D has C1 boundary bD, then any
f ∈ Dom(∂̄∗φ) ∩ C1

(p,q)(D) must satisfy the following:

Lemma 4.2.1. Let D be a bounded domain with C1 boundary bD and ρ be a C1

defining function for D. For any f ∈ Dom(∂̄∗φ) ∩ C1
(p,q)(D), where φ ∈ C1(D), f

must satisfy the boundary condition

(4.2.6) σ(ϑ, dρ)f(z) = 0, z ∈ bD,

where σ(ϑ, dρ)f(z) = ϑ(ρf)(z) denotes the symbol of ϑ in the dρ direction evaluated
at z. More explicitly, if f is expressed as in (4.2.0), then f must satisfy

(4.2.6′)
∑

k

fI,kK
∂ρ

∂zk
= 0 on bD for all I,K,

where |I| = p and |K| = q − 1.

Proof. We first assume that φ = 0. Note that (4.2.6) and (4.2.6′) are independent
of the defining function ρ. We normalize ρ such that |dρ| = 1 on bD.

Let f be a (0,1)-form and f =
∑n

i=1 fidz̄i. Using integration by parts and (4.2.3),
we have for any ψ ∈ C∞(D) ⊂ Dom(∂̄),

(ϑf, ψ) =
n∑

i=1

(
−∂fi

∂zi
, ψ

)

=
n∑

i=1

(
fi,

∂ψ

∂z̄i

)
−

n∑
i=1

∫
bD

fi
∂ρ

∂zi
ψ̄dS

= (f, ∂̄ψ) +
∫

bD

〈σ(ϑ, dρ)f, ψ〉dS,



4.2 The ∂-Neumann Problem 63

where dS is the surface measure of bD. Similarly, for a (p, q)-form f and ψ ∈
C∞(p,q−1)(D) ⊂ Dom(∂̄), using integration by parts, we obtain

(4.2.7) (ϑf, ψ) = (f, ∂̄ψ) +
∫

bD

〈σ(ϑ, dρ)f, ψ〉dS.

If, in addition, ψ has compact support in D, we have

(∂̄∗f, ψ) = (ϑf, ψ) = (f, ∂̄ψ),

where the first equality follows from f ∈ Dom(∂̄∗) ∩ C1
(p,q)(D). Since compactly

supported smooth (p, q − 1)-forms are dense in L2
(p,q−1)(D), we must have

∫
bD

〈σ(ϑ, dρ)f, ψ〉dS = 0, for any ψ ∈ C∞(p,q−1)(D).

This implies that σ(ϑ, dρ)f(z) = 0 for z ∈ bD.
If f is expressed by (4.2.0), one can easily show that (4.2.6) implies that (4.2.6′)

holds on bD for each I,K. The case for φ 6= 0 can be proved similarly and is left
to the reader. This proves the lemma.

Another way to express condition (4.2.6) or (4.2.6′) is as follows. Let ∨ be the
interior product defined as the dual of the wedge product. For any (p, q)-form f ,
∂̄ρ ∨ f is defined as the (p, q − 1)-form satisfying

〈g ∧ ∂̄ρ, f〉 = 〈g, ∂̄ρ ∨ f〉, g ∈ C∞(p,q−1)(C
n).

Using this notation, condition (4.2.6) or (4.2.6′) can be expressed as

(4.2.6′′) ∂̄ρ ∨ f = 0 on bD.

It is also easy to see that f ∈ C1
(p,q)(D) ∩ Dom(∂̄∗φ) if and only if f satisfies one of

the three equivalent conditions (4.2.6), (4.2.6′) or (4.2.6′′).

For a fixed 0 ≤ p ≤ n, 1 ≤ q ≤ n, we define the Laplacian of the ∂̄ complex

L2
(p,q−1)(D)

∂̄(p,q−1)−−−−−→
←−−−−−−

∂̄∗
(p,q)

L2
(p,q)(D)

∂̄(p,q)−−−−−−→
←−−−−−−

∂̄∗
(p,q+1)

L2
(p,q+1)(D).

Definition 4.2.2. Let �(p,q) = ∂̄(p,q−1)∂̄
∗
(p,q) + ∂̄∗(p,q+1)∂̄(p,q) be the operator from

L2
(p,q)(D) to L2

(p,q)(D) such that Dom(�(p,q)) = {f ∈ L2
(p,q)(D) | f ∈ Dom(∂̄(p,q)) ∩

Dom(∂̄∗(p,q)); ∂̄(p,q)f ∈ Dom(∂̄∗(p,q+1)) and ∂̄∗(p,q)f ∈ Dom(∂̄(p,q−1))}.

Proposition 4.2.3. �(p,q) is a linear, closed, densely defined self-adjoint operator.

Proof. �(p,q) is densely defined since Dom(�(p,q)) contains all smooth forms with
compact support. To show that �(p,q) is closed, one needs to prove that for every
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sequence fn ∈ Dom(�(p,q)) such that fn → f in L2
(p,q)(D) and �(p,q)fn converges,

we have f ∈ Dom(�(p,q)) and �(p,q)fn → �(p,q)f . Since fn ∈ Dom(�(p,q)),

(�(p,q)fn, fn) = (∂̄∂̄∗fn, fn) + (∂̄∗∂̄fn, fn)

= ‖∂̄∗fn‖2 + ‖∂̄fn‖2,

thus ∂̄∗fn and ∂̄fn converge in L2
(p,q−1)(D) and L2

(p,q+1)(D), respectively. Since ∂̄
and ∂̄∗ are closed operators, we have f ∈ Dom(∂̄) ∩Dom(∂̄∗) and

∂̄fn → ∂̄f and ∂̄∗fn → ∂̄∗f in L2.

To show that ∂̄f ∈ Dom(∂̄∗) and ∂̄∗f ∈ Dom(∂̄), we note that since �(p,q)fn =
∂̄∂̄∗fn + ∂̄∗∂̄fn converges, both ∂̄∂̄∗fn and ∂̄∗∂̄fn converge. This follows from the
fact that ∂̄∂̄∗fn and ∂̄∗∂̄fn are orthogonal to each other since

(∂̄∂̄∗fn, ∂̄
∗∂̄fn) = (∂̄2∂̄∗fn, ∂̄fn) = 0.

It follows again from the fact that ∂̄ and ∂̄∗ are closed operators that

∂̄∂̄∗fn → ∂̄∂̄∗f and ∂̄∗∂̄fn → ∂̄∗∂̄f.

Therefore, we have proved that �(p,q)fn → �(p,q)f and �(p,q) is a closed operator.
Let �∗

(p,q) be the Hilbert space adjoint of �(p,q). It is easy to see that �(p,q) =
�∗

(p,q) on Dom(�(p,q))∩Dom(�∗
(p,q)). To show that Dom(�(p,q))=Dom(�∗

(p,q)), de-
fine

L1 = ∂̄∂̄∗ + ∂̄∗∂̄ + I = �(p,q) + I on Dom(�(p,q)).

We shall prove that L−1
1 is self-adjoint. By a theorem of Von Neumann [RiNa 1],

(I + ∂̄∂̄∗)−1 and (I + ∂̄∗∂̄)−1

are bounded self-adjoint operators. We define

Q1 = (I + ∂̄∂̄∗)−1 + (I + ∂̄∗∂̄)−1 − I.
Then Q1 is bounded and self-adjoint. We claim that Q1 = L−1

1 . Since

(I + ∂̄∂̄∗)−1 − I = (I − (I + ∂̄∂̄∗))(I + ∂̄∂̄∗)−1

= −∂̄∂̄∗(I + ∂̄∂̄∗)−1,

we have that R(I + ∂̄∂̄∗)−1 ⊂ Dom(∂̄∂̄∗). Similarly, we have R(I + ∂̄∗∂̄)−1 ⊂
Dom(∂̄∗∂̄) and

Q1 = (I + ∂̄∗∂̄)−1 − ∂̄∂̄∗(I + ∂̄∂̄∗)−1.

Since ∂̄2 = 0, we have R(Q1) ⊂ Dom(∂̄∗∂̄) and

∂̄∗∂̄Q1 = ∂̄∗∂̄(I + ∂̄∗∂̄)−1.

Similarly, we have R(Q1) ⊂ Dom(∂̄∂̄∗) and

∂̄∂̄∗Q1 = ∂̄∂̄∗(I + ∂̄∂̄∗)−1.

Thus, R(Q1) ⊂ Dom(L1) and

L1Q1 = ∂̄∂̄∗(I + ∂̄∂̄∗)−1 + ∂̄∗∂̄(I + ∂̄∗∂̄)−1 +Q1 = I.

Since L1 is injective, we have that Q1 = L−1
1 . This proves that L1 is self-adjoint

which implies �(p,q) = L1 − I is self-adjoint. The proposition is proved.

The following proposition shows that smooth forms in Dom(�(p,q)) must satisfy
two sets of boundary conditions, namely, the ∂-Neumann boundary conditions.
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Proposition 4.2.4. Let D be a bounded domain with C1 boundary and ρ be a C1

defining function. If f ∈ C2
(p,q)(D), then

f ∈ Dom(�(p,q))

if and only if
σ(ϑ, dρ)f = 0 and σ(ϑ, dρ)∂f = 0 on bD.

If f =
∑′

I,J fI,Jdz
I ∧ dz̄J ∈ C2

(p,q)(D) ∩Dom(�(p,q)), we have

(4.2.8) �(p,q)f = −1
4

∑
I,J

′4fI,Jdz
I ∧ dz̄J ,

where 4 = 4
∑n

k=1 ∂
2/∂zk∂z̄k =

∑n
k=1(∂

2/∂x2
k +∂2/∂y2

k) is the usual Laplacian on
functions.

Proof. If f ∈ C2
(p,q)(D) ∩ Dom(�(p,q)), then f ∈ Dom(∂

∗
) and ∂f ∈ Dom(∂

∗
).

Thus from the same arguments as in Lemma 4.2.1, f must satisfy σ(ϑ, dρ)f =
σ(ϑ, dρ)∂f = 0 on bD. Conversely, if σ(ϑ, dρ)f = σ(ϑ, dρ)∂f = 0, then f ∈
Dom(∂

∗
) and ∂f ∈ Dom(∂

∗
) from integration by parts. Also, it is easy to see that

f and ∂̄∗f = ϑf are in Dom(∂̄). Thus f ∈ Dom(�(p,q)).
If f ∈ C2

(p,q)(D) ∩Dom(�(p,q)), we have

�(p,q)f = (∂̄ϑ+ ϑ∂̄)f.

A direct calculation, using (4.2.1) and (4.2.3), gives us that

(4.2.9)

ϑ∂̄f = −
∑
I,J

′
∑

k

∂2fI,J

∂zk∂z̄k
dzI ∧ dz̄J

+ (−1)p
∑
I,K

′
∑

k

∑
j

∂2fI,jK

∂zj∂z̄k
dz̄k ∧ dzI ∧ dz̄K ,

and

(4.2.10) ∂̄ϑf = (−1)p−1
∑
I,K

′
∑

j

∑
k

∂fI,jK

∂z̄k∂zj
dz̄k ∧ dzI ∧ dz̄K .

Adding (4.2.9) and (4.2.10), we get that

�(p,q)f = −
∑
I,J

′
∑

k

∂2fI,J

∂zk∂z̄k
dzI ∧ dz̄J = −1

4

∑
I,J

′4fI,Jdz
I ∧ dz̄J .
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Example. Let D be a smooth bounded domain in Cn with the origin 0 ∈ bD. We
assume that for some neighborhood U of 0

D ∩ U = {Im zn = yn < 0} ∩ U.

Let f =
∑

k fkdz̄k ∈ C2
(0,1)(D) and the support of f lies in U ∩ D. Then f is in

Dom(�(0,1)) if and only if f satisfies

fn = 0 on bD ∩ U,(a)
∂fi

∂z̄n
= 0 on bD ∩ U, i = 1, · · · , n− 1.(b)

Proof. (a) follows from the condition that f ∈ Dom(∂̄∗). To see that (b) holds, we
note that ∂̄f ∈ Dom(∂̄∗), implying

∂fi

∂z̄n
− ∂fn

∂z̄i
= 0 on bD ∩ U.

From (a), we have ∂fn/∂z̄i = 0 on bD ∩ U for i = 1, · · · , n− 1 since each ∂/∂z̄i is
tangential. This proves (b).

We note that the first boundary condition (a) is just the Dirichlet boundary value
problem. The second condition (b) is the complex normal derivative ∂/∂z̄n on each
fi instead of the usual normal derivative ∂/∂yn. It is the second boundary condi-
tion which makes the system noncoercive, i.e., it is not an elliptic boundary value
problem (One can check easily that it does not satisfy the Lopatinski’s conditions,
see e.g., Treves [Tre 1]).

There are two objectives to the study of the ∂̄-Neumann problem: one is to show
that the range of �(p,q) is closed in L2 and that there exists a bounded inverse of
the operator �(p,q) on any bounded pseudoconvex domain; the other is to study the
regularity of the solution of �(p,q) up to the boundary. In the next sections we shall
prove L2 existence theorems for ∂̄ and �(p,q). We discuss the boundary regularity
for the solution of �(p,q) in Chapters 5 and 6.

4.3 L2 Existence Theorems for ∂ in Pseudoconvex Domains

In this section we prove the L2 estimates and existence theorems for the ∂̄ oper-
ator with precise bounds on any bounded pseudoconvex domains.

Let D be a domain with C2 boundary bD. Let ρ be a C2 defining function in
a neighborhood of D such that D = {z | ρ(z) < 0} and |dρ| = 1 on bD. For each
` ∈ N, we set

D`
(p,q) = Dom(∂̄∗) ∩ C`

(p,q)(D)

and
D(p,q) = Dom(∂̄∗) ∩ C∞(p,q)(D).

Let φ ∈ C2(D) be a fixed function. Let

Dφ
(p,q) = Dom(∂̄∗φ) ∩ C∞(p,q)(D).
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It is easy to see from the arguments in the proof of Lemma 4.2.1 that f ∈ Dφ
(p,q) if

and only if σ(ϑ, dρ)f(z) = 0 for any z ∈ bD, a condition independent of φ. Thus
we have

Dφ
(p,q) = D(p,q),

which is also independent of φ. Similarly, we also have

Dom(∂̄∗φ) ∩ C`
(p,q)(D) = D`

(p,q).

Let Qφ be the form on D(p,q) defined by

Qφ(f, f) = ‖∂̄f‖2φ + ‖∂̄∗φf‖2φ.

We shall first prove the following basic a priori identity:

Proposition 4.3.1 (Morrey-Kohn-Hörmander). Let D ⊂⊂ Cn be a domain
with C2 boundary bD and ρ be a C2 defining function for D such that |dρ| = 1 on
bD. Let φ ∈ C2(D). For any f =

∑ ′
|I|=p,|J|=qfI,Jdz

I ∧dz̄J ∈ D1
(p,q),

(4.3.1)

Qφ(f, f) = ‖ ∂̄f ‖2φ + ‖ ϑφf ‖2φ

=
∑

′

|I|=p,|K|=q−1

∑
i,j

∫
D

∂2φ

∂zi∂z̄j
fI,iK f̄I,jKe

−φdV

+
∑

′

|I|=p,|J|=q

∑
k

∫
D

∣∣∣∣∂fI,J

∂z̄k

∣∣∣∣2e−φdV

+
∑

′

|I|=p,|K|=q−1

∑
i,j

∫
bD

∂2ρ

∂zi∂z̄j
fI,iK f̄I,jKe

−φdS.

Proof. From (4.2.1), (4.2.3) and (4.2.5), we have

(4.3.2) ∂f =
∑
I,J

′
∑

j

∂fI,J

∂zj
dz̄j ∧ dzI ∧ dzJ

and

(4.3.3) ϑφf = (−1)p−1
∑
I,K

′
∑

j

δφ
j fI,jKdz

I ∧ dzK ,

where δφ
j u = eφ ∂

∂zj
(e−φu). Thus, setting Lj = ∂/∂z̄j , we get

(4.3.4)

‖∂f‖2φ + ‖ϑφf‖2φ =
∑
I,J,L

′
∑
j,`

εjJ
`L(Lj(fI,J), L`(fI,L))φ

+
∑
I,K

′
∑
j,k

(δφ
j fI,jK , δ

φ
kfI,kK)φ,
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where εjJ
`L = 0, unless j /∈ J, ` /∈ L and {j} ∪ J = {`} ∪ L, in which case εjJ

`L is the
sign of permutation

(
jJ
`L

)
. Rearranging the terms in (4.3.4) gives

(4.3.5)

‖∂f‖2φ + ‖ϑφf‖2φ =
∑
I,J

′
∑

j

‖LjfI,J‖2φ

−
∑
I,K

′
∑
j,k

(LkfI,jK , LjfI,kK)φ

+
∑
I,K

′
∑
j,k

(δφ
j fI,jK , δ

φ
kfI,kK)φ.

We now apply integration by parts to the last term in (4.3.4). Note that for each
u, v ∈ C2(D),

(u, δφ
j v)φ = −(Lju, v)φ +

∫
bD

∂ρ

∂z̄j
uve−φdS

and

[δφ
j , Lk]u = δφ

j Lku− Lkδ
φ
j u = u

∂2φ

∂zj∂zk
.

Thus, we find that

(4.3.6)

(δφ
j u, δ

φ
kv)φ

= (−Lkδ
φ
j u, v)φ +

∫
bD

∂ρ

∂zk
(δφ

j u)ve
−φdS

= (−δφ
j Lku, v)φ + ([δφ

j , Lk]u, v)φ +
∫

bD

∂ρ

∂zk
(δφ

j u)ve
−φdS

= (Lku, Ljv)φ + (
∂2φ

∂zj∂z̄k
u, v)φ

+
∫

bD

∂ρ

∂z̄k
(δφ

j u)ve
−φdS −

∫
bD

∂ρ

∂zj
(Lku)ve−φdS.

When u, v are in C1(D), (4.3.6) also holds by approximation since C2(D) is a dense
subset in C1(D). Using (4.3.6) for each fixed I,K, it follows that

(4.3.7)

∑
j,k

(δφ
j fI,jK , δ

φ
kfI,kK)φ

=
∑
j,k

(LkfI,jK , LjfI,kK)φ +
∑
j,k

(
∂2φ

∂zj∂z̄k
fI,jK , fI,kK)φ

+
∑
j,k

∫
bD

∂ρ

∂z̄k
(δφ

j fI,jK)f̄I,kKe
−φdS

−
∑
j,k

∫
bD

∂ρ

∂zj

(
∂

∂z̄k
fI,jK

)
f̄I,kKe

−φdS.

If f ∈ D1
(p,q), Lemma 4.2.1 and (4.2.6′) show that

(4.3.8)
∑

k

∂ρ

∂z̄k
f̄I,kK = 0 on bD
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for each I,K. Since
∑

k f̄I,kK
∂

∂zk
is tangential to bD, we conclude from (4.3.8)

that ∑
k

f̄I,kK
∂

∂z̄k

∑
j

∂ρ

∂zj
fI,jK

 = 0 on bD for each I,K.

This implies

(4.3.9)
∑

k

∑
j

f̄I,kK
∂ρ

∂zj

∂fI,jK

∂z̄k
+
∑

k

∑
j

fI,jK f̄I,kK
∂2ρ

∂zj∂z̄k
= 0

on bD. Combining (4.3.5)-(4.3.9), we have proved (4.3.1) and the proposition.

In order to pass from a priori estimates (4.3.1) to the real estimates, the following
density lemma is crucial:

Lemma 4.3.2 (A density lemma). Let D be a bounded domain with C`+1 bound-
ary bD, ` ≥ 1 and φ ∈ C2(D). Then D`

(p,q) is dense in Dom(∂̄) ∩ Dom(∂̄∗φ) in the
graph norm

f → ‖f‖φ + ‖∂̄f‖φ + ‖∂̄∗φf‖φ.

Proof. The proof is essentially a variation of Friedrichs’ lemma (see Appendix D).
We divide the proof of the lemma into three steps.

(i). C∞(p,q)(D) is dense in Dom(∂̄) ∩Dom(∂̄∗φ) in the graph norm.

By this we mean that if f ∈ Dom(∂̄) ∩ Dom(∂̄∗φ), one can construct a sequence
fn ∈ C∞(p,q)(D) such that fn → f , ∂̄fn → ∂̄f and ϑφfn → ϑφf in L2(D,φ). We first
show that this can be done on a compact subset in D from the usual regularization
by convolution.

Let χ ∈ C∞0 (Cn) be a function such that χ ≥ 0,
∫
χdV = 1, χ(z) depends only on

|z| and vanishes when |z| ≥ 1. We define χε(z) = ε−2nχ(z/ε) for ε > 0. Extending
f to be 0 outside D, we define for ε > 0 and z ∈ Cn,

fε(z) = f ∗ χε(z)

=
∫
f(z′)χε(z − z′)dV (z′) =

∫
f(z − εz′)χ(z′)dV (z′),

where the convolution is performed on each component of f . In the first integral
defining fε, we can differentiate under the integral sign to show that fε is C∞(Cn).
From Young’s inequality for convolution, we have

‖ fε ‖ ≤ ‖ f ‖ .

Since fε → f uniformly when f ∈ C∞0 (Cn), a dense subset of L2(Cn), we have that

fε → f in L2(Cn) for every f ∈ L2(Cn).

Obviously, this implies that fε → f in L2(D,φ).
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Let δν be a sequence of small numbers with δν ↘ 0. For each δν , we define
Dδν

= {z ∈ D| ρ(z) < −δν}. Then Dδν
is a sequence of relatively compact open

subsets of D with union equal to D. Using similar arguments as before, for any
first order differential operator Di with constant coefficients, if Dif ∈ L2(D,φ), we
have

Difε = Di(f ∗ χε) = Dif ∗ χε → Dif in L2(Dδν
, φ)

as ε→ 0. Since ϑφ = ϑ+A0 where A0 is an operator of degree 0, we have ∂̄fε → ∂̄f

and ϑφfε → ϑφf in L2(Dδν
, φ) on Dδν

, where fε ∈ C∞(p,q)(Dδν
).

To see that this can be done up to the boundary, we first assume that the
domain D is star-shaped and 0 ∈ D is a center. We approximate f first by dilation
componentwise. Let Dε = {(1 + ε)z | z ∈ D} and

f ε = f

(
z

1 + ε

)
,

where the dilation is performed for each component of f . Then D ⊂⊂ Dε and
f ε ∈ L2(Dε). Also ∂̄f ε → ∂̄f ∈ L2(D) and ϑφf

ε → ϑφf ∈ L2(D). By regularizing
f ε componentwise as before, we can find a family of f(ε) ∈ C∞(p,q)(D) defined by

(4.3.10) f(ε) = f

(
z

1 + ε

)
∗ χδε ,

where δε ↘ 0 as ε ↘ 0 and δε is chosen sufficiently small. We have f(ε) → f in
L2(D,φ), ∂̄f(ε) → ∂̄f and ϑφf(ε) → ϑφf in L2(D,φ). Thus, C∞(p,q)(D) is dense in the
graph norm when D is star-shaped. The general case follows by using a partition of
unity since we assume our domain has at least C2 boundary. (In fact, C1 boundary
will suffice in this step).

(ii). Compactly supported smooth forms (i.e., forms with coefficients in C∞0 (D))
are dense in Dom(∂̄∗φ) in the graph norm

f → ‖f‖φ + ‖∂̄∗φf‖φ.

We first assume that φ = 0. Since ∂̄ is the maximal closure (i.e., the domain of ∂̄
contains all elements in C∞(p,q)(D)) of the Cauchy-Riemann operator, its L2 adjoint,

∂̄∗, is minimal. This means that if f ∈ Dom(∂̄∗) and we extend f to f̃ on the whole
space Cn by setting f̃ to be zero in Dc, then ϑf̃ ∈ L2(Cn) in the distribution sense.
In fact, for f ∈ Dom(∂̄∗), we have

ϑf̃ = ϑ̃f

where ϑ̃f = ϑf in D and ϑ̃f = 0 in Dc. This can be checked from the definition of
∂̄∗, since for any v ∈ C∞(p,q−1)(C

n),

(f̃ , ∂̄v)Cn = (f, ∂̄v)D = (∂̄∗f, v)D = (ϑf, v)D = (ϑ̃f , v)Cn .
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Again, we can assume that D is star-shaped and 0 is a center. The general case can
be proved using a partition of unity. We first approximate f̃ by

f̃−ε = f̃

(
z

1− ε

)
.

Then f̃−ε has compact support in D and ϑf̃−ε → ϑf̃ in L2(Cn). Regularizing f̃−ε

by convolution as before, we define

(4.3.11) f(−ε) = f̃

(
z

1− ε

)
∗ χδε

.

Then the f(−ε) are (p, q)-forms with coefficients in C∞0 (D) such that f(−ε) → f in
L2(D) and ϑf(−ε) → ϑf in L2(D). This proves (ii) when φ = 0. Again, in this step
we only require that the boundary be C1. The case for ∂̄∗φ can be proved similarly.

However, compactly supported smooth forms are not dense in Dom (∂̄) in the
graph norm f → ‖f‖φ + ‖∂̄f‖φ. Nevertheless, we have:

(iii). D`
(p,q) is dense in Dom(∂̄) in the graph norm

f → ‖f‖φ + ‖∂̄f‖φ.

To prove (iii), we must use Friedrichs’ lemma in a more subtle way. From (i), it
suffices to show that for any f ∈ C∞(p,q)(D) that one can find a sequence fn ∈ D`

(p,q)

such that fn → f in L2(D,φ) and ∂̄fn → ∂̄f in L2(D,φ). We may assume φ = 0
and the general case is similar.

We regularize near a boundary point z0 ∈ bD. Let U be a small neighborhood of
z0. By a partition of unity, we may assume that D ∩U is star-shaped and f is sup-
ported in U∩D. Let ρ be a C`+1 defining function such that |dρ| = 1 on bD. Shrink-
ing U if necessary, we can choose a special boundary chart (t1, t2, · · · , t2n−1, ρ)
where (t1, t2, · · · , t2n−1), when restricted to bD, forms a coordinate system on bD.
Let w̄1, · · · , w̄n be an orthonormal basis for (0,1)-forms on U such that ∂̄ρ = w̄n.
Written in this basis,

f =
∑

′

|I|=p,|J|=q

fI,Jw
I ∧ w̄J ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are increasing multiindices, and wI =
wi1 ∧· · ·∧wip , w̄J = w̄j1 ∧· · ·∧ w̄jq . Each fI,J is a function in C`(D). We note that
both ∂̄ and ϑ are first order differential operators with variable coefficients which
are in C`(D) when computed in the special frame w1, · · · , wn. We write

f = fτ + fν ,

where
fτ =

∑
′

|I|=p,|J|=q, n/∈J

fI,Jw
I ∧ w̄J ,

fν =
∑

′

|I|=p,|J|=q, n∈J

fI,Jw
I ∧ w̄J .
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fτ is the complex tangential part of f , and fν is the complex normal part of f .
From Lemma 4.2.1 and (4.2.6′′), it follows that

f ∈ D`
(p,q) if and only if fν = 0 on bD.

We also observe that from integration by parts, for f ∈ C∞(p,q)(D), g ∈ C∞(p,q+1)(D),

(4.3.12) (∂̄f, g) = (f, ϑg) +
∫

bD

〈σ(∂̄, dρ)f, g〉dS,

where dS is the surface measure of bD and

σ(∂̄, dρ)f = ∂̄(ρf) = ∂̄ρ ∧ f = ∂̄ρ ∧ fτ on bD.

Thus, when we do integration by parts for ∂̄f , only the tangential part fτ will
appear in the boundary term. This is called the Cauchy data of f with respect to
the operator ∂̄. The Cauchy data of f with respect to ∂̄ contains the tangential
part of f , and it does not contain the complex normal part fν (From (4.2.7), it is
easy to see that the Cauchy data of f for ϑ is the complex normal part fν).

We regularize only the complex normal part of f and leave the complex tangential
part fτ unchanged. Let f̃ν be the extension of fν to Cn by setting f̃ν equal to zero
outside D. We approximate f̃ν by the dilation and regularization by convolution
as in (4.3.11),

fν
(−ε) = f̃ν

(
z

1− ε

)
∗ χδε

.

Thus, fν
(−ε) is smooth and supported in a compact subset in D ∩ U . By this, we

approximate fν by fν
(−ε) ∈ C

∞
0 (D∩U) in the L2 norm. Furthermore, by extending

∂̄fν to be zero outside D ∩ U and denoting the extension by ˜̄∂fν , we have

∂̄f̃ν = ˜̄∂fν in L2(Cn)

in the distribution sense. This follows from (4.3.12) since fν ∈ C`(D) and for any
g ∈ C∞(p,q+1)(C

n),

(f̃ν , ϑg)Cn = (∂̄fν , g)D −
∫

bD

〈∂̄ρ ∧ fν , g〉dS = (˜̄∂fν , g)Cn .

Since ∂̄ is a first order differential operator with variable coefficients, using the
arguments for (ii), but now applying Friedrichs’ lemma (see Appendix D), we have

(4.3.13) ∂̄fν
(−ε) → ∂̄f̃ν in L2(Cn).

We set
f(−ε) = fτ + fν

(−ε).

It follows f(−ε) ∈ D`
(p,q) since each coefficient and wi is in C`(D ∩ U). Also we see

that
f(−ε) ∈ D`

(p,q) and f(−ε) → f in L2(D).
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To see that ∂̄f(−ε) → ∂̄f in the L2(D) norm, using (4.3.13), we find that

∂̄f(−ε) = ∂̄fτ + ∂̄fν
(−ε) → ∂̄f in L2(D) as ε→ 0.

Thus, D`
(p,q) is dense in Dom(∂̄) in the graph norm f → ‖f‖φ + ‖∂̄f‖φ. This proves

(iii).

To finish the proof of the lemma, we assume that φ = 0. For any f ∈ Dom(∂̄) ∩
Dom(∂̄∗), we use a partition of unity and the same notation as before to regularize
f in each small star-shaped neighborhood near the boundary. We regularize the
complex tangential and normal part separately by setting

f̃(ε) = fτ
(ε) + fν

(−ε),

where fτ
(ε) is the regularization defined by (4.3.10) for each coefficient in the com-

plex tangent component and fν
(−ε) is the regularization defined by (4.3.11) for each

coefficient in the complex normal component. It follows that for sufficiently small
ε > 0, fν

(−ε) has coefficients in C∞0 (D) and fτ
(ε) has coefficients in C∞(D). Thus we

see that
f̃(ε) ∈ D`

(p,q), f̃(ε) → f in L2(D).

It follows from steps (i), (iii) and Friedrichs’s lemma that

∂̄f̃(ε) → ∂̄f in L2(D).

Also, from steps (i) and (ii), it follows that

ϑf̃(ε) → ϑf̃ in L2(Cn),

where f̃ is the extension of f to be zero outside D. This shows that D`
(p,q) is dense

in Dom(∂̄)∩Dom(∂̄∗) in the graph norm f → ‖f‖+‖∂̄f‖+‖∂̄∗f‖. Thus, the lemma
is proved for φ = 0. For φ 6= 0 the proof is similar and the density lemma is proved.

Proposition 4.3.3. Let D be a bounded pseudoconvex domain in Cn with C2

boundary and φ ∈ C2(D). We have for every f ∈ Dom(∂) ∩Dom(∂
∗
φ),

(4.3.14)
∑
I,K

′
∑
j,k

∫
D

∂2φ

∂zj ∂zk
fI,jK f̄I,kK e−φdV ≤ ‖ ∂f ‖2φ + ‖ ∂∗φf ‖2φ .

Proof. From the assumption that D is pseudoconvex and has C2 boundary, we have
for any f ∈ D1

(p,q),

∑
i,j

∫
bD

∂2ρ

∂zi∂z̄j
fI,iK f̄I,jKe

−φdS ≥ 0,

since f satisfies (4.2.6′). The proposition follows directly from Proposition 4.3.1
and Lemma 4.3.2.
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Theorem 4.3.4 (L2 existence theorems for ∂̄). Let D be a bounded pseudo-
convex domain in Cn. For every f ∈ L2

(p,q)(D), where 0 ≤ p ≤ n, 1 ≤ q ≤ n with
∂f = 0, one can find u ∈ L2

(p,q−1)(D) such that ∂u = f and

(4.3.15) q

∫
D

| u |2 dV ≤ eδ2
∫
D

| f |2 dV,

where δ = sup
z,z′∈D

|z − z′| is the diameter of D.

Proof. We first prove the theorem for D with C2 boundary. Without loss of gen-
erality, we may assume that 0 ∈ D. We shall choose φ = t|z|2 for some positive
number t. From Proposition 4.3.3, we have for any g ∈ Dom(∂) ∩Dom(∂

∗
φ),

(4.3.16) tq

∫
D

| g |2 e−t|z|2dV ≤ ‖ ∂g ‖2φ + ‖ ∂∗φg ‖2φ .

Since ∂̄2 = 0, we have

(4.3.17) R(∂̄) ⊂ Ker(∂̄) and R(∂
∗
φ) ⊂ Ker(∂

∗
φ).

It follows from (4.3.16) that for any g ∈ Dom(∂
∗
φ) ∩Ker(∂),

(4.3.18) tq

∫
D

| g |2 e−t|z|2dV ≤ ‖ ∂∗φg ‖2φ .

Using Lemma 4.1.1, we have that R(∂̄) is closed in L2
(p,q)(D,φ). To show that

(4.3.19) R(∂̄) = Ker(∂̄),

we claim that for any f ∈ L2
(p,q)(D) with ∂f = 0, there exists a constant C > 0

such that

(4.3.20) | (f, g)φ | ≤ C ‖ ∂
∗
φg ‖φ, for all g ∈ Dom(∂

∗
φ).

Using Lemma 4.1.1, R(∂
∗
φ) is also closed. From (4.1.1), we have

L2
(p,q)(D,φ) = Ker(∂̄)⊕Ker(∂̄)⊥ = Ker(∂̄)⊕R(∂

∗
φ).

For any g1 ∈ Dom(∂
∗
φ) ∩Ker(∂), using (4.3.18),

| (f, g1)φ | ≤ ‖ f ‖φ‖ g1 ‖φ ≤
1√
tq
‖ f ‖φ‖ ∂

∗
φg1 ‖φ .

If g2 ∈ Dom(∂
∗
φ) ∩Ker(∂)⊥, we have

(f, g2)φ = 0,
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since f ∈ Ker(∂). For any g ∈ Dom(∂
∗
φ), we write g = g1 + g2 where g1 ∈ Ker(∂)

and g2 ∈ Ker(∂)⊥ = R(∂
∗
φ) ⊂ Ker(∂

∗
φ). Thus, g2 ∈ Dom(∂

∗
φ) and ∂

∗
φg2 = 0. This

implies that g1 ∈ Dom(∂
∗
φ) and ∂

∗
φ g = ∂

∗
φ g1. Hence, we have for any g ∈ Dom(∂

∗
φ),

| (f, g)φ | = | (f, g1)φ |

≤ 1√
tq
‖ f ‖φ‖ ∂

∗
φg1 ‖φ

=
1√
tq
‖ f ‖φ‖ ∂

∗
φg ‖φ .

This proves the claim (4.3.20). Using the Hahn-Banach theorem and the Riesz
representation theorem applied to the antilinear functional ∂

∗
φg → (f, g)φ, there

exists u ∈ L2
(p,q−1)(D,φ) such that for every g ∈ Dom(∂

∗
φ),

(f, g)φ = (u, ∂
∗
φg)φ,

and
‖ u ‖φ ≤

1√
tq
‖ f ‖φ .

This implies that ∂u = f in the distribution sense and u satisfies

q

∫
D

| u |2 dV ≤ qetδ2
∫
D

| u |2 e−t|z|2dV

≤ 1
t
etδ2

∫
D

| f |2 e−t|z|2dV

≤ 1
t
etδ2

∫
D

| f |2 dV.

Since the function 1
t e

tδ2
achieves its minimum when t = δ−2, we have

q

∫
D

| u |2 dV ≤ eδ2
∫
D

| f |2 dV.

This proves the theorem when the boundary bD is C2.
For a general pseudoconvex domain, from Definition 3.4.9, one can exhaust D

by a sequence of pseudoconvex domains with C∞ boundary Dν . We write

D =
∞
∪

ν=1
Dν ,

where each Dν is a bounded pseudoconvex domain with C∞ boundary and Dν ⊂
Dν+1 ⊂ D for each ν. Let δν denote the diameter for Dν . On each Dν , there exists
a uν ∈ L2

(p,q−1)(Dν) such that ∂uν = f in Dν and

q

∫
Dν

| uν |2 dV ≤ eδ2ν
∫

Dν

| f |2 dV ≤ eδ2
∫
D

| f |2 dV.
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We can choose a subsequence of uν , still denoted by uν , such that uν ⇀ u weakly
in L2

(p,q−1)(D). Furthermore, u satisfies the estimate

q

∫
D

| u |2 dV ≤ lim inf eδ2ν

∫
Dν

| f |2 dV ≤ eδ2
∫
D

| f |2 dV,

and ∂u = f in D in the distribution sense. Theorem 4.3.4 is proved.

Theorem 4.3.5. Let D be a pseudoconvex domain in Cn. For every f ∈ L2
(p,q)(D,

loc), where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂f = 0, one can find u ∈ L2
(p,q−1)(D, loc)

such that ∂u = f .

Proof. Since D is pseudoconvex, from Definition 3.4.9, there exists a C∞ strictly
plurisubharmonic exhaustion function σ for D. For any f ∈ L2

(p,q)(D, loc), we can
choose a rapidly increasing convex function η(t), t ∈ R such that η(t) = 0 when
t ≤ 0 and f ∈ L2

(p,q)(D, η(σ)). Let Dν = {z ∈ D| σ(z) < ν}, then

D =
∞
∪

ν=1
Dν ,

where each Dν is a bounded pseudoconvex domain with C∞ boundary and Dν ⊂
Dν+1 ⊂ D for each ν. Since η(σ) is plurisubharmonic, the function φ = η(σ) + |z|2
is strictly plurisubharmonic with

n∑
j,k=1

∂2φ

∂zj∂z̄k
(z)aj āk ≥ |a|2

for all (a1, · · · , an) ∈ Cn and all z ∈ D. Applying Proposition 4.3.3 to each Dν we
have for any g ∈ Dom(∂) ∩Dom(∂

∗
φ),

q ‖ g ‖2φ(Dν) ≤
∫

Dν

∑
I,K

′
∑
j,k

∂2φ

∂zj ∂z̄k
gI,jKgI,kK e−φdV

≤ ‖ ∂g ‖2φ(Dν) + ‖ ∂∗φg ‖2φ(Dν) .

Repeating the same argument as in Theorem 4.3.4, there exists a uν ∈ L2
(p,q−1)(Dν ,

φ) such that ∂̄uν = f in Dν and

q

∫
Dν

|uν |2e−φdV ≤
∫

Dν

|f |2e−φdV ≤
∫
D

|f |2e−φdV <∞.

Taking a weak limit u of uν as ν →∞, we have shown that there exists u such that
∂̄u = f in D and

q

∫
D

|u|2e−φdV ≤
∫
D

|f |2e−φdV.

This proves the theorem.
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4.4 L2 Existence Theorems for the ∂̄-Neumann Operator

We shall use the L2 existence theorems for ∂̄ in Section 4.3 to establish the exis-
tence theorem for the ∂̄-Neumann operator on any bounded pseudoconvex domain
D in Cn. Using Proposition 4.2.3, the operator �(p,q) is closed and self-adjoint.
Thus, the kernel of �(p,q), denoted by Ker(�(p,q)), is closed. From the Hilbert
space theory, we have the following weak Hodge decomposition

(4.4.1) L2
(p,q)(D) = R(�(p,q))⊕Ker(�(p,q)),

where R(�(p,q)) denotes the range of �(p,q). We shall show that R(�(p,q)) is closed
and Ker(�(p,q)) = {0}. We claim that

(4.4.2) Ker(�(p,q)) = Ker(∂̄) ∩Ker(∂̄∗) = {0} for q ≥ 1.

For any α ∈ Ker(�(p,q)), we have α ∈ Dom(∂̄) ∩Dom(∂̄∗) and

(α,�(p,q)α) = ‖∂̄α‖2 + ‖∂̄∗α‖2 = 0.

Thus, Ker(�(p,q)) ⊂ Ker(∂̄)∩Ker(∂̄∗). On the other hand, if α ∈ Ker(∂̄)∩Ker(∂̄∗),
then α ∈ Dom(�(p,q)) and �(p,q)α = 0. Thus, Ker(�(p,q)) ⊃ Ker(∂̄) ∩Ker(∂̄∗) and
the first equality in (4.4.2) is proved. To see that Ker(∂̄) ∩Ker(∂̄∗) = {0}, we note
that if α ∈ Ker(∂̄), from Theorem 4.3.4, there exists u ∈ L2

(p,q−1)(D) such that
α = ∂̄u. If α is also in Ker(∂̄∗), we have

0 = (∂̄∗∂̄u, u) = ‖∂̄u‖2

and α = 0. This proves (4.4.2).

We shall show that R(�(p,q)) is closed and the following L2 existence theorem
holds for the ∂̄-Neumann operator.

Theorem 4.4.1. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2. For each
0 ≤ p ≤ n, 1 ≤ q ≤ n, there exists a bounded operator N(p,q) : L2

(p,q)(D)→ L2
(p,q)(D)

such that
(1) R(N(p,q)) ⊂ Dom(�(p,q)),

N(p,q)�(p,q) = �(p,q)N(p,q) = I on Dom(�(p,q)).
(2) For any f ∈ L2

(p,q)(D), f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f .
(3) ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄), 1 ≤ q ≤ n− 1.
(4) ∂̄∗N(p,q) = N(p,q−1)∂̄

∗ on Dom(∂̄∗), 2 ≤ q ≤ n.
(5) Let δ be the diameter of D. The following estimates hold for any f ∈

L2
(p,q)(D):

‖ N(p,q)f ‖ ≤
eδ2

q
‖ f ‖,

‖ ∂̄N(p,q)f ‖ ≤

√
eδ2

q
‖ f ‖,

‖ ∂̄∗N(p,q)f ‖ ≤

√
eδ2

q
‖ f ‖ .
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Proof. Using Theorem 4.3.4, for any f ∈ L2
(p,q)(D), q > 0 with ∂̄f = 0, there exists

u ∈ L2
(p,q−1)(D) such that ∂̄u = f and u satisfies the estimate (4.3.15). Thus, R(∂̄)

is closed in every degree and is equal to Ker(∂̄). It follows from Lemma 4.1.1 that
R(∂̄∗) is closed also for every q, and we have the following orthogonal decomposition:

(4.4.3) L2
(p,q)(D) = Ker(∂̄)⊕R(∂̄∗) = R(∂̄)⊕R(∂̄∗).

For every f ∈ Dom(∂̄) ∩Dom(∂̄∗), we have

f = f1 ⊕ f2

where f1 ∈ R(∂̄) and f2 ∈ R(∂̄∗). Also, we have f1, f2 ∈ Dom(∂̄) ∩ Dom(∂̄∗),
∂̄f = ∂̄f2, ∂̄∗f = ∂̄∗f1.

Using Theorem 4.3.4 and (4.1.3) and (4.1.4) in Lemma 4.1.1, we have the follow-
ing estimates:

(4.4.4) ‖f1‖2 ≤ cq‖∂̄∗f1‖2

and

(4.4.5) ‖f2‖2 ≤ cq+1‖∂̄f2‖2,

where the constant cq = eδ2/q. Combining (4.4.4), (4.4.5) we have

(4.4.6) ‖f‖2 = ‖f1‖2 + ‖f2‖2 ≤ cq(‖∂̄f‖2 + ‖∂̄∗f‖2)

for every f ∈ Dom(∂̄) ∩Dom(∂̄∗). Thus for any f ∈ Dom(�(p,q)), we have

(4.4.7)

‖f‖2 ≤ cq[(∂̄f, ∂̄f) + (∂̄∗f, ∂̄∗f)]

= cq[(∂̄∗∂̄f, f) + (∂̄∂̄∗f, f)]

= cq(�(p,q)f, f)

≤ cq‖�(p,q)f‖‖f‖.

Hence,

(4.4.8) ‖f‖ ≤ cq‖�(p,q)f‖.

It follows from Lemma 4.1.1 (since �(p,q) is a closed operator from Proposition
4.2.3) that the range of �(p,q) is closed. We have the strong Hodge decomposition

L2
(p,q)(D) = R(�(p,q)) = ∂̄∂̄∗(Dom(�(p,q)))⊕ ∂̄∗∂̄(Dom(�(p,q))).

Also, from (4.4.8), �(p,q) is one to one and the range of �(p,q) is the whole space
L2

(p,q)(D). There exists a unique inverse N(p,q) : L2
(p,q)(D)→ Dom(�(p,q)) such that

N(p,q)� = �N(p,q) = I. Using (4.4.8), N(p,q) is bounded. The assertions (1) and
(2) in Theorem 4.4.1 have been established.
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To show that ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄), we note that from (2), ∂̄f =
∂̄∂̄∗∂̄N(p,q)f for f ∈ Dom(∂̄). It follows that

N(p,q+1)∂̄f = N(p,q+1)∂̄∂̄
∗∂̄N(p,q)f

= N(p,q+1)(∂̄∂̄∗ + ∂̄∗∂̄)∂̄N(p,q)f

= ∂̄N(p,q)f.

If 2 ≤ q ≤ n, one can prove N(p,q−1)∂̄
∗ = ∂̄∗N(p,q) on Dom(∂̄∗) similarly.

To prove (5), we see from (4.4.8) that

‖ N(p,q)f ‖ ≤
eδ2

q
‖ f ‖ for f ∈ L2

(p,q)(D).

Using (2), we have
(∂̄N(p,q)f, ∂̄N(p,q)f) + (∂̄∗N(p,q)f, ∂̄

∗N(p,q)f)

= ((∂̄∂̄∗ + ∂̄∗∂̄)N(p,q)f,N(p,q)f)

= (f,N(p,q)f)

≤ ‖f‖‖N(p,q)f‖

≤ eδ2

q
‖f‖2.

This proves (5). The proof of Theorem 4.4.1 is complete.

Corollary 4.4.2. Let D and N(p,q) be the same as in Theorem 4.4.1, where 0 ≤
p ≤ n, 1 ≤ q ≤ n. For any α ∈ L2

(p,q)(D) such that ∂̄α = 0, the (p, q − 1)-form

(4.4.9) u = ∂̄∗N(p,q)α

satisfies the equation ∂̄u = α and the estimate

‖u‖2 ≤ eδ2

q
‖α‖2.

The solution u is called the canonical solution to the equation (4.0.1) and it is
the unique solution which is orthogonal to Ker(∂̄).

Proof. We have from (2) of Theorem 4.4.1,

α = ∂̄∂̄∗N(p,q)α+ ∂̄∗∂̄N(p,q)α.

Using (3) in Theorem 4.4.1, we have

∂̄N(p,q)α = N(p,q+1)∂̄α = 0,

since ∂̄α = 0. Thus we have α = ∂̄∂̄∗N(p,q)α. The estimate of u follows from (5) in
Theorem 4.4.1. If v is another solution orthogonal to Ker(∂̄), then u−v ∈ Ker(∂̄)∩
Ker(∂̄∗) = 0. This proves the uniqueness of the canonical solution. Corollary 4.4.2
is proved.

The existence of the ∂̄-Neumann operator for q = 0, N(p,0), is also important.
Let �(p,0) = ∂̄∗∂̄ on L2

(p,0)(D). We define

H(p,0)(D) = {f ∈ L2
(p,0)(D)| ∂̄f = 0}.

H(p,0)(D) is a closed subspace of L2
(p,0) since ∂̄ is a closed operator. Let H(p,0)

denote the projection from L2
(p,0)(D) onto the set H(p,0)(D). We have the following

theorem.
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Theorem 4.4.3. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2. There
exists an operator N(p,0) : L2

(p,0)(D)→ L2
(p,0)(D) such that

(1) R(N(p,0)) ⊂ Dom(�(p,0)),
N(p,0)�(p,0) = �(p,0)N(p,0) = I −H(p,0).

(2) For every f ∈ L2
(p,0)(D), f = ∂̄∗∂̄N(p,0)f ⊕H(p,0)f.

(3) ∂̄N(p,0) = N(p,1)∂̄ on Dom(∂̄),
∂̄∗N(p,1) = N(p,0)∂̄

∗ on Dom (∂̄∗).
(4) N(p,0) = ∂̄∗N2

(p,1)∂̄.
(5) Let δ be the diameter of D. For any f ∈ L2

(p,0)(D),

‖ N(p,0)f ‖ ≤ eδ2 ‖ f ‖,

‖ ∂̄N(p,0)f ‖ ≤
√
eδ ‖ f ‖ .

Proof. Note that H(p,0)(D) = H(p,0) = Ker(�(p,0)). We first show that �(p,0) is
bounded away from zero on (H(p,0))⊥. Since ∂̄ has closed range in every degree,
∂̄∗ also has closed range by Lemma 4.1.1. If f ∈ Dom(�(p,0)) ∩ (H(p,0))⊥, we have
f ⊥ Ker(∂̄) and f ∈ R(∂̄∗).

Let α = ∂̄f , then α ∈ L2
(p,1)(D) since f ∈ Dom(�(p,0)). Using (4) in Theorem

4.4.1, we have that φ ≡ ∂̄∗N(p,1)α is the unique solution satisfying ∂̄φ = α and
φ ⊥ Ker(∂̄). Thus, φ = f . Applying Corollary 4.4.2, we have

‖f‖2 ≤ c‖α‖2 = c‖∂̄f‖2 = c(�(p,0)f, f) ≤ c‖�(p,0)f‖‖f‖,

where c = eδ2. This implies that

‖f‖ ≤ eδ2‖�(p,0)f‖ for f ∈ Dom(�(p,0)) ∩ (H(p,0))⊥.

Using Lemma 4.1.1, we see that �(p,0) has closed range. From (4.1.1), the following
strong Hodge decomposition holds:

L2
(p,0)(D) = R(�(p,0))⊕H(p,0) = ∂̄∗∂̄(Dom(�(p,0)))⊕H(p,0).

For any α ∈ R(�(p,0)), there is a unique N(p,0)α ⊥ H(p,0) such that �(p,0)N(p,0)α =
α. Extending N(p,0) to L2

(p,0)(D) by requiring N(p,0)H(p,0) = 0, N(p,0) satisfies (1)
and (2) in Theorem 4.4.3. That N(p,0) commutes with ∂̄ and ∂̄∗ is proved exactly
as before, and we omit the details. If f ∈ Dom(∂̄), it follows that

(4.4.10) N(p,0)f = (I −H(p,0))N(p,0)f = N(p,0)(∂̄∗∂̄)N(p,0)f = ∂̄∗N2
(p,1)∂̄f.

Thus, (4) holds on Dom(∂̄). In fact, we can show that (4.4.10) holds on all of
L2

(p,0)(D). From (5) in Theorem 4.4.1, we have

‖ N(p,1)α ‖ ≤ eδ2‖α‖.
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We obtain, for any f ∈ C∞(p,0)(D),

(4.4.11)

‖N(p,0)f‖2 = (∂̄∂̄∗N2
(p,1)∂̄f,N

2
(p,1)∂̄f)

= (N(p,1)∂̄f,N
2
(p,1)∂̄f)

≤ ‖N(p,1)∂̄f‖‖N2
(p,1)∂̄f‖

≤ eδ2‖N(p,1)∂̄f‖2.

On the other hand, we have

(4.4.12)

(N(p,1)∂̄f,N(p,1)∂̄f) = (N2
(p,1)∂̄f, ∂̄f)

= (∂̄∗N2
(p,1)∂̄f, f)

≤ ‖N(p,0)f‖‖f‖.

Combining (4.4.11) and (4.4.12), we have proved that

‖N(p,0)f‖ ≤ eδ2‖f‖.

Thus, N(p,0) defined by (4.4.10) is bounded on all smooth (p, 0)-forms and it can be
extended to L2

(p,0)(D) as a bounded operator. This proves (4). It follows from (1)
that

‖∂̄N(p,0)f‖2 = (∂̄∗∂̄N(p,0)f,N(p,0)f)

= ((I −H(p,0))f,N(p,0)f)

≤ ‖f‖‖N(p,0)f‖ ≤ eδ2‖f‖2.

Theorem 4.4.3 is proved.

Corollary 4.4.4. Let D be a bounded pseudoconvex domain in Cn. For any f ∈
L2

(p,0)(D), we have

(4.4.13) H(p,0)f = f − ∂̄∗N(p,1)∂̄f.

Proof. For any f ∈ Dom(∂̄), this follows from (2) in Theorem 4.4.3, since

H(p,0) = I − ∂̄∗∂̄N(p,0) = I − ∂̄∗N(p,1)∂̄.

From (3) in Theorem 4.4.3, ∂̄∗N(p,1)∂̄ = ∂̄∗∂̄N(p,0) = I − H(p,0) is a bounded
operator on Dom(∂̄), it can be extended to any f ∈ L2

(p,0)(D) by continuity. This
proves the corollary.

Corollary 4.4.4 is especially important when p = 0, so we state it below as a
theorem. Let P denote the projection onto the closed subspace of holomorphic
square integrable functions

H(D) = {f ∈ L2(D) | ∂̄f = 0}.

P is called the Bergman projection and H(D) is called the Bergman space.
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Theorem 4.4.5 (Bergman projection). Let D be a bounded pseudoconvex do-
main in Cn. For any f ∈ L2(D), the Bergman projection Pf is given by

(4.4.14) Pf = f − ∂̄∗N(0,1)∂̄f.

4.5 Pseudoconvexity and the Levi Problem

In this section we show that pseudoconvex domains are domains of holomorphy.
We first examine the solvability of ∂̄ in the C∞(D) category.

Theorem 4.5.1. Let D be a pseudoconvex domain in Cn. For every f ∈ C∞(p,q)(D),
where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂f = 0, one can find u ∈ C∞(p,q−1)(D) such that
∂u = f .

Proof. Let f ∈ C∞(p,q)(D). From Theorem 4.3.5, there exists a strictly plurisub-
harmonic function φ ∈ C∞(D) such that f is in L2

(p,q)(D,φ) and there exists
v ∈ L2

(p,q−1)(D, φ) with ∂̄v = f and

‖ v ‖φ ≤ ‖ f ‖φ .

Repeating the same arguments as in Section 4.4, there exists a weighted ∂̄-
Neumann operator Nφ such that for any f ∈ L2

(p,q)(D,φ), we have

f = ∂̄∂̄∗φNφf + ∂̄∗φ∂̄Nφf.

Since ∂̄f = 0, we have that f = ∂̄∂̄∗φNφf . Setting u = ∂̄∗φNφf , we shall show that
u ∈ C∞(p,q−1)(D). Since ∂̄∗φu = ϑu+A0u = 0 for some zeroth order operator A0, we
have {

∂̄u = f,

ϑu = −A0u ∈ L2(D, loc).

However, ∂̄ ⊕ ϑ is an elliptic system. By this we mean that for any α ∈ C∞(p,q)(D)
such that α has compact support in D, the following inequality holds:

(4.5.1) ‖ α ‖1 ≤ C(‖ ∂̄α ‖ + ‖ ϑα ‖ + ‖ α ‖).

Inequality (4.5.1) is called G̊arding’s inequality. To prove (4.5.1), we use Proposition
4.2.4 and (4.2.8) to get

(4.5.2) 4(‖ ∂̄α ‖2 + ‖ ϑα ‖2) = 4(�α, α) = (−4α, α) = ‖ ∇α ‖2,

where 4 is the real Laplacian and ∇ is the gradient, both act on α componentwise.
When q = 0, (4.5.2) also holds since � = ϑ∂̄ is also equal to − 1

44. Thus (4.5.1)
holds for any compactly supported smooth form α. Let ũ = ζu where ζ ∈ C∞0 (D)
and define uε = ũ ∗ χε where χ and χε are the same as in Lemma 4.3.2. It follows
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that ‖ uε ‖ ≤ ‖ ũ ‖, ∂̄uε = ∂̄ũ ∗ χε and ϑuε = ϑũ ∗ χε. Substituting uε into (4.5.1),
we have

(4.5.3)
‖ uε ‖1 ≤ C(‖ ∂̄uε ‖ + ‖ ϑuε ‖ + ‖ uε ‖)

≤ C(‖ ∂̄ũ ‖ + ‖ ϑũ ‖ + ‖ ũ ‖).

Thus, uε converges in W 1(D) to ũ, and we have u ∈ W 1(D, loc). Continuing
this process to Dkũ where Dk is any kth order differential operator with constant
coefficients, we conclude by induction that u ∈ W k+1(D, loc) for any k ∈ N. The
theorem follows from the Sobolev embedding theorem (see Theorem A.7 in the
Appendix).

The following theorem unifies domains of holomorphy, pseudoconvexity and ex-
istence theorems for the Cauchy-Riemann equations:

Theorem 4.5.2. Let D be a domain in Cn, n ≥ 1. Then the following conditions
are equivalent:

(1) D is pseudoconvex.
(2) D is a domain of holomorphy.
(3) For every f ∈ C∞(p,q)(D), where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂f = 0, one can

find u ∈ C∞(p,q−1)(D) such that ∂u = f .

Proof. We have already proved in Theorem 3.5.5 that (2) implies (1). That (1)
implies (3) follows from Theorem 4.5.1.

To prove that (3) implies (2), we use an induction argument. This is obviously
true for n = 1, since any open set in C is a domain of holomorphy. We shall show
that if (3) implies (2) for n− 1, then it is true for n.

To prove this, for any z0 ∈ bD, we need to construct a holomorphic function in
D which cannot be extended holomorphically across any neighborhood containing
z0. It suffices to prove this in a dense subset of bD.

Let z0 be a boundary point such that there exists a complex (n− 1)-dimensional
hyperplane Σ and z0 ∈ b(Σ ∩ D). Such boundary points are dense in bD. To see
this, we note that for almost every boundary point z0, one can find a ball B ⊂ D
such that z0 ∈ b(B ∩D). At such a z0, we obviously can find a complex hyperplane
Σ passing through the center of the ball and z0. It is easy to see that z0 ∈ b(Σ∩D).
By a linear transformation, we may assume that z0 = 0 and Σ0 = D ∩ {zn = 0} is
nonempty.

We shall show that on Σ0, (3) is fulfilled. Let f be a smooth ∂̄-closed (p, q)-form
on Σ0, where 0 ≤ p ≤ n−1, 1 ≤ q ≤ n−1. We claim that f can be extended to be a
smooth ∂̄-closed form in D. We first extend f to f̃ in D such that f̃ ∈ C∞(D) and
f̃(z) = f̃(z1, · · · , zn) = f(z′, 0) in an open neighborhood of Σ0. This can be done
as follows: Let π : D → Cn−1 be the projection such that π(z) = (z1, · · · , zn−1, 0).
Then the set D0 = D \π−1(Σ0) is a closed subset of D. Since Σ0 and D0 are closed
(with respect to D) disjoint subsets of D, using Urysohn’s lemma, we see that there
exists a function η ∈ C∞(D) such that η = 1 in a neighborhood of Σ0 and η = 0
in a neighborhood of D0. Then we can choose our f̃ = ηπ∗f(z′), where π∗ is the
pull-back of the form f . Let

F (z) = f̃(z)− znu(z)
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where u(z) is chosen such that

(4.5.4) ∂̄u(z) =
∂̄f̃

zn
.

We note that the right-hand side of (4.5.4) is ∂̄-closed and is in C∞(p,q+1)(D), since

f̃ is ∂̄-closed in a neighborhood of Σ0. Thus, from (3), there exists u ∈ C∞(p,q)(D)
satisfying the Equation (4.5.4). This implies that F is ∂̄-closed on D and F = f on
Σ0. Thus, any ∂̄-closed form f on Σ0 can be extended to a ∂̄ closed form F on D.
This is also true for q = 0.

From (3), we can find U(z) ∈ C∞(p,q−1)(D) such that ∂̄U = F in D. Restricting
U to Σ0, we have shown that (3) is fulfilled on Σ0.

By the induction hypothesis, Σ0 is a domain of holomorphy. Hence, there exists
a holomorphic function f(z′) = f(z1, · · · , zn−1) such that f is singular at 0. Since
∂̄f = 0 in Σ0, repeating the same argument above for q = 0, there exists F in D
such that ∂̄F = 0 in D and F = f on Σ0. F (z) is holomorphic in D and is equal to
f(z′, 0) on Σ0. Thus, it is a holomorphic function in D which cannot be extended
across 0. This shows that D is a domain of holomorphy. Thus, (3) implies (2) and
the theorem is proved.

Theorem 4.5.2 solves the Levi problem on pseudoconvex domains in Cn.

NOTES

The ∂̄-Neumann problem was suggested by P. R. Garabedian and D. C. Spencer
[GaSp 1] to study the Cauchy-Riemann equations. This approach generalizes the
Hodge-de Rham theorem from compact manifolds to complex manifolds with bound-
aries. The basic a priori estimates were first proved for (0, 1)-forms by C. B. Morrey
[Mor 1]. J. J. Kohn [Koh 1] has derived the general estimates and has proved the
boundary regularity for the ∂̄-Neumann operator on strongly pseudoconvex mani-
folds. This latter result is actually required in Kohn’s approach to the ∂̄-Neumann
problem which will be discussed in Chapter 5. The use of weighted L2 estimates
which depend on a parameter, combined with the basic estimates of Morrey and
Kohn, to study the overdetermined system was introduced by L. Hörmander [Hör
3] in order to bypass the boundary regularity problem. Related arguments are used
in A. Andreotti and E. Vesentini [AnVe 1].

Lemma 4.1.1 and much of the material on L2 existence theorems presented in
Section 4.3 are taken from the paper of L. Hörmander [Hör 3]. Theorem 4.3.4 is a
special case of Theorem 2.2.3 in [Hör 3] where the precise bounds are given. The
density lemma 4.3.2 was also proved in [Hör 3] in a much more general setting. Using
three different weight functions which are singular near the boundary, L. Hörmander
[Hör 9] gives another approach to L2 existence theorems. The canonical solution
formula given by (4.4.9) and the Bergman projection formula (4.4.14) are due to
J. J. Kohn [Koh 1]. The proof of Theorem 4.5.2 is due to K. Oka [Oka 2] and H.
Bremermann [Bre 1], and F. Norguet [Nor 1] and our presentation follows that of
Section 4.2 in [Hör 9].
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CHAPTER 5

THE ∂̄-NEUMANN PROBLEM

ON STRONGLY PSEUDOCONVEX MANIFOLDS

In this chapter we study boundary regularity for the ∂̄-Neumann problem on
a strongly pseudoconvex domain Ω. Let ρ be a C2 defining function for Ω. The
∂̄-Neumann problem for (p, q)-forms, 0 ≤ p ≤ n, 1 ≤ q ≤ n, in Ω is the boundary
value problem:

(5.0.1)


�u = f in Ω,
∂̄ρ ∨ u = 0 on bΩ,
∂̄ρ ∨ ∂̄u = 0 on bΩ,

where u, f are (p, q)-forms, � = ∂̄ϑ+ ϑ∂̄, ∨ denotes the interior product of forms.
On any bounded pseudoconvex domain Ω in Cn, we have derived the following

estimates: for any f ∈ Dom(∂̄) ∩Dom(∂̄∗),

(5.0.2) ‖ f ‖2Ω ≤
eδ2

q
(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω),

where δ is the diameter of Ω (see (4.4.6)). It follows from Theorem 4.4.1 that the
∂̄-Neumann operator N(p,q) exists in Ω, which solves (5.0.1) in the Hilbert space
sense.

The � operator is elliptic in the interior, but the boundary conditions are not
coercive except when q = n. It only satisfies G̊arding’s inequality in the interior, but
not near the boundary. However, under the assumption of strong pseudoconvexity,
we will show that it satisfies subelliptic 1/2-estimates near the boundary.

In Section 5.1, we prove that the following subelliptic 1/2-estimate holds on a
strongly pseudoconvex domain Ω in Cn: for any f ∈ Dom(∂̄) ∩Dom(∂̄∗),

(5.0.3) ‖ f ‖21
2 (Ω) ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω),

where ‖ ‖ 1
2 (Ω) is the Sobolev norm in the Sobolev space W 1/2

(p,q)(Ω).
The regularity of the ∂̄-Neumann operator in other Sobolev spaces when the

boundary bΩ is C∞ is discussed in Section 5.2. In Section 5.3, we discus the
existence and regularity of the ∂̄-Neumann operator in an open subset of a complex
manifold with a Hermitian metric. In particular, a solution to the Levi problem
on strongly pseudoconvex manifolds is obtained using the ∂̄-Neumann operator.
Finally, the Newlander-Nirenberg theorem is proved by using the solution for ∂̄ on
an almost complex manifold in the last section.
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5.1 Subelliptic Estimates for the ∂̄-Neumann Operator

In this section we shall derive the subelliptic 1/2-estimate for the ∂̄-Neumann
operator when Ω is strongly pseudoconvex with C2 boundary. We shall use N
instead of N(p,q) to simplify the notation. We also use L2(Ω), W s(Ω) andW s(Ω, loc)
to denote the spaces L2

(p,q)(Ω), W s
(p,q)(Ω) and W s

(p,q)(Ω, loc) respectively, where
W s(Ω) is the Sobolev space, s ∈ R. (See Appendix A for its definition and basic
properties.) The norm in W s is denoted by ‖ ‖s(Ω).

We first observe that the first order system

∂̄ ⊕ ϑ : C∞(p,q)(Ω)→ C∞(p,q+1)(Ω)⊕ C∞(p,q−1)(Ω)

is elliptic in the interior. This means that we have G̊arding’s inequality in the
interior.

Proposition 5.1.1. Let Ω be a bounded domain in Cn and η ∈ C∞0 (Ω). For any
(p, q)-form f ∈ L2

(p,q)(Ω) such that ∂̄f ∈ L2
(p,q+1)(Ω) and ϑf ∈ L2

(p,q−1)(Ω), where
0 ≤ p ≤ n and 0 ≤ q ≤ n, we have the following estimates:

(5.1.1) ‖ ηf ‖21(Ω) ≤ C(‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω + ‖ f ‖2Ω),

where C is a constant depending only on η but not on f .

Proof. Using the basic estimates proved in Proposition 4.3.1, when φ = 0, we have
for any η ∈ C∞0 (Ω) and f ∈ C∞(p,q)(Ω), 0 ≤ p ≤ n and 1 ≤ q ≤ n,

(5.1.2)

∑
I,J

′
∑

k

‖ ∂(ηfI,J)
∂z̄k

‖2Ω = (‖ ∂̄(ηf) ‖2Ω + ‖ ϑ(ηf) ‖2Ω)

≤ C(‖ η∂̄f ‖2Ω + ‖ ηϑf ‖2Ω + ‖ f ‖2Ω).

(5.1.2) also holds trivially for q = 0 (in this case, ϑf = 0). But

(5.1.3) ‖ ∂(ηfI,J)
∂z̄k

‖2Ω = ‖ ∂(ηfI,J)
∂zk

‖2Ω

from integration by parts. We have for any smooth f ,

‖ ηf ‖21(Ω) ≤ C

∑
I,J

′
∑

k

‖ ∂(ηfI,J)
∂zk

‖2Ω +
∑
I,J

′
∑

k

‖ ∂(ηfI,J)
∂z̄k

‖2Ω + ‖ f ‖2Ω


≤ C(‖ η∂̄f ‖2Ω + ‖ ηϑf ‖2Ω + ‖ f ‖2Ω).

We note that one can also use (4.5.2) to prove the above a priori estimates. Estimate
(5.1.1) follows from regularization similar to (4.5.3) and we omit the details.

If f ∈ Dom(∂̄)∩Dom(∂̄∗), then f ∈W 1(Ω, loc). The difficulty for the ∂̄-Neumann
problem is only on the boundary. The following subelliptic 1/2-estimates for a
strongly pseudoconvex domain are of fundamental importance:
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Theorem 5.1.2. Let Ω be a bounded strongly pseudoconvex domain in Cn with C2

boundary. The following estimate holds: for any 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1,
there exists C > 0 such that for any f ∈ Dom(∂̄) ∩Dom(∂̄∗),

(5.1.4) ‖ f ‖21
2 (Ω) ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω),

where C is independent of f .

Theorem 5.1.3. Let Ω be a bounded strongly pseudoconvex domain in Cn with C2

boundary. For any 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1, the ∂̄-Neumann operator N
satisfies the estimates:

(5.1.5) ‖ Nf ‖21
2 (Ω) ≤ C ‖ f ‖

2
− 1

2 (Ω), f ∈ L2
(p,q)(Ω),

where C is independent of f . N can be extended as a bounded operator from
W

−1/2
(p,q) (Ω) into W 1/2

(p,q)(Ω). In particular, N is a compact operator on L2
(p,q)(Ω).

We divide the proof of Theorem 5.1.2 into several lemmas. From Lemma 4.3.2,
we have that C1

(p,q)(Ω) ∩ Dom(∂̄∗) = D1
(p,q) is dense in Dom(∂̄) ∩ Dom(∂̄∗) in the

graph norm. We only need to prove (5.1.4) for C1 smooth forms f . The starting
point is the following basic a priori estimate of Morrey-Kohn:

Lemma 5.1.4. Let Ω be a bounded strongly pseudoconvex domain in Cn with C2

boundary bΩ. There exists a constant C > 0, such that for any f ∈ C1
(p,q)(Ω) ∩

Dom(∂̄∗) = D1
(p,q),

(5.1.6)
∫

bΩ

|f |2dS ≤ C(‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω),

where dS is the surface element on bΩ and C is independent of f .

Proof. Let f =
∑′

|I|=p,|J|=q fI,Jdz
I ∧ dz̄J , where I = (i1, · · · , ip) and J = (j1, · · · ,

jq) are increasing multiindices. Let ρ be a C2 defining function for Ω normalized
such that |dρ| = 1 on bΩ. Following Proposition 4.3.1 with φ = 0, we have for each
f ∈ C1

(p,q)(Ω) ∩Dom(∂̄∗),

(5.1.7)

‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω

=
∑
I,J

′
∑

k

‖ ∂fI,J

∂z̄k
‖2Ω +

∑
I,K

′
n∑

i,j=1

∫
bΩ

∂2ρ

∂zi∂z̄j
fI,iK f̄I,jKdS,

where K is an increasing multiindex and |K| = q − 1.
Since bΩ is strongly pseudoconvex with C2 boundary, there exists C0 > 0 such

that for any z ∈ bΩ,

(5.1.8)
n∑

i,j=1

∂2ρ

∂zi∂z̄j
aiāj ≥ C0|a|2, if

n∑
i=1

ai
∂ρ

∂zi
= 0.
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Since f ∈ Dom(∂̄∗) ∩ C1
(p,q)(Ω), we have from Lemma 4.2.1,

n∑
j=1

fI,jK
∂ρ

∂zj
= 0 on bΩ for each I,K.

Substituting (5.1.8) into (5.1.7), we have

‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω ≥
∑
I,J

′
∑

k

‖ ∂fI,J

∂z̄k
‖2Ω + q C0

∫
bΩ

|f |2dS.

This proves the lemma.

Lemma 5.1.5. Let Ω be a bounded domain in Cn with C2 boundary bΩ and let ρ
be a C2 defining function for Ω. There exists a constant C > 0 such that for any
f ∈ C2(Ω)

(5.1.9)
∫

Ω

|ρ||∇f |2dV ≤ C
(∫

bΩ

|f |2dS +
∫

Ω

|f |2dV
)

+ Re
∫

Ω

ρ(4f)f̄dV,

where dS is the surface element on bΩ and C > 0 is independent of f .

Proof. By Green’s theorem, for any u, v ∈ C2(Ω),

(5.1.10)
∫

Ω

(u4v − v4u)dV =
∫

bΩ

(
u
∂v

∂n
− v ∂u

∂n

)
dS,

where ∂/∂n is the directional derivative along the outward normal. Let u = −ρ
and v = |f |2/2, then 4v = Re(f̄4f) + |∇f |2. We have from (5.1.10)

(5.1.11)
∫

Ω

−ρ|∇f |2dV + Re
∫

Ω

−ρ(4f)f̄dV +
∫

Ω

|f |2

2
4ρdV =

∫
bΩ

|f |2

2
∂ρ

∂n
dS.

Since ρ is in C2(Ω), there exists C > 0 such that |4ρ| ≤ C in Ω and |∂ρ/∂n| ≤ C
on bΩ. This implies that

(5.1.12)
∫

Ω

|ρ||∇f |2dV ≤ C
(∫

bΩ

|f |2dS +
∫

Ω

|f |2dV
)

+ Re
∫

Ω

ρ(4f)f̄dV,

where C is independent of f . This proves the Lemma.

Lemma 5.1.6. Let Ω be a bounded domain in Cn with C2 boundary bΩ. There
exists a constant C > 0 such that for any f ∈ C1

(p,q)(Ω),

(5.1.13) ‖ f ‖21
2 (Ω) ≤ C

(∫
bΩ

|f |2dS+ ‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω + ‖ f ‖2Ω
)
,

where C is independent of f .
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Proof. When f ∈ C2
(p,q)(Ω), one sees from Proposition 4.2.4 that �f = − 1

44f ,
where � = ∂̄ϑ + ϑ∂̄ and 4 is defined componentwise. Applying Lemma 5.1.5 to
each component of f , we get

(5.1.14)
∫

Ω

|ρ||∇f |2dV ≤ C
(∫

bΩ

|f |2dS +
∫

Ω

|f |2dV
)

+ 4|(ρ�f, f)Ω|.

Since f ∈ C1
(p,q)(Ω), we have

(5.1.15) ‖ f ‖21
2 (Ω) ≤ C

(∫
Ω

|ρ||∇f |2dV +
∫

Ω

|f |2dV
)
.

(5.1.15) follows from Theorem C.2 in the Appendix applied to each component of
f .

Now integration by parts gives that

(5.1.16)

| (ρ�f, f)Ω | ≤ | (∂̄(ρϑf), f)Ω | + | ([∂̄, ρ]ϑf, f)Ω |
+ | (ϑ(ρ∂̄f), f)Ω | + | ([ϑ, ρ]∂̄f, f)Ω |
≤ | (ρϑf, ϑf)Ω | + | (ρ∂̄f, ∂̄f)Ω |

+ sup
Ω
|∇ρ|(‖ ∂̄f ‖Ω + ‖ ϑf ‖Ω) ‖ f ‖Ω

≤ C(‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω + ‖ f ‖2Ω).

Combining (5.1.14)-(5.1.16), we see that (5.1.13) holds for any f ∈ C2
(p,q)(Ω). An

approximation argument shows that (5.1.13) holds for any f ∈ C1
(p,q)(Ω) since C2(Ω)

is dense in C1(Ω).

Proof of Theorem 5.1.2. From the assumption of strong pseudoconvexity and Lem-
ma 5.1.4, we have for any f ∈ C1

(p,q)(Ω) ∩Dom(∂̄∗),

(5.1.17)
∫

bΩ

|f |2dS ≤ C(‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω).

Using (4.4.6), we also get

(5.1.18) ‖ f ‖2Ω ≤
eδ2

q
(‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω).

Thus, Lemmas 5.1.4 and 5.1.6 show that (5.1.4) holds for all forms f ∈ C1
(p,q)(Ω) ∩

Dom(∂̄∗) = D1
(p,q). Since D1

(p,q) is dense in Dom(∂̄) ∩ Dom(∂̄∗) in the graph norm
‖ ∂̄f ‖Ω + ‖ ∂̄∗f ‖Ω from Lemma 4.3.2, Theorem 5.1.2 is proved.

Proof of Theorem 5.1.3. By the definition of the space W−1/2(Ω) (see Appendix
A), we have

(5.1.19) |(h, g)Ω| ≤ ‖ h ‖ 1
2 (Ω)‖ g ‖− 1

2 (Ω)
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for any h ∈ W 1/2(Ω) and g ∈ W−1/2(Ω). There exists a constant C > 0 such that
for any f ∈ L2

(p,q)(Ω) ∩Dom(�), 0 ≤ p ≤ n and 1 ≤ q ≤ n− 1,

(5.1.20)

‖ f ‖21
2 (Ω) ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω)

= C(�f, f)Ω
≤ C ‖ �f ‖− 1

2 (Ω)‖ f ‖ 1
2 (Ω),

where C is independent of f . Substituting Nf into (5.1.20), we have

‖ Nf ‖ 1
2 (Ω) ≤ C ‖ �Nf ‖− 1

2 (Ω) = C ‖ f ‖− 1
2 (Ω) .

Thus, N can be extended as a bounded operator from W−1/2(Ω) to W 1/2(Ω). Using
the Rellich lemma (see Theorem A.8 in the Appendix), N is a compact operator on
W−1/2(Ω) and L2

(p,q)(Ω). This proves Theorem 5.1.3.

Corollary 5.1.7. Let Ω and f be as in Theorem 5.1.2. Then ∂̄∗N and ∂̄N are
compact operators on L2

(p,q)(Ω). Moreover, the following estimates hold: there exists
a C > 0 such that for any f ∈ L2

(p,q)(Ω),

(5.1.21) ‖ ∂̄∗Nf ‖ 1
2 (Ω) ≤ C ‖ f ‖Ω, 1 ≤ q ≤ n,

(5.1.22) ‖ ∂̄Nf ‖ 1
2 (Ω) ≤ C ‖ f ‖Ω, 0 ≤ q ≤ n− 1,

where C is independent of f .

Proof. Estimate (5.1.22) follows easily from (5.1.4). Since ∂̄Nf is in Dom(∂̄) ∩
Dom(∂̄∗) when 0 ≤ q ≤ n− 1, substituting ∂̄Nf into (5.1.4), we have

‖ ∂̄Nf ‖21
2 (Ω) ≤ C(‖ ∂̄∗∂̄Nf ‖2Ω + ‖ ∂̄∂̄Nf ‖2Ω) ≤ C ‖ f ‖2Ω .

When q > 1, (5.1.21) can be proved similarly since in this case, we also have ∂̄∗Nf
is in Dom(∂̄) ∩ Dom(∂̄∗). When q = 1, ∂̄∗Nf is a (p, 0)-form and (5.1.4) does not
hold for q = 0. The proof of (5.1.21) for q = 1 is much more involved, and will be
postponed. A more general result will be proved in the next section (see Theorem
5.2.6).

Remark. When q = n, the ∂̄-Neumann problem is the classical Dirichlet problem{
�u = f in Ω,
u = 0 on bΩ,

where u and f are (p, n)-forms. In this case, we have G̊arding’s inequality in place
of (5.1.4):

‖ f ‖21(Ω) ≤ C ‖ ∂̄
∗f ‖2Ω, f ∈ Dom(∂̄∗),

where C is independent of f . Since for any f ∈ L2
(p,n)(Ω), Nf ∈ Dom(∂̄∗) and we

obtain

‖ Nf ‖21(Ω) ≤ C ‖ ∂̄
∗Nf ‖2Ω = C(∂̄∂̄∗Nf,Nf)Ω = C(f,Nf)Ω

≤ C ‖ f ‖−1(Ω)‖ Nf ‖1(Ω) .
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N(p,n) can be extended as a bounded operator from W−1(Ω) into W 1
0 (Ω) (see Ap-

pendix A for its definition) for any bounded domain with C2 boundary.

5.2 Boundary Regularity for N and ∂̄∗N

In this section, we assume that Ω is strongly pseudoconvex and its boundary
bΩ is C∞; i.e., there exists a C∞ defining function ρ. We normalize ρ such that
|dρ| = 1 on bΩ. First we derive estimates for the ∂̄-Neumann operator N in Sobolev
spaces for s ≥ 0. As observed in Proposition 5.1.1, the system ∂̄ ⊕ ϑ is elliptic in
the interior. The interior regularity follows from the usual elliptic theory (see e.g.
Lions-Magenes [LiMa 1], Bers-John-Schechter [BJS 1] or Treves [Tre 1]). Based on
G̊arding’s inequality (5.1.1), we have for every η ∈ C∞0 (Ω) and s ≥ 0,

ηNf ∈W s+2
(p,q)(Ω), for any f ∈W s

(p,q)(Ω).

The main result in this section is to prove the following estimates on boundary
regularity for N .

Theorem 5.2.1. Let Ω ⊂ Cn be a bounded strongly pseudoconvex domain with
C∞ boundary. The ∂̄-Neumann operator N is a bounded operator from W s

(p,q)(Ω)
to W s+1

(p,q)(Ω) where s ≥ − 1
2 , 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1, and N satisfies the

estimate: there exists a constant Cs such that for any f ∈W s
(p,q)(Ω),

(5.2.1) ‖ Nf ‖2s+1(Ω) ≤ Cs ‖ f ‖2s(Ω),

where Cs is independent of f .

In order to obtain the boundary regularity, we shall distinguish the tangential
derivatives from the normal derivatives. Restricting to a small neighborhood U
near a boundary point, we shall choose special boundary coordinates t1, · · · , t2n−1, ρ
such that t1, · · · , t2n−1 restricted to bΩ are coordinates for bΩ. Let Dtj

= ∂/∂tj ,
j = 1, · · · , 2n − 1, and Dρ = ∂/∂ρ. Thus Dtj

’s are the tangential derivatives
on bΩ, and Dρ is the normal derivative. For a multiindex α = (α1, · · · , α2n−1),
where each αi is a nonnegative integer, Dα

t denotes the product of Dtj ’s with order
|α| = α1 + · · ·+ α2n−1, i.e.,

Dα
t = Dα1

t1 · · ·D
α2n−1
t2n−1

.

For any u ∈ C∞0 (U ∩ Ω), we define the tangential Fourier transform for u in a
special boundary chart by

ũ(τ, ρ) =
∫

R2n−1
e−i〈t,τ〉u(t, ρ)dt,

where τ = (τ1, · · · , τ2n−1) and 〈t, τ〉 = t1τ1 + · · · + t2n−1τ2n−1. For each fixed
−ε < 0, we define Γε = {z ∈ Ω| ρ(z) = −ε} and set

‖ u(·,−ε) ‖2s(Γε)
=
∫

R2n−1
(1 + |τ |2)s|ũ(τ,−ε)|2dτ.
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We define the tangential Sobolev norms ||| |||s by

|||u|||2s =
∫

R2n−1

∫ 0

−∞
(1 + |τ |2)s|ũ(τ, ρ)|2dρdτ

=
∫ 0

−∞
‖ u(·, ρ) ‖2s(Γρ) dρ.

As usual, tangential norms for forms are defined as the sum of the norms of the
components. The operator Λs

t for any s ∈ R is given by

Λs
tu(t, ρ) = (2π)1−2n

∫
R2n−1

ei〈t,τ〉(1 + |τ |2) s
2 ũ(τ, ρ)dτ.

Using this notation and Plancherel’s theorem (see Theorem A.5 in the Appendix),
we have

|||u|||s = ‖ Λs
tu ‖ .

The tangential norms have the following properties:

Properties for the tangential norms. Let W s
t denote the completion of u ∈

C∞0 (U ∩ Ω) under the ||| |||s norm. Then the following hold:

(1) When s is a nonnegative integer, we have

(5.2.2 i) |||u|||s ≈
∑

0≤|α|≤s

‖ Dα
t u ‖,

where ≈ means that the two norms are equivalent.

(2) For any s ∈ R, there exists a constant C such that

(5.2.2 ii) |||Dα
t f |||s ≤ C|||f |||k+s for |α| = k,

where C is independent of f .

(3) The Schwarz inequality holds; for any s ≥ 0, f ∈W s
t and g ∈W−s

t , we have

(5.2.2 iii) |(f, g)| ≤ C|||f |||s|||g|||−s,

where C = (2π)1−2n.

(4) Given two spaces W s1
t and W s2

t , where s1 and s2 are real numbers, s1 > s2, the
interpolation space [W s1

t ,W s2
t ]θ = W

s1(1−θ)+s2θ
t for any 0 < θ < 1.

Properties (1) and (2) are easily checked from Plancherel’s Theorem (see Theorem
A.5 in the Appendix). (3) follows immediately from the definition. The proof of (4)
is the same as that for the usual Sobolev spaces (see Appendix B). The following
simple fact will also play a crucial rule in proving the boundary regularity.
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Commutator of two operators. For any smooth differential operators A and B
of order k1 and k2, k1 and k2 are nonnegative integers, the commutator [A,B] =
AB −BA is an operator of order k1 + k2 − 1.

The proof follows directly from the definition. We shall denote Λ1
tu = Λtu and

define for any real s,

|||Du|||2s = |||Dρu|||2s + |||Λtu|||2s = |||Dρu|||2s + |||u|||2s+1.

The norm |||Du|||s is stronger than the norm |||u|||s+1 in general, since the normal
derivatives are not controlled in the tangential norms.

By fixing a partition of unity, we can also define ||| |||s(Ωδ) for some tubular
neighborhood Ωδ = {z ∈ Ω | −δ < ρ(z) < 0}. Let Ui, i = 1, 2, · · · ,K, be boundary
coordinate patches such that each Ui ∩ bΩ 6= ∅, ∪K

i=1Ui covers Ωδ and there exists a
special boundary chart on each Ui ∩Ω. We choose ηi ∈ C∞0 (Ui), i = 1, · · · ,K, such
that

K∑
i=1

η2
i = 1 in Ωδ.

For each fixed ε, the norm ‖ ‖s(Γε) is defined by a partition of unity.
We set

|||u|||2s(Ωδ) =
∫ 0

−δ

‖ u(·, ρ) ‖2s(Γρ) dρ.

We choose a special boundary frame such that w1, · · · , wn is an orthonormal basis
for (1,0)-forms with wn = ∂ρ in a boundary patch U as before. Written in this
basis, a smooth (p, q)-form supported in U ∩ Ω can be expressed as

f =
∑

′

|I|=p,|J|=q

fI,Jw
I ∧ w̄J ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are increasing multiindices and wI =
wi1 ∧ · · · ∧ wip , w̄J = w̄j1 ∧ · · · ∧ w̄jq . From Lemma 4.2.1 and (4.2.6′′), it follows
that

f ∈ D(p,q) if and only if fI,J = 0 on bΩ, whenever n ∈ J,

where D(p,q) = C∞(p,q)(Ω)∩Dom(∂̄∗). Thus, the tangential derivatives preserve D(p,q)

in the following sense:

Lemma 5.2.2. Let f ∈ D(p,q). Assume that f is supported in U ∩ Ω and f is
expressed in the special boundary frame. Let T be a first order tangential differential
operator with smooth coefficients acting componentwise. Then Tf ∈ D(p,q).

In order to obtain estimates for the ∂̄-Neumann operator on the boundary, our
first observation is that when f satisfies an elliptic system, then there is no distinc-
tion between the tangential Sobolev norms and the Sobolev norms. We have the
following lemma:
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Lemma 5.2.3. Let Ω be a bounded domain with C∞ boundary and let U be a
special boundary patch. Let f ∈ Dom(∂̄) ∩ Dom(∂̄∗) where the support of f lies in
U ∩ Ω. The following conditions are equivalent:

(a) ‖ f ‖ 1
2 (Ω) <∞.

(b) |||f ||| 1
2 (Ω) <∞.

(c) |||Df |||− 1
2 (Ω) <∞.

(d) ‖ f ‖L2(bΩ) <∞.

Proof. It is obvious from the definition that (a) implies (b).
From the density lemma 4.3.2, we can assume f ∈ C1(U ∩Ω) and the other cases

follow by approximation. To show that (b) implies (c), we note that ∂̄⊕ϑ is elliptic.
We can express Dρf by the sum of the components of ∂̄f , ϑf and the tangential
derivatives of f . Thus

|||Dρf |||− 1
2
≤ C(|||∂̄f |||− 1

2
+ |||ϑf |||− 1

2
+ |||Λtf |||− 1

2
)

≤ C(‖ ∂̄f ‖ + ‖ ϑf ‖ + |||f ||| 1
2
).

To see that (c) implies (d), we use

| f̃(τ, 0) |2 =
∫ 0

−∞
Dρ | f̃(τ, ρ) |2 dρ = Re

∫ 0

−∞
2Dρf̃(τ, ρ)f̃(τ, ρ)dρ

≤ A
∫ 0

−∞
| f̃(τ, ρ) |2 dρ+

1
A

∫ 0

−∞
| Dρf̃(τ, ρ) |2 dρ,

for any A > 0. Choosing A = (1 + |τ |2)1/2 and integrating over R2n−1, we have
from Plancherel’s theorem,

‖ f ‖2L2(bΩ) =
(

1
2π

)2n−1 ∫
R2n−1

| f̃(τ, 0) |2 dτ

≤ C
(∫

R2n−1

∫ 0

−∞
(1 + |τ |2) 1

2 | f̃(τ, ρ) |2 dρdτ
)

+ C

(∫
R2n−1

∫ 0

−∞
(1 + |τ |2)− 1

2 | Dρf̃(τ, ρ) |2 dρdτ
)

≤ C |||Df |||2− 1
2 (Ω).

Finally, (d) implies (a) follows from Lemma 5.1.6 and Lemma 4.3.2, since we
have for any f ∈ Dom(∂̄) ∩Dom(∂̄∗),

‖ f ‖21
2 (Ω) ≤ C

(∫
bΩ

|f |2dS+ ‖ ∂̄f ‖2Ω + ‖ ϑf ‖2Ω + ‖ f ‖2Ω
)
.

We remark that (c) implies (d) can be viewed as a version of the trace theorem
for Sobolev spaces. In general, a function satisfying (a) does not necessarily satisfy
(d) (see Theorem A.9 in the Appendix).

To prove Theorem 5.2.1, we first prove a priori estimates; i.e., we assume that
Nf is smooth up to the boundary.
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Lemma 5.2.4. Let Ω be a bounded pseudoconvex domain with C∞ boundary and
let ρ be a C∞ defining function. Choose δ > 0, such that the tangential norms are
defined on the fixed tubular neighborhood Ωδ = {z ∈ Ω | ρ(z) > −δ}. Then there
exists a constant Ck, k = 1, 2, · · · such that for any f ∈ Dom(�) ∩ C∞(p,q)(Ω),

(5.2.3) ‖ f ‖k(Ω) ≤ Ck(‖ �f ‖k−1(Ω) + |||f |||k(Ωδ)),

where Ck is independent of f .

Proof. We use induction on k for k = 1, 2, · · · . Since

k∑
m=0

|||Dm
ρ f |||k−m ≈ ‖ f ‖k,

(5.2.3) is proved if we can show

(5.2.4)
k∑

m=0

|||Dm
ρ f |||k−m ≤ Ck(‖ �f ‖k−1 + |||f |||k).

We first prove (5.2.4) under the assumption that f is supported in Ω ∩ U where U
is a special coordinate chart near the boundary.

When k = 1, we use the same argument as in Lemma 5.2.2 to express Dρf by
the components of ∂̄f , ϑf and the tangential derivatives of f . We have

‖ Dρf ‖2 ≤ C

(
‖ ∂̄f ‖2 + ‖ ϑf ‖2 +

2n−1∑
i=1

‖ Dti
f ‖2

)
≤ C

(
(�f, f) + |||f |||21

)
≤ C(‖ �f ‖2 + |||f |||21).

This proves (5.2.4) for k = 1. Assuming the lemma holds for k − 1, we shall show
that (5.2.4) holds for k. If m = 1, again we get

(5.2.5)
|||Dρf |||2k−1 ≤ C( |||∂̄f |||2k−1 + |||ϑf |||2k−1 +

2n−1∑
i=1

|||Dti
f |||2k−1)

≤ C( |||∂̄f |||2k−1 + |||ϑf |||2k−1 + |||f |||2k).

Notice that

|||∂̄f |||2k−1 + |||ϑf |||2k−1 = ‖ Λk−1
t ∂̄f ‖2 + ‖ Λk−1

t ϑf ‖2

≤ C

 ∑
0≤|α|≤k−1

‖ Dα
t ∂̄f ‖2 +

∑
0≤|α|≤k−1

‖ Dα
t ϑf ‖2

 .

For any nonnegative integer k, let T k denote any tangential differential operator of
the form Dα

t , where |α| = k. Using Lemma 5.2.2, we find that T kf ∈ D(p,q) and
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T k∂̄f ∈ D(p,q+1) since f ∈ Dom(�). We see that

(5.2.6)

(T k−1∂̄f, T k−1∂̄f) + (T k−1ϑf, T k−1ϑf)

= (∂̄T k−1f, T k−1∂̄f) + (
[
T k−1, ∂̄

]
f, T k−1∂̄f)

+ (ϑT k−1f, T k−1ϑf) + (
[
T k−1, ϑ

]
f, T k−1ϑf)

= (T k−1f, ϑT k−1∂̄f) + (
[
T k−1, ∂̄

]
f, T k−1∂̄f)

+ (T k−1f, ∂̄T k−1ϑf) + (
[
T k−1, ϑ

]
f, T k−1ϑf)

= (T k−1f, T k−1ϑ∂̄f) + (
[
T k−1, ∂̄

]
f, T k−1∂̄f)

+ (T k−1f, T k−1∂̄ϑf) + (
[
T k−1, ϑ

]
f, T k−1ϑf)

+ (T k−1f,
[
ϑ, T k−1

]
∂̄f) + (T k−1f,

[
∂̄, T k−1

]
ϑf)

= (T k−1f, T k−1�f) +R+O(‖ f ‖k−1 (|||∂̄f |||k−1 + |||ϑf |||k−1)),

where
R = (T k−1f,

[
ϑ, T k−1

]
∂̄f) + (T k−1f,

[
∂̄, T k−1

]
ϑf).

The term (T k−1f,
[
ϑ, T k−1

]
∂̄f) in R can be estimated by

(5.2.7)

(T k−1f,
[
ϑ, T k−1

]
∂̄f)

= (T k−1f, ∂̄
[
ϑ, T k−1

]
f) + (T k−1f,

[[
ϑ, T k−1

]
, ∂̄
]
f)

= (ϑT k−1f,
[
ϑ, T k−1

]
f) + (T k−1f,

[[
ϑ, T k−1

]
, ∂̄
]
f)

= (T k−1ϑf,
[
ϑ, T k−1

]
f) + (

[
ϑ, T k−1

]
f,
[
ϑ, T k−1

]
f)

+ (T k−1f,
[[
ϑ, T k−1

]
, ∂̄
]
f).

Similarly, one can estimate the term (T k−1f,
[
∂̄, T k−1

]
ϑf) in R. Thus |R| can be

estimated by

(5.2.8) C(‖ f ‖k−1 |||∂̄f |||k−1 + ‖ f ‖k−1 |||ϑf |||k−1 + ‖ f ‖2k−1).

If we apply (5.2.6), (5.2.7) to each term of the form T |α| = Dα
t , where 0 ≤ |α| ≤ k−1,

we can conclude that∑
0≤|α|≤k−1

(‖ Dα
t ∂̄f ‖2 + ‖ Dα

t ϑf ‖2)

≤ C(‖ Λk−1
t f ‖‖ Λk−1

t �f ‖ + ‖ f ‖k−1 (|||∂̄f |||k−1 + |||ϑf |||k−1) + ‖ f ‖2k−1).

Using the inequality that ab ≤ εa2 + (1/ε)b2 for any ε > 0, we see from (5.2.5) that

|||∂̄f |||2k−1 + |||ϑf |||2k−1

≤ C(‖ Λk−1
t f ‖‖ Λk−1

t �f ‖
+ ‖ f ‖k−1 (|||∂̄f |||k−1 + |||ϑf |||k−1) + ‖ f ‖2k−1)

≤ C|||f |||k−1|||�f |||k−1 + ε(|||∂̄f |||2k−1 + |||ϑf |||2k−1) + Cε ‖ f ‖2k−1 .
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Choosing ε sufficiently small, the induction hypothesis yields

(5.2.9) |||∂̄f |||2k−1 + |||ϑf |||2k−1 ≤ C(‖ �f ‖2k−1 + |||f |||2k−1).

Substituting (5.2.9) back into (5.2.5), we have proved (5.2.4) when m = 1. For
m ≥ 2, we shall repeat the procedure and use induction on 1 ≤ m ≤ k.

Since � is a constant multiple of the Laplacian operator on each component, we
can express D2

ρf by the sum of the components of terms of the form

�f, DρDtj
f, Dti

Dtj
f, i, j = 1, · · · , 2n− 1,

and lower order terms. If m > 2, differentiation shows that one can express Dm
ρ f

by the sum of terms of the form

Dm−2
ρ �f, Dm−1

ρ Dtj
f, Dm−2

ρ Dti
Dtj

f, i, j = 1, · · · , 2n− 1,

and lower order terms. Assuming that (5.2.4) holds for 1, · · · ,m − 1, we use the
induction hypothesis to show that

(5.2.10)

|||Dm
ρ f |||k−m ≤ C( |||Dm−2

ρ �f |||k−m +
2n−1∑
i=1

|||Dm−1
ρ Dti

f |||k−m

+
2n−1∑
i,j=1

|||Dm−2
ρ Dti

Dtj
f |||k−m + ‖ f ‖k−1)

≤ C(‖ �f ‖k−2 + |||Dm−1
ρ f |||k−m+1

+ |||Dm−2
ρ f |||k−m+2 + ‖ f ‖k−1)

≤ C(‖ �f ‖k−2 + ‖ �f ‖k−1 + |||f |||k + ‖ f ‖k−1)

≤ C(‖ �f ‖k−1 + |||f |||k).

Thus, (5.2.4) holds for all m ≤ k. This finishes the proof of Lemma 5.2.4 when f has
compact support in a coordinate patch. The general case follows from a partition of
unity. We shall do this in detail for the case when k = 1. Letting η ∈ C∞(Ω ∩ U),
we have that

‖ ηf ‖21 ≤ C( ‖ ∂̄(ηf) ‖2 + ‖ ϑ(ηf) ‖2 + |||f |||21(Ωδ) )

≤ C( ‖ η∂̄f ‖2 + ‖ ηϑf ‖2 + ‖ f ‖2 + |||f |||21(Ωδ) )

≤ C((η2�f, f)Ω + ε(‖ ∂̄(ηf) ‖2 + ‖ ϑ(ηf) ‖2)
+ Cε ‖ f ‖2 + |||f |||21(Ωδ)).

If we choose ε sufficiently small, then the term

ε(‖ ∂̄(ηf) ‖2 + ‖ ϑ(ηf) ‖2) ≤ ε ‖ ηf ‖21

can be absorbed by the left-hand side. It follows that

‖ ηf ‖21 ≤ C(‖ η�f ‖‖ ηf ‖ + ‖ f ‖2 + |||f |||21(Ωδ))

≤ C(‖ η�f ‖2 + ‖ f ‖2 + |||f |||21(Ωδ))

≤ C(‖ �f ‖2 + |||f |||21(Ωδ)).
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In the last inequality above, we have used ‖ f ‖ ≤ C ‖ �f ‖ which was proved in
Theorem 4.4.1 under the assumption of pseudoconvexity.

If η0 ∈ C∞0 (Ω), using Proposition 5.1.1, one sees that

‖ η0f ‖21 ≤ C ‖ �f ‖2 .

Summing over a partition of unity ηi, i = 0, · · · ,K such that η0 ∈ C∞0 (Ω), each ηi

is supported in a boundary coordinate patch and
∑K

i=0 η
2
i = 1, we have proved

‖ f ‖21 ≤ C(‖ �f ‖2 + |||f |||21(Ωδ)).

The lemma is proved when k = 1. The other cases are proved similarly by using a
partition of unity and induction.

Proposition 5.2.5. Let Ω ⊂⊂ Cn be a bounded strongly pseudoconvex domain with
C∞ defining function. Choose δ > 0, such that the tangential norms are defined on
the fixed tubular neighborhood Ωδ = {z ∈ Ω | ρ(z) > −δ}. For each k = 0, 1, 2, · · · ,
there exists a constant Ck such that for any f ∈ Dom(�) ∩ C∞(p,q)(Ω),

(5.2.11) |||f |||2k+ 1
2 (Ωδ) ≤ Ck ‖ �f ‖2k− 1

2 (Ω),

where Ck is independent of f .

Proof. We shall prove the proposition by induction on k = 0, 1, · · · . When k = 0,
this is already proved in Theorem 5.1.3. Thus we have

(5.2.12) ‖ f ‖ 1
2
≤ C ‖ �f ‖− 1

2
.

(We even have the actual estimates instead of just a priori estimates.) Assume that
(5.2.11) holds for k− 1. Let U be a special coordinate patch. We first assume that
f is supported in Ω∩U and written in the special frame as before. Let T k be a kth
order tangential differential operator of the form Dα

t where |α| = k. From Lemma
5.2.2, we know that T kf ∈ D(p,q). Substituting T kf into the estimate (5.1.4), we
see that

(5.2.13) ‖ T kf ‖21
2
≤ C(‖ ∂̄T kf ‖2 + ‖ ϑT kf ‖2).

Using arguments similar to those in (5.2.6) and (5.2.7), it follows that

(5.2.14)

‖ ∂̄T kf ‖2 + ‖ ϑT kf ‖2

= ‖ T k∂̄f ‖2 + ‖ T kϑf ‖2 + O(‖ f ‖2k)

= (T kf, T k�f) +O(‖ f ‖k |||∂̄f |||k + ‖ f ‖k |||ϑf |||k + ‖ f ‖2k).

Applying the inequality ab ≤ εa2 + 1
ε b

2 again and (5.2.2 ii), (5.2.2 iii), we obtain

(5.2.15)

| (T kf, T k�f) | ≤ C|||T kf ||| 1
2
|||T k�f |||− 1

2

≤ Cε|||�f |||2k− 1
2

+ ε|||T kf |||21
2

≤ Cε|||�f |||2k− 1
2

+ ε|||f |||2k+ 1
2
.



100 The ∂-Neumann Problem on Strongly Pseudoconvex Manifolds

Now since

|||∂̄f |||k + |||ϑf |||k ≤ C
∑
|α|≤k

(‖ Dα
t ∂̄f ‖ + ‖ Dα

t ϑf ‖)

≤ C
∑
|α|≤k

(‖ ∂̄Dα
t f ‖ + ‖ ϑDα

t f ‖) +O(‖ f ‖k),

it follows from from (5.2.14) that

(5.2.16)
∑
|α|≤k

(‖ ∂̄Dα
t f ‖2 + ‖ ϑDα

t f ‖2) ≤ C
(∑
|α|≤k

(Dα
t f, D

α
t �f) + ‖ f ‖2k

)
.

Combining (5.2.13)-(5.2.16) and summing up all the tangential derivatives of the
form Dα

t , where |α| ≤ k, we deduce that

(5.2.17)
|||f |||2k+ 1

2
≤ C

(∑
|α|≤k

|||Dα
t f ||| 12 |||D

α
t �f |||− 1

2
+ ‖ f ‖2k

)
≤ ε|||f |||2k+ 1

2
+ Cε|||�f |||2k− 1

2
+ C ‖ f ‖2k .

Using the interpolation inequality for Sobolev spaces (see Theorem B.2 in the Ap-
pendix), for any ε′ > 0 there exists a Cε′ such that

(5.2.18) |||f |||k ≤ ε′|||f |||k+ 1
2

+ Cε′ |||f ||| 1
2
.

Applying Lemma 5.2.4, we observe that

‖ f ‖k ≤ C( |||f |||k + ‖ �f ‖k−1)

≤ C(ε′|||f |||k+ 1
2

+ Cε′ |||f ||| 1
2
+ ‖ �f ‖k−1).

Choosing first ε and then ε′ sufficiently small, using (5.2.17) and (5.2.18), one obtains

|||f |||2k+ 1
2
≤ C(‖ �f ‖2k− 1

2
+ ‖ f ‖21

2
).

From (5.2.12), we have established

(5.2.19) |||f |||2k+ 1
2
≤ C ‖ �f ‖2k− 1

2
,

when f is supported in a special coordinate patch.
The general case will be derived from a partition of unity. Let η, η′ ∈ C∞0 (U)

and η′ = 1 on the support of η. We have

|||T kηf |||21
2
≤ C( |||ηT kf |||21

2
+ |||η′f |||2k− 1

2
)

≤ C(‖ ∂̄ηT kf ‖2 + ‖ ϑηT kf ‖2 + |||η′f |||2k− 1
2
).

Repeating the previous argument with ηT k substituted for T k, we see that

|||ηf |||2k+ 1
2
≤ ε|||η′f |||2k+ 1

2
+ Cε|||�f |||2k− 1

2
+ C ‖ η′f ‖2k .
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Now for any η0 ∈ C∞0 (Ω), we already know that

‖ η0f ‖k+ 3
2
≤ C ‖ �f ‖k− 1

2
.

Summing over a partition of unity ηi, i = 1, · · · ,K for the tubular neighborhood
Ωδ, yields that for some η0 ∈ C∞0 (Ω),

|||f |||2k+ 1
2 (Ωδ) ≤ C(‖ �f ‖2k− 1

2
+ ‖ η0f ‖2k) ≤ C ‖ �f ‖2k− 1

2
.

This proves the proposition.

Proof of Theorem 5.2.1. Using Theorem 5.1.3, we already know that Theorem 5.2.1
holds when s = −1/2 and

(5.2.20) ‖ Nf ‖ 1
2 (Ω) ≤ C ‖ f ‖− 1

2 (Ω), for any f ∈W− 1
2

(p,q)(Ω).

We shall prove the theorem for s = k when k ∈ N. Since C∞(p,q)(Ω) is dense in
W s

(p,q)(Ω), it suffices to prove the following estimates:

(5.2.21) ‖ Nf ‖s+ 1
2 (Ω) ≤ C ‖ f ‖s− 1

2 (Ω), for any f ∈ C∞(p,q)(Ω).

When s is a nonnegative integer, (5.2.21) has already been established in Proposition
5.2.5 and Lemma 5.2.4 assuming that Nf is smooth up to the boundary. To pass
from a priori estimates to the real estimates, we can use the following elliptic
regularization method:

Let Q be defined by

Q(g, g) = ‖∂̄g‖2 + ‖∂̄∗g‖2, g ∈ Dom(∂̄) ∩Dom(∂̄∗).

We define
Qε(g, g) = Q(g, g) + ε ‖ ∇g ‖2, g ∈ Dε

,

where Dε
is the completion of D(p,q) under the Qε norm. From inequality (4.4.6),

we see that

(5.2.22) Qε(g, g) ≥ C ‖ g ‖2 for every g ∈ Dε
,

where C > 0 is independent of ε (C can be chosen as eδ2/q where δ is the diameter
of Ω). Thus, for any f ∈ L2

(p,q)(Ω), g ∈ Dε
, we can deduce that

(5.2.23) |(f, g)| ≤ C− 1
2 ‖ f ‖ Qε(g, g)

1
2 .

This implies that the map from g 7→ (f, g) is a bounded conjugate linear functional
on Dε

. By the Riesz representation theorem, there exists an element N εf ∈ Dε

such that
(f, g) = Qε(N εf, g) for every g ∈ Dε

.
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Moreover, we have
‖ N εf ‖ ≤ C ‖ f ‖,

where C is the same constant as in (5.2.22). Note that Qε satisfies G̊arding’s
inequality

Qε(f, f) ≥ ε ‖ f ‖21 for every f ∈ Dε
.

Thus, the bilinear form Qε is elliptic on Dε
and we can use the theory for elliptic

boundary value problems on a smooth domain to conclude that N εf ∈ C∞(p,q)(Ω) if
f ∈ C∞(p,q)(Ω). Applying the a priori estimates (5.2.11) to the form N εf , we get

(5.2.24) |||N εf |||k+ 1
2 (Ωδ) ≤ Ck ‖ f ‖k− 1

2 (Ω),

where Ck is independent of ε. The interpolation theorem for the operator N ε on
Sobolev spaces W s(Ω) and tangential Sobolev spaces W s

t (Ωδ) (see Theorem B.3 in
the Appendix) gives

|||N εf |||k(Ωδ) ≤ C ‖ f ‖k−1(Ω) for k = 1, 2, · · · .

Repeating the argument of Lemma 5.2.4, we obtain

‖ N εf ‖k(Ω) ≤ C ‖ f ‖k−1(Ω) for k = 1, 2, · · · .

Thus, a subsequence of N εf converges weakly in W k
(p,q)(Ω) to some element β ∈

W k
(p,q)(Ω). We claim that β = Nf .
For any g ∈ D(p,q),

(f, g) = Q(Nf, g) = Qε(N εf, g).

It follows from the definition of Qε that for any g ∈ D(p,q),

|Q(N εf −Nf, g)| ≤ ε ‖ N εf ‖1‖ g ‖1 ≤ εC ‖ f ‖‖ g ‖1→ 0

as ε → 0. Since D(p,q) is dense in Dom(∂̄) ∩ Dom(∂̄∗) = D from Lemma 4.3.2, we
see that

Q(N εf −Nf, g)→ 0 for every g ∈ D.

Thus, N εf converges toNf weakly in theQ-norm. But (a subsequence of)N εf → β
weakly in the W k norm. Therefore, we must have

Nf = β

and
‖ Nf ‖k ≤ lim inf ‖ N εf ‖k ≤ C ‖ f ‖k−1, k = 1, 2, · · · .

Thus (5.2.21) is proved for s = 0 and s = 1
2 + k, k = 0, 1, 2, · · · . Using the interpo-

lation theorem for operators on Sobolev spaces again, we have for any s ≥ −1
2 ,

‖ Nf ‖s+1 ≤ Cs ‖ f ‖s, f ∈W s
(p,q)(Ω).

This proves Theorem 5.2.1.
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Theorem 5.2.6. Let Ω ⊂⊂ Cn be a bounded strongly pseudoconvex domain with
C∞ boundary. Then ∂̄∗N and ∂̄N are bounded operators from W s

(p,q)(Ω) into

W
s+1/2
(p,q−1)(Ω) and W

s+1/2
(p,q+1)(Ω) respectively, where s ≥ −1/2, 0 ≤ p ≤ n and 1 ≤

q ≤ n− 1. There exists a constant Cs such that for any f ∈W s
(p,q)(Ω),

(5.2.25) ‖ ∂̄∗Nf ‖2s+ 1
2 (Ω) + ‖ ∂̄Nf ‖2s+ 1

2 (Ω) ≤ Cs ‖ f ‖2s(Ω),

where Cs is independent of f .

Proof. When s = −1/2, we have shown in Theorem 5.1.3 that

‖ ∂̄∗Nf ‖2 + ‖ ∂̄Nf ‖2 = (∂̄∂̄∗Nf, Nf) + (∂̄∗∂̄Nf, Nf) = (f, Nf)

≤ ‖ f ‖− 1
2
‖ Nf ‖ 1

2
≤ C ‖ f ‖2− 1

2
.

We shall prove by induction that

(5.2.26) ‖ ∂̄∗Nf ‖2k + ‖ ∂̄Nf ‖2k ≤ Ck ‖ f ‖2k− 1
2
,

for k = 1, 2, · · · . Let η be a cut-off function. If η is supported in a boundary
coordinate patch, let T k denote the same kth order tangential differential operator
of the form ηDα

t , |α| = k. Observe that

(5.2.27)

(T k∂̄∗Nf, T k∂̄∗Nf) + (T k∂̄Nf, T k∂̄Nf)

= (T k∂̄∗Nf, ∂̄∗T kNf) + (T k∂̄Nf, ∂̄T kNf)

+ (T k∂̄∗Nf, [T k, ∂̄∗]Nf) + (T k∂̄Nf, [T k, ∂̄]Nf)

≤ C
(
(T k∂̄∂̄∗Nf, T kNf) + (T k∂̄∗∂̄Nf, T kNf) + E

)
≤ C(T k�Nf, T kNf) + E)

≤ C(|||T kf |||− 1
2
|||T kNf ||| 1

2
+ E)

≤ C(|||f |||k− 1
2
|||Nf |||k+ 1

2
+ E)

≤ C(|||f |||2k− 1
2

+ E),

where E denotes terms which can be bounded by

(5.2.28)
C
(
‖ Nf ‖k (|||∂̄∗Nf |||k + |||∂̄Nf |||k) + ‖ Nf ‖2k

)
≤ ε(|||∂̄∗Nf |||2k + |||∂̄Nf |||2k) + Cε ‖ Nf ‖2k .

Using a partition of unity and summing up all the tangential derivatives up to order
k in (5.2.27), we obtain, using (5.2.28), that

|||∂̄∗Nf |||2k + |||∂̄Nf |||2k ≤ C(‖ f ‖2k−1 + |||f |||2k− 1
2
),

if ε in (5.2.28) is chosen sufficiently small.
Again, using the fact ∂̄ ⊕ ϑ is an elliptic system, the normal derivative can be

expressed as the linear combination of terms which have been estimated before.
The interior regularity is easier. This proves the inequality (5.2.26). The theorem
follows from interpolation.
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Corollary 5.2.7. Let Ω ⊂⊂ Cn be a bounded strongly pseudoconvex domain with
C∞ boundary and 0 ≤ p ≤ n and 0 ≤ q ≤ n − 1. Then N maps C∞(p,q)(Ω) into
C∞(p,q)(Ω). In particular, the Bergman projection P maps C∞(Ω) into C∞(Ω). Also
if f ∈ C∞(p,q)(Ω) and ∂̄f=0, the canonical solution u = ∂̄∗Nf ∈ C∞(p,q−1)(Ω).

Proof. The corollary is an easy consequence from the Sobolev embedding theorem
for q ≥ 1. For q = 0, we use (4) in Theorem 4.4.3. The regularity of the Bergman
projection follows from the formula Pf = f − ∂̄∗N∂̄f = f − ϑN∂̄f .

In Chapter 6, we prove a more precise result for the Bergman projection. In fact,
P preserve W s(Ω) for all s ≥ 0 (see Theorem 6.2.2).

5.3 Function Theory on Manifolds

Let M be a complex manifold of dimension n (For the definition of complex
manifolds, see Chapter 1). The decomposition of differential forms into forms
of type (p, q), the definition of the ∂̄ operator and the definition of plurisubhar-
monic functions for domains in Cn can immediately be extended to forms and
functions on the complex manifold M . In order to study the operator ∂̄ with
Hilbert space techniques, we must equip M with a Hermitian metric such that
CT (M) = T 1,0(M) ⊕ T 0,1(M) and T 1,0(M) ⊥ T 0,1(M). A Hermitian metric in
local coordinates z1, · · · , zn is of the form

n∑
i,j=1

hijdzi ⊗ dz̄j ,

where hij is a positive definite Hermitian matrix with C∞ coefficients. The existence
of a Hermitian metric is trivial locally and is proved globally by a partition of unity.
We fix a Hermitian metric in all that follows. This induces an inner product in
C∞(p,q)(M) for each p ∈ M . If φ, ψ ∈ C∞(p,q)(M), this inner product is denoted by
〈φ, ψ〉. We have the following definition:

Definition 5.3.1. Let p ∈ M and φ ∈ C2(M). If L ∈ T 1,0
p (M), the complex

Hessian of φ at p is defined to be the Hermitian form

L 7→ (∂∂̄φ)p(L ∧ L).

The function φ is called plurisubharmonic at p if the complex Hessian is positive
semi-definite. φ is called strictly plurisubharmonic at p if the complex Hessian is
positive definite.

Let Ω be an open subset in M whose closure is compact in M , i.e., Ω is relatively
compact in M and denoted by Ω ⊂⊂ M . Ω is called a complex manifold with
Ck boundary bΩ if there exists a neighborhood V of Ω and a real-valued function
ρ ∈ Ck(V ) such that Ω = {z ∈ V | ρ < 0}, ρ > 0 in V \ Ω and |dρ| 6= 0 on bΩ. Let
CTp(bΩ) be the complexified tangent bundle of bΩ at p.
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Definition 5.3.2. Let Ω be a complex manifold with C2 boundary and ρ be a C2

defining function. Ω is called pseudoconvex (strictly pseudoconvex) if for each p ∈
bΩ, the restriction of the complex Hessian of ρ to T 1,0

p (M) ∩ CTp(bΩ) is positive
semi-definite (positive definite).

In local coordinates, by the usual Gram-Schmidt orthogonalization process we
can choose an orthonormal basis w1, · · · , wn for (1,0)-forms locally on a sufficiently
small neighborhood U such that 〈wi, wk〉 = δik, i, k = 1, · · · , n. Then written in
this basis, for any u ∈ C1(U), we can write

du =
n∑

i=1

∂u

∂wi
wi +

n∑
i=1

∂u

∂w̄i
w̄i,

where the first order linear differential operators ∂/∂wi and ∂/∂w̄i are duals of wi

and w̄i respectively. Then we have

∂̄u =
n∑

i=1

∂u

∂w̄i
w̄i.

If f is a (p, q)-form on U , then we can write f as

(5.3.1) f =
∑

′

|I|=p,|J|=q

fI,Jw
I ∧ w̄J ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are multiindices and wI = wi1∧· · ·∧wip ,
w̄J = w̄j1 ∧ · · · ∧ w̄jq . If u ∈ C2(U), we set uij to be the coefficients of ∂∂̄u, i.e.,

(5.3.2) ∂∂̄u =
∑
i,j

uijw
i ∧ w̄j .

Let cijk be the smooth functions such that

∂̄wi =
∑
j,k

cijkw̄
j ∧ wk.

Then uij can be calculated as follows:

∂∂̄u = ∂

(∑
k

∂u

∂w̄k
w̄k

)
=
∑
j,k

(
∂2u

∂wj∂w̄k
+
∑

i

∂u

∂w̄i
c̄ijk

)
wj ∧ w̄k.

From the fact that ∂∂̄ + ∂̄∂ = 0, we have

(5.3.3) ujk =
∂2u

∂wj∂w̄k
+
∑

i

∂u

∂w̄i
c̄ijk =

∂2u

∂w̄k∂wj
+
∑

i

∂u

∂wi
cikj .

A function φ ∈ C2 is plurisubharmonic (strictly plurisubharmonic) if the form

n∑
j,k=1

φjkaj āk, a = (a1, · · · , an) ∈ Cn,
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is positive semi-definite (positive definite).
We shall normalize ρ such that |dρ| = 1 on bΩ. Ω is pseudoconvex at a point

z on bΩ if there exists a neighborhood U of z and a local (1,0) orthonormal frame
w1, · · · , wn such that

(5.3.4)
n∑

j,k=1

ρjkaj āk ≥ 0 if
n∑

j=1

aj
∂ρ(z)
∂wj

= 0.

Here a = (a1, · · · , an) is a vector in Cn. If the Hermitian form is strictly positive
for all such a 6= 0, the boundary is strongly pseudoconvex at z.

Note that these definitions are independent of the choice of the defining function
ρ and are independent of the choice of w1, · · · , wn. If we choose a special boundary
chart such that wn = ∂ρ, then ∂/∂wi, i = 1, · · · , n − 1 are tangential operators.
We have, substituting ρ for u in (5.3.3),

(5.3.5) ∂∂̄ρ = ∂̄wn =
∑
j,k

ρjkw
j ∧ w̄k,

where (ρjk) = (c̄njk) = (cnkj) is the Levi matrix. In this case, bΩ is pseudoconvex if
and only if (ρjk)n−1

j,k=1 is positive semi-definite.
We shall use the same Hilbert space theory as that in Chapter 4 to study the

function theory on pseudoconvex manifolds. We fix a function φ ∈ C2(Ω). Let
∂̄ : L2

(p,q)(Ω, φ) → L2
(p,q+1)(Ω, φ) be the closure of the Cauchy-Riemann operator

and we define the Hilbert space adjoint for ∂̄∗φ as before. Let z0 ∈ bΩ be a boundary
point and U be an open neighborhood of z0. We shall fix a special orthonormal
boundary frame w1, · · · , wn = ∂ρ. Writing Li = ∂/∂wi, then L1, · · · , Ln are dual
to the (1,0)-forms w1, · · · , wn and we have

(5.3.6)
{
Li(ρ) = 0, when z ∈ bΩ ∩ U, i = 1, · · · , n− 1,
Ln(ρ) = 1, when z ∈ bΩ ∩ U.

We compute ∂̄f and ϑf in this special coordinate chart. We can write any f ∈
C∞(p,q)(Ω ∩ U) as f =

∑ ′
|I|=p,|J|=qfI,Jw

I ∧ w̄J . Then

(5.3.7)
f ∈ C∞0 (Ω ∩ U) ∩Dom(∂̄∗φ)

if and only if fI,J = 0 whenever n ∈ J,

where C∞0 (U ∩Ω) denotes the space of functions in C∞(Ω) which are supported in
U ∩ Ω.

We denote the space C∞(p,q)(Ω)∩Dom(∂̄∗φ) by D(p,q) and C`
(p,q)(Ω)∩Dom(∂̄∗φ) by

D`
(p,q), ` ∈ N, as before. It follows that

(5.3.8) ∂f =
∑
I,J

′
∑

j

∂fI,J

∂wj
wj ∧ wI ∧ wJ + · · · = Af + · · · ,
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and

(5.3.9) ϑφf = (−1)p−1
∑
I,K

′
∑

j

δφ
j fI,jKw

I ∧ wK + · · · = Bf + · · · ,

where δφ
j u = eφLj(e−φu) and dots indicate terms where no derivatives of fI,J

occur and which do not involve φ. The second equalities in (5.3.8) and (5.3.9) are
definitions of A and B which are first order differential operators.

Thus, we have

(5.3.10)

‖∂f‖2φ + ‖ϑφf‖2φ =
∑
I,J,L

′
∑
j,`

εjJ
`L(Lj(fI,J), L`(fI,L))φ

+
∑
I,K

′
∑
j,k

(δφ
j fI,jK , δ

φ
kfI,kK)φ +R(f),

where R(f) involves terms that can be controlled by O((‖ Af ‖φ + ‖ Bf ‖φ) ‖ f ‖φ)
and εjJ

`L is defined as before. Rearranging the terms in (5.3.10), we have

(5.3.11)

‖∂f‖2φ + ‖ϑφf‖2φ =
∑
I,J

′
∑

j

‖LjfI,J‖2φ

−
∑
I,K

′
∑
j,k

(LkfI,jK , LjfI,kK)φ

+
∑
I,K

′
∑
j,k

(δφ
j fI,jK , δ

φ
kfI,kK)φ +R(f).

We apply integration by parts to the terms (δφ
j fI,jK , δ

φ
kfI,kK)φ. For each u, v ∈

C1
0 (Ω ∩ U), Green’s formula gives

(5.3.12) (u, δφ
j υ)φ = −(Lju, υ)φ + (σju, v)φ +

∫
bΩ

(Ljρ)uve−φdS,

where dS is the surface element on bΩ and σj is in C1(Ω∩U). The boundary term
in (5.3.12) will vanish if j < n from (5.3.6). If f ∈ D(p,q), when we apply (5.3.12)
to the terms (δφ

j fI,jK , δ
φ
kfI,kK)φ, no boundary terms arise since

(5.3.13) fI,J = 0 on bΩ, if n ∈ J,

and if j < n and n ∈ J ,

(5.3.14) Lj(ρ) = Lj(ρ) = Lj(fI,J) = Lj(fI,J) = 0 on bΩ.

In order to calculate the commutator [δφ
j , Lk], we use (5.3.2) and (5.3.3),

(5.3.15)

[δφ
j , Lk] u = [Lj − Lj(φ), Lk]u = [Lj , Lk]u+ LkLj(φ)u

=
∑

i

cikjLi(u)−
∑

i

c̄ijkLi(u) + LkLj(φ)u

= φjku+
∑

i

cikjδ
φ
i (u)−

∑
i

c̄ijkLi(u).
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Using (5.3.12)-(5.3.15), for each fixed I,K, j, k, we have

(5.3.16)

(δφ
j fI,jK , δ

φ
kfI,kK)φ

= (−Lkδ
φ
j fI,jK , fI,kK)φ + (δφ

j fI,jK , σ̄kfI,kK)φ

= (LkfI,jK , LjfI,kK)φ + ([δφ
j , Lk]fI,jK , fI,kK)φ

− (LkfI,jK , σjfI,kK)φ + (δφ
j fI,jK , σ̄kfI,kK)φ.

In the above calculation, no boundary terms arise since f ∈ D(p,q) and by (5.3.13)
and (5.3.14). Introducing the notation

‖ Lf ‖2φ =
∑
I,J

′
∑

j

‖ LjfI,J ‖2φ + ‖ f ‖2φ

and applying integration by parts to the last terms of (5.3.16), we see from (5.3.13),
(5.3.14) that

(5.3.17) |(δφ
j fI,jK , σ̄kfI,kK)φ| ≤ C ‖ Lf ‖φ‖ f ‖φ,

where C is a constant independent of φ. We shall use O(‖ Lf ‖φ ‖ f ‖φ) to denote
terms which are bounded by C ‖ Lf ‖φ‖ f ‖φ where C is a constant independent
of φ. Thus, (5.3.16) reads

(5.3.18)

(δφ
j fI,jK , δ

φ
kfI,kK)

= (LkfI,jK , LjfI,kK)φ + ([δφ
j , Lk]fI,jK , fI,kK)φ

+O(‖ Lf ‖φ‖ f ‖φ)

= (LkfI,jK , LjfI,kK)φ + (φjkfI,jK , fI,kK)φ

+
(∑

i

cikjδ
φ
i fI,jK , fI,kK

)
φ

+O(‖ Lf ‖φ‖ f ‖φ).

If i < n, integration by parts gives

|(cikjδ
φ
i fI,jK , fI,kK)φ| ≤ C ‖ Lf ‖φ‖ f ‖φ .

If i = n, we get, using (5.3.5),

(5.3.19)

(cnkjδ
φ
nfI,jK , fI,kK)φ

=
∫

bΩ∩U

cnkjfI,jK f̄I,kKe
−φdS +O(‖ Lf ‖φ‖ f ‖φ)

=
∫

bΩ∩U

ρjkfI,jK f̄I,kKe
−φdS +O(‖ Lf ‖φ‖ f ‖φ).

Combining (5.3.11), (5.3.18) and (5.3.19), we obtain

(5.3.20)

‖∂f‖2φ + ‖ϑφf‖2φ
=
∑
I,J

′
∑

j

‖LjfI,J‖2φ +
∑
I,K

′
∑
j,k

(φjkfI,jK , fI,kK)φ

+
∑
I,K

′
∑
j,k

∫
bΩ∩U

ρjkfI,jK f̄I,kKe
−φdS +R(f) + E(f),



5.3 Function Theory on Manifolds 109

where |E(f)| ≤ C(‖ Lf ‖φ‖ f ‖φ). Also for any ε > 0, there exists a Cε > 0 such
that

(5.3.21) |R(f)| ≤ ε(‖∂f‖2φ + ‖ϑφf‖2φ) + Cε‖f‖2φ,

where Cε is independent of φ. Thus combining (5.3.20) and (5.3.21), we have proved
the following proposition (notice only three derivatives of ρ are required).

Proposition 5.3.3. Let Ω ⊂⊂M be a complex manifold with C3 boundary and ρ
be a C3 defining function for Ω. For any f ∈ D2

(p,q) such that f vanishes outside a
coordinate patch U near a boundary point in bΩ and φ ∈ C2(Ω), we have

(5.3.22)

‖∂f‖2φ + ‖ϑφf‖2φ

≥ (1− ε)
∑
I,K

′
n∑

j,k=1

(φjkfI,jK , fI,kK)φ

+ (1− ε)
∑
I,K

′
n∑

j,k=1

∫
bΩ∩U

ρjkfI,jK f̄I,kKe
−φdS

+ (1− ε)
∑
I,J

′
n∑

j=1

‖LjfI,J‖2φ +O(ε)(‖ Lf ‖φ‖ f ‖φ),

where ε > 0 can be chosen arbitrarily small and O(ε)(‖ Lf ‖φ‖ f ‖φ) denotes terms
which can be bounded by Cε ‖ Lf ‖φ‖ f ‖φ for some constant Cε independent of φ.

Let λ be the smallest eigenvalue of the Hermitian symmetric form

(5.3.23)
n∑

j,k=1

φjkaj āk, a = (a1, · · · , an) ∈ Cn.

Let µ be the smallest eigenvalue of the Levi form

(5.3.24)
n∑

j,k=1

ρjkaj āk, where
n∑

i=1

ai
∂ρ

∂wi
= 0.

Note that λ and µ are independent of the choice of the basis w1, · · · , wn. We have
the following global a priori estimates:

Proposition 5.3.4. Let Ω ⊂⊂M be a complex manifold with C3 boundary bΩ and
φ ∈ C2(Ω). We have the following estimates: for every f ∈ D(p,q),

(5.3.25) ‖∂f‖2φ + ‖ϑφf‖2φ ≥
1
2

(∫
Ω

(λ− C)|f |2e−φdV +
∫

bΩ

µ |f |2e−φdS

)
,

where λ is the smallest eigenvalue of the form (5.3.23), µ is the smallest eigenvalue
of the Levi form (5.3.24) and C is a constant independent of φ.
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Proof. Let {ηi}Ni=0 be a partition of unity such that η0 ∈ C∞0 (Ω) and each ηi,
1 ≤ i ≤ N , is supported in a coordinate patch Ui, ηi ∈ C∞0 (Ui), Ω ⊂ Ω ∪ (∪

i
Ui),

and
N∑

i=0

η2
i = 1 on Ω.

Since fI,nK = 0 on bΩ, we have, for 1 ≤ i ≤ N ,∑
I,K

′
∑
j,k

∫
bΩ∩Ui

ρjkfI,jK f̄I,kKe
−φdS ≥

∫
bΩ∩Ui

µη2
i |f |2e−φdS.

Applying Proposition 5.3.3 to each ηif , choosing ε sufficiently small, we have

(5.3.26)

∫
bΩ∩Ui

µη2
i |f |2e−φdS +

∫
Ui

λη2
i |f |2e−φdV

≤ 2(‖ ηi∂̄f ‖2φ + ‖ ηiϑφf ‖2φ) + Ci

∫
Ui∩Ω

|f |2e−φdV.

The constant Ci depends only on ηi but not on φ. Summing up over i, the propo-
sition is proved.

From (5.3.25), we can repeat the same argument as in Chapter 4 to prove the
following L2 existence theorem for ∂̄ if there exists a strictly plurisubharmonic
function on Ω.

Theorem 5.3.5. Let Ω ⊂⊂ M be a pseudoconvex manifold with C3 boundary bΩ
such that there exists a strictly plurisubharmonic function φ on Ω. Then for any
f ∈ L2

(p,q)(Ω) with ∂̄f = 0, there exists u ∈ L2
(p,q−1)(Ω) such that ∂̄u = f .

Proof. From pseudoconvexity, µ ≥ 0 on bΩ where µ is the smallest eigenvalue of
the Levi form. We have that the last term in (5.3.25) is nonnegative. Since φ is
strictly plurisubharmonic in Ω which is relatively compact in M , it follows that
λ > 0 where λ is the smallest eigenvalue of the form (5.3.23). If we choose t > 0
such that tλ ≥ C + 2, where C is as in (5.3.25), we see that for any g ∈ D2

(p,q),

(5.3.27) ‖g‖2tφ ≤ ‖∂g‖2tφ + ‖∂̄∗tφg‖2tφ.

Using the same arguments as in the proof of the density lemma, Lemma 4.3.2, we
can show that D2

(p,q) is dense in Dom(∂̄) ∩ Dom(∂̄∗tφ) in the graph norm ‖g‖tφ +
‖∂g‖tφ+‖∂̄∗tφg‖tφ and (5.3.27) holds for any g ∈ Dom(∂̄)∩Dom(∂̄∗tφ). Using Lemma
4.1.1, this implies that R(∂̄) and R(∂̄∗tφ) are closed. To show that R(∂̄) = ker(∂̄),
we repeat the arguments of the proof of Theorem 4.3.4. For any g ∈ L2

(p,q)(Ω) ∩
Dom(∂̄∗tφ), one has

(5.3.28) | (f, g)tφ | ≤ ‖ f ‖tφ‖ g ‖tφ ≤ ‖ f ‖tφ‖ ∂̄∗tφg ‖tφ .

Thus, there exists u ∈ L2
(p,q−1)(Ω) such that ∂̄u = f in Ω and

‖ u ‖tφ ≤ ‖ f ‖tφ .
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This proves the theorem.

We note that if M = Cn, one can take φ = |z|2. However, on a general complex
manifold, there does not always exist a plurisubharmonic function on M .

Let �(p,q) = ∂̄∂̄∗ + ∂̄∗∂̄ on Dom(�(p,q)) and Dom(�(p,q)) be defined as in Defini-
tion 4.2.2. The arguments of the proof of Proposition 4.2.3 can be applied to show
that �(p,q) is a linear, closed, densely defined self-adjoint operator on L2

(p,q)(Ω). Us-
ing the L2 existence theorem 5.3.5, we can obtain the following existence theorem
for the ∂̄-Neumann operator on pseudoconvex manifolds.

Theorem 5.3.6. Let Ω ⊂⊂ M be a pseudoconvex Hermitian manifold with C3

boundary bΩ such that there exists a strictly plurisubharmonic function φ on Ω.
For each p, q such that 0 ≤ p ≤ n, 1 ≤ q ≤ n, there exists a bounded operator
N(p,q) : L2

(p,q)(Ω)→ L2
(p,q)(Ω) such that

(1) R(N(p,q)) ⊂ Dom(�(p,q)),
N(p,q)�(p,q) = �(p,q)N(p,q) = I on Dom(�(p,q)).

(2) For any f ∈ L2
(p,q)(Ω), f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f .

(3) ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄), 1 ≤ q ≤ n− 1.
(4) ∂̄∗N(p,q) = N(p,q−1)∂̄

∗ on Dom(∂̄∗), 2 ≤ q ≤ n.
(5) For any f ∈ L2

(p,q)(Ω) such that ∂̄f = 0, f = ∂̄∂̄∗N(p,q)f .

The proof is exactly the same as the proof for Theorem 4.4.1. One can also show
the existence of N(p,0) for q = 0 following the same arguments as in Theorem 4.4.3
and we omit the details.

If bΩ is strongly pseudoconvex, there exists a c > 0 such that the smallest
eigenvalue of the Levi form µ > c > 0 on bΩ, and we have from (5.3.25) (setting
φ = 0),

(5.3.29) ‖∂f‖2 + ‖ϑf‖2 ≥ c

2

∫
bΩ

|f |2dS − C‖f‖2.

When bΩ is a strongly pseudoconvex manifold with C∞ boundary, we can also
use the boundary term in the estimates (5.3.29) to obtain the existence and the
regularity for the ∂̄-Neumann operator. By using a partition of unity, the Sobolev
spacesW s(Ω) can be defined on a manifold Ω for any s ∈ R (see Appendix A). Using
the same arguments as in Section 5.2, we have the following subelliptic estimates.

Theorem 5.3.7. Let Ω ⊂⊂M be a strongly pseudoconvex Hermitian manifold with
C3 boundary bΩ. There exists a constant C > 0 such that for any f ∈ Dom(∂̄) ∩
Dom(∂̄∗), 0 ≤ p ≤ n and 1 ≤ q ≤ n− 1,

(5.3.30) ‖ f ‖21
2 (Ω) ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω + ‖ f ‖2Ω),

where C is independent of f .

The proof is similar to Theorem 5.1.2. We note that in each coordinate patch
with a special frame, the operators ∂̄ and ϑ given by (5.3.8) and (5.3.9) differ from
(4.2.1) and (4.2.3) only by lower order terms. Thus, the arguments used in proving
Theorem 5.1.2 can be easily modified to prove (5.3.30). We omit the details.
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We can use (5.3.30) to prove that there exists a ∂̄-Neumann operator which
inverts �(p,q). Let

H(p,q)(Ω) = {f ∈ L2
(p,q)(Ω) ∩Dom(∂̄) ∩Dom(∂̄∗)| ∂̄f = ∂̄∗f = 0}

= Ker(∂̄) ∩Ker(∂̄∗)

= Ker(�(p,q)).

The last equality can be verified in the same way as in the proof of (4.4.2). However,
on a strongly pseudoconvex complex manifold, H(p,q)(Ω) = H(p,q) is not always triv-
ial for q ≥ 1. The following theorem shows that H(p,q) is always finite dimensional
when q ≥ 1.

Theorem 5.3.8. Let Ω ⊂⊂M be a strongly pseudoconvex Hermitian manifold with
a C3 boundary bΩ. For any 0 ≤ p ≤ n and 1 ≤ q ≤ n, the space H(p,q) is finite
dimensional. Furthermore, the following estimate holds: for any f ∈ Dom(∂̄) ∩
Dom(∂̄∗) ∩H⊥(p,q),

(5.3.31) ‖ f ‖2Ω ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω).

Proof. We have from (5.3.30),

(5.3.32) ‖ f ‖21
2 (Ω) ≤ C ‖ f ‖

2
Ω, f ∈ H(p,q).

Since W 1/2 is compact in L2(Ω) by the Rellich lemma (see Theorem A.8 in the
Appendix), we have that the unit sphere in H(p,q) is compact. Thus, H(p,q) is finite
dimensional.

If (5.3.31) does not hold, there exists a sequence fn such that fn ∈ Dom(∂̄) ∩
Dom(∂̄∗) ∩H⊥(p,q),

‖ fn ‖2Ω ≥ n(‖ ∂̄fn ‖2Ω + ‖ ∂̄∗fn ‖2Ω).

Let θn = fn/‖ fn ‖Ω. Then ‖ ∂̄θn ‖Ω + ‖ ∂̄∗θn ‖Ω → 0 and ‖ θn ‖Ω = 1. From
(5.3.30) we have ‖ θn ‖ 1

2 (Ω) ≤ C. Using the Rellich lemma, there exists a subsequence
of θn which converges to some element θ ∈ L2

(p,q) ∩ H
⊥
(p,q). However, ∂̄θ = ∂̄∗θ = 0

and ‖ θ ‖Ω = 1, giving a contradiction. This proves (5.3.31).

Let H(p,q) denote the projection onto the subspace H(p,q) where 0 ≤ p ≤ n and
0 ≤ q ≤ n. We note that when q = 0, H(p,0) is the projection onto L2 holomorphic
forms, i.e., forms with L2 holomorphic coefficients. The following theorem gives the
existence and regularity of the ∂̄-Neumann operator on any strongly pseudoconvex
Hermitian manifold.

Theorem 5.3.9. Let Ω ⊂⊂M be a strongly pseudoconvex Hermitian manifold with
C∞ boundary bΩ. For each p, q such that 0 ≤ p ≤ n, 0 ≤ q ≤ n, there exists a
compact operator N(p,q) : L2

(p,q)(Ω)→ L2
(p,q)(Ω) such that

(1) R(N(p,q)) ⊂ Dom(�(p,q)),
N(p,q)�(p,q) = �(p,q)N(p,q) = I− H(p,q) on Dom(�(p,q)).

(2) For any f ∈ L2
(p,q)(Ω), f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f ⊕H(p,q)f.
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(3) ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄).
(4) ∂̄∗N(p,q) = N(p,q−1)∂̄

∗ on Dom(∂̄∗).
(5) N(p,q)(C∞(p,q)(Ω)) ⊂ C∞(p,q)(Ω), q ≥ 0.

H(p,q)(C∞(p,q)(Ω)) ⊂ C∞(p,q)(Ω), q ≥ 0.

Proof. We first prove that R(�(p,q)) is closed for any 1 ≤ q ≤ n. From (5.3.31), we
know that for any f ∈ Dom(�(p,q)) ∩H⊥(p,q),

‖ f ‖2Ω ≤ C(‖ ∂̄f ‖2Ω + ‖ ∂̄∗f ‖2Ω)

= C(�(p,q)f, f)Ω
≤ C ‖ �(p,q)f ‖Ω‖ f ‖Ω .

Now applying Lemma 4.1.1, we see that R(�(p,q)) is closed and

L2
(p,q)(Ω) = R(�(p,q))⊕Ker(�(p,q)) = R(�(p,q))⊕H(p,q).

Let N(p,q) to be the bounded inverse operator of �(p,q) on R(�(p,q)). We extend
N(p,q) to L2

(p,q)(Ω) by setting N(p,q)H(p,q) = 0. One can easily show that (1) and
(2) hold. Using (5.3.30), we observe that for any f ∈ L2

(p,q)(Ω),

(5.3.33)
‖ N(p,q)f ‖21

2 (Ω) ≤ C(‖ �(p,q)N(p,q)f ‖2Ω + ‖ N(p,q)f ‖2Ω)

≤ C ‖ f ‖2Ω .

The Rellich lemma implies that N is a compact operator. (3) and (4) can be verified
by repeating the proofs of (3) and (4) in Theorem 4.4.1. We can establish (5) using
the same arguments in the proof of Theorem 5.2.1. From the proof of Theorem
4.4.3, one can show that N(p,0) exists and can be expressed as

(5.3.34) N(p,0) = ϑN2
(p,1)∂̄.

Also, N(p,0) is bounded. The compactness of N(p,0) follows since ϑN(p,1) is compact
and N(p,1)∂̄ is bounded (see (4.4.12)).

Using the same arguments as the proof of Theorems 5.2.1 and 5.2.6, we have the
following more precise estimates.

Theorem 5.3.10. Let Ω ⊂⊂ M be a strongly pseudoconvex Hermitian manifold
with C∞ boundary bΩ. For q ≥ 1 and each k = 0, 1, 2, · · · , there exists a constant
Ck > 0 such that for any f ∈W k

(p,q)(Ω),

(5.3.35) ‖N(p,q)f‖k+1 ≤ Ck‖f‖k,

(5.3.36) ‖∂̄∗N(p,q)f‖k+ 1
2

+ ‖∂̄N(p,q)f‖k+ 1
2
≤ Ck‖f‖k.
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Corollary 5.3.11. Let Ω ⊂⊂ M be a strongly pseudoconvex Hermitian manifold
with C∞ boundary bΩ. For any f ∈ W k

(p,q)(Ω), q ≥ 1 and k ≥ 0, such that ∂̄f = 0
in Ω and H(p,q)f = 0, we have u = ∂̄∗Nf is a solution of ∂̄u = f in Ω and

‖u‖k+ 1
2
≤ C‖f‖k,

where C is a constant independent of f . In particular, if f ∈ C∞(p,q)(Ω), ∂̄f = 0 and
H(p,q)f = 0, there exists a solution u ∈ C∞(p,q−1)(Ω) such that ∂̄u = f in Ω.

The solution u is called the canonical solution (or Kohn’s solution) to the equation
∂̄u = f and it is the unique solution which is orthogonal to Ker(∂̄).

An important consequence of Corollary 5.3.11 is the solution to the Levi problem
on a strongly pseudoconvex manifold with smooth boundary. A complex manifold
Ω with smooth boundary bΩ is called a domain of holomorphy if for every p ∈
bΩ there is a holomorphic function on Ω which is singular at p (c.f. Definition
3.5.1). In Theorem 4.5.2, we have already proved that pseudoconvex domains in Cn

are domains of holomorphy. The next theorem shows that strongly pseudoconvex
domains in complex manifolds are domains of holomorphy.

Theorem 5.3.12. Let Ω ⊂⊂ M be a strongly pseudoconvex manifold with C∞

boundary bΩ. Then Ω is a domain of holomorphy.

Proof. For each boundary point p ∈ bΩ, we will construct a function h(z) such that
h ∈ C∞(Ω \ {p}), h is holomorphic in Ω and

lim
z→p

h(z) =∞.

Since Ω is strongly pseudoconvex with C∞ boundary bΩ, one can construct a
local holomorphic function f on Ω ∩ U where U is an open neighborhood of p such
that f is singular at p. To do this, let z1, · · · , zn be a coordinate system in the
neighborhood U of p with origin at p. Let r be a smooth defining function for Ω
such that r is strictly plurisubharmonic near p. That such a defining function exists
follows from the same arguments as before (see Theorem 3.4.4). Let

P (z) = −2
n∑

i=1

∂r

∂zi
(0)zi −

n∑
i,j=1

∂2r

∂zi∂zj
(0)zizj .

P (z) is holomorphic in U . Using Taylor’s expansion at 0, there exists a sufficiently
small neighborhood V ⊂ U of 0 and C > 0 such that for any z ∈ Ω ∩ V ,

ReP (z) = −r(z) +
n∑

i,j=1

∂2r

∂zi∂z̄j
(0)ziz̄j +O(|z|3) ≥ C|z|2.

Thus, P (z) 6= 0 when z ∈ Ω ∩ V \ {0}. Setting

f =
1
P
,
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it is easily seen that f is locally a holomorphic function which cannot be extended
holomorphically across 0.

Let χ be a cut-off function such that χ ∈ C∞0 (V ) and χ = 1 in a neighborhood
of 0. We extend χ to be 0 on Ω \ V . Let g be the (0, 1)-form defined by

g = ∂̄(χf) = (∂̄χ)f in Ω.

Obviously g can be extended smoothly up to the boundary. Thus, g ∈ C∞(0,1)(Ω) and
∂̄g = 0 in Ω. To show that H(0,1)g = 0, notice that when n ≥ 3, χf ∈ L2(Ω). Thus,
g ∈ R(∂̄) = Ker(∂̄∗)⊥ and g ⊥ H(0,1). When n = 2, we approximate f by fε = 1

P+ε

for ε ↘ 0. Then χfε ∈ C∞(Ω) and ∂̄(χfε) → g in L2. However, each ∂̄(χfε) is
in the R(∂̄) which is closed from Theorem 5.3.9. This implies that g ∈ R(∂̄) and
H(0,1)g = 0 for n = 2 also. We define

u = ∂̄∗N(0,1)g.

It follows from Corollary 5.3.11 that u ∈ C∞(Ω) and ∂̄u = g in Ω. Let h be defined
by

h = χf − u.
Then, h is holomorphic in Ω, h ∈ C∞(Ω \ {p}) and h is singular at p. This proves
the theorem.

Thus, the Levi problem for strongly pseudoconvex manifolds with smooth bound-
aries is solved.

5.4 Almost Complex Structures

In Chapter 2 we study when a complex vector field in R2 is actually a Cauchy-
Riemann equation in other coordinates. In this section we study the n-dimensional
analog of this problem.

Definition 5.4.1. Let M be a real C∞ manifold of dimension 2n. An almost
complex structure T 1,0(M) is a subbundle of the complexified tangent bundle CT (M)
such that

(1) CT (M) = T 1,0(M) + T 0,1(M),
(2) T 1,0(M) ∩ T 0,1(M) = {0},

where T 0,1(M) = T 1,0(M). M is called an almost complex manifold with an almost
complex structure T 1,0(M).

When M is a complex manifold, there is a canonical T 1,0 defined on M , namely,
the holomorphic vector bundle. In local holomorphic coordinates z1, · · · , zn, in a
neighborhood U , we have that

(5.4.1) T 1,0(M ∩ U) =
〈
∂

∂z1
, · · · , ∂

∂zn

〉
,

where the right-hand side denotes the linear span by vector fields ∂/∂z1, · · · , ∂/∂zn.
Let C∞(T 1,0(M)) denote the smooth sections of T 1,0(M). If M is a complex man-
ifold, we have

(5.4.2) [L,L′] ∈ C∞(T 1,0(M)), for any L, L′ ∈ C∞(T 1,0(M)).
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Definition 5.4.2. An almost complex structure T 1,0(M) is called integrable if
(5.4.2) is satisfied.

A complex manifold is an integrable almost complex manifold. The Newlander-
Nirenberg theorem states that the converse is also true. Before we state and prove
the theorem, we first note that on an almost complex manifold, there is a notion of
the Cauchy-Riemann equations and the ∂̄ operator.

Let Π1,0,Π0,1 denote the projection from CT (M) onto T 1,0(M) and T 0,1(M)
respectively. Then, one has

Π1,0 + Π0,1 = 1, Π1,0Π0,1 = 0, and Π0,1 = Π1,0.

The last equation means that Π0,1ζ = Π1,0ζ̄, for ζ ∈ CT (M). Thus there is a
natural splitting of the differential 1-forms Λ1(M) into (1,0)-forms, Λ1,0(M), and
(0,1)-forms, Λ0,1(M), which are defined to be the dual of T 1,0(M) and T 0,1(M)
respectively. We shall still use Π1,0, Π0,1 to denote the projection from Λ1(M)
onto Λ1,0(M) and Λ0,1(M) respectively. For any smooth function u, we have du =
Π1,0du + Π0,1du. On an almost complex manifold, one can define the Cauchy-
Riemann equation by

∂̄u = Π0,1du and ∂u = Π1,0du,

where u is any smooth function on M . We can also extend this definition to (p, q)-
forms and define ∂ and ∂̄ on (p, q)-forms f to be the projection of the exterior
derivative df into the space of (p+1, q)-forms and (p, q+1)-forms respectively. The
integrability condition guarantees that ∂̄ is a complex.

Lemma 5.4.3. If an almost complex structure is integrable, then d = ∂ + ∂̄ and

∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0.

Proof. If one can show that d = ∂ + ∂̄, then ∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0 follows easily
from degree consideration. It is obvious that d = ∂+∂̄ on functions. For 1-forms, we
have Λ1(M) = Λ1,0(M)+Λ0,1(M). To verify for 1-forms, it suffices to prove for each
(0,1)-form and each (1,0)-form. If f is a (0,1)-form, for any L,L′ ∈ C∞(T 1,0(M)),
we have

df(L,L′) =
1
2

(L(f, L′)− L′(f, L)− (f, [L,L′])) = 0

since T 1,0(M) is integrable. This shows that df has no component of (2,0)-forms.
Similarly, if f is a (1,0)-form, df has no component of (0,2)-forms. In each case,
df = ∂f + ∂̄f . The general case follows from the fact that each (p, q)-form can be
written as linear combination of forms of the type

h = f1 ∧ · · · ∧ fp ∧ g1 ∧ · · · ∧ gq,

where fi’s are (1,0)-forms and gj ’s are (0,1)-forms. Since dh is a sum of a type
(p + 1, q)-form and a type (p, q + 1)-form, we have dh = ∂h + ∂̄h. This proves the
lemma.
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Theorem 5.4.4 (Newlander-Nirenberg). An integrable almost complex mani-
fold is a complex manifold.

Proof. This problem is purely local and we shall assume that M is a small neighbor-
hood of 0 in R2n. Let L1, · · · , Ln be a local basis for smooth sections of T 1,0(M).

If we can find complex-valued functions ζ1, · · · , ζn such that

(5.4.3) Liζj = 0, i, j = 1, · · · , n,

where dζ1, · · · , dζn are linearly independent, then the theorem will be proved since

(5.4.4) 〈L1, · · · , Ln〉 =
〈
∂

∂ζ1
, · · · , ∂

∂ζn

〉
,

where 〈L1, · · · , Ln〉 denotes the linear span of L1, · · · , Ln over C.
Let x1, · · · , x2n be the real coordinates for M and we write zj = xj + ixn+j . We

can, after a quadratic change of coordinates, assume that

(5.4.5) Li =
∂

∂zi
+

n∑
j=1

aij
∂

∂z̄j
, i = 1, · · · , n,

where the aij ’s are smooth functions and aij(0) = 0 for all i, j = 1, · · · , n. At the
origin, Li is the constant coefficient operator ∂/∂zi. We shall show that (5.4.4) can
be solved in a small neighborhood of 0. Let

(5.4.6) Lε
i =

∂

∂zi
+

n∑
j=1

aij(εx)
∂

∂z̄j
, i = 1, · · · , n,

where ε > 0 is small. Then

T 0,1
ε = 〈Lε

1, · · · , Lε
n〉

defines an almost complex structure that is integrable for each ε < ε0 for some
sufficiently small ε0 > 0.

From Lemma 5.4.3, there is a Cauchy-Riemann complex, denoted by ∂̄ε, associ-
ated with each almost complex structure T 0,1

ε . We shall equip the almost complex
structure with a Hermitian metric. Then the existence and regularity theory devel-
oped for ∂̄ in the previous section on any complex manifold can be applied to M
with ∂̄ substituted by ∂̄ε. Let φ =

∑n
i=1 |zi|2 = |x|2, then at 0 we see that

n∑
j,k=1

φjkaj āk =
n∑

i=1

|ai|2.

Thus, φ is a strictly plurisubharmonic function near 0. If we set

Ω = {x ∈M | |x|2 < δ}
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for some small δ > 0, then Ω is strongly pseudoconvex with respect to the almost
complex structure T 0,1

ε (M). Using Corollary 5.3.11, there exists a solution uε
i on Ω

such that

(5.4.7) ∂̄εu
ε
i = ∂̄εzi

and

(5.4.8) ‖ uε
i ‖s ≤ Cs ‖ ∂̄εzi ‖s,

where Cs can be chosen uniformly for ε < ε0. Since

L
ε

izj = āij(εx),

we have
Dα∂̄εzi = O(ε)

for any Dα = (∂/∂x1)α1 · · · (∂/∂x2n)α2n , where the αi’s are nonnegative integers.
This implies that

(5.4.9) ‖ ∂̄εzi ‖s → 0 if ε→ 0.

Let

(5.4.10) ζε
i = zi − uε

i .

The Sobolev embedding theorem (see Theorem A.7 in the Appendix) shows that if
we choose s > n+ 1, then

|duε
i(0)| ≤ ‖ uε

i ‖s ≤ Cs ‖ ∂̄εzi ‖s → 0 if ε→ 0.

We have from (5.4.7) that ∂̄εζ
ε
i = 0 in Ω and also dζε

i (0) = dzi− duε
i(0) are linearly

independent if ε is sufficiently small. If we pull back ζε
i to εΩ by setting ζi = ζε

i (x/ε),
then we have that ∂̄ζi = 0 and dζi are linearly independent in εΩ provided we choose
ε sufficiently small. This proves the theorem.

NOTES

The subelliptic 1/2-estimates and boundary regularity for the ∂̄-Neumann oper-
ator on strongly pseudoconvex manifolds were proved in J. J. Kohn [Koh 1]. Much
of the material concerning strong pseudoconvex domains in this chapter was ob-
tained there. The use of a special boundary frame was due to M. E. Ash [Ash 1]. A
simplification of the proof of the boundary regularity for subelliptic operators using
pseudodifferential operators was given in J. J. Kohn and L. Nirenberg [KoNi 1]
where the method of elliptic regularization was used in order to pass from a priori
estimates to actual estimates. In [KoNi 1], a systematic treatment of the subel-
liptic boundary value problem with any subellipticity 0 < ε ≤ 1/2 was discussed.
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Pseudodifferential operators and subelliptic estimates will be discussed in Chapter
8.

The proof of subelliptic 1/2-estimates in Theorem 5.1.2 follows the approach of J.
Michel and M.-C. Shaw [MiSh 1]. The proof of the boundary regularity discussed in
5.2 is a variation of the proof used in [KoNi 1] since only commutators of differential
operators are used but not pseudodifferential operators. The discussion of function
theory on manifolds mainly follows that of L. Hörmander [Hör 3]. Global strictly
plurisubharmonic functions do not always exists on general complex manifolds. If
M is a Stein manifold, then there exists a strictly plurisubharmonic exhaustion
function for M . Thus Theorem 5.3.5 can be applied to any relatively compact
pseudoconvex manifold Ω which lies in a Stein manifold. For a detailed discussion
of function theory on Stein manifolds, see Chapter 5 in L. Hörmander [Hör 9].

The Levi problem on a strongly pseudoconvex manifold (Theorem 5.3.12) was
first solved by H. Grauert [Gra 1] using sheaf theory. The proof of Theorem 5.3.12
using the existence and the regularity of the ∂̄-Neumann operator was due to J. J.
Kohn [Koh 1]. Since a pseudoconvex domain in Cn by definition can be exhausted by
strongly pseudoconvex domains, using a result of H. Behnke and K. Stein (see [BeSt
1] or [GuRo 1], one can deduce that any pseudoconvex domain in Cn is a domain
of holomorphy (c.f. Theorem 4.5.2). This needs not be true for pseudoconvex
domains in complex manifolds (see J. E. Fornaess [For 1]). More discussions on the
Levi problem on pseudoconvex manifolds can be found in [For 3], [Siu 2].

Theorem 5.4.4 was first proved by A. Newlander and L. Nirenberg [NeNi 1].
B. Malgrange has given a totally different proof (see B. Malgrange [Mal 2] or L.
Nirenberg [Nir 3]). There is yet another proof, due to S. Webster [Web 1], using
integral kernel methods. Our proof was essentially given in J. J. Kohn [Koh 1] as
an application of the ∂̄-Neumann problem.

There is a considerable amount of literature on the ∂̄-Neumann operator, the
canonical solution and the Bergman projection on strongly pseudoconvex domains
in other function spaces, including Hölder and Lp spaces (See R. Beals, P. C. Greiner
and N. Stanton [BGS 1], R. Harvey and J. Polking [HaPo 3,4], I. Lieb and R. M.
Range [LiRa 2,3,4], A. Nagel and E. M. Stein [NaSt 1], D. H. Phong and E. M.
Stein [PhSt 1], R. M. Range [Ran 5] and the references therein). We also refer the
reader to the article by M. Beals, C. Fefferman and R. Grossman [BFG 1] for more
discussions on strongly pseudoconvex domains.
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CHAPTER 6

BOUNDARY REGULARITY FOR ∂

ON PSEUDOCONVEX DOMAINS

Let D be a bounded pseudoconvex domain in Cn with smooth boundary bD. In
this chapter, we study the global regularity of the equation

(6.0.1) ∂u = f on D,

where f ∈ C∞(p,q)(D) with 0 ≤ p ≤ n, 1 ≤ q ≤ n and f is ∂-closed.
The existence theorems for ∂ and the ∂-Neumann operator N on any bounded

pseudoconvex domain have been proved in Chapter 4 in L2 spaces. In this chapter
we are interested in the following questions:

(1) Can one solve equation (6.0.1) with a smooth solution u ∈ C∞(p,q−1)(D) if f
is in C∞(p,q)(D)?

(2) Does the canonical solution ∂
∗
Nf belong toW s

(p,q−1)(D) if f is inW s
(p,q)(D)?

(3) Does the Bergman projection P preserve C∞(D) or W s(D)?
(4) Under what conditions can a biholomorphic mapping between two smooth

bounded domains be extended smoothly up to the boundaries?

From the results in Chapter 5, both N and ∂
∗
N are regular in Sobolev spaces

or the C∞ category if we assume that bD is smooth and strongly pseudoconvex.
In fact, the canonical solution has a “gain” of 1/2 derivative in the Sobolev spaces.
Here, we study the global boundary regularity for ∂ and the ∂-Neumann operator
N on a smooth bounded weakly pseudoconvex domain in Cn.

In Section 6.1, we prove that the first question can be answered affirmatively.
This result is proved using the weighted ∂-Neumann problem. However, the smooth
solution might not be the canonical solution. In Section 6.2, we study the global
regularity for N when the domain has either a smooth plurisubharmonic defining
function or certain transverse symmetry. We establish the Sobolev estimates for
the ∂-Neumann operator and the regularity of the canonical solution on such do-
mains. This result implies the regularity of the Bergman projection and is used
to prove the boundary regularity of biholomorphic mappings between pseudocon-
vex domains. In general, a smooth pseudoconvex domain does not necessarily have
a plurisubharmonic defining function or transverse symmetry. A counterexample,
known as the worm domain, is constructed in Section 6.4. Finally, we prove in
Section 6.5 that, for any s > 0, there is a smooth bounded pseudoconvex domain
on which the ∂-Neumann operator fails to be regular in any Sobolev spaces W k for
k ≥ s.
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6.1 Global Regularity for ∂ on Pseudoconvex Domains with Smooth
Boundaries

The main result in the section is the following theorem:

Theorem 6.1.1. Let D be a smooth bounded pseudoconvex domain in Cn with
n ≥ 2. For every f ∈ C∞(p,q)(D), where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂f = 0, one can
find u ∈ C∞(p,q−1)(D) such that ∂u = f .

We will prove the theorem using the weighted ∂-Neumann operator with respect
to the weighted L2 norm L2(D,φt) introduced in Section 4.2, where φt = t|z|2 for
some t > 0. Theorem 6.1.1 will be proved at the end of this section. We note that
L2(D,φt) = L2(D). The existence for the weighted ∂̄-Neumann operator on any
pseudoconvex domain with smooth boundary follows from the discussion in Chapter
4. We briefly describe below.

From Proposition 4.3.3, we have for any (p, q)-form f ∈ Dom(∂) ∩Dom(∂
∗
φt

),∫
D

∑
I,K

′
∑
j,k

∂2φt

∂zj∂zk
fI,jKf I,kK e−φtdV ≤ ‖ ∂f ‖2φt

+ ‖ ∂∗φt
f ‖2φt

.

Using the notation ‖ ‖(t) = ‖ ‖φt
and ∂

∗
t = ∂

∗
φt

, we see that for any f ∈ Dom(∂) ∩
Dom(∂

∗
t ),

(6.1.1) tq ‖ f ‖2(t) ≤ ‖ ∂f ‖
2
(t) + ‖ ∂∗t f ‖2(t) .

Let �t = ∂∂
∗
t + ∂

∗
t∂. If f ∈ Dom(�t), from (6.1.1), we have that

(6.1.2)

tq ‖ f ‖2(t) ≤ ‖ ∂f ‖
2
(t) + ‖ ∂∗t f ‖2(t)

= (�tf, f)(t)
≤ ‖ �tf ‖(t)‖ f ‖(t) .

Applying Lemma 4.1.1, (6.1.2) implies that the range of �t is closed and �t is one-
to-one. Thus, �t has a bounded inverse Nt, the ∂̄-Neumann operator with weight
φt. We can also show the following existence theorem of the weighted ∂̄-Neumann
operator on any bounded pseudoconvex domain by repeating the same argument
as in Theorem 4.4.1:

Theorem 6.1.2. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2. For each
0 ≤ p ≤ n, 1 ≤ q ≤ n and t > 0, there exists a bounded operator Nt : L2

(p,q)(D) →
L2

(p,q)(D), such that

(1) Range(Nt) ⊂ Dom(�t). Nt�t = �tNt = I on Dom(�t).
(2) For any f ∈ L2

(p,q)(D), f = ∂∂
∗
tNtf ⊕ ∂

∗
t∂Ntf .

(3) ∂Nt = Nt∂ on Dom(∂), 1 ≤ q ≤ n− 1,
∂
∗
tNt = Nt∂

∗
t on Dom(∂

∗
t ), 2 ≤ q ≤ n.

(4) The following estimates hold: For any f ∈ L2
(p,q)(D),

tq ‖ Ntf ‖(t) ≤ ‖ f ‖(t),
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√
tq ‖ ∂Ntf ‖(t) ≤ ‖ f ‖(t),

√
tq ‖ ∂∗Ntf ‖(t) ≤ ‖ f ‖(t) .

(5) If f ∈ L2
(p,q)(D) and ∂f = 0 in D, then for each t > 0, there exists a solution

ut = ∂
∗
tNtf satisfying ∂ut = f and the estimate

tq ‖ ut ‖2(t) ≤ ‖ f ‖
2
(t) .

In Chapter 4, we have chosen t = δ−2, where δ is the diameter of D, to obtain
the best constant for the bound of the ∂̄-Neumann operator without weights. Our
next theorem gives the regularity for Nt in the Sobolev spaces when t is large.

Theorem 6.1.3. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥
2. For every nonnegative integer k, there exists a constant Sk > 0 such that the
weighted ∂̄-Neumann operator Nt maps W k

(p,q)(D) boundedly into itself whenever
t > Sk, where 0 ≤ p ≤ n, 1 ≤ q ≤ n.

Proof. We first prove the a priori estimates for Nt when t is large. Let ϑt be the
formal adjoint of ∂̄ with respect to the weighted norm L2(D,φt). Note that for any
f ∈ C∞(p,q)(D),

ϑtf = eφtϑ(e−φtf) = ϑf + tA0f

for some zeroth order operator A0. Hence, we have that for any f ∈ C∞(p,q)(D) with
compact support in D,

Qt(f, f) = ‖ ∂f ‖2(t) + ‖ ϑtf ‖2(t)

≥ ‖ ∂f ‖2(t) +
1
2
‖ ϑf ‖2(t) − Ct ‖ f ‖2(t)

≥ ‖ f ‖1 − Ct ‖ f ‖2(t),

where ‖ f ‖k=
∑

0≤|α|≤k ‖ Dαf ‖(t).
Thus the G̊arding inequality holds for compactly supported forms and the esti-

mates in the interior are the same as before. We only need to estimate the solution
near the boundary. In the following, C and Ck will always denote a constant inde-
pendent of t.

Since the normal differentiation is controlled by ∂, ∂
∗

and the tangential deriva-
tives, we shall only consider the action of tangential differentiations. Let U be a
special boundary chart near the boundary and w1, · · · , wn = ∂r be a special bound-
ary frame as before, where r is a defining function normalized such that |dr| = 1
on bD. We let T k be a tangential operator of order k and η ∈ C∞0 (U) as defined in
Proposition 5.2.5. We use induction on k to prove the following estimate:

(6.1.3) ‖ f ‖2k ≤ Ck,t ‖ �tf ‖2k, f ∈ Dom(�t) ∩ C∞(p,q)(D).

When k = 0, (6.1.3) holds for any t > 0 by (6.1.2). We assume that (6.1.3) is
true for k − 1 where k ≥ 1.
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From the same argument as in Lemma 5.2.2, writing f in the special frame, we
see that if f ∈ Dom(∂̄∗t ) ∩ C∞(p,q)(D), then ηT kf ∈ Dom(∂) ∩ Dom(∂

∗
t ). We obtain

from (6.1.1) that

(6.1.4) t ‖ ηT kf ‖2(t) ≤ (‖ ∂(ηT kf) ‖2(t) + ‖ ϑt(ηT kf) ‖2(t)).

We note that the commutator [ϑt, ηT
k] = Ak + At

k−1, where Ak is a kth order
differential operator independent of t and At

k−1 is of order k − 1. Thus, using
arguments similar to (5.2.6) and (5.2.7), keeping track of the dependence on t, we
have

(6.1.5)

‖ ∂(ηT kf) ‖2(t) + ‖ (ϑtηT
kf) ‖2(t)

≤ Ck(‖ ηT k∂f ‖2(t) + ‖ ηT kϑtf ‖2(t) + ‖ f ‖2k)

+ Ck,t ‖ f ‖2k−1

≤ Ck(|(ηT kf, ηT k�tf)(t)| + ‖ f ‖2k) + Ck,t ‖ f ‖2k−1

≤ Ck(‖ ηT kf ‖(t)‖ ηT k�tf ‖(t) + ‖ f ‖2k) + Ck,t ‖ f ‖2k−1 .

Combining (6.1.4) and (6.1.5), we get

(6.1.6) t ‖ ηT kf ‖2(t) ≤ Ck(‖ �tf ‖2k + ‖ f ‖2k) + Ck,t ‖ f ‖2k−1,

where the constant Ck is independent of t.
Repeating the arguments of Lemma 5.2.4, we observe that

‖ f ‖2k ≤ Ck(‖ �tf ‖2k−1 + |||f |||2k) + Ck,t ‖ f ‖2k−1 .

Summing up all the tangential derivatives of the form ηT k in (6.1.6) and using a
partition of unity {ηi}Ni=1, such that

∑N
i=1 η

2
i = 1 on D, there exists a constant Ck

such that

(6.1.7)
t ‖ f ‖2k ≤ Ck(‖ �tf ‖2k + ‖ f ‖2k)

+ Ck,t ‖ �tf ‖2k−1 + Ck,t ‖ f ‖2k−1 .

Choosing t > Ck + 1, it follows, using the induction hypothesis, that

‖ f ‖2k ≤ Ck ‖ �tf ‖2k + Ck,t ‖ �tf ‖2k−1 + Ck,t ‖ f ‖2k−1

≤ Ck,t ‖ �tf ‖2k .

This proves the a priori estimates (6.1.3) for the weighted ∂-Neumann operators Nt

when t is sufficiently large. Using the elliptic regularization method as in the proof
of Theorem 5.2.1, one can pass from the a priori estimates to actual estimates and
the theorem is proved.

Arguing as in Theorem 4.4.3, we can prove that the weighted ∂̄-Neumann opera-
tor Nt,(p,0) also exists for q = 0. Let Pt,(p,0) denote the weighted Bergman projection
from L2

(p,0)(D) onto the closed subspace H(p,0)(D) = {f ∈ L2
(p,0)(D) | ∂̄f = 0} with
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respect to the weighted norm L2(D,φt). We have Nt,(p,0) : L2
(p,0)(D) → L2

(p,0)(D)
such that

�t,(p,0)Nt,(p,0) = I − Pt(p,0)

and
Nt,(p,0) = ∂̄∗tN

2
t,(p,1)∂̄.

As in the proof of Corollary 4.4.4, the weighted Bergman projection is given by

Pt,(p,0) = I − ∂̄∗tNt,(p,1)∂̄.

An operator is called exactly regular on W k
(p,q)(D), k ≥ 0, if it maps the Sobolev

space W k
(p,q)(D) continuously into forms with W k(D) coefficients. The following

theorem shows that all the related operators of Nt are also exactly regular if Nt is
exactly regular.

Theorem 6.1.4. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥ 2.
For every nonnegative integer k, there exists a constant Sk > 0 such that for every
t > Sk the operators ∂Nt, ∂

∗
tNt, ∂∂

∗
tNt and ∂

∗
t∂Nt are exactly regular on W k

(p,q)(D),
where 0 ≤ p ≤ n, 1 ≤ q ≤ n. Furthermore, there exists a constant S′k > 0 such that
for t > S′k, the weighted Bergman projection Pt,(p,0) maps W k

(p,0)(D) boundedly into
itself.

Proof. Let Sk be as in Theorem 6.1.3 and t > Sk. From Theorem 6.1.3, Nt is a
bounded map from W k

(p,q)(D) into itself. We shall prove that ∂Nt and ∂
∗
tNt are

exactly regular simultaneously. As before, since ∂̄ ⊕ ϑt is elliptic, we only need to
prove a priori estimates for the tangential derivatives of ∂̄Ntf and ∂̄∗tNtf for any
f ∈ C∞(p,q)(D). Let η and T be as in Theorem 6.1.3 and let Ot(‖ f ‖) denote terms
which can be bounded by Ct ‖ f ‖. We have

‖ ηT k∂Ntf ‖2(t) + ‖ ηT k∂
∗
tNtf ‖2(t)

= (ηT k∂Ntf, ∂ηT
kNtf)(t) + (ηT k∂

∗
tNtf, ∂

∗
t ηT

kNtf)(t)

+Ot((‖ ηT k∂Ntf ‖(t) + ‖ ηT k∂
∗
tNtf ‖(t)) ‖ Ntf ‖k)

= (ηT k∂
∗
t∂Ntf, ηT

kNtf)(t) + (ηT k∂∂
∗
tNtf, ηT

kNtf)(t)

+Ot((‖ ηT k∂Ntf ‖(t) + ‖ ηT k∂
∗
tNtf ‖(t)) ‖ Ntf ‖k + ‖ Ntf ‖2k)

= (ηT k�tNtf, ηT
kNtf)(t)

+Ot((‖ ηT k∂Ntf ‖(t) + ‖ ηT k∂
∗
tNtf ‖k) ‖ Ntf ‖k + ‖ Ntf ‖2k)

≤ C ‖ f ‖k‖ Ntf ‖k
+ Ct((‖ ηT k∂Ntf ‖(t) + ‖ ηT k∂

∗
tNtf ‖k) ‖ Ntf ‖k + ‖ Ntf ‖2k).

Using small and large constants in ab ≤ εa2 + 1
ε b

2, it follows from (6.1.3) that

‖ ηT k∂Ntf ‖(t) + ‖ ηT k∂
∗
tNtf ‖(t) ≤ Ck,t ‖ f ‖k .

By a partition of unity and arguments as before, we obtain the desired a priori
estimates

‖ ∂Ntf ‖k + ‖ ∂∗tNtf ‖k ≤ Ck,t ‖ f ‖k .
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For the operators ∂∂
∗
tNt and ∂

∗
t∂Nt, 1 ≤ q ≤ n, we have

‖ ηT k∂
∗
t∂Ntf ‖2(t) + ‖ ηT k∂∂

∗
tNtf ‖2(t)

= (ηT k∂
∗
t∂Ntf, ηT

k∂
∗
t∂Ntf)(t) + (ηT k∂∂

∗
tNtf, ηT

k∂∂
∗
tNtf)(t)

= (ηT k�tNtf, ηT
k�tNtf)(t)

− (ηT k∂∂
∗
tNtf, ηT

k∂
∗
t∂Ntf)(t) − (ηT k∂

∗
t∂Ntf, ηT

k∂∂
∗
tNtf)(t)

= (ηT kf, ηT kf)(t) − ([∂, ηT k]∂∂
∗
tNtf, ηT

k∂Ntf)(t)

− ([∂
∗
t , ηT

k]∂
∗
t∂Ntf, ηT

k∂
∗
tNtf)(t) + E

= (ηT kf, ηT kf)(t) − ([∂, ηT k]∂
∗
tNtf, ηT

k∂
∗
t∂Ntf)(t)

− ([∂
∗
t , ηT

k]∂Ntf, ηT
k∂∂

∗
tNtf)(t) + E,

where the error term E can be estimated by

(‖ ηT k∂∂
∗
tNtf ‖(t) + ‖ ηT k∂

∗
t∂Ntf ‖(t))(‖ ∂Ntf ‖k + ‖ ∂∗tNtf ‖k)

+ ‖ ∂Ntf ‖2k + ‖ ∂∗tNtf ‖2k .

Since ∂Nt and ∂
∗
tNt are already known to be exactly regular on W k

(p,q)(D), we
obtain using small and large constants that

‖ ηT k∂
∗
t∂Ntf ‖2(t) + ‖ ηT k∂∂

∗
tNtf ‖2(t) ≤ Ck,t ‖ f ‖2k .

Summing over a partition of unity, we have proved

‖ ∂∗t∂Ntf ‖2k + ‖ ∂∂∗tNtf ‖2k ≤ Ck,t ‖ f ‖2k

when t > Sk.
It remains to prove the exact regularity for Pt,(p,0) = I − ∂̄∗tNt,(p,1)∂̄. We use

induction on k to prove the a priori estimates for ∂
∗
tNt,(p,1)∂. The case when k = 0

is obvious. Denoting Nt,(p,1) by Nt, we have

‖ ηT k∂
∗
tNt∂f ‖2(t)

= (ηT k∂
∗
tNt∂f, ηT

k∂
∗
tNt∂f)(t)

= (ηT kNt∂f, ∂ηT
k∂

∗
tNt∂f)(t) +O(‖ Nt∂f ‖k‖ ∂

∗
tNt∂f ‖k)

= (ηT kNt∂f, ηT
k∂f)(t) +O(‖ Nt∂f ‖k‖ ∂

∗
tNt∂f ‖k)

= (ηT k∂
∗
tNt∂f, ηT

kf)(t) +O(‖ Nt∂f ‖k (‖ f ‖k + ‖ ∂∗tNt∂f ‖k)).

Summing over a partition of unity and using the fact that ∂̄ ⊕ ϑt is elliptic, the
small and large constants technique gives

(6.1.8) ‖ ∂∗tNt∂f ‖2k ≤ Ck(‖ f ‖2k + ‖ Nt∂f ‖2k).
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Using estimate (6.1.1) to ηT kNt∂f , we obtain

(6.1.9) t ‖ ηT kNt∂f ‖2(t) ≤ ‖ ∂ηT
kNt∂f ‖2(t) + ‖ ∂∗t ηT kNt∂f ‖2(t) .

Since [∂̄, ηT k]+ [ϑt, ηT
k] = Bk +Bt

k−1 where Bk is a kth order differential operator
independent of t and Bt

k−1 is a differential operator of order k − 1, it follows that

‖∂ηT kNt∂f ‖2(t) + ‖ ∂∗t ηT kNt∂f ‖2(t)
≤ Ck( ‖ ∂∗tNt∂f ‖2k + ‖ Nt∂f ‖2k) + Ck,t ‖ Nt∂̄f ‖2k−1 .

We see, using induction, that ∂̄∗tNt∂̄ is bounded on W k−1(D). The above argument
implies thatNt∂̄ is also bounded onW k−1(D). Thus, after summing over a partition
of unity, if t is chosen to be sufficiently large in (6.1.9), we obtain that

(6.1.10) ‖ Nt∂f ‖2k ≤ ε ‖ ∂
∗
tNt∂f ‖2k + Ck,t ‖ f ‖2k−1,

for some small ε > 0. Letting ε be sufficiently small, (6.1.8) and (6.1.10) together
show

‖ ∂∗tNt∂f ‖2k ≤ Ck,t ‖ f ‖2k .

This proves the a priori estimate for ∂
∗
tNt∂ and Theorem 6.1.4.

We remark that the positive number Sk in Theorem 6.1.4 can be chosen to be
the same as in Theorem 6.1.3.

Corollary 6.1.5. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥ 2.
If f ∈ W k

(p,q)(D), k ≥ 0, such that ∂f = 0, where 0 ≤ p ≤ n and 1 ≤ q ≤ n, then
there exists u ∈W k

(p,q−1)(D) such that ∂u = f on D.

Proof. Since ∂f = 0, using Theorem 6.1.2 u = ∂
∗
tNtf is a solution to the ∂ equation

for any t > 0. If t is sufficiently large, ∂̄∗tNt is bounded on W k
(p,q)(D) by Theorem

6.1.4. This proves the corollary.

Proof of Theorem 6.1.1. From Corollary 6.1.5, there is uk ∈W k
(p,q−1)(D) satisfying

∂uk = f for each positive integer k. We shall modify uk to generate a new sequence
that converges to a smooth solution.

We claim that Wm
(p,q)(D) ∩ Ker(∂) is dense in W s

(p,q)(D) ∩ Ker(∂) for any m >
s ≥ 0.

Let gn ∈ C∞(p,q)(D) be any sequence such that gn → g in W s
(p,q)(D). Using

Theorem 6.1.4, for sufficiently large t, the Bergman projection with weight Pt =
Pt,(p,q) is bounded on Wm

(p,q)(D). Since ∂g = 0, we have g − Ptg = ∂̄∗tNt∂̄g = 0.
Thus, Ptgn = g′n ∈ Wm

(p,q)(D), ∂g′n = 0 and g′n → g in W s
(p,q)(D) since Pt is also

bounded on W s
(p,q)(D). This proves the claim.

Since uk − uk+1 is in W k
(p,q−1)(D) ∩Ker(∂), there exists a vk+1 ∈W k+1

(p,q−1)(D) ∩
Ker(∂) such that

‖ uk − uk+1 − vk+1 ‖k ≤ 2−k, k = 1, 2, · · ·.
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Setting ũk+1 = uk+1 + vk+1, then ũk+1 ∈W k+1
(p,q−1)(D) and ∂ũk+1 = f . Inductively,

we can choose a new sequence ũk ∈W k
(p,q−1)(D) such that ∂ũk = f and

‖ ũk+1 − ũk ‖k ≤ 2−k, k = 1, 2, · · ·.
Set

u∞ = ũN +
∞∑

k=N

(ũk+1 − ũk), N ∈ N.

Then u∞ is well defined and is in WN
(p,q−1)(D) for every N . Thus u∞ ∈ C∞(p,q−1)(D)

from the Sobolev embedding theorem and ∂u∞ = f . This proves Theorem 6.1.1.

We also obtain the following result in the proof:

Corollary 6.1.6. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥ 2.
Then C∞(p,q)(D) ∩ Ker(∂) is dense in W s

(p,q)(D) ∩ Ker(∂) in the W s
(p,q)(D) norm,

where 0 ≤ p ≤ n and 0 ≤ q ≤ n. In particular, C∞(D) ∩ O(D) is dense in H(D)
in L2(D), where H(D) is the space of all square integrable holomorphic functions.

6.2 Sobolev Estimates for the ∂-Neumann Operator

In this section, using the vector field method we shall give a sufficient condi-
tion for verifying global regularity of the ∂-Neumann problem on a certain class of
smooth bounded pseudoconvex domains. In particular, this method can be applied
to convex domains and circular domains with transverse symmetries.

Let D ⊆ Cn, n ≥ 2, be a smooth bounded pseudoconvex domain, and let r be a
smooth defining function for D. Set

Ln =
4
|∇r|2

n∑
j=1

∂r

∂zj

∂

∂zj
,

if |∇r| 6= 0, and

Ljk =
∂r

∂zj

∂

∂zk
− ∂r

∂zk

∂

∂zj
, for 1 ≤ j < k ≤ n.

We have Lnr = 1 in a neighborhood of the boundary and the Ljk’s are tangent to
the level sets of r. Also, the Ljk’s span the space of tangential type (1, 0) vector
fields at every boundary point of D.

Denote by Xn = (|∇r|/
√

2)Ln the globally defined type (1, 0) vector field which
is transversal to the boundary everywhere. Obviously, we have ‖ Xn ‖ = 1
in some open neighborhood of the boundary. Thus, near every boundary point
p ∈ bD, we may choose tangential type (1, 0) vector fields X1, · · · , Xn−1 so that
X1, · · · , Xn−1 together with Xn form an orthonormal basis of the space of type
(1,0) vector fields in some open neighborhood of p. We shall also denote by
ω1, · · · , ωn the orthonormal frame of (1,0)-forms dual to X1, · · · , Xn near p. Note
that ωn = (

√
2/|∇r|)

∑n
j=1(∂r/∂zj)dzj is a globally defined (1,0)-form in some open

neighborhood of the boundary.
The main idea of this method is to construct a real tangential vector field T on

some open neighborhood of the boundary such that the commutators of T with
X1, · · · , Xn, X1, · · · , Xn have small modulus in Xn direction on the boundary. We
formulate the required properties of T in the following condition:
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Condition (T). For any given ε > 0 there exists a smooth real vector field T = Tε,
depending on ε, defined in some open neighborhood of D and tangent to the boundary
with the following properties:

(1) On the boundary, T can be expressed as

T = aε(z)(Ln − Ln), mod (T 1,0(bD)⊕ T 0,1(bD)),

for some smooth function aε(z) with |aε(z)| ≥ δ > 0 for all z ∈ bD, where δ
is a positive constant independent of ε.

(2) If S is any one of the vector fields Ln, Ln, Ljk and Ljk, 1 ≤ j < k ≤ n,
then

[T, S]|bD = AS(z)Ln, mod (T 1,0(bD)⊕ T 0,1(bD), Ln),

for some smooth function AS(z) with sup
bD
|AS(z)| < ε.

Here is a simple observation: Near a boundary point p, we have, say, ∂r/∂zn(p) 6=
0. Thus, for each j = 1, · · · , n− 1, we may write

Xj =
n−1∑
k=1

cjkLkn,

for some smooth functions cjk. It follows that if condition (T ) holds on D, then
property (2) of condition (T ) is still valid with S being taken to be Xj ’s or Xj ’s for
j = 1, · · · , n− 1, where Xj ’s are defined as above in some small open neighborhood
of p.

Now we are in a position to prove the main theorem of this section.

Theorem 6.2.1. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥ 2,
with a smooth defining function r. Suppose that condition (T) holds on D. Then
the ∂-Neumann operator N maps W s

(p,q)(D), 0 ≤ p ≤ n, 1 ≤ q ≤ n, boundedly into
itself for each nonnegative real s.

Proof. We shall prove the theorem only for nonnegative integers. For any nonneg-
ative real s, the assertion will follow immediately from interpolation (see Theorem
B.3 in the Appendix).

In view of the elliptic regularization method employed in Chapter 5, it suffices
to prove a priori estimates for the ∂-Neumann operator. The proof will be done by
induction on the order of differentiation. Let us assume that the given (p, q)-form
f ∈ C∞(p,q)(D) and the solution u = Nqf to the equation �u = (∂∂

∗
+ ∂

∗
∂)u = f is

also in C∞(p,q)(D).
The initial step s = 0 is obvious, since N is a bounded operator by Theorem

4.4.1. To illustrate the idea, we prove the case s = 1 in detail. First, we choose
boundary coordinate charts {Uα}mα=1 such that {Uα}mα=1 and U0 = D form an open
cover of D. We shall assume that |∇r| > c > 0 on ∪m

α=1Uα for some positive
constant c. Let {ζα}mα=0 be a fixed partition of unity subordinate to {Uα}mα=0. On
each Uα, 1 ≤ α ≤ m, let ωαk, k = 1, · · · , n be an orthonormal frame of (1,0)-forms
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dual to Xαk, k = 1, · · · , n. We note that ωαn = ωn, α = 1, · · · ,m, is a globally
defined (1,0)-form dual to Xn = (|∇r|/

√
2)Ln. Similarly, Xαn = Xn, α = 1, · · · ,m,

is also a globally defined type (1,0) vector field.
On each boundary chart Uα, α = 1, · · · ,m, we may write

u = uα =
∑′

uα
I,J ωα,I ∧ ωα,J ,

where ωα,I = ωαi1 ∧ · · · ∧ ωαip
and ωα,J = ωαj1 ∧ · · · ∧ ωαjq

. Let T be the smooth
real vector field on D satisfying the hypothesis of condition (T). For each s ∈ N, we
define

(6.2.1) T su = T s(ζ0u) +
m∑

α=1

∑′

I,J

T s(ζαuα
I,J) ωα,I ∧ ωα,J .

Thus, T su ∈ D(p,q) using Lemma 5.2.2.
Set

‖ Xu ‖2 =
m∑

α=1

∑′

I,J

n∑
k=1

‖ Xαk(ζαuα
I,J) ‖2,

and

‖ X ′u ‖2 =
m∑

α=1

∑′

I,J

n−1∑
k=1

‖ Xαk(ζαuα
I,J) ‖2 .

From estimate (4.3.1), with φ = 0, and (4.4.6) we obtain, using Theorem 4.4.1,

(6.2.2)
‖ Xu ‖2 + ‖ u ‖2 . ‖ ∂u ‖2 + ‖ ∂∗u ‖2

= ‖ ∂Nf ‖2 + ‖ ∂∗Nf ‖2 . ‖ f ‖2 .

Since, by integration by parts, for 1 ≤ α ≤ m and 1 ≤ k ≤ n− 1,

‖ Xαk(ζαuα
I,J) ‖2 = ‖ Xαk(ζαuα

I,J) ‖2 + O(‖ Xu ‖ + ‖ Tu ‖ + ‖ u ‖) ‖ u ‖,

using small and large constants, we have

(6.2.3) ‖ X ′u ‖2 . ‖ Xu ‖2 + ‖ u ‖2 + (sc) ‖ Tu ‖2 .

Here (sc) denotes a small constant that can be made as small as we wish. Esti-
mates (6.2.2) and (6.2.3) together with the interior estimate indicate that if one
can control ‖ Tu ‖, then ‖ u ‖1 can be estimated. For this reason we shall call
Xα1, · · · , Xαn−1, Xα1, · · · , Xαn−1 and Xαn, 1 ≤ α ≤ m, “good” directions.

Our aim thus becomes to estimate ‖ Tu ‖. First, the basic estimate shows

‖ Tu ‖2 . ‖ ∂Tu ‖2 + ‖ ∂∗Tu ‖2 .
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We estimate the right-hand side as follows.

‖ ∂Tu ‖2 = (∂Tu, ∂Tu)

= (T∂u, ∂Tu) + ([∂, T ]u, ∂Tu)

= (∂u,−∂T 2u) + (∂u, [∂, T ]Tu) + ([∂, T ]u, ∂Tu)

+ O(‖ ∂Tu ‖‖ ∂u ‖)
= (∂u,−∂T 2u) + (∂u, [[∂, T ], T ]u) + (−T∂u, [∂, T ]u) + ([∂, T ]u, ∂Tu)

+O((‖ ∂Tu ‖ + ‖ u ‖1) ‖ ∂u ‖)

= (∂
∗
∂u,−T 2u) + (∂u, [[∂, T ], T ]u) + (−∂Tu, [∂, T ]u)

+ ‖ [∂, T ]u ‖2 + ([∂, T ]u, ∂Tu) +O((‖ ∂Tu ‖ + ‖ u ‖1) ‖ ∂u ‖).

Note that
Re{(−∂Tu, [∂, T ]u) + ([∂, T ]u, ∂Tu)} = 0.

With similar estimates for ‖ ∂∗Tu ‖2, we obtain

‖ ∂Tu ‖2 + ‖ ∂∗Tu ‖2 . ‖ f ‖21 + (sc) ‖ Tu ‖2 + (sc) ‖ u ‖21
+ ‖ [∂, T ]u ‖2 + ‖ [∂

∗
, T ]u ‖2 .

In order to estimate the crucial commutator terms ‖ [∂, T ]u ‖ and ‖ [∂
∗
, T ]u ‖,

we shall use the hypothesis on T . First, from our observation right before Theorem
6.2.1, it is easy to see that on each boundary coordinate chart the commutators
between T and X1, · · · , Xn−1, X1, · · · , Xn−1 can be controlled using the hypothesis
on T . Thus, we need to consider the commutator between T and Xn (or Xn) which
occurs, when commuting T with ∂ (or ∂

∗
), only for those multiindices (I, J) with

n /∈ J (or n ∈ J). Such terms can be handled as follows:

[Xn, T ](ζαuα
I,J) = [(|∇r|/

√
2)Ln, T ](ζαuα

I,J)

= (|∇r|/
√

2)[Ln, T ](ζαuα
I,J)− (T (|∇r|/

√
2))Ln(ζαuα

I,J)

= (|∇r|/
√

2)[Ln, T ](ζαuα
I,J)− (T (|∇r|)/|∇r|)Xn(ζαuα

I,J),

for α = 1, · · · ,m. Using the basic estimate, we obtain

m∑
α=1

∑′

n/∈J

‖ (T (|∇r|)/|∇r|)Xn(ζαuα
I,J) ‖2 . ‖ ∂u ‖2 + ‖ ∂∗u ‖2 . ‖ f ‖2 .

The remaining commutator terms can be estimated directly using the hypothesis
on T . Thus,

‖ [∂, T ]u ‖2 .
m∑

α=1

∑′
‖ A
aε
T (ζαuα

I,J) ‖2 + ‖ Xu ‖2 + ‖ X ′u ‖2 + ‖ f ‖21

.
( ε
δ

)2

‖ Tu ‖2 + ‖ Xu ‖2 + ‖ X ′u ‖2 + ‖ f ‖21 .
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For ‖ [∂
∗
, T ]u ‖ we commute T with Xn if n ∈ J . Hence,

[Xn, T ](ζαuα
I,J) = (|∇r|/

√
2)[Ln, T ](ζαuα

I,J)− (T (|∇r|)/|∇r|)Xn(ζαuα
I,J),

for α = 1, · · · ,m. Observe that±Xn(ζαuα
I,J) appears in the coefficient of ωα,I∧ωα,H

with {n} ∪ H = J in ∂
∗
u. Meanwhile, all the other terms in the coefficient of

ωα,I ∧ ωα,H are differentiated by X1, · · · , Xn−1 only. Thus we have

m∑
α=1

∑′

n∈J

‖ (T (|∇r|)/|∇r|)Xn(ζαuα
I,J) ‖2 . ‖ ∂∗u ‖2 + ‖ X ′u ‖2 + ‖ f ‖21,

and get the estimates as before. Here we use ‖ f ‖21 to control the interior term.
Now we first choose (sc) to be small enough, and then ε to be sufficiently small.
From (6.2.3) we obtain

‖ [∂, T ]u ‖2 + ‖ [∂
∗
, T ]u ‖2 . ‖ Xu ‖2 + ‖ f ‖21 + γ ‖ Tu ‖2,

where γ > 0 is a constant that can be made as small as we wish. Combining these
estimates, if we let γ be small enough, we get

‖ Tu ‖2 . ‖ ∂Tu ‖2 + ‖ ∂∗Tu ‖2 . ‖ f ‖21 + (sc) ‖ u ‖21 .

This implies
‖ u ‖1 ≤ C ‖ f ‖1,

for some constant C > 0 independent of f , and the proof for s = 1 is thus complete.
Assume that the ∂-Neumann operator N is bounded on W s−1

(p,q)(D) for some
integer s ≥ 2, i.e.,

‖ u ‖s−1 ≤ Cs−1 ‖ f ‖s−1,

where Cs−1 > 0 is a constant independent of f . The strategy here is the same as
before. Using basic estimate and the induction hypothesis, we first establish the
following a priori estimate

(6.2.4)
‖ T su ‖2 . ‖ ∂T su ‖2 + ‖ ∂∗T su ‖2

. ‖ f ‖2s + (sc) ‖ u ‖2s .

The next step is to consider the action of an arbitrary tangential differential op-
erator of order s. Using (6.2.4), it suffices to consider the estimate near a boundary
point p. Let U be a boundary coordinate chart near p, and let ω1, · · · , ωn be an
orthonormal basis for (1,0)-forms on U dual to X1, · · · , Xn defined as before. De-
note by Op(s, j), 1 ≤ j ≤ s, a tangential differential operator of order s formed out
of X1, · · · , Xn−1, X1, · · · , Xn−1 and T with precisely s − j factors of T . Let ζ be
a cut-off function supported in U such that ζ ≡ 1 in some open neighborhood of p.
We claim that

(6.2.5) ‖ Op(s, j)ζu ‖2 . ‖ f ‖2s + (sc) ‖ u ‖2s,
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for all 0 ≤ j ≤ s. Estimate (6.2.5) will be proved by induction on j. The initial
step j = 0 is done by (6.2.4). Hence we assume Estimate (6.2.5) holds up to j − 1
for some 1 ≤ j ≤ s. We need to show that (6.2.5) is also true for j. Denote by Xt

any one of the vector fields X1, · · · , Xn−1. Then, by commuting one Xt or Xt to
the left and applying integration by parts, it is easily seen that

‖ Op(s, j)ζu ‖2 . ‖ f ‖2s + ‖ XtOp(s− 1, j − 1)ζu ‖2 + ‖ Op(s, j − 1)ζu ‖2 .

Thus, (6.2.5) is proved inductively for all 0 ≤ j ≤ s.
Estimate (6.2.5) shows that all the tangential derivatives of order s can be con-

trolled. Finally, using the noncharacteristic nature of the ∂-Neumann problem, we
also control the differentiation in the normal direction. Therefore, a partition of
unity argument gives

‖ u ‖s . ‖ f ‖s + (sc) ‖ u ‖s
which implies, by choosing (sc) sufficiently small,

‖ u ‖s . ‖ f ‖s .

Hence, by an induction argument the proof of Theorem 6.2.1 is now complete.

Theorem 6.2.1 provides us with a method for verifying the regularity of the ∂-
Neumann operator N . Once the regularity of N is known, we may also obtain the
regularity of other operators related to the ∂-Neumann operator N as shown in the
next theorem.

Theorem 6.2.2. Let D be a smooth bounded pseudoconvex domain in Cn, n ≥ 2.
If the ∂-Neumann operator N is exactly regular on W s

(p,q)(D) for 0 ≤ p ≤ n,

1 ≤ q ≤ n and s ≥ 0, then so are the operators ∂N, ∂
∗
N, ∂∂

∗
N , ∂

∗
∂N and the

Bergman projection P(p,0).

Proof. The exact regularity of the operators ∂N , ∂
∗
N , ∂∂

∗
N and ∂

∗
∂N can be

proved as in Theorem 6.1.4.
For the regularity of the Bergman projections P(p,0), we may assume p = 0.

Denote as before by P the Bergman projection on functions and by Pt the weighted
Bergman projection. Let Φt be the multiplication operator by the weight e−t|z|2 .
Then for any square integrable holomorphic function g and any square integrable
function f , we have

(Pf, g) = (f, g) = (Φ−tf, g)t = (PtΦ−tf, g)t = (ΦtPt(Φ−tf), g).

Hence, we get P = PΦtPtΦ−t. Recall that P = I−∂∗N∂ on smooth bounded pseu-
doconvex domains (Theorem 4.4.5). Thus, the Bergman projection P on functions
can be expressed as

P = ΦtPtΦ−t − ∂
∗
N1((∂Φt)PtΦ−t).

Since it has been proved that ∂
∗
N1 preserves W s

(0,1)(D) for each nonnegative real
s, if we choose t to be sufficiently large, Theorem 6.1.4 implies that P maps W s(D)
boundedly into itself. This proves the theorem.
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Now, we will construct the vector field T when the domain D has a plurisub-
harmonic defining function or transverse circular symmetry. We say that a smooth
bounded domain D has a plurisubharmonic defining function if there exists some
smooth defining function r(z) for D satisfying

(6.2.6)
n∑

j,k=1

∂2r

∂zj∂zk
(z)tjtk ≥ 0 for z ∈ bD and t ∈ Cn.

Note that (6.2.6) is required to hold only on the boundary, and not in a neighbor-
hood of the boundary. Also, (6.2.6) implies D must be pseudoconvex.

Theorem 6.2.3. Let D ⊆ Cn, n ≥ 2, be a smooth bounded pseudoconvex domain
admitting a plurisubharmonic defining function r(z). Then the ∂-Neumann operator
N is exactly regular on W s

(p,q)(D) for 0 ≤ p ≤ n, 1 ≤ q ≤ n and all real s ≥ 0.

Proof. The proof is based on the observation that if r(z) is a defining function for D
that is plurisubharmonic on the boundary, then for each j, derivatives of (∂r/∂zj) of
type (0, 1) in directions that lie in the null space of the Levi form must vanish. For
instance, if coordinates are chosen so that (∂/∂z1)(p) lies in the null space of the Levi
form at p ∈ bD, then (∂2r/∂z1∂z1)(p) = 0. Since r(z) is plurisubharmonic on the
boundary, applying the complex Hessian ((∂2r/∂zj∂zk)(p))n

j,k=1 to (α, 1, 0, · · · , 0) ∈
Cn for any α ∈ C, we obtain

2Re
(
α

∂2r

∂z2∂z1
(p)
)

+
∂2r

∂z2∂z2
(p) ≥ 0,

which forces (∂2r/∂z2∂z1)(p) = 0. Similarly, we get (∂2r/∂zj∂z1)(p) = 0 for 1 ≤
j ≤ n.

Fix a point p in the boundary, then (∂r/∂zj)(p) 6= 0 for some 1 ≤ j ≤ n.
Choose such a j and set Xp = (∂r/∂zj)−1(∂/∂zj) in a neighborhood of p. Let
L1, · · · , Ln−1 be a local basis for the space of type (1, 0) tangential vector fields near
p. We may assume that L1, · · · , Ln−1 are tangent to the level sets of r and that
the Levi form is diagonal at p in this basis, namely, 〈[Lk, Lj ], Ln〉(p) is a diagonal
(n − 1) × (n − 1) matrix, where 〈 , 〉 is the standard Hermitian inner product.
Now if the kth eigenvalue is zero, then by the above observation Lk annihilates the
coefficients of Xp at p. It follows that the system of linear equations

n−1∑
j=1

〈[Lk, Lj ], Ln〉(p)aj = 〈[Lk, Xp], Ln〉(p), 1 ≤ k ≤ n− 1,

is solvable for a1, · · · , an−1 ∈ C. This implies that〈[
Xp −

n−1∑
j=1

ajLj , Lk

]
, Ln

〉
(p) = 0

for k = 1, · · · , n − 1. On the other hand, since Xp(r) = 1 = Ln(r), there exist
scalars b1, · · · , bn−1 such that

Ln −
n−1∑
j=1

bjLj = Xp −
n−1∑
j=1

ajLj .
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Therefore, given ε > 0, it is easily verified by using a partition of unity {ζl}ml=1

with small support that one may patch Ln−
∑n−1

j=1 bjLj together to form a globally
defined type (1, 0) vector field X = Ln − Y , where Y =

∑m
l=1 ζl(

∑n−1
j=1 bjLj) is a

globally defined tangential type (1, 0) vector field, such that

(6.2.7) sup
bD
|〈[X,Lk], Ln〉| < ε,

for 1 ≤ k ≤ n− 1. Since X −X is a purely imaginary tangential vector field, the
commutator [X −X,Lk], 1 ≤ k ≤ n− 1, is also a tangential vector field. Thus, we
may write

[X −X,Lk] = αk(Ln − Ln), mod (T 1,0(bD)⊕ T 0,1(bD)),

for 1 ≤ k ≤ n− 1. By (6.2.7), we have |αk| < ε on the boundary. It follows that

(6.2.8) sup
bD
|〈[X −X,S], Ln〉| < ε,

when S is any one of the tangential vector fields L1, · · · , Ln−1, L1, · · · , Ln−1. In
particular, we may achieve that

(6.2.9) sup
bD
|〈[X −X,Y − Y ], Ln〉| < ε,

where ε might be different from that in (6.2.8). Since Lnr = 1 in a neighborhood
of the boundary, we have

[X −X,Ln]r = (X −X)Ln(r)− Ln(X −X)r = 0,

which implies the vector field [X−X,Ln] is tangent to the level sets of r. It follows
that [X −X,ReLn] is also a tangential vector field and we can write

(6.2.10) [X −X,ReLn] = β(Ln − Ln), mod (T 1,0(bD)⊕ T 0,1(bD)),

where β is a real-valued function defined in some neighborhood of the boundary.
Now, we set

(6.2.11) T = erβ(X −X).

Obviously, T depends on ε and satisfies property (1) of condition (T) on the bound-
ary. If S is any one of the vector fields L1, · · · , Ln−1, L1, · · · , Ln−1, we have

〈[T, S], Ln〉|bD = 〈[X −X,S], Ln〉|bD.

For Ln, using (6.2.10) we get

〈[T,Ln], Ln〉|bD = 〈[erβ(X −X),ReLn], Ln〉|bD

+
1
2
〈[erβ(X −X), Ln − Ln], Ln〉|bD

= 0 +
1
2
〈[X −X,Y − Y ], Ln〉|bD.
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Similarly, we obtain

〈[T,Ln], Ln〉|bD = −1
2
〈[X −X,Y − Y ], Ln〉|bD.

Thus, by (6.2.8) and (6.2.9) we see that the vector field T satisfies all the hypotheses
of condition (T). Hence, by Theorem 6.2.1, we have proved Theorem 6.2.3.

Theorem 6.2.3 gives a sufficient condition for verifying the exact regularity of the
∂-Neumann operator. However, this condition in general is not satisfied by every
smooth bounded pseudoconvex domain. For instance, by Theorem 6.4.2, the worm
domain constructed in Section 6.4 does not enjoy this property. Next, we show that
this condition indeed holds on any smooth bounded convex domain. Hence, the
∂-Neumann problem is exactly regular on any convex domain.

Let D ⊆ RN , N ≥ 2, be a smooth bounded convex domain, and let the origin be
contained in D. For any x ∈ RN , the Minkowski functional µ(x) is defined by

(6.2.12) µ(x) = inf{λ > 0| x ∈ λD},

where λD = {λy| y ∈ D}. Since the boundary of D is smooth, µ(x) is smooth on
RN \ {0}. If x 6= 0, then the ray

−→
ox will intersect the boundary bD at exactly one

point, named x′. It is easy to see that the Minkowski functional µ(x) is equal to
the ratio between d(0, x) and d(0, x′), where d(p, q) = dist(p, q). Hence, we have
x = µ(x)x′.

Lemma 6.2.4. Let D be a smooth bounded convex domain in RN containing the
origin, and let the Minkowski functional µ(x) be defined as in (6.2.12). Then µ(x)
is a smooth, real-valued function on RN \ {0} satisfying the following properties:

(1) µ(x) is a defining function for D, i.e., µ(x) = 1 and ∇µ(x) 6= 0 for x ∈ bD,
(2) µ(x+ y) ≤ µ(x) + µ(y) for x, y ∈ RN ,
(3) µ(ax) = aµ(x) for x ∈ RN and a > 0.

Proof. Obviously, µ(x) is a smooth, real-valued function on RN \ {0}. (1) and (3)
are also clear. To prove (2), let x, y 6= 0 be two points in RN , and let x′, y′ be the
intersections with the boundary of the rays

−→
ox and

−→
oy respectively. Then we have

µ(x+ y) = µ(µ(x)x′ + µ(y)y′)

= (µ(x) + µ(y))µ
(

µ(x)
µ(x) + µ(y)

x′ +
µ(y)

µ(x) + µ(y)
y′
)

≤ µ(x) + µ(y).

Here we have used the fact that D is convex so that the point z = (µ(x)/(µ(x) +
µ(y)))x′ + (µ(y)/(µ(x) + µ(y)))y′ lies in the closure of D. Hence, µ(z) ≤ 1. This
proves the lemma.

It follows from (2) and (3) of Lemma 6.2.4 that µ(x) is convex. Consequently,

(6.2.13)
N∑

j,k=1

∂2µ

∂xj∂xk
(x)ajak ≥ 0,

for x ∈ RN \ {0} and any a = (a1, · · · , aN ) ∈ RN . In particular, we have proved
the following theorem:
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Theorem 6.2.5. Let D be a smooth bounded convex domain in Cn, n ≥ 2. Then
the ∂-Neumann problem is exactly regular on W s

(p,q)(D) for 0 ≤ p ≤ n, 1 ≤ q ≤ n

and s ≥ 0.

Another important class of pseudoconvex domains that satisfy the hypotheses of
condition (T) are circular domains with transverse symmetries. A domain D in Cn

is called circular if eiθ · z = (eiθz1, · · · , eiθzn) ∈ D for any z ∈ D and θ ∈ R. D is
called Reinhardt if (eiθ1z1, · · · , eiθnzn) ∈ D for any z ∈ D and θ1, · · · , θn ∈ R, and
D is called complete Reinhardt if z = (z1, · · · , zn) ∈ D implies (w1, · · · , wn) ∈ D
for all |wj | ≤ |zj |, 1 ≤ j ≤ n. Thus, a Reinhardt domain is automatically circular.

Let D be a smooth bounded circular domain in Cn, n ≥ 2, and let r(z) be defined
as follows

(6.2.14) r(z) =
{
d(z, bD), for z /∈ D
−d(z, bD), for z ∈ D,

where d(z, bD) denotes the distance from z to the boundary bD. Then it is easy to
see that r is a defining function for D such that r(z) = r(eiθ · z) and that |∇r| = 1
on the boundary. Denote by Λ the map of the S1-action on D from S1 ×D to D
defined by

Λ : S1 ×D → D

(eiθ, z) 7→ eiθ · z = (eiθz1, · · · , eiθzn).

For each fixed θ, Λ is an automorphism of D and Λ can be extended smoothly to
a map from S1 ×D to D. Hence, for each fixed z ∈ D, we consider the orbit of z,
namely, the map

πz : S1 → D

eiθ 7→ eiθ · z.

Then, πz induces a vector field T on D, in fact on Cn, by

(6.2.15) Tz = πz,∗

(
∂

∂θ

∣∣∣∣
θ=0

)
= i

n∑
j=1

zj
∂

∂zj
− i

n∑
j=1

zj
∂

∂zj
,

where πz,∗ is the differential map induced by πz. Note that T is tangent to the level
sets of r. In particular, T is tangent to the boundary of D.

Definition 6.2.6. Let K be a compact subset of the boundary of a smooth bounded
circular domain D. D is said to have transverse circular symmetry on K if for each
point z ∈ K the vector field T defined in (6.2.15) is not contained in T 1,0

z (bD) ⊕
T 0,1

z (bD).

It is obvious from (6.2.15) and Definition 6.2.6 that D has transverse circular
symmetry on the whole boundary if and only if

∑n
j=1 zj(∂r/∂zj)(z) 6= 0 on bD.

Then, we prove



6.2 Sobolev Estimates for the ∂-Neumann Operator 137

Theorem 6.2.7. Let D ⊆ Cn, n ≥ 2, be a smooth bounded circular pseudoconvex
domain and let r be defined by (6.2.14). Suppose that

∑n
j=1 zj(∂r/∂zj)(z) 6= 0 on

the boundary. Then the ∂-Neumann problem is exactly regular on W s
(p,q)(D) for

0 ≤ p ≤ n, 1 ≤ q ≤ n and s ≥ 0.

Proof. Let T be the vector field defined in (6.2.15). By assumption T is transversal
to T 1,0(bD)⊕ T 0,1(bD) everywhere on the boundary. Let L′n = (|∇r|2/4)Ln and

Ljk =
∂r

∂zj

∂

∂zk
− ∂r

∂zk

∂

∂zj
, for 1 ≤ j < k ≤ n.

It is easy to verify that [T, ∂/∂zj ] = i∂/∂zj and [T, ∂/∂zj ] = −i∂/∂zj . Then, we
have

[T,Ljk] =
[
T,

∂r

∂zj

∂

∂zk
− ∂r

∂zk

∂

∂zj

]
= T

(
∂r

∂zj

)
∂

∂zk
+

∂r

∂zj

[
T,

∂

∂zk

]
− T

(
∂r

∂zk

)
∂

∂zj
− ∂r

∂zk

[
T,

∂

∂zj

]
=
(
∂

∂zj
(Tr)

)
∂

∂zk
+
([
T,

∂

∂zj

]
r

)
∂

∂zk
− i ∂r

∂zj

∂

∂zk

−
(

∂

∂zk
(Tr)

)
∂

∂zj
−
([
T,

∂

∂zk

]
r

)
∂

∂zj
+ i

∂r

∂zk

∂

∂zj

= −2i
(
∂r

∂zj

∂

∂zk
− ∂r

∂zk

∂

∂zj

)
= −2iLjk,

for all 1 ≤ j < k ≤ n, since Tr ≡ 0, and

[T,L′n] =
[
T,

n∑
j=1

∂r

∂zj

∂

∂zj

]

=
n∑

j=1

(
T

(
∂r

∂zj

)
∂

∂zj
+

∂r

∂zj

[
T,

∂

∂zj

])

=
n∑

j=1

(
i
∂r

∂zj

∂

∂zj
− i ∂r

∂zj

∂

∂zj

)
≡ 0.

Similarly, we have [T,L
′
n] ≡ 0. Since Ln = (4/|∇r|2)L′n and |∇r| = 1 on bD, it is

easily seen that
[T,Ln]|bD = [T,Ln]|bD = 0.

Hence, condition (T) holds on D. By Theorem 6.2.1 this proves Theorem 6.2.7.

The next result shows that a complete Reinhardt domain always enjoys transverse
circular symmetry.
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Theorem 6.2.8. Let D ⊆ Cn, n ≥ 2, be a smooth bounded complete Reinhardt
pseudoconvex domain with a smooth defining function r(z) = r(eiθ1z1, · · · , eiθnzn)
for all θ1, · · · , θn ∈ R. Then, we have

∑n
j=1 zj(∂r/∂zj) 6= 0 on bD. In particular,

the ∂-Neumann problem is exactly regular on W s
(p,q)(D) for 0 ≤ p ≤ n, 1 ≤ q ≤ n

and s ≥ 0.

Proof. Let T be defined by (6.2.15). Put L =
∑n

j=1 zj(∂/∂zj). Then, by our
construction, we have

Tr = −2ImL(r) = 0

on the boundary. Hence, it suffices to show that ReL(r) 6= 0 on the boundary.
This is, in turn, equivalent to showing that the real vector field

∑n
j=1(xj(∂/∂xj) +

yj(∂/∂yj)) is transversal to the boundary everywhere.
Suppose now that for some point p ∈ bD we have

n∑
j=1

(
xj

∂r

∂xj
+ yj

∂r

∂yj

)
(p) = 0.

This implies that the point p = (x1(p), y1(p), · ··, xn(p), yn(p)) is perpendicular
to the normal (∂r/∂x1, ∂r/∂y1, · · · , ∂r/∂xn, ∂r/∂yn)(p). We may assume, by
rotation, that xj(p) > 0 and yj(p) > 0 for 1 ≤ j ≤ n. Hence, by elementary
tangent approximation, there exists a point q ∈ D such that |xj(q)| > |xj(p)| and
|yj(q)| > |yj(p)| for 1 ≤ j ≤ n which in turn shows |zj(p)| < |zj(q)| for 1 ≤ j ≤ n.
Since D is a complete Reinhardt domain, we must have p ∈ D. This contradicts the
fact that p is a boundary point. In view of Theorem 6.2.7, the proof of Theorem
6.2.8 is now complete.

6.3 The Bergman Projection and Boundary Regularity of Biholomorphic
Maps

As an application of the regularity theorem proved earlier for the ∂-Neumann
operator, we shall investigate the boundary regularity of a biholomorphic map in
this section. Recall that a holomorphic map f between two domains D1 and D2

is called biholomorphic if f is one-to-one, onto and the inverse map f−1 is also
holomorphic.

Let D be a domain in Cn. we denote by H(D) the space of square integrable
holomorphic functions on D as before. Obviously, H(D) is a closed subspace of
L2(D), and hence is itself a Hilbert space. If D = Cn, then H(Cn) = {0}. Thus,
we are interested in the case when H(D) is nontrivial, in particular, when D is
bounded. For any w ∈ D, it is easily verified that the point evaluation map

Λw : H(D)→ C
f 7→ f(w),

by Cauchy’s estimate, satisfies

(6.3.1) |f(w)| ≤ cd(w)−n ‖ f ‖L2(D),
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where d(w) is the distance from w to the complement of D, and the constant c
depends only on the space dimension n. Hence, by the Riesz representation theorem,
there is a unique element, denoted by KD(·, w), in H(D) such that

f(w) = Λw(f) = (f,KD(·, w)) =
∫

D

f(z)KD(z, w)dVz,

for all f ∈ H(D). The function KD(z, w) thus defined is called the Bergman kernel
function for D. By (6.3.1) the Bergman kernel function clearly satisfies

(6.3.2) ‖ KD(·, w) ‖L2(D) ≤ cd(w)−n,

for any w ∈ D.
Next we verify a fundamental symmetry property of KD(z, w). We shall some-

times omit the subscript D if there is no ambiguity.

Lemma 6.3.1. The Bergman kernel function K(z, w) satisfies

K(z, w) = K(w, z), for all z, w ∈ D,

and hence K(z, w) is anti-holomorphic in w.

Proof. For each w ∈ D, K(·, w) ∈ H(D). Hence, by the reproducing property of
the kernel function, we obtain

K(z, w) = (K(·, w),K(·, z))

= (K(·, z),K(·, w))

= K(w, z).

This proves the lemma.

Since H(D) is a separable Hilbert space, the Bergman kernel function can also
be represented in terms of any orthonormal basis for H(D).

Theorem 6.3.2. Let {φj(z)}∞j=1 be an orthonormal basis for H(D). Then

(6.3.3) K(z, w) =
∞∑

j=1

φj(z)φj(w), for (z, w) ∈ D ×D,

where the series (6.3.3) converges uniformly on any compact subset of D ×D. In
particular, K(z, w) is holomorphic in (z, w) ∈ D ×D∗, where D∗ = {w | w ∈ D},
and hence K(z, w) ∈ C∞(D ×D).

Proof. For any fixed w ∈ D, from general Hilbert space theory we have

K(z, w) =
∞∑

j=1

(K(·, w), φj(·))φj(z)

=
∞∑

j=1

(φj(·),K(·, w))φj(z)

=
∞∑

j=1

φj(w)φj(z),
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where the series converges in the L2 norm, and

(6.3.4) ‖ K(·, w) ‖2L2(D) =
∞∑

j=1

|(K(·, w), φj(·))|2 =
∞∑

j=1

|φj(w)|2.

Since pointwise convergence is dominated by L2 convergence inH(D), we obtain the
pointwise convergence of (6.3.3). Therefore, to finish the proof, it suffices to show
by a normal family argument that |

∑m
j=1 φj(z)φj(w)|, for any m ∈ N, is uniformly

bounded on any compact subset of D ×D. Thus, letting M be a compact subset
of D, for any (z, w) ∈M ×M , then (6.3.4) together with (6.3.2) shows

∣∣∣∣ m∑
j=1

φj(z)φj(w)
∣∣∣∣ ≤ ∞∑

j=1

|φj(z)||φj(w)|

≤

 ∞∑
j=1

|φj(z)|2
 1

2
 ∞∑

j=1

|φj(w)|2
 1

2

≤ CM ,

for some constant CM > 0 independent of m. This completes the proof of the
theorem.

The Bergman kernel function in general is not computable except for special
domains. When D is the unit ball Bn in Cn, we shall apply Theorem 6.3.2 to
obtain an explicit formula for the Bergman kernel function on Bn. Obviously, {zα}
is an orthogonal basis for H(Bn), where the index α = (α1, · · · , αn) runs over the
multiindices. We shall normalize it using the fact, for s, t ∈ N and 0 ≤ a < 1,

∫ √
1−a2

0

x2s+1

(
1− x2

1− a2

)t+1

dx =
1
2
(1− a2)s+1

∫ 1

0

ys(1− y)t+1dy

=
1
2
(1− a2)s+1B(s+ 1, t+ 2)

=
1
2
(1− a2)s+1 Γ(s+ 1)Γ(t+ 2)

Γ(s+ t+ 3)
,
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where B(·, ·) is the Beta function and Γ(·) is the Gamma function. Hence

‖ zα ‖2L2(Bn) =
∫

Bn

|z1|2α1 · · · |zn|2αndV2n

=
π

(αn + 1)

∫
Bn−1

|z1|2α1 · · · |zn−1|2αn−1(1− |z1|2 − · · · − |zn−1|2)αn+1dV2n−2

=
π

(αn + 1)

∫
Bn−1

|z1|2α1 · · · |zn−2|2αn−2(1− |z1|2 − · · · − |zn−2|2)αn+1

· |zn−1|2αn−1

(
1− |zn−1|2

1− |z1|2 − · · · − |zn−2|2

)αn+1

dV2n−2

=
π

(αn + 1)
πΓ(αn−1 + 1)Γ(αn + 2)

Γ(αn + αn−1 + 3)

∫
Bn−2

|z1|2α1 · · · |zn−2|2αn−2

· (1− |z1|2 − · · · − |zn−2|2)αn+αn−1+2dV2n−4

=
π

(αn + 1)
· πΓ(αn−1 + 1)Γ(αn + 2)

Γ(αn + αn−1 + 3)
· · · πΓ(α1 + 1)Γ(αn + · · ·+ α2 + n)

Γ(αn + · · ·+ α1 + n+ 1)

=
πn · α1! · · ·αn!

(αn + · · ·+ α1 + n)!
.

It follows that the Bergman kernel function on the unit ball Bn is given by

K(z, w) =
∑
α

(αn + · · ·+ α1 + n)!
πn · α1! · · ·αn!

zαwα

=
1
πn

∞∑
k=0

∑
|α|=k

(αn + · · ·+ α1 + n)!
α1! · · ·αn!

zαwα

=
1
πn

∞∑
k=0

(k + n)(k + n− 1) · · · (k + 1)(z1w1 + · · ·+ znwn)k

=
1
πn

dn

dtn

(
1

1− t

) ∣∣∣∣
t=z1w1+···+znwn

=
n!
πn

1
(1− z · w)n+1

,

where z · w = z1w1 + · · ·+ znwn.

Theorem 6.3.3. The Bergman kernel function on the unit ball Bn is given by

(6.3.5) K(z, w) =
n!
πn

1
(1− z · w)n+1

,

where z · w = z1w1 + · · ·+ znwn.

For any f ∈ L2(D), one may write f = f1 + f2, where f1 ∈ H(D) and
f2 ∈ H(D)⊥. It follows now from the reproducing property of the Bergman kernel
function that one has

Pf(z) = f1(z) = (f1(·),K(·, z))
= (f1(·),K(·, z)) + (f2(·),K(·, z))
= (f(·),K(·, z)).

This proves the following theorem:
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Theorem 6.3.4. The Bergman projection PD : L2(D)→ H(D) is represented by

(6.3.6) PDf(z) =
∫

D

K(z, w)f(w)dVw,

for all f ∈ L2(D) and z ∈ D.

The following result shows how the Bergman kernel function behaves under a
biholomorphic map:

Theorem 6.3.5. Let f : D1 → D2 be a biholomorphic map between two domains
D1 and D2 in Cn. Then

(6.3.7) KD1(z, w) = detf ′(z)KD2(f(z), f(w))detf ′(w)

for all z, w ∈ D1, where f ′(z) is the complex Jacobian of f .

Proof. From an elementary calculation, we observe that

detJRf(z) = |detf ′(z)|2,
where JRf(z) is the real Jacobian of f via the standard identification between Cn

and R2n. Hence, a change of variables shows h 7→ (h ◦ f)detf ′ is an isometry
between L2(D2) and L2(D1). Thus, for each w ∈ D1, we have

detf ′(·)KD2(f(·), f(w))detf ′(w) ∈ H(D1),

and for any h ∈ H(D1), using the reproducing property of KD2 , we obtain

(h,detf ′(·)KD2(f(·), f(w))detf ′(w))D1 = h(w).

Therefore, from the uniqueness of the kernel function, we must have

KD1(z, w) = detf ′(z)KD2(f(z), f(w))detf ′(w).

This proves the theorem.

Corollary 6.3.6. Let f : D1 → D2 be a biholomorphic map between two domains
D1 and D2 in Cn, and let P1, P2 be the Bergman projection operator on D1, D2

respectively. Then

(6.3.8) P1(u · (g ◦ f)) = u · (P2(g) ◦ f)

for all g ∈ L2(D2), where u = det(f ′(z)) is the determinant of the complex Jacobian
of f .

Proof. The proof follows directly from the transformation law of the Bergman kernel
functions. For g ∈ L2(D2), u · (g ◦ f) ∈ L2(D1). Hence, from Theorem 6.3.5,

P1(u · (g ◦ f)) =
∫

D1

KD1(z, w)det(f ′(w))g(f(w)) dVw

=
∫

D1

u(z)KD2(f(z), f(w))|u(w)|2g(f(w)) dVw

= u(z)
∫

D2

KD2(f(z), η)g(η) dVη

= u(z) · (P2(g) ◦ f).
This proves the corollary.

Now we introduce a condition concerning the regularity of the Bergman projec-
tion operator which is useful in proving the regularity of a biholomorphic map near
the boundary.
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Definition 6.3.7. A smooth bounded domain D in Cn is said to satisfy condition
R if the Bergman projection P associated with D maps C∞(D) into C∞(D)∩O(D).

Denote by W s
0 (D) the closure of C∞0 (D) in W s(D), and by Hs(D) = W s(D) ∩

O(D). The next theorem gives various conditions equivalent to condition R.

Theorem 6.3.8. Let D be a smooth bounded domain in Cn with Bergman projec-
tion P and Bergman kernel function K(z, w). The following conditions are equiva-
lent:

(1) D satisfies condition R.
(2) For each positive integer s, there is a nonnegative integer m = ms such that

P is bounded from W s+m
0 (D) to Hs(D).

(3) For each multiindex α, there are constants c = cα and m = mα such that

sup
z∈D

∣∣∣∣ ∂α

∂zα
K(z, w)

∣∣∣∣ ≤ cd(w)−m,

where d(w) is the distance from the point w to the boundary bD.

Before proving Theorem 6.3.8, we shall first prove the following lemma:

Lemma 6.3.9. Let D be a smooth bounded domain in Cn. Then, for each s ∈ N,
there is a linear differential operator Φs of order ns = s(s+1)/2 with coefficients in
C∞(D) such that Φs maps W s+ns(D) boundedly into W s

0 (D) and that PΦs = P .

In other words, for each g ∈ C∞(D) and s ∈ N, Lemma 6.3.9 allows us to
construct a h = g − Φsg ∈ C∞(D) such that Ph ≡ 0 and that h agrees with g up
to order s− 1 on the boundary.

Proof. Let ρ be a smooth defining function for D, and let δ > 0 be so small that
∇ρ 6= 0 on Uδ = {z| |ρ(z)| < δ}. Choose a partition of unity {φi}mi=1 and, for each
i, a complex coordinate zi in some neighborhood of the support of φi such that

(1)
∑m

i=1 φi ≡ 1 on Uε for some ε < δ,
(2) suppφi ⊂ Uδ and suppφi ∩ bD 6= ∅, and
(3) ∂ρ/∂zi 6= 0 on suppφi.
To define the operator Φs inductively on s, we need the fact that if g is in C∞(D)

and vanishes up to order s − 1 on the boundary, then g ∈ W s
0 (D). For the initial

step s = 1, if h ∈ C∞(D), define

Φ1h = h−
m∑

i=1

∂

∂zi
(θi

0ρ),

where θi
0 = (φih)(∂ρ/∂zi)−1. It is easy to see that Φ1h = 0 on bD, and hence

Φ1h ∈W 1
0 (D).

Suppose θi
0, · · · , θi

s−1 have been chosen so that

Φs
ih = φih−

∂

∂zi

(
s−1∑
k=0

θi
kρ

k+1

)
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vanishes to order s− 1 on the boundary. We define

Φsh = h−
m∑

i=1

∂

∂zi

(
s−1∑
k=0

θi
kρ

k+1

)
.

Since ρ vanishes on the boundary, it is easily verified by integration by parts that∑m
i=1

∂
∂zi

(
∑s−1

k=0 θ
i
kρ

k+1) is orthogonal to H(D). Hence Φsh ∈W s
0 (D) and PΦsh =

Ph. Put ∂/∂ν = ∇ρ · ∇/|∇ρ|2, the normal differentiation, such that ∂ρ/∂ν = 1.
Let

θi
s =

( ∂
∂ν )sΦs

ih

(s+ 1)! ∂ρ
∂zi

.

Then the functions

Φs+1
i h = Φs

ih−
∂

∂zi
(θi

sρ
s+1)

vanish to order s on the boundary, so does the function

Φs+1h = Φsh−
m∑

i=1

∂

∂zi
(θi

sρ
s+1)

= h−
m∑

i=1

∂

∂zi

( s∑
k=0

θi
kρ

k+1

)
.

Hence, Φs+1h ∈W s+1
0 (D) and PΦs+1 = P . This completes the induction.

It is also easily verified by a simple induction argument that Φsh can be written
as

Φsh =
∑

|α|≤k≤ns

bα,kρ
kDαh,

where ns = s(s+ 1)/2 and the bα,k’s are in C∞(D) and Dα is the real differential
operator of order |α| associated to the multiindex α = (α1, α2, · · · , α2n). This
proves the lemma.

We also need negative Sobolev norms for holomorphic functions. For g ∈ O(D)
and s a positive integer, we define

(6.3.9) ‖ g ‖−s = sup
∣∣∣∣ ∫

D

gφ

∣∣∣∣,
where the supremum is taken over all φ ∈ C∞0 (D) with ‖ φ ‖s = 1.

Lemma 6.3.10. Let D be a smooth bounded domain in Cn, n ≥ 2. For g ∈ O(D)
and any positive integer s, we have

(1) sup
z∈D
|g(z)|d(z)s+n ≤ c1 ‖ g ‖−s,

(2) ‖ g ‖−s−n−1 ≤ c2 sup
z∈D
|g(z)|d(z)s

,
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for some constants c1 and c2 independent of g.

Proof. Let χ be a smooth, nonnegative, radially symmetric function supported in
the unit ball Bn in Cn with

∫
Bn

χ(w)dVw = 1. For z ∈ D, let χz(w) = ε−2nχ((z −
w)/ε), where ε = d(z). Clearly,

‖ χz ‖k ≤ c(k)d(z)−(k+n),

for some constant c(k) > 0 depending on k. Then, using polar coordinates and the
mean value property of g ∈ O(D), we obtain, for l > n,

|g(z)| =
∣∣∣∣ ∫

D

g(w)χz(w) dVw

∣∣∣∣
≤ ‖ g ‖−l+n‖ χz ‖l−n

≤ c1 ‖ g ‖−l+n d(z)−l.

Setting l = s+ n, this proves (1).
For (2), notice that if φ ∈ C∞0 (D), then by Taylor’s expansion and the Sobolev

embedding theorem, we have

|φ(z)| ≤ c ‖ φ ‖s+n+1 d(z)s.

Hence,

‖ g ‖−s−n−1 = sup
φ∈C∞

0 (D)

‖φ‖s+n+1=1

∣∣∣∣ ∫
D

gφdVz

∣∣∣∣
≤ c2 sup

z∈D
|g(z)|d(z)s

.

This completes the proof of Lemma 6.3.10.

Proof of Theorem 6.3.8. If D satisfies condition R, from the topology on C∞(D),
for each positive integer s there is a nonnegative integer m = ms such that P maps
W s+m(D) boundedly into Hs(D). In particular, (1) implies (2).

Te see that (2) implies (1), by assumption, for each s ∈ N, there is a nonnegative
integerm = ms such that P is a bounded operator fromW s+ms

0 (D) intoHs(D). For
this fixed s+ms, Lemma 6.3.9 shows that there exists a positive integer n′s = ns+ms

such that Φs+ms maps W s+ms+n′s(D) boundedly into W s+ms
0 (D). It follows that,

for each g ∈W s+ms+n′s(D), we have

‖ Pg ‖s = ‖ PΦs+msg ‖s . ‖ Φs+msg ‖s+ms . ‖ g ‖s+ms+n′s .

Hence, (2) implies (1).
Next, we prove the equivalence of (1) and (3). Suppose (3) holds. Then, for each

multiindex α and each z ∈ D, we have by Lemma 6.3.10

‖ ∂α

∂zα
K(z, ·) ‖−s ≤ c2 sup

w∈D

∣∣∣∣ ∂α

∂zα
K(z, w)

∣∣∣∣d(w)mα ≤ C,
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where s = sα = mα +n+1. Hence, by using the operator Φs constructed in Lemma
6.3.9, for g ∈W s+ns(D) and z ∈ D, we have∣∣∣∣ ∂α

∂zα
Pg(z)

∣∣∣∣ = ∣∣∣∣ ∂α

∂zα

∫
D

K(z, w)Φsg(w)dVw

∣∣∣∣
=
∣∣∣∣ ∫

D

∂α

∂zα
K(z, w)Φsg(w)dVw

∣∣∣∣
≤ ‖ ∂α

∂zα
K(z, ·) ‖−s‖ Φsg ‖s

≤ C ‖ g ‖s+ns .

The differentiation under the integral sign is justified, since∣∣∣∣ ∂α

∂zα
K(z, w)Φsg(w)

∣∣∣∣ ≤ C1

∣∣∣∣ ∂α

∂zα
K(z, w)

∣∣∣∣ ‖ Φsg ‖s d(w)mα

≤ C2 ‖ Φsg ‖s,

for some constant C2 > 0 independent of z and w. Thus, condition R holds on D.
On the other hand, if condition R holds on D, then by the Sobolev embedding

theorem, for each nonnegative integer s there is an integer k(s) such that

sup
z∈D

∣∣∣∣ ∂α

∂zα
Pf(z)

∣∣∣∣ ≤ C ‖ f ‖k(s),

for all multiindices α with |α| ≤ s. Therefore,

‖ ∂α

∂zα
K(z, ·) ‖−k(s) = sup

φ∈C∞
0 (D)

‖φ‖k(s)=1

∣∣∣∣ ∫
D

∂α

∂zα
K(z, w)φ(w)dVw

∣∣∣∣
= sup

φ∈C∞
0 (D)

‖φ‖k(s)=1

∣∣∣∣ ∂α

∂zα
Pφ(z)

∣∣∣∣
≤ C,

uniformly as z ranges over D. Hence, by (1) of Lemma 6.3.10, condition (3) holds.
This completes the proof of Theorem 6.3.8.

Here are some consequences of condition R.

Corollary 6.3.11. Let D be a smooth bounded domain in Cn, n ≥ 2. Suppose that
condition R holds on D. Then K(·, w) ∈ C∞(D) for each w ∈ D.

Proof. For each fixed w ∈ D, let φw(z) ∈ C∞0 (D) be a smooth real-valued function
such that φw(z) is radially symmetric with respect to the center w and

∫
D
φw(z) dVz

= 1. Since φw is constant on the sphere centered at w, applying polar coordinates
and using the mean value property of K(z, ·), we have

K(z, w) =
∫

D

K(z, η)φw(η) dVη.

Hence, K(·, w) ∈ C∞(D) by condition R on D.
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Corollary 6.3.12. Let D be a smooth bounded domain in Cn, n ≥ 2. Suppose
that condition R holds on D. Then the linear span of {K(·, w)| w ∈ D} is dense in
H∞(D) in C∞ topology.

Proof. First, for each positive integer s and g ∈ H∞(D), Lemma 6.3.9 shows that

g = Pg = PΦsg.

Hence, we have H∞(D) ⊂ P (W s
0 (D)) for all real s ≥ 0.

Let Λ be the set of functions φ ∈ C∞0 (D) which are radially symmetric about
some point in D with

∫
D
φdV = 1. Thus, PΛ = {K(·, w)| w ∈ D}. We claim that

the linear span of Λ is dense in W s
0 (D) for each s ≥ 0. Let f ∈ C∞0 (D). Choose

a smooth nonnegative function χ from C∞0 (Cn) which is radially symmetric about
the origin with support contained in the unit ball and satisfying

∫
Cn χ(z)dVz = 1.

For ε > 0, set χε(z) = ε−2nχ(z/ε). Then fε = f ∗ χε will converge to f in W s
0 (D).

Since

fε(z) = ε−2n

∫
Cn

f(w)χ
(
z − w
ε

)
dVw

can be approximated by finite Riemann sums, this yields the density of span{Λ} in
W s

0 (D).
Now, condition R implies the Hs(D) closure of the span of {K(·, w)| w ∈ D}

contains H∞(D) for every s ≥ 0. Hence, by the Sobolev embedding theorem,
span{K(·, w)| w ∈ D} is dense in H∞(D) in the C∞ topology. This proves the
corollary.

To end this section, we prove the following important consequence of condition
R concerning the boundary regularity of a biholomorphic map between two smooth
bounded pseudoconvex domains in Cn.

Theorem 6.3.13. Let D1 and D2 be two smooth bounded pseudoconvex domains
in Cn, n ≥ 2, and let f be a biholomorphic map from D1 onto D2. Suppose that
condition R holds on both D1 and D2, then f extends smoothly to the boundary.

We note from Theorem 1.7.1 that an analog of the Riemann mapping theorem
in the complex plane does not hold in Cn for n ≥ 2. Theorem 6.3.13 provides an
important approach to the classification of domains in higher dimensional spaces.
Therefore, given a domain D, it is fundamental to verify whether condition R holds
on D or not. When D is a smooth bounded pseudoconvex domain, the Bergman
projection P can be expressed in terms of the ∂-Neumann operatorN by the formula
(4.4.14), P = I−∂∗N∂. We know from previous discussions that condition R holds
on the following classes of smooth bounded domains:

(1) D is strongly pseudoconvex (Theorem 5.2.1 and Corollary 5.2.7).
(2) D admits a plurisubharmonic defining function. In particular, if D is convex

(Theorems 6.2.3 and 6.2.5).
(3) D is a circular pseudoconvex domain with transverse circular symmetry

(Theorem 6.2.7).
In fact, the Bergman projection P is exactly regular on all of the above three classes
of pseudoconvex domains.

Theorem 6.3.13 will be proved later. We first prove the following theorem:
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Theorem 6.3.14. Let f : D1 → D2 be a biholomorphic map between two smooth
bounded pseudoconvex domains D1 and D2 in Cn. Then there is a positive integer
m such that

d(z, bD1)m . d(f(z), bD2) . d(z, bD1)
1
m

for all z ∈ D1.

Proof. By Theorem 3.4.12, there are continuous functions ρj : Dj → R, j = 1, 2,
satisfying

(1) ρj is smooth and plurisubharmonic on Dj ,
(2) ρj < 0 on Dj and ρj vanishes on bDj ,
(3) (−ρj)m = −rje−K|z|2 is smooth on Dj for some positive integer m, where

rj is a smooth defining function for Dj .
Property (3) immediately implies that

|ρj(z)| . d(z, bDj)
1
m , for z ∈ Dj .

Since f : D1 → D2 is a biholomorphic map, both ρ2 ◦ f and ρ1 ◦ f−1 satisfy (1)
and (2). Thus, an application of the classical Hopf lemma (see [GiTr 1]) shows that

d(z, bD1) . |ρ2 ◦ f(z)| . d(f(z), bD2)
1
m

and
d(w = f(z), bD2) . |ρ1 ◦ f−1(w)| . d(z = f−1(w), bD1)

1
m .

This proves the theorem.

Lemma 6.3.15. Let f : D1 → D2 be a biholomorphic map between two smooth
bounded pseudoconvex domains D1 and D2 in Cn. Let u(z) = det(f ′(z)) be the
determinant of the complex Jacobian of f . Then, for any positive integer s, there
is an integer j = j(s) such that the mapping φ 7→ u · (φ ◦ f) is bounded from
W

s+j(s)
0 (D2) to W s

0 (D1).

Proof. It suffices to show the estimate

‖ u · (φ ◦ f) ‖W s
0 (D1) ≤ C ‖ φ ‖W s+j(s)

0 (D2)

for all φ ∈ C∞0 (D2). Write f = (f1, · · · , fn). For any multiindex α with |α| ≤ s, we
have

Dα(u · (φ ◦ f)) =
∑

Dβu ·Dγφ(f) ·Dδ1fi1 · · ·Dδpfip
,

where 1 ≤ i1, · · · , ip ≤ n, and β, γ, δ1, · · · , δp are multiindices with |β| ≤ |α|,
|γ| ≤ |α| − |β| and

∑p
j=1 |δj | = |α| − |β|.

Since f is a map between two bounded domains D1 and D2 in Cn, the Cauchy
estimate implies that ∣∣∣∣∂βu

∂zβ
(z)
∣∣∣∣ ≤ Cβd1(z)−(|β|+1),

and ∣∣∣∣∂δjfij

∂zδj
(z)
∣∣∣∣ ≤ Cjd1(z)−|δj |,
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where the constant Cβ (Cj) depends on D2 and the multiindex β (δj), and d1(z) =
d(z, bD1). Hence, for z ∈ D1,

|Dβu ·Dδ1fi1 · · ·Dδpfip
(z)| ≤ Cd1(z)−(|α|+1).

Also, for any φ ∈ C∞0 (D2) and every k ∈ N, it follows from Taylor’s expansion and
the Sobolev embedding theorem that

|Dγφ(w)| ≤ C ‖ φ ‖k+|γ|+n+1 ·d2(w)k.

Thus, combining the preceding inequalities with Theorem 6.3.14, we obtain

|Dα(u · (φ ◦ f))(z)| . d1(z)−(|α|+1)· ‖ φ ‖k+|α|+n+1 ·d2(f(z))k

. ‖ φ ‖k+s+n+1 ·d1(z)
−s−1+ k

m .

It is now clear by taking k = m(s+ 1) that the mapping φ 7→ u · (φ ◦ f) is bounded
from W

s+j(s)
0 (D2) to W s

0 (D1) with j(s) = m(s+1)+n+1. This proves the lemma.

We now return to the proof of Theorem 6.3.13.

Proof of Theorem 6.3.13. Let f be a biholomorphic map from D1 onto D2. From
Corollary 6.3.6 we obtain

(6.3.10) P1(u · (g ◦ f)) = u · (P2(g) ◦ f),

for all g ∈ L2(D2), where u = det(f ′(z)) is the determinant of the complex Jacobian
of f and Pν , ν = 1, 2, is the Bergman projection on Dν .

Since condition R holds on D1, for each positive integer s, there is an integer
m(s) such that P1 maps W s+m(s)

0 (D1) boundedly into Hs(D1). On the other hand,
by condition R on D2 we may choose a g ∈ W s+m(s)+j(s)

0 (D2), as in the proof of
Corollary 6.3.12, such that P2g ≡ 1, where j(s) is determined in Lemma 6.3.15 for
the integer s+m(s). Now, Lemma 6.3.15 implies u · (g ◦f) ∈W s+m(s)

0 (D1). Hence,
from (6.3.10) and condition R on D1,

u = P1(u · (g ◦ f))

is in Hs(D1). This shows that u ∈ C∞(D1).
Similarly, the determinant U(w) of the complex Jacobian of f−1 is also in

C∞(D2). It follows that u(z) is nonvanishing on D1.
Repeating the above arguments, for each s ∈ N, choose gk ∈ W s+m(s)+j(s)

0 (D2),
for k = 1, · · · , n, such that P2gk ≡ wk, the kth coordinate function on D2. Hence,

u · fk = P1(u · (gk ◦ f))

is in Hs(D1), where f = (f1, · · · , fn). Since u does not vanish on D1, this implies
fk ∈ C∞(D1) for k = 1, · · · , n. It follows that f ∈ C∞(D1). Similarly, we have
f−1 ∈ C∞(D2). The proof of Theorem 6.3.13 is now complete.
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6.4 Worm Domains

In this section we shall construct the so-called worm domains. Such domains
possess many pathological properties in complex analysis. We shall prove that such
domains do not always have plurisubharmonic defining functions on the boundaries
nor do they always have pseudoconvex neighborhood bases.

A Hartogs domain in C2 is a domain which is invariant under rotation in one of
the coordinates. Let Dβ be the unbounded worm domain defined by

Dβ = {(z1, z2) ∈ C2| Re(z1e−ilog|z2|2) > 0, |log|z2|2| < β − π

2
},

for β > π/2. Clearly, Dβ is a Hartogs domain. Geometrically, if we use Rez1, Imz1
and |z2| as axes, thenDβ can be visualized in R3 as an open half space in z1 revolving
along the |z2|-axis when |z2| ranges from exp(−β/2 + π/4) to exp(β/2− π/4).

To see that Dβ is pseudoconvex, we note that locally, we can substitute the
inequality Re(z1e−ilog|z2|2) > 0 by

Re(z1e−ilog|z2|2+argz2
2 ) = Re(z1e−ilogz2

2 ) > 0.

Since z1e−ilogz2
2 is locally holomorphic, its real part is a pluriharmonic function, with

vanishing complex Hessian. Dβ is the intersection of two pseudoconvex domains.
Thus, it is pseudoconvex. As log|z2| changes by a length of π, we see that the half
plane Re(z1e−ilog|z2|2) rotates by an angle of 2π.

To construct a bounded worm domain we shall rotate discs instead of half planes.
We define

Ω′β = {(z1, z2) ∈ C2| |z1 + eilog|z2|2 |2 < 1, |log|z2|2| < β − π

2
}.

Since Ω′β is defined by |z1|2 + 2Re(z1e−ilog|z2|2) < 0, locally, we can view Ω′β
as defined by |z1|2eargz2

2 + 2Re(z1e−ilogz2
2 ) < 0. Since the function |z1|2eargz2

2 =
elog|z1|2+argz2

2 is plurisubharmonic, it is easy to see that Ω′β is pseudoconvex and
bounded. But it is not smooth at |log|z2|2| = β− π

2 . For each fixed |log|z2|2| < β− π
2 ,

Ω′β is a disc of radius 1 centered at −eilog|z2|2 and (0, z2) ∈ bΩ′β .
To construct a smooth worm domain, we have to modify Ω′β . Let η : R→ R be

a fixed smooth function with the following properties:
(1) η(x) ≥ 0, η is even and convex.
(2) η−1(0) = Iβ−π/2, where Iβ−π/2 = [−β + π/2, β − π/2].
(3) there exists an a > 0 such that η(x) > 1 if x < −a or x > a.
(4) η′(x) 6= 0 if η(x) = 1.

We note that (4) follows from (1) and (2). The existence of such a function is
obvious. For each β > π/2, define

(6.4.1) Ωβ = {(z1, z2) ∈ C2| |z1 + eilog|z2|2 |2 < 1− η(log|z2|2)}.

Then, we have:
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Proposition 6.4.1. For each fixed β > π/2, Ωβ is a smooth bounded pseudoconvex
domain in C2.

Proof. Clearly, by (3), Ωβ is bounded. For the smoothness of Ωβ , we need to show
that ∇ρ(z) 6= 0 at every boundary point z, where ρ(z) = |z1 + eilog|z2|2 |2 − 1 +
η(log|z2|2) is the defining function for Ωβ . If (∂ρ/∂z1)(z) = 0 at some boundary
point z, we get

∂ρ

∂z1
(z) = z1 + e−ilog|z2|2 = 0.

Since ρ(z) = 0, it follows that η(log|z2|2) = 1 whenever (∂ρ/∂z1)(z) = 0 at a
boundary point z. Now it is easy to see that (∂ρ/∂z2)(z) 6= 0 by (4) at such points.
This proves the smoothness of Ωβ .

To see that Ωβ is pseudoconvex, we write

ρ(z) = |z1|2 + 2Re(z1e−ilog|z2|2) + η(log|z2|2).

Again locally, Ωβ can be defined by

|z1|2eargz2
2 + 2Re(z1e−ilogz2

2 ) + η(log|z2|2)eargz2
2 < 0.

The first two terms are plurisubharmonic as before. We only need to show that the
last term η(log(|z2|2)eargz2

2 is plurisubharmonic. A direct calculation shows that

4(η(log|z2|2)eargz2
2 ) =

(
4η(log|z2|2)

)
eargz2

2 + η(log|z2|2)4eargz2
2 ≥ 0,

since η is convex and nonnegative from (1). Ωβ is defined locally by a plurisubhar-
monic function. Thus it is pseudoconvex with smooth boundary.

The following result shows that for each fixed β > π/2 there is no C2 global
defining function which is plurisubharmonic on the boundary of Ωβ .

Theorem 6.4.2. For any β > π/2, there is no C2 defining function ρ̃(z) for Ωβ

such that ρ̃(z) is plurisubharmonic on the boundary of Ωβ.

Proof. Let ρ̃(z) be such a C2 defining function for Ωβ that is plurisubharmonic
on the boundary bΩβ . Then there is a C1 positive function h defined in some
neighborhood of bΩβ such that ρ̃(z) = hρ. Let A = {(0, z2) ∈ C2| |log|z2|2| <
β − π/2}. A direct calculation shows that the complex Hessian of ρ̃(z) acting on
any (α, β) ∈ C2 for any point p ∈ A ⊂ bΩβ is given by

(6.4.2)
Lρ̃(z)(p; (α, β)) = 2Re

[
αβ

(
ih

z2
+
∂h

∂z2

)
eilog|z2|2

]
+
[
h+ 2Re

(
∂h

∂z1
eilog|z2|2

)]
|α|2.

Since, by assumption, (6.4.2) is always nonnegative, we must have(
ih

z2
+
∂h

∂z2

)
eilog|z2|2 ≡ 0
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on A, or equivalently,
∂

∂z2
(he−ilog|z2|2) ≡ 0

on A. Consequently,

g(z2) = h(0, z2)e−ilog|z2|2

is a holomorphic function on the annulus A. It follows that

g(z2)eilogz2
2 = h(0, z2)e−2argz2 = c,

is also locally a holomorphic function on A, and hence it must be a constant c, since
the right hand side is real. This implies that

h(0, z2) = ce2argz2

is a well defined, C1 positive function on A, which is impossible. This proves
Theorem 6.4.2.

In particular, Theorem 6.2.3 cannot be applied to worm domains. In fact we
will prove in the next section that the Bergman projection is not regular on worm
domains.

Another peculiar phenomenon about worm domains is that they do not have
pseudoconvex neighborhood bases if β is sufficiently large. To illustrate this, we
first examine the Hartogs triangle

G = {(z1, z2) | |z1| < |z2| < 1}.

By Cauchy’s integral formula, any function holomorphic in a neighborhood of G
extends holomorphically to the bidisc D2 = {(z1, z2) | |z1| < 1, |z2| < 1}. Thus if Ω
is any pseudoconvex domain containing G, then Ω contains the larger set D2 since
pseudoconvex domains are domains of holomorphy. This implies that we cannot
approximate G by a sequence of pseudoconvex domains {Ωk} such that G ⊂ Ωk

and G = ∩kΩk. However, the Hartogs triangle is not smooth.
We next show that Ωβ does not have a pseudoconvex neighborhood base if β ≥

3π/2. When β ≥ 3π/2, Ωβ contains the set

K ={(0, z2) | −π ≤ log|z2|2 ≤ π}
∪ {(z1, z2) | log|z2|2 = π or − π and |z1 − 1| < 1}.

Any holomorphic function in a neighborhood of K extends holomorphically to the
set

K̂ = {(z1, z2) | −π ≤ log|z2|2 ≤ π and |z1 − 1| < 1}.

Thus any holomorphic function in a neighborhood of Ωβ extends holomorphically
to Ωβ ∪ K̂. This implies that any pseudoconvex domain containing Ωβ contains K̂.
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Theorem 6.4.3. For β ≥ 3π/2, there does not exist a sequence {Ωk} of pseudo-
convex domains in C2 with Ωβ ⊂ Ωk and Ωβ = ∩kΩk.

Thus pseudoconvex domains do not always have a pseudoconvex neighborhood
base. We note that any pseudoconvex domain can always be exhausted by pseudo-
convex domains from inside.

6.5 Irregularity of the Bergman Projection on Worm Domains

The purpose of this section is to prove that the Bergman projection P is irregular
on the worm domain Ωβ in the Sobolev spaces. We first study the Bergman kernel
function K(z, w) on the unbounded worm domain Dβ where Dβ is defined in 6.4.
For each fixed z1 variable, the domain is a union of annuli in z2. Any holomorphic
function in Dβ admits a Laurent expansion in z2. Using Fourier expansion, for any
f ∈ H(Dβ), we write

f(z) =
1
2π

∑
j∈Z

∫ 2π

0

f(z1, eiθz2)e−ijθ dθ.

Let fj(z1, z2) = 1
2π

∫ 2π

0
f(z1, eiθz2)e−ijθ dθ. Then fj is holomorphic and fj(z1, eiθz2)

= eijθfj(z1, z2). Such fj are necessarily of the form fj(z1, z2) = g(z1, |z2|)zj
2, where

g(z1, |z2|) is holomorphic in Dβ and locally constant in |z2|. The Bergman space
H(Dβ) admits an orthogonal decomposition

H(Dβ) = ⊕
j∈Z
Hj(Dβ).

Any f in Hj(Dβ) satisfies f(z1, eiθz2) = eijθf(z1, z2). Denote by Pj the orthogonal
projection from L2(Dβ) onto Hj(Dβ). It follows that if f ∈ H(Dβ), we have

Pjf(z) = fj(z) =
1
2π

∫ 2π

0

f(z1, eiθz2)e−ijθ dθ,

and the Bergman kernel function KDβ
(z, w) associated with Dβ satisfies

KDβ
(z, w) =

∑
j∈Z

Kj(z, w),

where Kj(z, w) is the reproducing kernel for Hj(Dβ). Each Kj(z, w) is locally of
the form Kj(z, w) = kj(z1, w1)z

j
2w̄

j
2. It turns out that for the unbounded worm

domain, the kernel K−1 can be computed explicitly.
To facilitate the calculation, we introduce the following domain:

D′
β = {(z1, z2) ∈ C2| |Imz1 − log|z2|2| < π/2, |log|z2|2| < β − π/2}.

For each fixed z2, D′
β is an infinite strip in z1. Thus, D′

β is biholomorphically
equivalent to Dβ via the mapping

ϕ : D′
β → Dβ

(z1, z2) 7→ (ez1 , z2).
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Also from the transformation formula (6.3.3) for the Bergman kernel functions, we
have

KDβ
(z, w) =

1
z1w1

KD′
β
(ϕ−1(z), ϕ−1(w)).

Since ϕ commutes with rotation in the z2-variable, we have an analogous transfor-
mation law on each component

(6.5.1) Kj(z, w) =
1

z1w1
K ′

j(ϕ
−1(z), ϕ−1(w)),

where K ′
j is the reproducing kernel for the square integrable holomorphic functions

H on D′
β satisfying H(z1, eiθz2) = eijθH(z1, z2). The kernel K ′

−1 can be calculated
explicitly as follows:

For any H ∈ Hj(D′
β), we may write H(z1, z2) = h(z1)z

j
2, where h(z1) is holo-

morphic in z1. For each β > 0, let Sβ be the strip on the complex plane defined
by

Sβ = {z = x+ iy ∈ C| |y| < β}.

It follows that

(6.5.2)

‖ H ‖2L2(D′
β)

=
∫

D′
β

|h(z1)|2|z2|2j dx1dy1dx2dy2

= 2π
∫
|2logr|<β−π

2

∫
|y1−2logr|< π

2

|h(z1)|2r2j+1 dx1dy1dr

= π

∫
|s|<β−π

2

∫
|y1−s|< π

2

|h(z1)|2e(j+1)s dx1dy1ds

= π

∫ ∞

−∞

∫
Sβ

|h(z1)|2e(j+1)sχπ
2
(y1 − s)χβ−π

2
(s) dx1dy1ds

=
∫

Sβ

|h(z)|2λj(y) dxdy,

where λj(y) = π(e(j+1)sχβ−π
2
)∗χπ

2
(y), β > π/2 and χα is the characteristic function

on Iα = (−α, α). Let λ(y) be a continuous positive bounded function on the interval
Iβ = {y ∈ R | |y| < β}. Denote by H(Sβ , λ) the weighted Bergman space on Sβ

defined by

H(Sβ , λ) = {f ∈ O(Sβ)| ‖ f ‖2λ =
∫

Sβ

|f(z)|2λ(y) dxdy <∞}.

To compute the kernel K ′
−1, it suffices to compute the Bergman kernel in one

variable on a strip Sβ with weight λ = πχβ−π
2
∗ χπ

2
(y) and the kernel K ′

−1(z, w)
is given by K ′

−1 = Kλ(z1, w1)/z2w̄2. The next lemma allows us to compute the
weighted Bergman kernel function Kλ(z, w) on Sβ .
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Lemma 6.5.1. For each β > 0, let λ(y) be a continuous positive bounded function
on the interval Iβ = {y ∈ R | |y| < β}. Then the weighted Bergman kernel function
Kλ(z, w) on Sβ is given by

(6.5.3) Kλ(z, w) =
1
2π

∫
R

ei(z−w)ξ

λ̂(−2ξi)
dξ,

where λ̂ is the Fourier transform of λ if λ(y) is viewed as a function on R that
vanishes outside Iβ.

Proof. For f ∈ H(Sβ , λ) we define the partial Fourier transform f̃ of f with respect
to x by

f̃(ξ, y) =
∫

R
f(x+ iy)e−ixξ dx.

It is easily verified by Cauchy’s theorem that f̃(ξ, y) = e−yξ f̃0(ξ), where f̃0(ξ) =
f̃(ξ, 0). Thus from Plancherel’s theorem,

(6.5.4)
‖ f ‖2λ = (2π)−1

∫
R×Iβ

e−2yξ | f̃0(ξ) |2 λ(y)dξdy

= (2π)−1

∫
R
| f̃0(ξ) |2 λ̂(−2iξ)dξ.

For f ∈ H(Sβ , λ) and z ∈ Sβ , we have∫
R
f̃0(ξ)eizξ dξ = 2πf(z)

= 2π
∫

Sβ

f(w)Kλ(w, z)λ(y) dxdy

=
∫ β

−β

∫
R
e−2yξ f̃0(ξ)K̃λ((ξ, 0), z)λ(y) dξdy,

where w = x+ iy. It follows that

e−izξ = K̃λ((ξ, 0), z)
∫ β

−β

e−2yξλ(y) dy,

and

K̃λ((ξ, 0), z) =
e−izξ

λ̂(−2ξi)
.

Finally, by the Fourier inversion formula, we obtain

Kλ(z, w) =
1
2π

∫
R

ei(z−w)ξ

λ̂(−2ξi)
dξ.

Here we note that λ̂(−2ξi) is real. This proves the lemma.

We next apply Lemma 6.5.1 to the piecewise linear weight

λ(y) = πχβ−π
2
∗ χπ

2
(y).



156 Boundary Regularity for ∂ on Pseudoconvex Domains

Lemma 6.5.2. For β > π
2 , if λ(y) = πχβ−π

2
∗ χπ

2
(y), then

λ̂(−2ξi) =
πsinh

(
(2β − π)ξ

)
sinh(πξ)

ξ2
,

and

(6.5.5) Kλ(z, w) =
1

2π2

∫
R

ξ2ei(z−w)ξ

sinh
(
(2β − π)ξ

)
sinh(πξ)

dξ.

Proof. If λ(y) = χα(y) for some α > 0, then

λ̂(−2ξi) =
∫ α

−α

e−ix(−2ξi)dx =
∫ α

−α

e−2xξdx =
sinh(2αξ)

ξ
.

Hence, for the piecewise linear weight λ(y) = πχβ−π
2
∗ χπ

2
(y), we have

λ̂(−2ξi) =
πsinh

(
(2β − π)ξ

)
sinh(πξ)

ξ2
,

and (6.5.5) now follows from Lemma 6.5.1.

We observe that ξ2/sinh
(
(2β−π)ξ

)
sinhπξ has poles at nonzero integer multiples

of πi/(2β−π) and i. Let us first assume that β > π, and set νβ = π/(2β−π) so that
νβ < 1. Then, via a standard contour integration, one can obtain the asymptotic
expansion of the weighted Bergman kernel function Kλ(z, w) and see that it is in
fact dominated by the residue of g(ξ) = ξ2ei(z−w)ξ/sinh

(
(2β − π)ξ

)
sinh(πξ) at the

first pole νβi.

Lemma 6.5.3. Let β > π and λ(y) = πχβ−π
2
∗ χπ

2
(y). Then

(6.5.6) Kλ(z, w) = cβe
−νβ(z−w) +O(e−µβ(z−w))

for Re(z − w) > 0 and

(6.5.7) Kλ(z, w) = −cβeνβ(z−w) +O(eµβ(z−w))

for Re(z−w) < 0, where cβ = νβ
3/(π2sinνβπ) and µβ = min(2νβ , 1). Furthermore,

given any small positive ε, the expansion in (6.5.6) or (6.5.7) is uniform for any
z, w ∈ Sβ−ε.

Proof. Fix h > 0 so that hi is the midpoint between the second and third poles of
g(ξ). Denote by ΓN the rectangular contour with vertices ±N and ±N + ih. Let
us first assume that 2νβ < 1. Then, we have 2νβ < h < 1 and∫ N

−N

ξ2ei(z−w)ξ

sinh
(
(2β − π)ξ

)
sinh(πξ)

dξ + IN + I−N + JN

= 2πi(Res g(ξ) at νβi and 2νβi),
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where Res g(ξ) denotes the residues of g(ξ) and

IN = i

∫ h

0

(N + iy)2ei(z−w)(N+iy)

sinh
(
(2β − π)(N + iy)

)
sinhπ(N + iy)

dy,

I−N = −i
∫ h

0

(−N + iy)2ei(z−w)(−N+iy)

sinh
(
(2β − π)(−N + iy)

)
sinhπ(−N + iy)

dy,

and

JN = −
∫ N

−N

(x+ ih)2ei(z−w)(x+ih)

sinh
(
(2β − π)(x+ ih)

)
sinhπ(x+ ih)

dx.

A direct calculation shows that

Res
ξ=νβi

g(ξ) =
νβ

3e−νβ(z−w)

iπsin(νβπ)
,

and

Res
ξ=2νβi

g(ξ) =
−4νβ

3e−2νβ(z−w)

iπsin(2νβπ)
.

For any z, w ∈ Sβ−ε, we write z − w = u + iv with u > 0. Hence, we have
|v| ≤ 2(β − ε) and

|IN | .
∫ h

0

(N2 + y2)e−vN−uy

e2βN
dy .

N2 + 1
e2εN

.

It follows that IN converges to zero uniformly for any z, w ∈ Sβ−ε such that Re(z−
w) > 0. Similarly, we get the uniform convergence to zero for I−N . For JN , we
have

|JN | .
∫ 1

−1

(x2 + h2)e−vx−uh dx+
∫ N

1

(x2 + h2)e−vx−uh

e2βx
dx

+
∫ −1

−N

(x2 + h2)e−vx−uh

e−2βx
dx

. e−2νβu

(
1 +

∫ N

1

x2 + h2

e2εx
dx

)
.

It follows by letting N tend to infinity that∫ ∞

−∞

ξ2ei(z−w)ξ

sinh
(
(2β − π)ξ

)
sinh(πξ)

dξ

=
2νβ

3e−νβ(z−w)

sinνβπ
− 8νβ

3e−2νβ(z−w)

sin(2νβπ)

+
∫ ∞

−∞

(x+ ih)2ei(z−w)(x+ih)

sinh
(
(2β − π)(x+ ih)

)
sinhπ(x+ ih)

dx

=
2νβ

3

sinνβπ
e−νβ(z−w) +O(e−2νβ(z−w)).
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Clearly, the estimate is uniform for all z, w ∈ Sβ−ε with Re(z−w) > 0. This proves
the case for 2νβ < 1.

For cases 2νβ = 1 and 2νβ > 1, a similar argument applies.
If Re(z − w) < 0, we take the rectangular contour ΓN on the lower half space

with vertices ±N , and ±N−ih, and (6.5.7) can be proved similarly. This completes
the proof of the lemma.

From (6.5.2), the kernel K ′
−1(z, w) is given by

K ′
−1(z, w) = Kλ(z1, w1)/z2w2,

where Kλ(z1, w1) is calculated in Lemma 6.5.3. If β > π, then (6.5.7) shows that

K ′
−1(z, w) = −cβ

eνβ(z1−w1)

z2w2
+O(eµβ(z1−w1))

for Re(z1 − w1) < 0. Hence

(6.5.8) K−1(z, w) = −cβz
νβ−1
1 w

−νβ−1
1 z−1

2 w−1
2 +

1
z1w1

O
(( z1

w1

)µβ)
for |z1| < |w1|. The expansion in (6.5.7) is uniform on Sβ−ε for any small positive
ε. Thus, for fixed w, we have for any m ∈ N,

|Re(z1e−ilog|z2|2)|s
(

∂

∂z1

)m

K−1(z, w) /∈ L2(Dβ), for s ≤ m− νβ .

It follows that

(6.5.9) |Re(z1e−ilog|z2|2)|s
(

∂

∂z1

)m

KDβ
(z, w) /∈ L2(Dβ),

for s ≤ m− νβ . Estimate (6.5.9) also holds for π/2 < β ≤ π. When π/2 <
β < π, (6.5.9) can be obtained by examining higher order terms in the asymptotic
expansion of Kλ.

When β = π, we compute the residue at the double pole −i of (6.5.5) to obtain

Kλ(z1, w1) = π−2(−z1 + w̄1 − 2)e(z1−w̄1) +O(e2(z1−w̄1))

for Re(z1 − w̄1) < 0 and

K−1(z, w) = π−2(− log(z1/w̄1)− 2)w̄−2
1 z−1

2 w̄−1
2 +O((z1/w̄1)2)

for |z1| < |w1|. Thus (6.5.9) holds for β = π also. Estimate (6.5.9) is crucial in
proving the irregularity of the Bergman projection P measured in the Sobolev norm
on the worm domain. For our purpose we need the following fact (See Lemma C.4
in the Appendix).
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Lemma 6.5.4. Let D be a smooth bounded domain in RN with a smooth defining
function ρ(x). Then, for each s ≥ 0, the W−s norm of a harmonic function f is
equivalent to the L2 norm of |ρ|sf on D.

We first observe the following result for the Bergman projection on the un-
bounded worm domain Dβ .

Proposition 6.5.5. For each β > π/2, condition R does not hold on Dβ. Fur-
thermore, the Bergman projection P∞ on Dβ does not map C∞0 (Dβ) into W k(Dβ)
when k ≥ π/(2β − π).

Proof. Let w ∈ Dβ . We choose a real-valued function f ∈ C∞0 (Dβ) such that f
depends on |z−w| and

∫
Dβ

f = 1. Using the same argument as in Corollary 6.3.11,
we obtain

P∞f = KDβ
(·, w).

Since KDβ
(·, w) /∈ C∞(Dβ), condition R fails on Dβ .

Let ΓA = {z ∈ Cn | |z| < A} be a large ball for A > 0. From (6.5.9), we have

(6.5.10) |ρ∞|s
(

∂

∂z1

)m

P∞f /∈ L2(Dβ ∩ ΓA)

for s ≤ m− νβ , where ρ∞ = Re(z1e−ilog|z2|2). If P∞f ∈ W k(Dβ ∩ ΓA), choose a
positive integer m > k and let s = m − k ≤ m− νβ . Using Lemma 6.5.4, we have
|ρ∞|s∇mP∞f ∈ L2(Dβ ∩ ΓA), a contradiction. Thus P∞f /∈W k(Dβ ∩ΓA) and the
proposition is proved.

We prove the main result of this section on the irregularity of the Bergman
projection for the smooth worm domain Ωβ .

Theorem 6.5.6. For each β > π/2, the Bergman projection P on Ωβ does not
map W k(Ωβ) into W k(Ωβ) when k ≥ π/(2β − π).

Proof. Assume on the contrary that the Bergman projection P maps W k(Ωβ) into
W k(Ωβ) with the estimate

(6.5.11) ‖ Pf ‖W k(Ωβ) ≤ Ck ‖ f ‖W k(Ωβ)

for f ∈W k(Ωβ) and k ≥ π/(2β − π) = νβ .
For any µ ≥ 1, let τµ be the dilation defined by

τµ : C2 → C2

(z1, z2) 7→ (µz1, z2).

Denote by Ωβ,µ = τµ(Ωβ), Ω′β,µ = τµ(Ω′β) where Ω′β is defined in Section 6.4. Then
Ω′β,µ ⊂ Ωβ,µ and Ω′β,µ ↗ Dβ . Let Tµ be the pullback of the L2 functions on Ωβ,µ,
i.e.,

Tµ : L2(Ωβ,µ)→ L2(Ωβ)
f 7→ f ◦ τµ.
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A direct calculation shows that

‖
(
∂

∂z

)α(
∂

∂z

)γ

Tµf ‖L2(Ωβ) = µα1+γ1−1 ‖
(
∂

∂z

)α(
∂

∂z

)γ

f ‖L2(Ωβ,µ),

where α = (α1, α2) and γ = (γ1, γ2) are multindices. Thus we have

(6.5.12) ‖ Tµf ‖W l(Ωβ) ≤ µl−1 ‖ f ‖W l(Ωβ,µ),

when l is a nonnegative integer. Then, by interpolation, it holds for all real l ≥ 0.
Let Pµ be the Bergman projection associated with Ωβ,µ. Then

(6.5.13) Pµ = T−1
µ PTµ.

From the definition (6.4.1) of Ωβ we see that the defining function ρ(z) coincides
with |z1|2 + 2Re(z1e−ilog|z2|2) when log|z2|2 ∈ Iβ−π

2
. Let ρµ(z) = µρ ◦ (τµ)−1 so

that ρµ → ρ∞ = 2Re(z1e−ilog|z2|2) as µ → ∞, where ρ∞ is a defining function for
Dβ . Write k = m− s, where m is an integer and s ≥ 0. For any f ∈ C∞0 (Ω′β,µ) ⊂
C∞0 (Ωβ,µ), we have using (6.5.11)-(6.5.13) and Lemma 6.5.4,

(6.5.14)

‖ |ρµ|s
(

∂

∂z1

)m

Pµf ‖L2(Ωβ,µ)

= ‖ |ρµ|s
(

∂

∂z1

)m

(Tµ)−1PTµf ‖L2(Ωβ,µ)

= µs−m+1 ‖ |ρ|s
(

∂

∂z1

)m

PTµf ‖L2(Ωβ)

≤ Cµ1−k ‖
(

∂

∂z1

)m

PTµf ‖W−s(Ωβ)

≤ Cµ1−k ‖ PTµf ‖W k(Ωβ)

≤ Cµ1−k ‖ Tµf ‖W k(Ωβ)

≤ C ‖ f ‖W k(Ωβ,µ),

where the constant C is independent of µ. We claim that

Pµf ⇀ P∞f weakly in L2(C2),

where P∞f is the Bergman projection of f on Dβ , P∞f = 0 outside Dβ and we
have set Pµf = 0 outside Ωβ,µ. Assuming the claim, It follows from (6.5.14) that

(6.5.15) ‖ |ρ∞|s
(

∂

∂z1

)m

P∞f ‖L2(Dβ) ≤ C ‖ f ‖W k(Dβ)

for any f ∈ C∞0 (Dβ). This contradicts (6.5.10) and the theorem is proved.
Thus, it remains to prove the claim. Since

‖ Pµf ‖L2(C2) ≤ ‖ f ‖L2(C2),

there exists a subsequence of Pµf that converges weakly to h ∈ L2(C2). Since
Ω′β,µ ↗ Dβ , h is holomorphic in Dβ . Also h vanishes outside Dβ since every
compact subset outside Dβ is outside Ωβ,µ for sufficiently large µ. To prove that
h = P∞f , we need to show that f−h ⊥ H(Dβ). Choose M > 1 so that Ωβ,µ ⊂ DMβ

for all µ. Obviously f − Pµf ⊥ H(DMβ). Therefore, by passing to the limit, we
obtain that f − h ⊥ H(DMβ). The claim will be proved by the following density
result:
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Lemma 6.5.7. For each M > 1, the space H(DMβ) is dense in H(Dβ).

Proof. It suffices to show that each Hj(DMβ) is dense in Hj(Dβ), or equivalently,
Hj(D′

Mβ) is dense inHj(D′
β). From (6.5.2) and (6.5.4) we have for any f ∈ Hj(D′

β),

‖ f ‖2L2(D′
β) = (2π)−1

∫
R
| f̃0(ξ) |2 λ̂j(−2iξ)dξ,

where f̃0(ξ) is the partial Fourier transform of f evaluated at y = 0 and λj(y) =
π(e(j+1)(·)χβ−π

2
) ∗ χπ

2
(y). Thus, the space Hj(D′

β) is isometric via the Fourier
transform to the space of functions on R which are square integrable with respect
to the weight

λ̂j(−2ξi) =
πsinh

[
(2β − π)

(
ξ − ( j+1

2 )
)]

sinh(πξ)

ξ
(
ξ − ( j+1

2 )
) .

Since C∞0 (R) is dense in the latter space for any value of β, the lemma follows.

Using Theorem 6.2.2 and Theorem 6.5.6, we also obtain that the ∂̄-Neumann
operator is irregular on the worm domain.

Corollary 6.5.8. For each β > π/2, the ∂-Neumann operator on Ωβ does not map
W k

(0,1)(Ωβ) into W k
(0,1)(Ωβ) when k ≥ π/(2β − π).

NOTES

The existence of a smooth solution up to the boundary, using the weighted ∂-
Neumann problem, for the ∂ equation was proved by J. J. Kohn in [Koh 6]. The
equivalence between the Bergman projections and the ∂-Neumann operators was
proved by H. P. Boas and E. J. Straube in [BoSt 2]. Theorem 6.2.1 provides a suffi-
cient condition for verifying the exact regularity of the ∂-Neumann operators, and
the idea has been used in [Che 4] and [BoSt 3,4,5]. The use of a smooth plurisubhar-
monic defining function (Theorem 6.2.3), based on an observation by A. Noell [Noe
1], was originated in [BoSt 3] where they treated directly the exact regularity of the
Bergman projections under the existence of such a defining function. For a convex
domain in dimension two, a different proof, using related ideas, was obtained inde-
pendently in [Che 5]. The use of transverse symmetries for verifying the regularity
of the Bergman projection was first initiated by D. Barrett [Bar 1]. The regularity
of the ∂-Neumann problem on circular domains with symmetry (Theorems 6.2.7
and 6.2.8) was proved by S.-C. Chen [Che 3]. See also [BCS 1]. Another sufficient
condition related to the De Rham cohomology on the set of infinite type points for
the regularity of the ∂-Neumann operators was also introduced by H. P. Boas and
E. J. Straube in [BoSt 5].

Another important class of smooth bounded pseudoconvex domains which is
beyond the scope of this book is the class of domains of finite type. The concept
of finite type on a pseudoconvex domain in C2, using the Lie brackets of complex
tangential vector fields, was first introduced by J. J. Kohn [Koh 4]. Subsequently,
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J. J. Kohn introduced subelliptic multipliers and finite ideal type in [Koh 8] and he
proved that finite ideal type condition is sufficient for the subelliptic estimates of the
∂-Neumann operators. By measuring the order of contact of complex varieties with
a hypersurface at the reference point, J. D’Angelo [DAn 1,2] proposed a definition
of finite type in Cn. The necessity of finite order of contact of complex varieties for
the subelliptic estimates was proved by D. Catlin in [Cat 1].

When the boundary is real analytic near a boundary point, Kohn’s theory of
ideals of subelliptic multipliers [Koh 8], together with a theorem of Diederich and
Fornaess [DiFo 3], showed that a subelliptic estimate on (p, q)-forms for the ∂-
Neumann problem is equivalent to the absence of germs of q dimensional complex
varieties in the boundary near the point. In particular, subelliptic estimates always
hold on any bounded pseudoconvex domain with real analytic boundary.

D. Catlin also defined in [Cat 4] his own notion of finite type. His theory of mul-
titypes developed in [Cat 2] leads to the construction of a family of smooth bounded
plurisubharmonic functions with large Hessian on the boundary. This property is
now known as property (P) (see [Cat 3]). Property (P) implies the existence of a
compactness estimate for the ∂-Neumann problem. Therefore, together with a the-
orem of Kohn and Nirenberg [KoNi 1], global regularity of the ∂-Neumann problem
will follow from property (P). See also the papers by N. Sibony [Sib 2,3] and S. Fu
and E. J. Straube [FuSt 1] for related results.

When a smooth bounded pseudoconvex domain has real analytic boundary, it is
also important to know the real analytic regularity of the ∂-Neumann operator near
the boundary. Real analytic regularity of a holomorphic function near the boundary
is equivalent to holomorphic extension of the function across the boundary. For
strongly pseudoconvex domains, an affirmative result of global analytic regularity
of the ∂-Neumann problem had been obtained by M. Derridj and D. S. Tartakoff
[DeTa 1] and G. Komatsu [Kom 1]. Local analytic hypoellipticity of the ∂-Neumann
problem on strongly pseudoconvex domains was proved by D. S. Tartakoff [Tar 1,2]
and F. Treves [Tre 2]. When the domains are weakly pseudoconvex of special type,
some positive results concerning global analytic hypoellipticity of the ∂-Neumann
problem are also available by S.-C. Chen [Che 1,2,6] and M. Derridj [Der 1] using
the vector field technique. For local analytic regularity of the ∂-Neumann problem
on certain weakly pseudoconvex domains, see [DeTa 2,3].

For introductory materials on the Bergman kernel function, the reader may con-
sult the survey paper by S. Bell [Bel 4] or the texts by S. G. Krantz [Kra 2] and R.
M. Range [Ran 6]. See also the papers by S. Bell [Bel 3], H. P. Boas [Boa 3], S.-C.
Chen [Che 7] and N. Kerzman [Ker 2] for the differentiability of the Bergman kernel
function near the boundaries of the domains. Theorem 6.3.7 on various equivalent
statements of condition R can be found in [BeBo 1]. The operator Φs in Lemma
6.3.8 was first constructed by S. Bell in [Bel 2]. Corollary 6.3.12 is the density
lemma due to S. Bell [Bel 1]. The smooth extension of a biholomorphic mapping
between two smooth bounded domains in Cn, n ≥ 2, was first achieved by C. Fef-
ferman in his paper [Fef 1] when the domains are strongly pseudoconvex. Later,
condition R was proposed by S. Bell and E. Ligocka in [BeLi 1]. They showed using
condition R that, near a boundary point, one may choose special holomorphic local
coordinates resulting from the Bergman kernel functions so that any biholomorphic
map between these two smooth bounded domains becomes linear (Theorem 6.3.13).
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Hence, the biholomorphism extends smoothly up to the boundaries. The present
proof of Theorem 6.3.13 was adopted from [Bel 2]. A smooth bounded nonpseudo-
convex domain in C2 which does not satisfy condition R was discovered in [Bar 2].
In contrast to Barrett’s counterexample, H. P. Boas and E. J. Straube showed in
[BoSt 1] that condition R always holds on any smooth bounded complete Hartogs
domain in C2 regardless of whether it is pseudoconvex or not. Theorem 6.3.14 was
proved by R. M. Range [Ran 2].

The construction of worm domains is due to K. Diederich and J. E. Fornaess
in [DiFo 1] where Theorem 6.4.3 is proved (see also [FoSte 1]). Our exposition
follows that of C. O. Kiselman [Kis 1]. Most of the Section 6.5 is based on [Bar 3].
Recently, based on D. Barrett’s result, it was proved by M. Christ in [Chr 2] that
condition R does not hold for the Bergman projection on the worm domain. For
more about the regularity of the ∂-Neumann problem and its related questions, the
reader may consult the survey paper by H. P. Boas and E. J. Straube [BoSt 6]. We
also refer the reader to the book by J. E. Fornaess and B. Stensønes [FoSte 1] for
counterexamples on pseudoconvex domains. For recent results on the ∂-Neumann
problem on Lipschitz pseudoconvex domains, see the papers by Bonami-Charpentier
[BoCh 1], Henkin-Iordan [HeIo 1], Henkin-Iordan-Kohn [HIK 1], Michel-Shaw [MiSh
1] and Straube [Str 2]. Hölder and Lp estimates of the ∂-Neumann problem on
pseudoconvex domains of finite type in C2 have been discussed in Chang-Nagel-
Stein [CNS 1], Fefferman-Kohn [FeKo 1]. Hölder or Lp estimates for the ∂-Neumann
problem on finite type pseudoconvex domains in Cn for n ≥ 3 are still unknown.
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CHAPTER 7

CAUCHY-RIEMANN MANIFOLDS

AND THE TANGENTIAL CAUCHY-RIEMANN COMPLEX

Let M be a smooth hypersurface in a complex manifold. The restriction of the
∂ complex to M naturally induces a new differential complex. This complex is
called the tangential Cauchy-Riemann complex or the ∂b complex. The tangential
Cauchy-Riemann complex, unlike the de Rham or the ∂ complex, is not elliptic. In
general, it is an overdetermined system with variable coefficients.

We have seen in Chapter 3 that the tangential Cauchy-Riemann equations are
closely related to the holomorphic extension of a CR function on the hypersurface.
The ∂b complex is also important in its own right in the theory of partial differen-
tial equations. The tangential Cauchy-Riemann equation associated with a strongly
pseudoconvex hypersurface in C2 provides a nonsolvable first order partial differen-
tial equation with variable coefficients. It also serves as a prototype of subelliptic
operators.

In the next few chapters, we shall study the solvability and regularity of the ∂b

complex. First, in Chapters 8 and 9 the subellipticity and the closed range property
of ∂b will be investigated using L2 method. Then, in Chapter 10 we construct an
explicit fundamental solution for �b on the Heisenberg group. Next, the integral
representation is used to construct a solution operator for the ∂b operator on a
strictly convex hypersurface in Chapter 11. The CR embedding problem will be
discussed in Chapter 12.

In this chapter, we shall first define Cauchy-Riemann manifolds and the tangen-
tial Cauchy-Riemann complex both extrinsically and intrinsically. The Levi form of
a Cauchy-Riemann manifold is introduced. In Section 7.3, we present the famous
nonsolvable Lewy operator. In contrast with the Lewy operator, we prove that
any linear partial differential operator with constant coefficients is always locally
solvable.

7.1 CR Manifolds

Let M be a real smooth manifold of dimension 2n − 1 for n ≥ 2, and let T (M)
be the tangent bundle associated with M . Let CT (M) = T (M) ⊗R C be the
complexified tangent bundle over M . A CR structure on M is defined as follows.
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Definition 7.1.1. Let M be a real smooth manifold of dimension 2n − 1, n ≥ 2,
and let T 1,0(M) be a subbundle of CT (M). We say that (M,T 1,0(M)) is a Cauchy-
Riemann manifold, abbreviated as CR manifold, with the Cauchy-Riemann structure
T 1,0(M) if the following conditions are satisfied:

(1) dimCT
1,0(M) = n− 1,

(2) T 1,0(M) ∩ T 0,1(M) = {0}, where T 0,1 = T 1,0(M),
(3) (Integrability condition) For any X1, X2 ∈ Γ(U, T 1,0(M)), the Lie bracket

[X1, X2] is still in Γ(U, T 1,0(M)), where U is any open subset of M and
Γ(U, T 1,0(M)) denotes the space of all smooth sections of T 1,0(M) over U .

Here T 1,0(M) in (2) means the complex conjugation of T 1,0(M). Note also that
condition (3) in Definition 7.1.1 is void when n = 2. The most natural CR manifolds
are those defined by smooth hypersurfaces in Cn.

Example 7.1.2. Let ρ : Cn → R be a real-valued smooth function. Suppose that
the differential dρ does not vanish on the hypersurface M = {z ∈ Cn | ρ(z) = 0}.
Then M is a smooth manifold with dimRM = 2n− 1. Define a subbundle T 1,0(M)
of CT (M) by T 1,0(M) = T 1,0(Cn) ∩ CT (M). It is easily seen that (M,T 1,0(M))
is a CR manifold with the CR structure T 1,0(M) induced from the ambient space
Cn.

Hence, it is natural to ask whether a given abstract CR structure (M,T 1,0(M))
on M can be CR embedded into some CN so that the given CR structure coincides
with the induced CR structure from the ambient space. The embedding problem
of an abstract CR structure will make up the main course of Chapter 12.

Let (M,T 1,0(M)) and (N,T 1,0(N)) be two CR manifolds. A smooth mapping ϕ
from M to N is called a CR mapping if ϕ∗L is a smooth section of T 1,0(N) for any
smooth section L in T 1,0(M). Furthermore, if ϕ has a smooth CR inverse mapping
ϕ−1, then we say that (M,T 1,0(M)) is CR diffeomorphic to (N,T 1,0(N)).

We have the following lemma:

Lemma 7.1.3. Let (M,T 1,0(M)) be a CR manifold, and let N be a manifold.
Suppose that M is diffeomorphic to N via a mapping ϕ. Then ϕ induces a CR
structure on N , namely, ϕ∗T 1,0(M), so that ϕ becomes a CR diffeomorphism from
(M,T 1,0(M)) onto (N,ϕ∗T 1,0 (M)), where ϕ∗ is the differential map induced by ϕ.

Proof. We need to check the integrability condition on ϕ∗T
1,0(M). However, this

follows immediately from the integrability condition on T 1,0(M) and the fact that
[ϕ∗X1, ϕ∗X2] = ϕ∗[X1, X2] for any smooth vector fields X1, X2 defined on M .

Definition 7.1.4. A smooth function g defined on a CR manifold (M,T 1,0(M))
is called a CR function if Lg = 0 for any smooth section L in T 0,1(M).

When M is the boundary of a smooth domain in Cn, this definition coincides
with Definition 3.0.1. If, in Definition 7.1.4, g is just a distribution, then Lg should
be interpreted in the sense of distribution.
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7.2 The Tangential Cauchy-Riemann Complex

Let M be a hypersurface in a complex manifold. The ∂ complex restricted to M
induces the tangential Cauchy-Riemann complex, or the ∂b complex. In fact, the
tangential Cauchy-Riemann complex can be formulated on any CR manifold. There
are two different approaches in this setting. One way is to define the tangential
Cauchy-Riemann complex intrinsically on any abstract CR manifold itself without
referring to the ambient space. On the other hand, if the CR manifold is sitting in
Cn, or more generally, a complex manifold, the tangential Cauchy-Riemann complex
can also be defined extrinsically via the ambient complex structure.

First, we assume that M is a smooth hypersurface in Cn, and let r be a defining
function for M . In some open neighborhood U of M , let Ip,q, 0 ≤ p, q ≤ n, be the
ideal in Λp,q(Cn) such that at each point z ∈ U the fiber Ip,q

z is generated by r and
∂r, namely, each element in the fiber Ip,q

z can be expressed in the form

rH1 + ∂r ∧H2,

where H1 is a smooth (p, q)-form and H2 is a smooth (p, q − 1)-form. Denote by
Λp,q(Cn)|M and Ip,q|M the restriction of Λp,q(Cn) and Ip,q respectively to M . Then,
we define

Λp,q(M) = {the orthogonal complement of Ip,q|M in Λp,q(Cn)|M}.

We denote by Ep,q the space of smooth sections of Λp,q(M) over M , i.e., Ep,q(M) =
Γ(M,Λp,q(M)). Let τ denote the following map

(7.2.1) τ : Λp,q(Cn)→ Λp,q(M),

where τ is obtained by first restricting a (p, q)-form φ in Cn to M , then projecting
the restriction to Λp,q(M). One should note that Λp,q(M) is not intrinsic to M ,
i.e., Λp,q(M) is not a subspace of the exterior algebra generated by the complexified
cotangent bundle of M . This is due to the fact that ∂r is not orthogonal to the
cotangent bundle of M . Note also that Ep,n = 0.

The tangential Cauchy-Riemann operator

∂b : Ep,q(M)→ Ep,q+1(M)

is now defined as follows: For any φ ∈ Ep,q(M), pick a smooth (p, q)-form φ1 in
Cn that satisfies τφ1 = φ. Then, ∂bφ is defined to be τ∂φ1 in Ep,q+1(M). If φ2 is
another (p, q)-form in Cn such that τφ2 = φ, then

φ1 − φ2 = rg + ∂r ∧ h,

for some (p, q)-form g and (p, q − 1)-form h. It follows that

∂(φ1 − φ2) = r∂g + ∂r ∧ g − ∂r ∧ ∂h,

and hence,
τ∂(φ1 − φ2) = 0.
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Thus, the definition of ∂b is independent of the choice of φ1. Since ∂
2

= 0, we have
∂

2

b = 0 and the following boundary complex

0 → Ep,0(M) ∂b−→ Ep,1(M) ∂b−→ · · · ∂b−→ Ep,n−1(M) → 0.

For the intrinsic approach, we will assume that (M,T 1,0(M)) is an orientable CR
manifold of real dimension 2n−1 with n ≥ 2. A real smooth manifoldM is said to be
orientable if there exists a nonvanishing top degree form onM . We shall assume that
M is equipped with a Hermitian metric on CT (M) so that T 1,0(M) is orthogonal
to T 0,1(M). Denote by η(M) the orthogonal complement of T 1,0(M) ⊕ T 0,1(M).
It is easily seen that η(M) is a line bundle over M . Now denote by T ∗1,0(M) and
T ∗0,1(M) the dual bundles of T 1,0(M) and T 0,1(M) respectively. By definition it
means that forms in T ∗1,0(M) annihilate vectors in T 0,1(M)⊕ η(M) and forms in
T ∗0,1(M) annihilate vectors in T 1,0(M)⊕η(M). Define the vector bundle Λp,q(M),
0 ≤ p, q ≤ n− 1, by

Λp,q(M) = ΛpT ∗1,0(M)⊗ ΛqT ∗0,1(M).

This can be identified with a subbundle of Λp+qCT ∗(M). It follows that Λp,q(M)
defined in this way is intrinsic to M . Denote by Ep,q the space of smooth sections
of Λp,q(M) over M , i.e., Ep,q(M) = Γ(M,Λp,q(M)). We define the operator

∂b : Ep,q(M)→ Ep,q+1(M)

as follows: If φ ∈ Ep,0, ∂bφ is defined by

〈∂bφ, (V1 ∧ · · · ∧ Vp)⊗ L〉 = L〈φ, V1 ∧ · · · ∧ Vp〉

for all sections V1, · · · , Vp of T 1,0(M) and L of T 0,1(M). Then ∂b is extended to
Ep,q(M) for q > 0 as a derivation. Namely, if φ ∈ Ep,q(M), we define

〈∂bφ, (V1∧ · · · ∧Vp)⊗ (L1∧ · · · ∧Lq+1)〉

=
1

q + 1

{q+1∑
j=1

(−1)j+1Lj〈φ, (V1∧ · · · ∧Vp)⊗ (L1∧ · · · ∧L̂j∧ · · · ∧Lq+1)〉

+
∑
i<j

(−1)i+j〈φ, (V1∧ · · · ∧Vp)⊗ ([Li, Lj ]∧L1∧ · · · ∧L̂i∧ · · · ∧L̂j∧ · · · ∧Lq+1)〉
}
.

Here by L̂ we mean that the term L is omitted from the expression. If we let πp,q

be the projection from Λp+qCT ∗(M) onto Λp,q(M), then ∂b = πp,q+1 ◦ d, where d
is the exterior derivative on M .

One should note how the integrability condition of the CR structure T 1,0(M)
comes into play in the definition of ∂b, and it is standard to see that the following
sequence

0 → Ep,0(M) ∂b−→ Ep,1(M) ∂b−→ · · · ∂b−→ Ep,n−1(M) → 0,
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forms a complex, i.e., ∂
2

b = 0.
Notice that p plays no role in the formulation of the tangential Cauchy-Riemann

operators. Thus, it suffices to consider the action of ∂b on type (0, q)-forms,
0 ≤ q ≤ n− 1. When the CR manifold (M,T 1,0(M)) is embedded as a smooth
hypersurface in Cn with the CR structure T 1,0(M) induced from the ambient space,
the tangential Cauchy-Riemann complex on M can be defined either extrinsically or
intrinsically. These two complexes are different, but one can easily show that they
are isomorphic. Thus, if the CR manifold is embedded, we shall not distinguish
the extrinsic or intrinsic definitions of the tangential Cauchy-Riemann complex.
The operator ∂b is a first order differential operator, and one may consider the
inhomogeneous ∂b equation

(7.2.2) ∂bu = f,

where f is a (0, q)-form on M . Equation (7.2.2) is overdetermined when 0 < q <

n− 1. Since ∂
2

b = 0, for equation (7.2.2) to be solvable, it is necessary that

(7.2.3) ∂bf = 0.

Condition (7.2.3) is called the compatibility condition for the ∂b equation. We shall
discuss the solvability and regularity of the ∂b operator in detail in the next few
chapters.

Let L1, · · · , Ln−1 be a local basis for smooth sections of T 1,0(M) over some open
subset U ⊂ M , so L1, · · · , Ln−1 is a local basis for T 0,1(M) over U . Next we
choose a local section T of CT (M) such that L1, · · · , Ln−1, L1, · · · , Ln−1 and T
span CT (M) over U . We may assume that T is purely imaginary.

Definition 7.2.1. The Hermitian matrix (cij)n−1
i,j=1 defined by

(7.2.4) [Li, Lj ] = cijT, mod (T 1,0(U)⊕ T 0,1(U))

is called the Levi form associated with the given CR structure.

The Levi matrix (cij) clearly depends on the choices of L1, · · · , Ln−1 and T .
However, the number of nonzero eigenvalues and the absolute value of the signature
of (cij) at each point are independent of the choices of L1, · · · , Ln−1 and T . Hence,
after changing T to −T , it makes sense to consider positive definiteness of the matrix
(cij).

Definition 7.2.2. The CR structure is called pseudoconvex at p ∈M if the matrix
(cij(p)) is positive semidefinite after an appropriate choice of T . It is called strictly
pseudoconvex at p ∈ M if the matrix (cij(p)) is positive definite. If the CR struc-
ture is (strictly) pseudoconvex at every point of M , then M is called a (strictly)
pseudoconvex CR manifold. If the Levi form vanishes completely on an open set
U ⊂M , i.e., cij = 0 on U for 1 ≤ i, j ≤ n− 1, M is called Levi flat.
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Theorem 7.2.3. Let D ⊂ Cn, n ≥ 2, be a bounded domain with C∞ boundary.
Then D is (strictly) pseudoconvex if and only if M = bD is a (strictly) pseudoconvex
CR manifold.

Proof. Let r be a C∞ defining function for D, and let p ∈ bD. We may assume
that (∂r/∂zn)(p) 6= 0. Hence,

Lk =
∂r

∂zn

∂

∂zk
− ∂r

∂zk

∂

∂zn
, for k = 1, · · · , n− 1,

form a local basis for the tangential type (1, 0) vector fields near p on the boundary.
If L =

∑n
j=1 aj(∂/∂zj) is a tangential type (1, 0) vector field near p, then we have∑n

j=1 aj(∂r/∂zj) = 0 on bD and L = (∂r/∂zn)−1
∑n−1

j=1 ajLj on bD. Hence, if we
let η = ∂r − ∂r, we obtain

n−1∑
i,j=1

cijaiaj =
n−1∑
i,j=1

〈η, [Li, Lj ]〉aiaj

=
n−1∑
i,j=1

(Li〈η, Lj〉 − Lj〈η, Li〉 − 2〈dη, Li ∧ Lj〉)aiaj

=
n−1∑
i,j=1

4〈∂∂r, Li ∧ Lj〉aiaj

= 4
∣∣∣∣ ∂r∂zn

∣∣∣∣2〈∂∂r, L ∧ L〉
= 4
∣∣∣∣ ∂r∂zn

∣∣∣∣2 n∑
i,j=1

∂2r

∂zi∂zj
aiaj ,

which gives the desired equivalence between these two definitions. This proves the
theorem.

We note that, locally, a CR manifold in Cn is pseudoconvex if and only if it is
the boundary of a smooth pseudoconvex domain from one side.

Lemma 7.2.4. Any compact strongly pseudoconvex CR manifold (M,T 1,0(M)) is
orientable.

Proof. Locally, let η, ω1, · · · , ωn−1 be the one forms dual to T,L1, · · · , Ln−1 which
are defined as above. The vector field T is chosen so that the Levi form is positive
definite. Then we consider the following 2n− 1 form

(7.2.5) η ∧ ω1 ∧ ω1 ∧ · · · ∧ ωn−1 ∧ ωn−1.

It is not hard to see that the 2n−1 form (7.2.5) generated by other bases will differ
from (7.2.5) only by a positive function. Hence, a partition of unity argument will
give the desired nowhere vanishing 2n− 1 form on M , and the lemma is proved.
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7.3 Lewy’s Equation

In this section, we shall present a partial differential operator of order one with
variable coefficients that, in general, does not possess a solution for a given smooth
function. This discovery destroys all hope for the existence of solutions to a rea-
sonably smooth partial differential operator. Since this operator arises from the
tangential Cauchy-Riemann operator on the boundary of a strongly pseudocon-
vex domain, this discovery also inspires an intensive investigation of the tangential
Cauchy-Riemann operator.

Let Ωn be the Siegel upper half space defined by

(7.3.1) Ωn = {(z′, zn) ∈ Cn| Imzn > |z′|2},

where z′ = (z1, · · · , zn−1) and |z′|2 = |z1|2 + · · · + |zn−1|2. When n = 1, Ω1 is
reduced to the upper half space of the complex plane which is conformally equivalent
to the unit disc. For n > 1, the Cayley transform also maps the unit ball Bn

biholomorphically onto the Siegel upper half space Ωn, i.e.,

(7.3.2)

Φ : Bn → Ωn

z 7→ w = Φ(z)

= i

(
en + z

1− zn

)
=
(

iz1
1− zn

, · · · , izn−1

1− zn
, i

1 + zn

1− zn

)
,

where en = (0, · · · , 0, 1).
For n ≥ 2, a simple calculation shows

(7.3.3) Lk =
∂

∂zk
+ 2izk

∂

∂zn
for k = 1, · · · , n− 1,

forms a global basis for the space of tangential (1, 0) vector fields on the boundary
bΩn and

[Lj , Lk] = −2iδjk
∂

∂t
,

where zn = t + is and δjk is the Kronecker delta. It follows that if we choose
T = −2i(∂/∂t), the Levi matrix (cij) is the identity matrix which implies that
Ωn is a strongly pseudoconvex domain. Furthermore, the boundary bΩn can be
identified with Hn = Cn−1 × R via the map

π : (z′, t+ i|z′|2)→ (z′, t).

Therefore, a CR structure can be induced via π on Hn by

(7.3.4) Zk = π∗Lk =
∂

∂zk
+ izk

∂

∂t

for k = 1, · · · , n−1. Thus, if f =
∑n−1

j=1 fjωj is a ∂b-closed (0, 1)-form on Hn, where
ωj is the (1, 0)-form dual to Zj , the solvability of the equation ∂bu = f is equivalent
to the existence of a function u satisfying the following system of equations:

Zku = fk, 1 ≤ k ≤ n− 1.
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When n = 2, the Siegel upper half space is given by

{(z, w) ∈ C2 | |z|2 − 1
2i

(w − w) < 0}.

Hence, the tangential Cauchy-Riemann operator is generated by

(7.3.5) L =
∂

∂z
− 2iz

∂

∂w
,

with w = t+is, and the corresponding operator, denoted by Z, via the identification
on H2 is

(7.3.6) Z =
∂

∂z
− iz ∂

∂t
,

where (z, t) with z = x+ iy are the coordinates on H2 = C×R. The coefficients of
the operator Z defined in (7.3.6) are real analytic. Hence, for a given real analytic
function f , the equation

(7.3.7) Zu = f

always has a real analytic solution u locally as is guaranteed by the Cauchy-
Kowalevski theorem. However, the next theorem shows that equation (7.3.7) does
not possess a solution in general even when f is smooth.

Theorem 7.3.1 (Lewy). Let f be a continuous real-valued function depending
only on t. If there is a C1 solution u(x, y, t) to the equation (7.3.7), then f must
be real analytic in some neighborhood of t = 0.

Proof. Locally, near the origin any point can be expressed in terms of the polar
coordinates as

(x, y, t) = (reiθ, t)

with r < R and |t| < R for some R > 0. Set s = r2. Consider the function V (s, t)
defined by

V (s, t) =
∫
{|z|=r}

u(z, t) dz.

Then, by Stokes’ theorem we have

V (s, t) = −
∫∫

{|z|<r}

∂u

∂z
dz ∧ dz

= −
∫∫

{|z|<r}

(
f + iz

∂u

∂t

)
dz ∧ dz

= 2πir2f(t)− 2
∂

∂t

∫ 2π

0

∫ r

0

ρeiθu(ρeiθ, t)ρdρdθ.
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Hence,

∂V

∂s
(s, t) = 2πif(t)− 2

∂

∂t

(
1
2r

∂

∂r

∫ 2π

0

∫ r

0

ρeiθu(ρeiθ, t)ρdρdθ
)

= 2πif(t)− 1
r

∂

∂t

∫ 2π

0

reiθu(reiθ, t)rdθ

= 2πif(t) + i
∂

∂t
V (s, t).

Set

F (t) =
∫ t

0

f(η) dη.

Then, we obtain (
∂

∂t
+ i

∂

∂s

)
(V (s, t) + 2πF (t)) = 0,

which implies that the function U(s, t) = V (s, t) + 2πF (t) is holomorphic on the
set {t + is ∈ C| |t| < R, 0 < s < R2}, and U(s, t) is continuous up to the real
axis {s = 0} with real-valued boundary value 2πF (t). Hence, by the Schwarz
reflection principle, U(s, t) can be extended holomorphically across the boundary
to the domain {t + is ∈ C||t| < R, |s| < R2}. In particular, F (t), and hence f(t),
must be real analytic on (−R,R). This proves Theorem 7.3.1.

In Section 10.3 we shall give a complete characterization of the local solvability
of the Lewy operator (7.3.6).

7.4 Linear Partial Differential Operators with Constant Coefficients

In contrast to the nonsolvable operator (7.3.6), we shall present in this section
a fundamental positive result in the theory of partial differential equations which
asserts the existence of a distribution fundamental solution to any linear partial
differential operator with constant coefficients. It follows by convolution that every
partial differential operator with constant coefficients is locally solvable.

Theorem 7.4.1 (Malgrange, Ehrenpreis). Let

L =
∑
|α|≤k

aαD
α
x

be a partial differential operator with constant coefficients on Rn, where Dα
x =

(∂/∂x1)α1 · · · (∂/∂xn)αn for any multiindex α = (α1, · · · , αn) with nonnegative
integer components. If f ∈ C∞0 (Rn), then there exists a C∞ function h(x) satisfying
Lh = f on Rn.

Proof. The proof will be done via the Fourier transform. For any g ∈ L1(Rn), the
Fourier transform ĝ(ξ) of g is defined by

ĝ(ξ) =
∫

Rn

e−ix·ξg(x) dx,
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where x · ξ = x1ξ1 + · · · + xnξn. Note first that, via a rotation of coordinates
and multiplying L by a constant, we may assume that the corresponding Fourier
transform p(ξ) of the operator L is

p(ξ) = ξk
n +

k−1∑
j=0

aj(ξ′)ξj
n,

where ξ = (ξ′, ξn) with ξ′ ∈ Rn−1, and aj(ξ′) is a polynomial in ξ′ for 0 ≤ j ≤ k − 1.
Next, we complexify p(ξ); namely, we view ξ as a variable in Cn. Hence, for each

ξ′ ∈ Rn−1, p(ξ′, ξn) is a polynomial of degree k in ξn. Let λ1(ξ′), · · · , λk(ξ′) be its
zeros, arranged so that if i ≤ j, Imλi(ξ′) ≤ Imλj(ξ′), and Reλi(ξ′) ≤ Reλj(ξ′) if
Imλi(ξ′) = Imλj(ξ′). One sees easily that these k functions Imλj(ξ′) are continuous
in ξ′.

We then need to construct a measurable function

φ : Rn−1 → [−k − 1, k + 1]

such that for all ξ′ ∈ Rn−1, we have

min{|φ(ξ′)− Imλj(ξ′)| : 1 ≤ j ≤ k} ≥ 1.

Set u0(ξ′) = −k − 1 and uk+1(ξ′) = k + 1. For 1 ≤ j ≤ k, define

uj(ξ′) = max{min{Imλj(ξ′), k + 1},−k − 1}.

The functions uj(ξ′) are continuous in ξ′, so the sets

Vj = {ξ′ : uj+1(ξ′)− uj(ξ′) ≥ 2},

for j = 0, · · · , k, are measurable. It is clear that ∪k
j=0Vj is a covering of Rn−1. Thus,

we can construct disjoint measurable subsetsWj ⊂ Vj which still cover Rn−1. Define

φ(ξ′) =
1
2
(uj+1(ξ′) + uj(ξ′)),

if ξ′ ∈Wj . This completes the construction of φ(ξ′).
We define h(x) by

h(x) =
1

(2π)n

∫
Rn−1

∫
{Imξn=φ(ξ′)}

eix·ξ

(
f̂(ξ)
p(ξ)

)
dξndξ

′.

The key is to observe that, as |Reξ| → ∞, f̂(ξ) is rapidly decreasing whereas Imξ
remains bounded, and to see that the line Imξn = φ(ξ′) in the ξn-plane has distance
at least one from any zero of p(ξ) and at most k + 1 from the real axis. Hence, the
integrand is bounded and rapidly decreasing at infinity, so the integral is absolutely
convergent. The same reasoning shows that we can differentiate under the integral
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sign as often as we please. It follows that h(x) is smooth. Finally, we apply L to
h(x) and get

Lh(x) =
1

(2π)n

∫
Rn−1

∫
{Imξn=φ(ξ′)}

eix·ξ f̂(ξ) dξndξ′.

The integrand on the right-hand side is an entire function which is rapidly decreasing
as |Reξn| → ∞. Therefore, by Cauchy’s theorem, the contour of integration can
be deformed back to the real axis. By invoking the inverse Fourier transform we
obtain Lh = f . The proof is now complete.

As an easy consequence of Theorem 7.4.1, if L is a linear partial differential
operator with constant coefficients, then for any given function f(x) which is smooth
near some point x0, we can find locally a smooth solution h(x) such that Lh = f
near x0.

We now return to the solvability of the ∂b equation in a very special case. Let
the CR manifold (M,T 1,0(M)) of real dimension 2n − 1, n ≥ 2, be Levi flat in a
neighborhood U of the reference point p, then we can apply the Frobenius theorem
(Theorem 1.6.1) to ReL1, ImL1, · · · ,ReLn−1, ImLn−1, where L1, · · · , Ln−1 is a local
basis of T 1,0(M) near p. Thus there exist local coordinates (x1, · · · , x2n−2, t) such
that the vector fields ReL1, ImL1, · · · , ReLn−1, ImLn−1 span the tangent space of
each leaf {t = c} for some constant c. Therefore, on each leaf we may apply Theorem
2.3.1, for n = 2, or the Newlander-Nirenberg theorem (Theorem 5.4.4), for n ≥ 3,
to show that M is locally foliated by complex submanifolds of complex dimension
n−1. In this case, the local solvability of the tangential Cauchy-Riemann equation,
∂bu = f , where f is a ∂b-closed (0, 1)-form, can be reduced to a ∂ problem with a
parameter. In the next few chapters, the global and local solvability of ∂b will be
discussed in detail.

NOTES

The tangential Cauchy-Riemann complex was first introduced by J. J. Kohn and
H. Rossi [KoRo 1]. See also the books by A. Boggess [Bog 1], G. B. Folland and
J. J. Kohn [FoKo 1] and H. Jacobowitz [Jac 1]. The nonsolvability theorem for the
operator (7.3.6) was proved by H. Lewy [Lew 2]. A more general theorem due to L.
Hörmander [Hör 1,7] states that the tangential Cauchy-Riemann equation on a real
three dimensional CR manifold is not locally solvable if it is not Levi flat. For a
proof of the Cauchy-Kowalevski theorem, the reader is referred to [Joh 1]. Theorem
7.4.1 was originally proved by B. Malgrange [Mal 1] and L. Ehrenpreis [Ehr 1]. The
proof we present here is due to L. Nirenberg [Nir 2].
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CHAPTER 8

SUBELLIPTIC ESTIMATES FOR

SECOND ORDER DIFFERENTIAL EQUATIONS AND �b

In this chapter, we study subelliptic operators which are not elliptic. We analyze
two types of operators in detail. One is a real second order differential equation
which is a sum of squares of vector fields. The other is the ∂b-Laplacian on a CR
manifold. We use pseudodifferential operators to study both operators.

For this purpose, we shall briefly review the definitions and basic properties
of the simplest pseudodifferential operators. Using pseudodifferential operators,
Hörmander’s theorem on the hypoellipticity of sums of squares of vector fields will
be discussed in Section 8.2.

The ∂b-Laplacian, �b, is not elliptic. There is a one-dimensional characteristic
set. However, under certain conditions, one is able to establish the 1/2-estimate for
the �b operator via potential-theoretic methods and pseudodifferential operators. In
the last two sections of this chapter, the 1/2-estimate for the �b operator on compact
strongly pseudoconvex CR manifolds is proved, which leads to the existence and
regularity theorems of the ∂b equation. Global existence theorems for ∂b on the
boundary of a pseudoconvex domain in Cn will be discussed in Chapter 9.

8.1 Pseudodifferential Operators

We first introduce some simple pseudodifferential operators. Let S be the Schwar-
tz space in Rn. For the definitions of the space S and the Sobolev space W s(Rn),
the reader is referred to the Appendix A. We begin this section with the following
definition:

Definition 8.1.1. A linear operator T : S → S is said to be of order m if for each
s ∈ R we have

‖ Tu ‖s ≤ Cs ‖ u ‖s+m, for all u ∈ S,

with the constant Cs independent of u.

We note that, by definition, any linear operator of order m from S into itself
extends to a bounded linear operator from W s+m(Rn) to W s(Rn) for every s ∈ R.
It is obvious that any differential operator Dα with |α| = m is of order m, where
α = (α1, · · · , αn) and Dα = Dα1

x1
· · ·Dαn

xn
.

For any s ∈ R, we define Λs : S → S by

Λsu(x) =
1

(2π)n

∫
Rn

eix·ξ(1 + |ξ|2) s
2 û(ξ) dξ
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where û is the Fourier transform of u. Here, σ(Λs) = (1+ |ξ|2) s
2 is called the symbol

of Λs. Obviously, the operator Λs is of order s. Λs is called a pseudodifferential op-
erator of order s. We should think of Λs as a generalization of differential operators
to fractional and negative order.

The purpose of this section is to prove some basic properties of the commutators
between Λs and functions in S. We need the following lemma:

Lemma 8.1.2.
(
(1 + |x|2)/(1 + |y|2)

)s ≤ 2|s|(1 + |x− y|2)|s| for all x, y ∈ Rn and
every s ∈ R.

Proof. From the triangle inequality |x| ≤ |x− y|+ |y|, we obtain |x|2 ≤ 2(|x− y|2 +
|y|2) and hence 1 + |x|2 ≤ 2(1 + |x− y|2)(1 + |y|2). Thus, if s ≥ 0, the lemma is
proved. For s < 0, the same arguments can be applied with x and y reversed and
s replaced by −s. This proves the lemma.

We employ Plancherel’s theorem to study the commutators of Λs and functions
in S. We first show that multiplication by a function in S is of order zero.

Lemma 8.1.3. For any g ∈ S and s ∈ R, ‖ gu ‖s . ‖ u ‖s uniformly for all u ∈ S.

Proof. By the Fourier transform formula for convolution, we obtain

(1 + |ξ|2) s
2 ĝu(ξ) =

1
(2π)n

∫ (
1 + |ξ|2

1 + |η|2

) s
2

ĝ(ξ − η)(1 + |η|2) s
2 û(η) dη.

Now we view
(
(1 + |ξ|2)/(1 + |η|2)

)s/2
ĝ(ξ − η) as a kernel K(ξ, η) and set f(η) =

(1 + |η|2)s/2û(η). Lemma 8.1.2 shows that

|K(ξ, η)| . (1 + |ξ − η|2)
|s|
2 |ĝ(ξ − η)|.

Since g ∈ S, it follows that ĝ ∈ S and that the hypotheses of Theorem B.10 in the
Appendix are satisfied by this kernel. Therefore, we have

‖ gu ‖s . ‖ f ‖ = ‖ u ‖s .

This proves the lemma.

Theorem 8.1.4. If g, h ∈ S, then for any r, s ∈ R, we have
(1) [Λs, g] is of order s− 1,
(2) [Λr, [Λs, g]] is of order r + s− 2,
(3) [[Λs, g], h] is of order s− 2.

Proof. The proof of the theorem will proceed exactly as in Lemma 8.1.3. For (1) it
suffices to show that Λr[Λs, g]Λ1−r−s is of order zero for any r ∈ R. Let u ∈ S, and
set f = Λr[Λs, g]Λ1−r−su. A direct calculation shows that

f̂(ξ) =
1

(2π)n

∫
K(ξ, η)û(η) dη,

where

K(ξ, η) =
(1 + |ξ|2) r

2

(1 + |η|2) r+s−1
2

(
(1 + |ξ|2) s

2 − (1 + |η|2) s
2
)
ĝ(ξ − η).
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From the mean value theorem, we have

|(1 + |ξ|2) s
2 − (1 + |η|2) s

2 | . |ξ − η|
(
(1 + |ξ|2)

s−1
2 + (1 + |η|2)

s−1
2

)
for all ξ, η ∈ Rn, hence, by Lemma 8.1.2 we obtain

|K(ξ, η)| . |ξ − η|

((
1 + |ξ|2

1 + |η|2

) r+s−1
2

+
(

1 + |ξ|2

1 + |η|2

) r
2
)
|ĝ(ξ − η)|

. |ξ − η|
(
(1 + |ξ − η|2)

|r+s−1|
2 + (1 + |ξ − η|2)

|r|
2

)
|ĝ(ξ − η)|.

Since g ∈ S, so is ĝ ∈ S. Therefore, by Theorem B.10 in the Appendix, (1) is
proved.

To prove (2), for u ∈ S, a similar calculation shows

([Λr, [Λs, g]]u)̂ (ξ) =
1

(2π)n

∫
K(ξ, η)û(η) dη,

where

K(ξ, η) =
(
(1 + |ξ|2) r

2 − (1 + |η|2) r
2
) (

(1 + |ξ|2) s
2 − (1 + |η|2) s

2
)
ĝ(ξ − η).

Here ([Λr, [Λs, g]]u)̂ (ξ) denotes the Fourier transform of [Λr, [Λs, g]]u. It follows
now from the same estimates as in (1) that

|K(ξ, η)| . |ξ − η|2
(
(1 + |ξ|2)

r−1
2 + (1 + |η|2)

r−1
2

)
·
(
(1 + |ξ|2)

s−1
2 + (1 + |η|2)

s−1
2

)
|ĝ(ξ − η)|,

which implies easily that [Λr, [Λs, g]] is of order r + s− 2. This proves (2).
For (3), let u ∈ S. It is easy to get from Taylor’s expansion that

([Λs, g]u)̂ (ξ) =
1

(2π)n

∫ (
(1 + |ξ|2) s

2 − (1 + |η|2) s
2
)
ĝ(ξ − η)û(η) dη

=
n∑

j=1

1
(2π)n

∫
(ξj − ηj)

∂

∂ξj
(1 + |ξ|2) s

2 ĝ(ξ − η)û(η) dη

+
1

(2π)n

∫
O(ξ, η)ĝ(ξ − η)û(η) dη

= T̂1u+ T̂2u,

where O(ξ, η) can be estimated by

|O(ξ, η)| . |ξ − η|2
(
(1 + |ξ|2)

s−2
2 + (1 + |η|2)

s−2
2

)
.
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Now, as in (1), it is easily seen that the operator T2 is of order s − 2. Thus, to
finish the proof of (3), it suffices to show that [T1, h] is of order s− 2. Write

k(ξ, η) =
n∑

j=1

(ξj − ηj)
∂

∂ξj
(1 + |ξ|2) s

2 ĝ(ξ − η)

= s
n∑

j=1

ξj(ξj − ηj)(1 + |ξ|2)
s−2
2 ĝ(ξ − η).

Thus, from a direct calculation we obtain

([T1, h]u)̂ (ξ) =
1

(2π)n

∫
K(ξ, η)û(η) dη,

where

K(ξ, η) =
1

(2π)n

∫ (
k(ξ, ζ)ĥ(ζ − η)− k(ζ, η)ĥ(ξ − ζ)

)
dζ

=
1

(2π)n

∫
ĥ(ξ − ζ)

(
k(ξ, ξ + η − ζ)− k(ζ, η)

)
dζ.

Since

|k(ξ, ξ + η − ζ)− k(ζ, η)|

. |ξ − ζ||ζ − η|
(
(1 + |ξ|2)

s−2
2 + (1 + |ζ|2)

s−2
2

)
|ĝ(ζ − η)|,

we can estimate K(ξ, η) as follows,

|K(ξ, η)| .
∫
|ξ − ζ||ζ − η|(1 + |ξ|2)

s−2
2 |ĥ(ξ − ζ)||ĝ(ζ − η)| dζ

+
∫
|ξ − ζ||ζ − η|(1 + |ζ|2)

s−2
2 |ĥ(ξ − ζ)||ĝ(ζ − η)| dζ

. (1 + |ξ|2)
s−2
2

(∫
|ζ||ĥ(ζ)||ξ − η − ζ||ĝ(ξ − η − ζ)| dζ

+
∫
|ζ|(1 + |ζ|2)

|s−2|
2 |ĥ(ζ)||ξ − η − ζ||ĝ(ξ − η − ζ)| dζ

)
≤ Cm(1 + |ξ|2)

s−2
2 (1 + |ξ − η|2)−m,

for any m ∈ N, where Cm is a constant depending on m. Here we have used the
fact that both ĥ and ĝ are in S. Choosing m to be sufficiently large and applying
arguments similar to those used in the proof of (1), (3) is proved. This completes
the proof of Theorem 8.1.4.

Theorem 8.1.5. Let P and Q be two differential operators of order k and m
respectively with coefficients in S. Then [Λs, P ] is of order s + k − 1, [Λr, [Λs, P ]]
is of order r + s+ k − 2, and [[Λs, P ], Q] is of order s+ k +m− 2.
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Proof. Write
P =

∑
|α|≤k

aα(x)Dα,

with aα(x) ∈ S. Since Dα commutes with Λs, the commutator of Λs with P is
reduced to commutators of Λs with aα(x), composed with Dα. This proves the
theorem.

We shall use operators of the form generated by Λs, Dα and multiplication by
functions in S plus their Lie brackets. All these are pseudodifferential operators
and the computation of their orders is similar to that for differential operators.

8.2 Hypoellipticity of Sum of Squares of Vector Fields

Let Ω be an open neighborhood of the origin in Rn. Let Xi =
∑n

j=1 aij(∂/∂xj),
0 ≤ i ≤ k with k ≤ n, be vector fields with smooth real-valued coefficients aij(x)
on Ω. Define the second order partial differential operator

(8.2.1) P =
k∑

i=1

X2
i +X0 + b(x),

where b(x) is a smooth real-valued function on Ω.
Denote by L1 the collection of the Xi’s, 0 ≤ i ≤ k. Then, inductively for an

integer m ≥ 2 we define Lm to be the collection of Lm−1 and the vector fields of
the form [X,Y ] with X ∈ L1 and Y ∈ Lm−1.

Definition 8.2.1. The partial differential operator P defined as in (8.2.1) is said
to be of finite type at point p ∈ Ω if there exists an m such that Lm spans the whole
tangent space at p.

Definition 8.2.2. A partial differential operator P is said to be hypoelliptic in Ω
if it satisfies the following property: let u and f be distributions satisfying Pu = f
in Ω, then u is smooth on U if f is smooth on U for any open subset U of Ω

The task of this section is to prove the following main theorem:

Theorem 8.2.3. Let P be the partial differential operator defined as in (8.2.1).
Suppose that P is of finite type at every point in Ω. Then P is hypoelliptic in Ω.

The heat operator on Rn+1 defined by

P =
(

∂

∂x1

)2

+ · · ·+
(

∂

∂xn

)2

− ∂

∂t

is a typical example of such an operator, where the coordinates in Rn+1 are denoted
by (x, t) = (x1, · · · , xn, t). Another simple example with variable coefficients is the
Grushin operator on R2 defined by

P =
∂2

∂x2
+ x2 ∂

2

∂y2
.

According to Theorem 8.2.3, both operators are hypoelliptic.
To prove Theorem 8.2.3, we begin with the following a priori estimate. By

shrinking the domain Ω, if necessary, we may assume that aij(x) and b(x) are in
C∞(Ω) for all i, j.
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Lemma 8.2.4. Let P be defined as in (8.2.1). There exists C > 0 such that

(8.2.2)
k∑

i=1

‖ Xiu ‖2 ≤ C(|(Pu, u)| + ‖ u ‖2), u ∈ C∞0 (Ω).

Proof. Let X∗
i be the adjoint operator for Xi. Then X∗

i = −Xi + hi, where hi =
−
∑n

j=1 (∂aij/∂xj). Integration by parts shows

−(X2
i u, u) = ‖ Xiu ‖2 + O(‖ Xiu ‖‖ u ‖)

and
(X0u, u) = −(u,X0u) +O(‖ u ‖2).

It follows that
Re(X0u, u) = O(‖ u ‖2).

Adding up these estimates, we obtain

k∑
i=1

‖ Xiu ‖2 = −Re(Pu, u) +O

( k∑
i=1

‖ Xiu ‖‖ u ‖ + ‖ u ‖2
)
.

Using small and large constants, this gives the desired estimate (8.2.2), and the
proof is complete.

We first prove the following general theorem.

Theorem 8.2.5. If Lm spans the tangent space of Ω for some m ∈ N, then there
exist ε > 0 and C > 0 such that

(8.2.3) ‖ u ‖2ε ≤ C
( k∑

i=0

‖ Xiu ‖2 + ‖ u ‖2
)
, u ∈ C∞0 (Ω).

Here we may take ε = 21−m.

Proof. We shall denote an element in Lj by Zj . By the hypotheses of the theorem,
we get

‖ u ‖2ε .
n∑

j=1

‖ Dju ‖2ε−1 + ‖ u ‖2 .
∑

Zm∈Lm

‖ Zmu ‖2ε−1 + ‖ u ‖2,

where the last summation is a finite sum and Dj = (∂/∂xj).
Therefore, to prove the theorem, it suffices to bound each term ‖ Zmu ‖ε−1 by

the right hand side of (8.2.3) for some ε > 0. If m = 1, clearly we can take ε = 1.
For m ≥ 2, let ε ≤ 1/2 for the time being. We shall make the choice of ε later. We
may also assume that Zm = XZm−1 − Zm−1X with X ∈ L1. Thus, we see that

(8.2.4)
‖ Zmu ‖2ε−1 = (Zmu,Λ2ε−2Zmu)

= (XZm−1u,Λ2ε−2Zmu)− (Zm−1Xu,Λ2ε−2Zmu).
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Using Theorem 8.1.5, we have

|(XZm−1u,Λ2ε−2Zmu)|
= |(Zm−1u,Λ2ε−2ZmXu)|+O(‖ u ‖‖ Zm−1u ‖2ε−1)

≤ C(‖ Xu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2).

Also

|(Zm−1Xu,Λ2ε−2Zmu)| = |(Xu,Zm−1Λ2ε−2Zmu)|+O(‖ u ‖‖ Xu ‖)
≤ C(‖ Xu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2).

Hence, substituting the above into (8.2.4), by induction, we get

‖ Zmu ‖2ε−1 ≤ C
( k∑

i=0

‖ Xiu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2
)

≤ C
( k∑

i=0

(‖ Xiu ‖2 + ‖ Xiu ‖22m−1ε−1) + ‖ u ‖2
)
.

Now, for m ≥ 2, if we take ε ≤ 21−m, we obtain

‖ Zmu ‖2ε−1 ≤ C
( k∑

i=0

‖ Xiu ‖2 + ‖ u ‖2
)
.

This proves the theorem.

For our purpose, we shall modify the proof of Theorem 8.2.5 to obtain:

Theorem 8.2.6. Under the hypotheses of Theorem 8.2.3, there exist ε > 0 and
C > 0 such that

(8.2.5) ‖ u ‖2ε ≤ C(‖ Pu ‖2 + ‖ u ‖2), u ∈ C∞0 (Ω).

Proof. As in the proof of Theorem 8.2.5, it suffices to control each term

(8.2.6) ‖ Zmu ‖2ε−1= (XZm−1u,Λ2ε−2Zmu)− (Zm−1Xu,Λ2ε−2Zmu)

by the right-hand side of (8.2.5) for some ε > 0.
Let Qs be some pseudodifferential operator of order s of the type discussed in

Section 8.1. To estimate (8.2.6), we shall distinguish X0 from the other vector fields
X1, · · · , Xk.

Case (i). X = Xi with 1 ≤ i ≤ k. By Lemma 8.2.4 and the proof of Theorem
8.2.5, we get

(8.2.7) ‖ Zmu ‖2ε−1 ≤ C(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2).
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Case (ii). X = X0. We first write X0 = −P ∗ +
∑k

i=1X
2
i +

∑k
i=1 ci(x)Xi + g(x)

with ci(x), 1 ≤ i ≤ k, and g(x) belonging to C∞(Ω). Hence, we have

(8.2.8)

(X0Zm−1u,Λ2ε−2Zmu)

= −(P ∗Zm−1u,Λ2ε−2Zmu) +
k∑

i=1

(X2
i Zm−1u,Λ2ε−2Zmu)

+
k∑

i=1

(ciXiZm−1u,Λ2ε−2Zmu) + (gZm−1u,Λ2ε−2Zmu).

Obviously, the last two terms in (8.2.8) are bounded by the right-hand side of
(8.2.7). Since

(P ∗Zm−1u,Λ2ε−2Zmu) = (Zm−1u, PQ
2ε−1u)

= (Zm−1u,Q
2ε−1Pu) +

k∑
i=1

(Zm−1u,Q
2ε−1Xiu) + (Zm−1u,Q

2ε−1u),

we conclude that the first term on the right-hand side in (8.2.8) is also bounded by
the right-hand side of (8.2.7). The second term on the right-hand side of (8.2.8)
can be estimated as follows:

(X2
i Zm−1u,Λ2ε−2Zmu)

= −(XiZm−1u,XiQ
2ε−1u) +O(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2)

= −(XiQ
2ε−1Zm−1u,Xiu) +O(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2).

It follows from Lemma 8.2.4 that

(8.2.9)

|(X2
i Zm−1u,Λ2ε−2Zmu)|
≤ ‖ XiQ

2ε−1Zm−1u ‖2 + O(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2)
≤ C|(PQ2ε−1Zm−1u,Q

2ε−1Zm−1u)|
+O(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2)

≤ C(|(Pu,Q4ε−1Zm−1u)|+
k∑

i=1

|(Xiu,Q
4ε−1Zm−1u)|

+ |(u,Q4ε−1Zm−1u)|) +O(‖ Pu ‖2 + ‖ Zm−1u ‖22ε−1 + ‖ u ‖2)
≤ C(‖ Pu ‖2 + ‖ Zm−1u ‖24ε−1 + ‖ u ‖2).

This completes the estimate of the first term on the right-hand side of (8.2.6).
For the second term on the right-hand side of (8.2.6), we write

X0 = P −
k∑

i=1

X2
i − b(x).
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Thus, we have

(8.2.10)

(Zm−1X0u,Λ2ε−2Zmu)

= (Zm−1Pu,Λ2ε−2Zmu)−
k∑

i=1

(Zm−1X
2
i u,Λ

2ε−2Zmu)

− (Zm−1bu,Λ2ε−2Zmu).

The first term on the right-hand side of (8.2.10) can be written as

(Zm−1Pu,Λ2ε−2Zmu)

= −(Pu,Zm−1Q
2ε−1u) + (Pu, gmQ

2ε−1u)

= −(Pu,Q2ε−1Zm−1u)− (Pu, [Zm−1, Q
2ε−1]u) + (Pu, gmQ

2ε−1u),

for some gm ∈ C∞(Ω). Also

(Zm−1bu,Λ2ε−2Zmu) = (bZm−1u,Q
2ε−1u) + ([Zm−1, b]u,Q2ε−1u).

Hence, if ε ≤ 1/2, the first and third terms of (8.2.10) can be estimated by the
right-hand side of (8.2.7).

To deal with the second term on the right-hand side of (8.2.10), we have

(Zm−1X
2
i u,Λ

2ε−2Zmu)

= (X2
i Zm−1u,Q

2ε−1u) + ([Zm−1, X
2
i ]u,Q2ε−1u)

= (X2
i Zm−1u,Q

2ε−1u) + ([Zm−1, Xi]Xiu,Q
2ε−1u)

+ (Xi[Zm−1, Xi]u,Q2ε−1u)

= (X2
i Zm−1u,Q

2ε−1u) + (ẐmXiu,Q
2ε−1u) + (XiẐmu,Q

2ε−1u).

Note that Ẑm is a commutator of Zm−1 with Xi for some 1 ≤ i ≤ k. Thus, one
may apply the proof of Case (i) and (8.2.9) to get

|(Zm−1X
2
i u,Λ

2ε−2Zmu)|

≤ C(‖ Pu ‖2 + ‖ Zm−1u ‖24ε−1 + ‖ u ‖2 + ‖ Ẑmu ‖22ε−1)

≤ C(‖ Pu ‖2 + ‖ Zm−1u ‖24ε−1 + parallelu ‖2).

This completes the estimate of the second term in (8.2.6).
Consequently, by induction, we obtain

‖ Zmu ‖2ε−1 ≤ C(‖ Pu ‖2 + ‖ Zm−1u ‖24ε−1 + ‖ u ‖2)

≤ C(‖ Pu ‖2 +
k∑

i=0

‖ Xiu ‖24m−1ε−1 + ‖ u ‖2).

Thus, if we take ε ≤ 2 · 4−m, we see that

‖ Zmu ‖2ε−1 ≤ C(‖ Pu ‖2 + ‖ X0u ‖2− 1
2

+ ‖ u ‖2).
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Since

‖ X0u ‖2− 1
2

= (X0u,Λ−1X0u)

= (Pu,Q0u)−
k∑

i=1

(X2
i u,Q

0u)− (bu,Q0u)

≤ C(‖ Pu ‖2 + ‖ u ‖2),

the proof of Theorem 8.2.6 is now complete.

The next result shows that estimate (8.2.5) is localizable:

Theorem 8.2.7. Let ζ, ζ1 ∈ C∞0 (Ω) be two real-valued cut-off functions with ζ1 ≡ 1
on the support of ζ. Then there is a constant C > 0 such that

(8.2.11) ‖ ζu ‖ε ≤ C(‖ ζ1Pu ‖ + ‖ ζ1u ‖),

for all u ∈ C∞(Ω).

Proof. From (8.2.5) it suffices to estimate ‖ [P, ζ]u ‖ by the right-hand side of
(8.2.11). Since

[P, ζ]u = 2
k∑

i=1

[Xi, ζ]Xiu+
k∑

i=1

[Xi, [Xi, ζ]]u+ [X0, ζ]u,

we have

‖ [P, ζ]u ‖2 ≤ C
( k∑

i=1

‖ Xiζ
2
1u ‖2 + ‖ ζ1u ‖2

)
.

Now, as in the proof of Lemma 8.2.4, we get

k∑
i=1

‖ Xiζ
2
1u ‖2 = −(Pζ2

1u, ζ
2
1u) + Re(X0ζ

2
1u, ζ

2
1u)

+O

(
k∑

i=1

‖ Xiζ
2
1u ‖‖ ζ1u ‖ + ‖ ζ1u ‖2

)

= −(ζ2
1Pu, ζ

2
1u)− 2

k∑
i=1

([Xi, ζ
2
1 ]Xiu, ζ

2
1u) + Re(X0ζ

2
1u, ζ

2
1u)

+O

(
k∑

i=1

‖ Xiζ
2
1u ‖‖ ζ1u ‖ + ‖ ζ1u ‖2

)

= −(ζ2
1Pu, ζ

2
1u) + 4

k∑
i=1

([Xi, ζ1]ζ1u,Xiζ
2
1u) + Re(X0ζ

2
1u, ζ

2
1u)

+O

(
k∑

i=1

‖ Xiζ
2
1u ‖‖ ζ1u ‖ + ‖ ζ1u ‖2

)
.
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Hence, using small and large constants, we obtain

k∑
i=1

‖ Xiζ
2
1u ‖2 ≤ C(‖ ζ1Pu ‖2 + ‖ ζ1u ‖2).

This proves the theorem.

The next step is to iterate the estimate (8.2.5) to obtain the following “bootstrap”
a priori estimate:

Theorem 8.2.8. For any s ∈ R and m > 0, there exists a constant Cs,m such that

(8.2.12) ‖ u ‖s+ε ≤ Cs,m(‖ Pu ‖s + ‖ u ‖−m),

for all u ∈ C∞0 (Ω).

Proof. Let u ∈ C∞0 (Ω). We wish to apply (8.2.5) to Λsu. Hence, we shall assume
that estimate (8.2.5) holds for smooth functions that are supported in a fixed open
neighborhood U of Ω. Let η(x) and g(x) be two smooth cut-off functions supported
in U such that η ≡ 1 on the support of g and that g ≡ 1 on Ω. We claim that the
operator (1− η)Λsg acting on S, s ∈ R, is of negative infinite order, namely, it is a
smoothing operator and for any m > 0 there is a constant Cs,m such that

(8.2.13) ‖ (1− η)Λsgu ‖ ≤ Cs,m ‖ u ‖−m,

for any u ∈ S. We first prove the claim (8.2.13). Observe first that (1 − η)g ≡ 0.
Hence, we have

(8.2.14)
1

(2π)n

∫
Rn

(1− η(x))eix·ξp(ξ)Dα
ξ ĝ(ξ) dξ = 0,

for any polynomial p(ξ) and any multiindex α. A direct calculation shows

(1− η)Λsgu(x) =
1

(2π)n

∫
Rn

K(x, ξ)û(ξ) dξ,

where
K(x, ξ) =

1
(2π)n

∫
Rn

(1− η(x))eix·ζ(1 + |ζ|2) s
2 ĝ(ζ − ξ) dζ.

Thus, to prove the claim it suffices to show that for any a, b ∈ R, the kernel

(8.2.15) K̂(x, ξ) =
∫

Rn

(1− η(x))eix·ζ(1 + |ζ|2)a(1 + |ξ|2)bĝ(ζ − ξ) dζ

satisfies the hypotheses of Theorem B.10 in the Appendix. Using (8.2.14), Lemma
8.1.2 and Taylor’s expansion of (1 + |ζ|2)a at ξ, for any c ∈ R, we obtain

|K̂(x, ξ)|

.
∫

Rn

(1 + |ξ + t(ζ − ξ)|2)a−c|ζ − ξ|c(1 + |ξ|2)b|ĝ(ζ − ξ)| dζ

.
∫

Rn

(1 + |t(ζ − ξ)|2)|a−c|(1 + |ξ|2)a−c|ζ − ξ|c(1 + |ξ|2)b|ĝ(ζ − ξ)| dζ,
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where 0 < t < 1. Thus, if we choose c to be large enough so that a+ b− c ≤ 0, it
is easily verified by integration by parts that the kernel K̂(x, ξ) defined in (8.2.15)
satisfies

|xδK̂(x, ξ)| ≤ Ca,b,δ

uniformly in x and ξ, where δ is a multiindex. It follows that all the hypotheses of
Theorem B.10 are satisfied by the kernel K̂(x, ξ). This proves the claim.

Now we return to the estimate of Λsu for u ∈ C∞0 (Ω). Since ηΛsu is supported
in U , we may apply estimate (8.2.5) to get

‖ u ‖s+ε = ‖ Λsu ‖ε
≤ ‖ ηΛsu ‖ε + ‖ (1− η)Λsgu ‖ε
≤ C(‖ PηΛsu ‖ + ‖ ηΛsu ‖ + ‖ u ‖−m)

≤ C(‖ [P, ηΛs]u ‖ + ‖ Pu ‖s + ‖ u ‖s + ‖ u ‖−m).

To handle the term ‖ [P, ηΛs]u ‖ we write

[P, ηΛs] =
k∑

i=1

Qs
iXi +Qs

k+1.

Thus,

‖ [P, ηΛs]u ‖ ≤ C

(
k∑

i=1

‖ Xiu ‖s + ‖ u ‖s

)
.

Lemma 8.2.4 then shows that

‖ Xiu ‖2s = ‖ ΛsXiu ‖2

≤ C(‖ ηΛsXiu ‖2 + ‖ (1− η)ΛsgXiu ‖2)
≤ C(‖ XiηΛsu ‖2 + ‖ [ηΛs, Xi]u ‖2 + ‖ u ‖2−m)

≤ C(|(PηΛsu, ηΛsu)| + ‖ u ‖2s + ‖ u ‖2−m)

≤ C(|([P, ηΛs]u, ηΛsu)| + ‖ Pu ‖2s + ‖ u ‖2s + ‖ u ‖2−m)

≤ C(‖ u ‖s

(
k∑

i=1

‖ Xiu ‖s)+ ‖ Pu ‖2s + ‖ u ‖2s + ‖ u ‖2−m

)
.

Using small and large constants, we obtain

‖ u ‖s+ε ≤ C(‖ Pu ‖s + ‖ u ‖s + ‖ u ‖−m).

Finally, observe that for any δ > 0, using the interpolation inequality for Sobolev
spaces (Theorem B.2 in the Appendix), there is a constant Cs,δ,m such that

‖ u ‖s ≤ δ ‖ u ‖s+ε + Cs,δ,m ‖ u ‖−m,

for all u ∈ C∞0 (Ω). Therefore, letting δ be sufficiently small, Theorem 8.2.8 is
proved.

Estimate (8.2.12) can be localized as before to get the following theorem.
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Theorem 8.2.9. Let ζ, ζ1 be two smooth real-valued cut-off functions supported in
Ω with ζ1 ≡ 1 on the support of ζ. For any s ∈ R and m > 0 there is a constant
Cs,m such that

(8.2.16) ‖ ζu ‖s+ε ≤ Cs,m(‖ ζ1Pu ‖s + ‖ ζ1u ‖−m),

for all u ∈ C∞(Ω).

We are now ready to prove the main result of this section.

Proof of Theorem 8.2.3. Suppose that u is a distribution with Pu = f , where P
given by (8.2.1) is of finite type, and that f is smooth on Ω. We wish to show that
u is also smooth on Ω. Without loss of generality, we shall show that u is smooth
in some open neighborhood V of the origin.

Since u is a distribution, we may assume that locally near the origin u is in W s

for some s = −m with m > 0. Let ζ and ζk, k ∈ N, be a sequence of smooth
real-valued cut-off functions supported in some open neighborhood of V such that
ζ1u ∈W−m, ζk ≡ 1 on supp ζk+1, ζj ≡ 1 on supp ζ for all j and ζ ≡ 1 on V .

Let ϕ be a smooth nonnegative real-valued function supported in the unit open
ball of Rn such that ϕ(x) = ϕ(|x|), 0 ≤ ϕ ≤ 1 and

∫
Rn ϕdx = 1. For any δ > 0, set

ϕδ(x) = δ−nϕ(x/δ) and

Sδζku(x) = ζku ∗ ϕδ(x) =
∫
ζku(y)ϕδ(x− y) dy.

Clearly, Sδζku is a smooth function supported in some neighborhood of V . Hence,
we obtain from (8.2.16) with s = −m that

‖ Sδζku ‖−m+ε ≤ Cm(‖ PSδζku ‖−m + ‖ Sδζku ‖−m).

To finish the proof we need the following two key observations. For any s ∈ R,
(1) ζku ∈ W s with ‖ ζku ‖s ≤ Ck if and only if ‖ Sδζku ‖s ≤ Ck for all small

δ > 0.
(2) If ζku is in W s, then

‖ [Sδζk, Xi]u ‖s = ‖ [Sδζk, Xi]ζk−1u ‖s ≤ Ck ‖ ζk−1u ‖s,

where the constant Ck is independent of δ.
These two facts can be verified directly, so we omit the proofs.

Now, using (1) and (2), by commuting P with Sδζ and applying arguments
similar to those above, we obtain

‖ Sδζ2u ‖−m+ε ≤ C1,m(‖ Sδζ1f ‖−m + ‖ Sδζ1u ‖−m)

with C1,m independent of δ. This implies ζu ∈W−m+ε. Inductively, for any k ∈ N,
we obtain

‖ Sδζk+1u ‖−m+kε ≤ Ck,m(‖ Sδζkf ‖−m+(k−1)ε + ‖ Sδζku ‖−m+(k−1)ε).
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Choosing k to be sufficiently large, we have ζu ∈ W s(V ) for all s ≥ 0. Hence,
u ∈ C∞(V ). This completes the proof of Theorem 8.2.3.

8.3 Subelliptic Estimates for the Tangential Cauchy-Riemann Complex

Let (M,T 1,0(M)) be a compact orientable CR manifold of real dimension 2n−1
with n ≥ 3. Let Λp,q(M), 0 ≤ p, q ≤ n− 1, denote the subbundle of Λp+qCT ∗(M)
such that Λp,q(M) = ΛpT ∗1,0(M) ⊗ ΛqT ∗0,1(M). Let Ep,q(M) be the space of
smooth sections of Λp,q(M) over M . Then, we define the tangential Cauchy-
Riemann operator ∂b as in Section 7.2, and form the tangential Cauchy-Riemann
complex

(8.3.1) 0→ Ep,0(M) ∂b−→ Ep,1(M) ∂b−→ · · · ∂b−→ Ep,n−1(M)→ 0.

For any x0 ∈M , let L1, · · · , Ln−1 be a local basis for (1,0) vector fields near x0,
and choose a globally defined vector field T which may be assumed to be purely
imaginary. This is first done locally, then by restriction to those coordinate trans-
formations which preserve T 1,0(M) and orientation, a local choice of sign in the
direction of T will extend T to a global one. Fix a Hermitian metric on CT (M) so
that T 1,0(M), T 0,1(M) and T are mutually orthogonal. We may then assume that
L1, · · · , Ln−1, L1, · · · , Ln−1 and T is an orthonormal basis in some neighborhood of
a reference point x0 ∈M . Let ω1, · · · , ωn−1 be an orthonormal basis for (1,0)-forms
which is dual to the basis L1, · · · , Ln−1.

Denote by W s
(p,q)(M) the Sobolev space of order s, s ∈ R, for (p, q)-forms on

M . Extend ∂b to L2
(p,q)(M) = W 0

(p,q)(M) in the sense of distribution. Thus, the
domain of ∂b, denoted by Dom(∂b), will consist of all φ ∈ L2

(p,q)(M) such that
∂bφ ∈ L2

(p,q+1)(M), and we have the complex

(8.3.2) 0→ L2
(p,0)(M) ∂b−→ L2

(p,1)(M) ∂b−→ · · · ∂b−→ L2
(p,n−1)(M)→ 0.

Therefore, ∂b is a linear, closed, densely defined operator on the Hilbert space
L2

(p,q)(M).

Now one can define the adjoint operator ∂
∗
b of ∂b in the standard way. A (p, q)-

form φ is in Dom(∂
∗
b) if there exists a (p, q − 1)-form g ∈ L2

(p,q−1)(M) such that
(φ, ∂bψ) = (g, ψ) for every (p, q − 1)-form ψ ∈ Dom(∂b). In this case we define
∂
∗
bφ = g. Let

(8.3.3) �b = ∂b∂
∗
b + ∂

∗
b∂b,

be the ∂b-Laplacian defined on

Dom(�b) = {α ∈ L2
(p,q)(M)| α ∈ Dom(∂b) ∩Dom(∂

∗
b),

∂bα ∈ Dom(∂
∗
b) and ∂

∗
bα ∈ Dom(∂b)}.
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It follows from the same arguments as in Proposition 4.2.3 that �b is a linear, closed,
densely defined self-adjoint operator from L2

(p,q)(M) into itself. Define a Hermitian
form Qb on Ep,q(M) by

(8.3.4) Qb(φ, ψ) = (∂bφ, ∂bψ) + (∂
∗
bφ, ∂

∗
bψ) + (φ, ψ) = ((�b + I)φ, ψ),

for φ, ψ ∈ Ep,q(M).
Locally on a coordinate neighborhood U , we can express a smooth (p, q)-form φ

as

(8.3.5) φ =
∑′

|I|=p,|J|=q

φI,J ωI ∧ ωJ ,

where I = (i1, · · · , ip) and J = (j1, · · · , jq) are multiindices, wI = wi1 ∧ · · · ∧ wip ,
w̄J = w̄j1 ∧ · · · ∧ w̄jq and the prime means that we sum over only increasing multi-
indices. Here φI,J ’s are defined for arbitrary I and J so that they are antisymmetric.
Then, a direct computation and integration by parts yield

(8.3.6) ∂bφ =
∑′

I,J

∑
j

Lj(φI,J) ωj ∧ ωI ∧ ωK + terms of order zero,

and

(8.3.7) ∂
∗
bφ = (−1)p−1

∑′

I,K

∑
j

Lj(φI,jK) ωI ∧ ωK + terms of order zero.

We shall use (8.3.6) and (8.3.7) to obtain the desired estimates. We also abbreviate∑
k,I,J ‖ LkφI,J ‖2 + ‖ φ ‖2 by ‖ φ ‖2L, and

∑
k,I,J ‖ LkφI,J ‖2 + ‖ φ ‖2 by ‖ φ ‖2

L
.

The main effort of this section is to derive the subelliptic 1/2-estimate of the form
Qb. Before proceeding to do so, we shall digress for the moment to the regularity
theorem for the ∂ operator. Suppose now that M is the boundary of a smooth
bounded strongly pseudoconvex domain D in Cn, n ≥ 2. In Chapter 5 (Theorem
5.1.2 and Theorem 5.3.7), we prove the following subelliptic estimates

‖ f ‖21/2(D) ≤ C(‖ ∂f ‖2 + ‖ ∂∗f ‖2 + ‖ f ‖2),

for f ∈ Dom(∂) ∩ Dom(∂
∗
), on a smooth bounded strongly pseudoconvex domain

D. The proof is based on the a priori estimate

(8.3.8)
∫

bD

|f |2dS ≤ C(‖ ∂f ‖2 + ‖ ∂∗f ‖2 + ‖ f ‖2) = CQ(f, f),

for f ∈ D1
(p,q) = C1

(p,q)(D) ∩Dom(∂
∗
).

In fact, to prove (8.3.8) for a fixed q, 1 ≤ q ≤ n− 1, one actually does not
need strong pseudoconvexity of the domain. The main ingredient is the so-called
condition Z(q) defined as follows:
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Definition 8.3.1. Let D be a relatively compact subset with C∞ boundary in a
complex Hermitian manifold of complex dimension n ≥ 2. D is said to satisfy
condition Z(q), 1 ≤ q ≤ n− 1, if the Levi form associated with D has at least n− q
positive eigenvalues or at least q + 1 negative eigenvalues at every boundary point.

Obviously, condition Z(q) is satisfied for all q with 1 ≤ q ≤ n− 1 on any strongly
pseudoconvex domain.

Let x0 ∈M be a boundary point and let U be an open neighborhood of x0. For
any f ∈ D(p,q) with support in U , the proof of Proposition 5.3.3 shows (with φ ≡ 0)
that

Q(f, f) =
∑′

I,J

∑
k

‖ LkfI,J ‖2 +
∑′

I,K

∑
j,k

∫
bD∩U

ρjkfI,jKf I,kK dS

+O((‖ ∂f ‖ + ‖ ∂∗f ‖) ‖ f ‖ + ‖ f ‖L‖ f ‖).
We may assume that the Levi form is diagonal at x0, namely, ρjk(x) = λjδjk+bjk(x)
for 1 ≤ j, k ≤ n− 1, where the λj ’s are the eigenvalues of the Levi form at x0, δjk

denotes the Kronecker delta and bjk(x0) = 0. It follows that∑′

I,K

∑
j,k

∫
bD∩U

ρjkfI,jKf I,kK dS

=
∑′

I,J

(∑
k∈J

λk

)∫
bD

|fI,J |2 dS + δO

(∑′

I,J

∫
bD

|fI,J |2 dS
)
,

where δ > 0 can be made arbitrarily small if U is chosen sufficiently small. Integra-
tion by parts also shows

‖ LkfI,J ‖2

= −([Lk, Lk]fI,J , fI,J) + ‖ LkfI,J ‖2 + O(‖ f ‖L‖ f ‖)

≥ −λk

∫
bD

|fI,J |2 dS − δ
∫

bD

|fI,J |2 dS +O(‖ f ‖L‖ f ‖ + ‖ f ‖2).

Hence, if condition Z(q) holds on bD, then for each fixed J either there is a k1 ∈ J
with λk1 > 0 or there is a k2 /∈ J with λk2 < 0. For the former case and any ε > 0,
we have

Q(f, f) ≥ ε
∑′

I,J

∑
k

‖ LkfI,J ‖2 + ε
∑′

I,J

( ∑
k∈J,λk<0

λk

)∫
bD

|fI,J |2 dS

+
∑′

I,J

(
λk1

∫
bD

|fI,J |2 dS
)
− δ

∫
bD

|fI,J |2 dS

+O((‖ ∂f ‖ + ‖ ∂∗f ‖) ‖ f ‖ + ‖ f ‖L‖ f ‖ + ‖ f ‖2).
For the latter case, we see that

Q(f, f) ≥ ε
∑′

I,J

∑
k

‖ LkfI,J ‖2 + ε
∑′

I,J

( ∑
k∈J,λk<0

λk

)∫
bD

|fI,J |2 dS

+ (1− ε)
∑′

I,J

(−λk2)
∫

bD

|fI,J |2 dS − δ
∫

bD

|fI,J |2 dS

+O((‖ ∂f ‖ + ‖ ∂∗f ‖) ‖ f ‖ + ‖ f ‖L‖ f ‖ + ‖ f ‖2).



192 Subelliptic Estimates for Second Order Differential Equations and �b

Thus, choosing ε, δ to be small enough and using small and large constants, we
obtain (8.3.8). Now, by a partition of unity argument, the next theorem follows
immediately from Theorem 5.1.2.

Theorem 8.3.2. Let D be a relatively compact subset with C∞ boundary in a
complex Hermitian manifold of complex dimension n ≥ 2. Suppose that condition
Z(q) holds for some q, 1 ≤ q ≤ n− 1. Then we have∫

bD

|f |2dS ≤ C(‖ ∂f ‖2 + ‖ ∂∗f ‖2 + ‖ f ‖2),

for f ∈ D(p,q). Furthermore, we have

(8.3.9) ‖ f ‖ 1
2
≤ C(‖ ∂f ‖ + ‖ ∂∗f ‖ + ‖ f ‖),

for f ∈ Dom(∂) ∩Dom(∂
∗
), where the constant C > 0 is independent of f .

With Theorem 8.3.2 on hand, we now return to the subelliptic estimate for �b on
(p, q)-forms onM . If the CR manifoldM is embedded as the boundary of a complex
manifold D, topologically one can not distinguish whether M is the boundary of
D or M is the boundary of the complement of D. Thus, in order to obtain a
similar subelliptic estimate for (p, q)-forms on M , we shall assume that condition
Z(q) holds on both D and its complement Dc as motivated by Theorem 8.3.2. Note
that condition Z(q) on Dc is equivalent to condition Z(n− q − 1) on D. M is said
to satisfy condition Y (q), 1 ≤ q ≤ n− 1, if both conditions Z(q) and Z(n− q − 1)
are satisfied on D.

In terms of the eigenvalues of the Levi form condition Y (q) means that the
Levi form has at least either max(n − q, q + 1) eigenvalues of the same sign or
min(n− q, q + 1) pairs of eigenvalues of opposite signs at every point on M . Since
condition Y (q) will be used extensively in what follows, we now make a formal
definition for any CR manifold.

Definition 8.3.3. Let M be an oriented CR manifold of real dimension 2n − 1
with n ≥ 2. M is said to satisfy condition Y (q), 1 ≤ q ≤ n− 1, if the Levi form has
at least either max(n − q, q + 1) eigenvalues of the same sign or min(n − q, q + 1)
pairs of eigenvalues of opposite signs at every point on M .

It follows that condition Y (q) for 1 ≤ q ≤ n− 2 holds on any strongly pseudocon-
vex CR manifold M of real dimension 2n−1 with n ≥ 3. Also, it should be pointed
out that condition Y (n − 1) is violated on any pseudoconvex CR manifold M of
real dimension 2n− 1 with n ≥ 2. In particular, condition Y (1) is not satisfied on
any strongly pseudoconvex CR manifold of real dimension three. This phenomenon
is related to the nonsolvable Lewy operator which we have discussed in Section 7.3.
Another example of a noncompact CR manifold satisfying condition Y (q) will be
given in Section 10.1.

Theorem 8.3.4. Suppose that condition Y (q), for some q with 1 ≤ q ≤ n− 1,
holds on a compact, oriented, CR manifold (M,T 1,0(M)) of real dimension 2n− 1
with n ≥ 3. Then we have

(8.3.10) ‖ φ ‖21
2

. Qb(φ, φ),
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uniformly for all φ ∈ Ep,q(M).

Proof. Let L1, · · · , Ln−1 be an orthonormal basis for T 1,0(M) locally. Since con-
dition Y (q) implies that the vector fields L1, · · · , Ln−1, L1, · · · , Ln−1 and their Lie
brackets span the whole complex tangent space, using a partition of unity, the proof
is an easy consequence of Theorem 8.2.5 when m = 2, and the following theorem:

Theorem 8.3.5. Under the same hypotheses as in Theorem 8.3.4, for any x0 ∈M ,
there is a neighborhood Vx0 of x0 such that

(8.3.11) ‖ φ ‖2L + ‖ φ ‖2
L

+
∑
IJ

|Re(TφI,J , φI,J)| . Qb(φ, φ),

uniformly for all φ ∈ Ep,q(M) with support contained in Vx0 .

Proof. We start with (8.3.6) to obtain

‖ ∂bφ ‖2 =
∑′

I,J

∑
j /∈J

‖ LjφI,J ‖2 +
∑′

I,J,L

∑
j,l

εjJ
lL (LjφI,J , LlφI,L) +O(‖ φ ‖L‖ φ ‖),

where εjJ
lL = 0 unless j /∈ J , l /∈ L and {j}∪J = {l}∪L, in which case εjJ

lL is the sign
of permutation (jJ

lL ). Using the fact that φI,J is antisymmetric in J , we rearrange
the terms in the above estimate to get

‖ ∂bφ ‖2 =
∑′

I,J

∑
j

‖ LjφI,J ‖2 −
∑′

I,K

∑
j,k

(LjφI,kK , LkφI,jK) +O(‖ φ ‖L‖ φ ‖).

Using integration by parts, we have

(LjφI,kK , LkφI,jK) = (−LkLjφI,kK , φI,jK) +O(‖ φ ‖L‖ φ ‖)
= (LkφI,kK , LjφI,jK) + ([Lj , Lk]φI,kK , φI,jK)

+O((‖ φ ‖L + ‖ φ ‖L) ‖ φ ‖).

Hence, from (8.3.7) we obtain

‖ ∂bφ ‖2 =
∑′

I,J

∑
j

‖ LjφI,J ‖2 − ‖ ∂
∗
bφ ‖2 +

∑′

I,K

∑
j,k

([Lj , Lk]φI,jK , φI,kK)

+O((‖ φ ‖L + ‖ φ ‖L) ‖ φ ‖).

To handle the commutator term, we may assume that the Levi form is diagonal
at x0 and that c11(x0) 6= 0, since condition Y (q) holds. It follows that |c11(x)| >
1/C > 0 for x ∈ Vx0 if Vx0 is chosen to be small enough. For any smooth function
f with f(x0) = 0 on M , we have

|Re(TφI,J , fφI,L)| ≤
∣∣∣∣Re

(
1
c11

[L1, L1]φI,J , fφI,L

)∣∣∣∣+O(‖ φ ‖L‖ φ ‖)

≤ C(sup
Vx0

|f |)(‖ φ ‖2L + ‖ φ ‖2
L
) +O(‖ φ ‖L‖ φ ‖).
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Thus, if we denote the eigenvalues of the Levi form at x0 by λ1, · · · , λn−1, we obtain

(8.3.12)
Qb(φ, φ) =

∑′

I,J

∑
j

‖ LjφI,J ‖2 +
∑′

I,J

∑
j∈J

λjRe(TφI,J , φI,J)

+ δO(‖ φ ‖2L + ‖ φ ‖2
L
) +O(‖ φ ‖L‖ φ ‖),

where δ > 0 can be made arbitrarily small, if necessary, by shrinking Vx0 .
To finish the proof, we need to control the second term on the right-hand side of

(8.3.12). This will be done by using a fraction of the first term on the right-hand
side of (8.3.12). Thus, we first use integration by parts to get

‖ LjφI,J ‖2 = ‖ LjφI,J ‖2 −λjRe(TφI,J , φI,J)

+ δO(‖ φ ‖2L + ‖ φ ‖2
L
) +O((‖ φ ‖L + ‖ φ ‖L) ‖ φ ‖).

Next, for each multiindex pair (I, J), set

σ(I, J) = {j| λj < 0 if Re(TφI,J , φI,J) > 0 or λj < 0 if Re(TφI,J , φI,J) < 0}.

It follows that, for any small ε > 0, we have

‖ φ ‖2
L
≥ ε ‖ φ ‖2

L
+ (1− ε)

∑′

I,J

∑
j∈σ(I,J)

‖ LjφI,J ‖2

≥ ε ‖ φ ‖2
L
− (1− ε)

∑′

I,J

∑
j∈σ(I,J)

λjRe(TφI,J , φI,J)

− δ(‖ φ ‖2L + ‖ φ ‖2
L
)− C ‖ φ ‖2 .

Substituting the above into (8.3.12) we obtain

(8.3.13)

Qb(φ, φ) ≥ ε ‖ φ ‖2
L
− (1− ε)

∑′

I,J

∑
j∈σ(I,J)

λjRe(TφI,J , φI,J)

+
∑′

I,J

∑
j∈J

λjRe(TφI,J , φI,J)− δ(‖ φ ‖2L + ‖ φ ‖2
L
)

−O(‖ φ ‖L‖ φ ‖)

= ε ‖ φ ‖2
L

+
∑′

I,J

aI,JRe(TφI,J , φI,J)− δ(‖ φ ‖2L + ‖ φ ‖2
L
)

−O(‖ φ ‖L‖ φ ‖),

where

aI,J =
∑

j∈J\σ(I,J)

λj − (1− ε)

 ∑
j∈σ(I,J)\J

λj

+ ε

 ∑
j∈J∩σ(I,J)

λj

 .

Since condition Y (q) holds at x0, for each multiindex J with |J | = q, one of the
following three cases must hold:

(1) If the Levi form has max(n − q, q + 1) eigenvalues of the same sign, then
there exists a j ∈ J and a k /∈ J so that λj and λk are of the same sign
which may be assumed to be positive, if necessary, by replacing T by −T .
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(2) If the Levi form has min(n− q, q+ 1) pairs of eigenvalues of opposite signs,
then there are j, k /∈ J so that λj > 0 and λk < 0.

(3) Under the same hypothesis as in (2), there are j, k ∈ J so that λj > 0 and
λk < 0.

Then it is not hard to verify that by choosing ε > 0 to be small enough we can
achieve aI,J > 0 if Re(TφI,J , φI,J) > 0, and aI,J < 0 if Re(TφI,J , φI,J) < 0. Since
the second term on the right-hand side of (8.3.13) is a finite sum, by letting δ > 0
be sufficiently small, we get

Qb(φ, φ) & ‖ φ ‖2
L

+
∑
I,J

|Re(TφI,J , φI,J)| − (sc) ‖ φ ‖2L −(lc) ‖ φ ‖2 .

Since

‖ LjφI,J ‖2 . ‖ LjφI,J ‖2 + |Re(TφI,J , φI,J)|
+ δ1O(‖ φ ‖2L + ‖ φ ‖2

L
) +O(‖ φ ‖L‖ φ ‖),

where δ1 > 0 can be made arbitrarily small, by choosing δ1 and (sc) to be sufficiently
small, we obtain

‖ φ ‖2L + ‖ φ ‖2
L

+
∑
I,J

|Re(TφI,J , φI,J)| . Qb(φ, φ).

This completes the proof of the theorem.

Corollary 8.3.6. Qb is compact with respect to L2
(p,q)(M).

Proof. Using Friedrichs’ lemma (see Appendix D) and Theorem 8.3.4, we obtain

Qb(φ, φ) ≥ C ‖ φ ‖21
2
, for φ ∈ Dom(∂b) ∩Dom(∂

∗
b).

In particular, Qb is compact with respect to L2
(p,q)(M).

It is easy to see that (�b + I)−1 is injective on L2
(p,q)(M). Corollary 8.3.6 implies

that (�b + I)−1 is compact using Rellich’s lemma. We will discuss this in detail in
the next section.

The a priori estimate obtained in Theorem 8.3.4 is the main ingredient for han-
dling the local regularity problem of the operator �b on compact strongly pseudo-
convex CR manifolds of real dimension 2n − 1 with n ≥ 3. It is Estimate (8.3.10)
that enables us to deduce the existence and regularity theorems for the ∂b complex.

8.4 Local Regularity and the Hodge Theorem for �b

The main task of this section is to prove the local regularity theorem for the
operator �b and its related consequences. This will be done by first proving a
priori estimates for the operator �b + I on a local coordinate neighborhood U .
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Lemma 8.4.1. Under the same hypotheses as in Theorem 8.3.4, let U be a local
coordinate neighborhood, and let {ζk}∞k=1 be a sequence of real smooth functions
supported in U such that ζk = 1 on the support of ζk+1 for all k. Then, for each
positive integer k, we have

‖ ζkφ ‖2k
2

. ‖ ζ1(�b + I)φ ‖2k−2
2

+ ‖ (�b + I)φ ‖2

uniformly for all φ ∈ Ep,q(M) supported in U .

Proof. The lemma will be proved by induction. For k = 1, by Theorem 8.3.4, we
have

‖ ζ1φ ‖21
2
. Qb(ζ1φ, ζ1φ) = ‖ ∂bζ1φ ‖2 + ‖ ∂∗bζ1φ ‖2 + ‖ ζ1φ ‖2 .

We estimate the right-hand side as follows:

‖ ∂bζ1φ ‖2 = (∂bζ1φ, ∂bζ1φ)

= (ζ1∂bφ, ∂bζ1φ) + ([∂b, ζ1]φ, ∂bζ1φ)

= (∂bφ, ∂bζ
2
1φ) + (∂bφ, [ζ1, ∂b]ζ1φ) + ([∂b, ζ1]φ, ∂bζ1φ)

= (∂
∗
b∂bφ, ζ

2
1φ) + (∂bζ1φ, [ζ1, ∂b]φ)

+ ([ζ1, ∂b]φ, [ζ1, ∂b]φ) + ([∂b, ζ1]φ, ∂bζ1φ).

Note that
Re
(
(∂bζ1φ, [ζ1, ∂b]φ) + ([∂b, ζ1]φ, ∂bζ1φ)

)
= 0.

A similar argument holds for ‖ ∂∗bζ1φ ‖2. Thus, we get

‖ ζ1φ ‖21
2

. Qb(ζ1φ, ζ1φ)

. Re((�b + I)φ, ζ2
1φ) +O(‖ φ ‖2)

. ‖ (�b + I)φ ‖‖ φ ‖ +O(‖ φ ‖2)

. ‖ (�b + I)φ ‖2,

since ‖ φ ‖ . ‖ (�b + I)φ ‖. This establishes the initial step.
Let us assume that the assertion is true for all integers up to k − 1 for some

k > 1, then we prove it for k. For simplicity we write the standard pseudodifferential
operator Λ

k−1
2 = Ak for short, and denote ζ1Akζk by Pk. Then, we have

‖ ζkφ ‖2k
2

. ‖ Akζkφ ‖21
2

= ‖ Akζ1ζkφ ‖21
2

. ‖ ζ1Akζkφ ‖21
2

+ ‖ [Ak, ζ1]ζkζk−1φ ‖21
2

. Qb(Pkφ, Pkφ) + ‖ ζk−1φ ‖2k−2
2
.

Let P ∗k be the adjoint operator of Pk, then the first term can be estimated as
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follows:

Qb(Pkφ, Pkφ)

= ‖ ∂bPkζk−1φ ‖2 + ‖ ∂∗bPkζk−1φ ‖2 + ‖ Pkζk−1φ ‖2

= (∂bζk−1φ, P
∗
k ∂bPkζk−1φ) + (∂

∗
bζk−1φ, P

∗
k ∂

∗
bPkζk−1φ) + (ζk−1φ, P

∗
kPkζk−1φ)

+O(‖ ζk−1φ ‖ k−1
2

(‖ ∂bPkζk−1φ ‖ + ‖ ∂∗bPkζk−1φ ‖))

= (∂bζk−1φ, ∂bP
∗
kPkζk−1φ) + (∂

∗
bζk−1φ, ∂

∗
bP

∗
kPkζk−1φ) + (ζk−1φ, P

∗
kPkζk−1φ)

+O(‖ ζk−1φ ‖2k−1
2

+ ‖ ζk−1φ ‖ k−1
2

(‖ ∂bPkζk−1φ ‖ + ‖ ∂∗bPkζk−1φ ‖))

= (∂bφ, ∂bP
∗
kPkζk−1φ) + (∂

∗
bφ, ∂

∗
bP

∗
kPkζk−1φ) + (φ, P ∗kPkζk−1φ) +O(· · ·)

= ((�b + I)φ, P ∗kPkφ) +O(· · ·)
= (Pkζ1(�b + I)φ, Pkφ) +O(· · ·)
. ‖ Pkζ1(�b + I)φ ‖− 1

2
‖ Pkφ ‖ 1

2
+ O(· · ·)

. (lc) ‖ ζ1(�b + I)φ ‖2k−2
2

+ (sc) ‖ ζkφ ‖2k
2

+ (lc) ‖ ζk−1φ ‖2k−1
2

+ (sc)(‖ ∂bPkζk−1φ ‖2 + ‖ ∂∗bPkζk−1φ ‖2).

Hence, by choosing (sc) small enough and using the induction hypothesis, we
obtain

‖ ζkφ ‖2k
2

. ‖ ζ1(�b + I)φ ‖2k−2
2

+ ‖ ζk−1φ ‖2k−1
2

. ‖ ζ1(�b + I)φ ‖2k−2
2

+ ‖ ζ1(�b + I)φ ‖2k−3
2

+ ‖ (�b + I)φ ‖2

. ‖ ζ1(�b + I)φ ‖2k−2
2

+ ‖ (�b + I)φ ‖2 .

This completes the proof of the lemma.

Theorem 8.4.2. Under the same hypotheses as in Theorem 8.3.4, given α ∈
L2

(p,q)(M), let φ ∈ Dom(�b) be the unique solution of (�b + I)φ = α. If U is
a subregion of M and α|U ∈ Ep,q(U), then φ|U ∈ Ep,q(U). Moreover, if ζ and ζ1
are two cut-off functions supported in U such that ζ1 = 1 on the support of ζ, then
for each integer s ≥ 0, there is a constant Cs such that

(8.4.1) ‖ ζφ ‖2s+1 ≤ Cs(‖ ζ1α ‖2s + ‖ α ‖2).

Proof. If φ|U is smooth, then the estimate (8.4.1) follows immediately from Lemma
8.4.1. Therefore, it remains only to show that φ|U ∈ Ep,q(U). Since the Hermitian
form Qb is not elliptic, namely, G̊arding’s type inequality does not hold for Qb, we
shall apply the technique of elliptic regularization to Qb.

The elliptic regularization method has been used in the proof of Theorem 5.2.1
to deduce the regularity of the ∂-Neumann operator on strongly pseudoconvex
domains. Thus, we shall only sketch the idea here and omit the details. Let
{(Ui, ϕi)}mi=1 be an open covering of M formed out of the local coordinate neigh-
borhood systems with local coordinates xj ’s on Ui, and let {ηi}mi=1 be a partition of
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unity subordinate to {Ui}mi=1. Define the form Qε
b, for each ε with 0 < ε << 1, by

Qε
b(φ, ψ) = Qb(φ, ψ) + ε

m∑
i=1

2n−1∑
j=1

(Djηiφ,Djηiψ)

for all φ, ψ ∈ Ep,q(M), where Dj = ∂/∂xj . Denote by Ŵ ε
(p,q)(M) the completion of

Ep,q(M) under Qε
b.

Let φε∈Ŵ ε
(p,q)(M) be the unique solution to the equation

Qε
b(φ

ε, ψ) = (α, ψ), for ψ ∈ Ŵ ε
(p,q)(M).

Then, we have

(8.4.2) ‖ ζφε ‖2s+1 . ‖ ζ1α ‖2s + ‖ α ‖2

and the estimate is uniform for all ε with 0 < ε << 1. Also, as in the proof of
Theorem 5.2.1, {φε} converges to φ in L2

(p,q)(M).
The sequence {ζφε}, by (8.4.2), is uniformly bounded in W s+1

(p,q)(M) for each s.
Hence, by Rellich’s lemma we can extract a subsequence {ζφεj} that converges in
W s

(p,q)(M) as εj → 0. Since {φε} converges to φ in L2
(p,q)(M), {ζφεj} must converge

to ζφ in W s
(p,q)(M) for each s. Finally, by invoking the Sobolev embedding theorem,

we have ζφ ∈ Ep,q(M). This completes the proof of the theorem.

A few consequences now follow immediately from Theorem 8.4.2.

Theorem 8.4.3. Let α, φ, U, ζ and ζ1 be as in Theorem 8.4.2. If α|U ∈ W s
(p,q)(U)

for some s ≥ 0, then ζφ ∈W s+1
(p,q)(M) and

‖ ζφ ‖2s+1 . ‖ ζ1α ‖2s + ‖ α ‖2 .

Proof. Let ζ0 be a cut-off function supported in U such that ζ0 = 1 on the support
of ζ1. Choose sequences of smooth (p, q)-forms {βn} and {γn} with supp{βn} ⊂
supp{ζ0} and supp{γn} ⊂ supp{(1 − ζ0)} such that βn → ζ0α in W s

(p,q)(M) and
γn → (1− ζ0)α in L2

(p,q)(M).
Hence, αn = βn + γn → α in L2

(p,q)(M) and ζ1αn → ζ1α in W s
(p,q)(M). Let

φn ∈ Dom(�b) be the solution to (�b + I)φn = αn, so φn → φ in L2
(p,q)(M). Then,

Theorem 8.4.2 shows

‖ ζ(φn − φm) ‖s+1 . ‖ ζ1(αn − αm) ‖s + ‖ αn − αm ‖ .

It follows that ζφn is Cauchy in W s+1
(p,q)(M), and lim

n→∞
ζφn = ζφ is in W s+1

(p,q)(M).
Hence, we have

‖ ζφ ‖s+1 . ‖ ζ1α ‖s + ‖ α ‖ .

This proves the theorem.
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Theorem 8.4.4. Let α, φ, U, ζ and ζ1 be as in Theorem 8.4.2. If ζ1α ∈W s
(p,q)(M)

for some s ≥ 0, and if φ satisfies (�b + λI)φ = α for some constant λ, then
ζφ ∈W s+1

(p,q)(M). In other words, �b + λI is hypoelliptic for every λ. Moreover, all
the eigenforms of �b are smooth.

Proof. Let α′ = α+ (1− λ)φ, then (�b + I)φ = α′. The assertion now follows from
Theorem 8.4.3 and an induction argument. This proves the theorem.

If we patch up the local estimates, we obtain the following global estimate:

Theorem 8.4.5. Let M be a compact, oriented, CR manifold satisfying condition
Y (q). Let φ ∈ Dom(�b). If (�b + I)φ = α with α ∈ W s

(p,q)(M), s ≥ 0, then
φ ∈W s+1

(p,q)(M) and
‖ φ ‖s+1 ≤ C ‖ α ‖s,

where the constant C is independent of α.

Here are some important consequences:

Corollary 8.4.6. Let M be as in Theorem 8.4.5. The operator (�b + I)−1 is
compact.

Proof. Since (�b + I)−1 is a bounded operator from L2
(p,q)(M) into W 1

(p,q)(M), the
assertion follows from Rellich’s lemma (see Theorem A.8 in the Appendix).

Corollary 8.4.7. Let M be as in Theorem 8.4.5. The operator �b + I has a
discrete spectrum with no finite limit point, and each eigenvalue occurs with finite
multiplicity. All eigenfunctions are smooth. In particular, Ker(�b) is of finite
dimension and consists of smooth forms.

Proof. By Corollary 8.4.6 (�b + I)−1 is a compact operator from L2
(p,q)(M) into

itself. Hence the spectrum of (�b + I)−1 is compact and countable with zero as its
only possible limit point. Since (�b + I)−1 is injective, zero is not an eigenvalue
of (�b + I)−1. Each eigenvalue of (�b + I)−1 has finite multiplicity. Also λ is an
eigenvalue of �b + I if and only if λ−1 is an eigenvalue of (�b + I)−1. This proves
the corollary.

Proposition 8.4.8. Let M be as in Theorem 8.4.5. �b is hypoelliptic. Moreover,
if �bφ = α with α ∈W s

(p,q)(M), s ≥ 0, we have

‖ φ ‖2s+1 ≤ C(‖ α ‖2s + ‖ φ ‖2),

where the constant C > 0 is independent of α.

Proof. We show the estimate by an induction on s. If s = 0, Theorem 8.4.5 implies

‖ φ ‖21 . ‖ (�b + I)φ ‖2 . ‖ α ‖2 + ‖ φ ‖2 .

In general, if we assume the assertion holds up to step s−1, we have φ ∈W s
(p,q)(M).

For the case s, we apply Theorem 8.4.5 again and get

‖ φ ‖2s+1 . ‖ (�b + I)φ ‖2s
. ‖ �bφ ‖2s + ‖ φ ‖2s
. ‖ α ‖2s + ‖ φ ‖2,
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where the final step is accomplished by the induction hypothesis. This proves the
proposition.

Let Hb
(p,q)(M) denote the space of harmonic forms on M , i.e., Hb

(p,q)(M) =
Ker(�b). Thus Hb

(p,q)(M) consists of smooth harmonic (p, q)-forms and is of finite
dimension. Using Corollary 8.4.7, �b is bounded away from zero on the orthogonal
complement (Hb

(p,q)(M))⊥, namely,

(8.4.3) ‖ �bφ ‖ ≥ λ1 ‖ φ ‖

for all φ ∈ Dom(�b) ∩ (Hb
(p,q)(M))⊥, where λ1 is the smallest positive eigenvalue

of �b. It follows from Estimate (8.4.3) and Lemma 4.1.1 that the range of �b is
closed. Also, the following strong Hodge type decomposition holds on L2

(p,q)(M):

Proposition 8.4.9. Let M be as in Theorem 8.4.5. L2
(p,q)(M) admits the strong

orthogonal decomposition,

L2
(p,q)(M) = R(�b)⊕Hb

(p,q)(M)

= ∂b∂
∗
b(Dom�b)⊕ ∂

∗
b∂b(Dom�b)⊕Hb

(p,q)(M),

where R(�b) denotes the range of �b.

Proof. Since R(�b)= (Hb
(p,q)(M))⊥ and R(∂b∂

∗
b) ⊥ R(∂

∗
b∂b), the decomposition

follows.

We can thus define the boundary operator, Nb : L2
(p,q)(M) → Dom(�b), as

follows: If α ∈ Hb
(p,q)(M), set Nbα = 0. If α ∈ R(�b), define Nbα = φ, where φ is

the unique solution of �bφ = α with φ ⊥ Hb
(p,q)(M), and we extend Nb by linearity.

It is easily seen that Nb is a bounded operator.
Let Hb

(p,q) denote the orthogonal projection from L2
(p,q)(M) onto Hb

(p,q)(M).
Next, we prove the main result of this section.

Theorem 8.4.10. Suppose that condition Y (q), for some q with 1 ≤ q ≤ n− 1,
holds on a compact, oriented, CR manifold (M,T 1,0(M)) with n ≥ 3. Then there
exists an operator

Nb : L2
(p,q)(M)→ L2

(p,q)(M)

such that:
(1) Nb is a compact operator,
(2) for any α ∈ L2

(p,q)(M), α = ∂b∂
∗
bNbα+ ∂

∗
b∂bNbα+Hbα,

(3) NbH
b = HbNb = 0.

Nb�b = �bNb = I −Hb on Dom(�b).
(4) If Nb is also defined on L2

(p,q+1)(M), then Nb∂b = ∂bNb on Dom(∂b).

If Nb is also defined on L2
(p,q−1)(M), then Nb∂

∗
b = ∂

∗
bNb on Dom(∂

∗
b).

(5) Nb(Ep,q(M)) ⊂ Ep,q(M), and for each positive integer s, the estimate

(8.4.4) ‖ Nbα ‖s+1 . ‖ α ‖s

holds uniformly for all α ∈W s
(p,q)(M).
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Proof. (1) follows from Proposition 8.4.8 and the Rellich lemma. (2) is just a
restatement of Proposition 8.4.9. The assertions in (3) follow immediately from the
definition of Nb. For (4), if α ∈ Dom(∂b), then

Nb∂bα = Nb∂b∂
∗
b∂bNbα

= Nb�b∂bNbα

= ∂bNbα.

A similar equation holds for ∂
∗
b . For (5), if α ∈ Ep,q(M), then α−Hbα ∈ Ep,q(M),

we have
�bNbα = α−Hbα.

Since �b is hypoelliptic by Theorem 8.4.4, Nbα ∈ Ep,q(M). Estimate (8.4.4) now
follows from Proposition 8.4.8 since

‖ Nbα ‖s+1 . ‖ �bNbα ‖s + ‖ Nbα ‖
. ‖ α ‖s + ‖ Hbα ‖s + ‖ α ‖
. ‖ α ‖s .

Here we have used the fact that Hb
(p,q)(M) is of finite dimension to conclude the

estimate: ‖ Hbα ‖s ≤ Cs ‖ Hbα ‖ ≤ Cs ‖ α ‖ for some constant Cs. This proves
the theorem.

Corollary 8.4.11. Let M be as in Theorem 8.4.10. The range of ∂b on Dom(∂b)∩
L2

(p,q−1)(M) is closed.

Proof. Since R(∂b) ⊥ Ker(∂
∗
b), we have R(∂b) = ∂b∂

∗
b(Dom�b).

Definition 8.4.12. Let M be a compact orientable CR manifold. The Szegö pro-
jection S on M is defined to be the orthogonal projection S = Hb

(0,0) from L2(M)
onto Hb(M) = Hb

(0,0)(M).

If condition Y (1) holds on M , according to Theorem 8.4.10, there exists an
operator Nb on L2

(0,1)(M). Then it is easy to obtain the following formula for the
Szegö projection.

Theorem 8.4.13. Let M be a compact orientable CR manifold. Suppose that M
satisfies condition Y (1). Then the Szegö projection S on M is given by

S = I − ∂∗bNb∂b.

Theorem 8.4.10 gives the following solvability and regularity theorem for the ∂b

equation.
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Theorem 8.4.14. Under the same hypotheses as in Theorem 8.4.10, for any α ∈
L2

(p,q)(M) with ∂bα = 0 and Hbα = 0, there is a unique solution φ of ∂bφ = α with
φ ⊥ Ker(∂b). If α ∈ Ep,q(M), then φ ∈ Ep,q−1(M). Furthermore, for each s ≥ 0, if

α ∈W s
(p,q)(M), then φ ∈W s+ 1

2
(p,q−1)(M) and

(8.4.5) ‖ φ ‖s+ 1
2

. ‖ α ‖s .

Proof. By (2) of Theorem 8.4.10, clearly we have α = ∂b∂
∗
bNbα. We simply take

φ = ∂
∗
bNbα, and φ is unique by the condition φ ⊥ Ker(∂b). The smoothness of φ

follows from (5) of Theorem 8.4.10. For the estimate (8.4.5), let {Ui}mi=1 be an open
cover of M formed by the coordinate charts {Ui}mi=1, and let {ζi}mi=1 be a partition
of unity subordinate to {Ui}mi=1. Then we have

‖ φ ‖2s+ 1
2

= ‖ ∂∗bNbα ‖2s+ 1
2

≤ ‖ ∂∗bNbα ‖2s+ 1
2

+ ‖ ∂bNbα ‖2s+ 1
2

.
m∑

i=1

((∂
∗
bζiNbα,Λ2s+1∂

∗
bζiNbα) + (∂bζiNbα,Λ2s+1∂bζiNbα))

=
m∑

i=1

((∂
∗
bNbα, ζiΛ2s+1∂

∗
bζiNbα) + (∂bNbα, ζiΛ2s+1∂bζiNbα)) +O(‖ Nbα ‖2s+1)

=
m∑

i=1

((∂
∗
bNbα, ∂

∗
bζiΛ

2s+1ζiNbα) + (∂bNbα, ∂bζiΛ2s+1ζiNbα)) +O(‖ Nbα ‖2s+1)

=
m∑

i=1

(α, ζiΛ2s+1ζiNbα) +O(‖ Nbα ‖2s+1)

. ‖ α ‖s‖ Nbα ‖s+1 + ‖ Nbα ‖2s+1.

By (5) of Theorem 8.4.10, we thus obtain

‖ φ ‖s+ 1
2

. ‖ α ‖s .

This completes the proof of Theorem 8.4.14.

A final remark is in order. If D is a relatively compact complex manifold with
boundary bD satisfying condition Z(q), 1 ≤ q ≤ n, analogous results to Theorems
8.4.10 and 8.4.14 can be obtained for the ∂-Neumann operator. In particular,
� = ∂̄∂̄∗ + ∂̄∗∂̄ is hypoelliptic on D.

NOTES

Pseudodifferential operators were introduced by J. J. Kohn and L. Nirenberg
[KoNi 2] and L. Hörmander [Hör 4] as a generalization of singular integral operators
developed by A. P. Calderón and A. Zygmund [CaZy 1]. These operators have
played an important role in the study of linear partial differential equations. We
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refer the reader to the books by Hörmander [Hör 8], Nagel-Stein [NaSt 1] and Treves
[Tre 3] for detailed discussions and applications of pseudodifferential operators. The
pseudodifferential operators used in section 8.1 are of the simplest kind.

Theorem 8.2.3 and Theorem 8.2.6 were first proved by L. Hörmander in [Hör
6] where the argument is based on careful analysis of the one-parameter groups
generated by the given vector fields. Hörmander’s original proof gives very precise
ε in Theorem 8.2.6. He also showed that finite type condition is necessary for
subellipticity of the sum of squares operator. L. P. Rothschild and E. M. Stein
[RoSt 1] showed that sharp estimates in Lp spaces and Lipschitz spaces can be
achieved. The proof of Theorem 8.2.3 using pseudodifferential operators that we
present in Section 8.2 follows the paper by J. J. Kohn [Koh 3] (see also Oleinik-
Radkevič [OlRa 1]).

However, it is well known that the finite type condition is not necessary for the
hypoellipticity of a sum of squares operator. In [OlRa 1], Theorem 2.5.3, Oleinik and
Radkevič showed hypoellipticity when the finite type condition fails on a compact
set which is contained in a finite union of hypersurfaces. In [KuSt 1] Kusuoka and
Strook showed, by using probabilistic methods, that the operator

Pa =
(
∂

∂t

)2

+
(
∂

∂x

)2

+
(
a(t)

∂

∂y

)2

is hypoelliptic in R3 if and only if limt↘0 tloga(t) = 0, where a ∈ C∞(R) is even,
real-valued with derivatives of all orders bounded, non-decreasing on [0,∞), and
vanishing to infinite order at t = 0. For instance, such an a is given by a(t) =
e−(1/|t|p), 0 < p < 1. The new interesting phenomenon in this example is that
hypoellipticity depends on the exponential order of vanishing of a at zero. V. S.
Fedii [Fed 1] has shown that the operator

Pb =
(
∂

∂t

)2

+
(
b(t)

∂

∂x

)2

is hypoelliptic in R2 for any real-valued b ∈ C∞(R) with b(t) 6= 0, for t 6= 0. Unlike
the previous example, b may vanish at 0 to any exponential order and still Pb is
hypoelliptic (see also recent related results in [Koh 12]).

It follows from the work of C. Fefferman and D. H. Phong [FePh 1] that both
operators Pa and Pb, when a and b are vanishing to infinite order at t = 0, do not
satisfy local subelliptic estimates near t = 0. The proof of their hypoellipticity does
not use such estimates in contrast to the classical proof of Hörmander’s Theorem
which is based on local subelliptic estimates. The formulation of a necessary and
sufficient condition for the hypoellipticity of a sum of squares operator is an open
problem.

The materials presented in Sections 8.3 and 8.4 are developed by J. J. Kohn
[Koh 2] where condition Y (q) was first introduced. See also [FoKo 1]. Theorem
8.3.2 shows that condition Z(q) is sufficient for the subelliptic 1/2-estimate for the
∂-Neumann operator on (p, q)-forms. The characterization of when the Morrey-
Kohn estimate, (8.3.8), holds was proved by L. Hörmander in [Hör 2]. This lead to
a new proof of existence results for ∂ by A. Andreotti and H. Grauert [AnGr 1] where
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condition Z(q) was first introduced. The techniques from subelliptic ε-estimate to
regularity of the solution were treated along the lines of Kohn and Nirenberg [KoNi
1].

There is a vast amount of works concerning the ∂b complex or �b on strongly
pseudoconvex CR manifolds (or CR manifolds satisfying condition Y (q)). We refer
the reader to the papers by Folland-Stein [FoSt 1], Rothschild-Stein [RoSt 1], Beals-
Greiner-Stanton [BGS 1] and Boutet de Monvel-Sjöstrand [BdSj 1] as well as the
books by Beals-Greiner [BeGr 1], Stein [Ste 4] and Treves [Tre 3].
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CHAPTER 9

THE TANGENTIAL

CAUCHY-RIEMANN COMPLEX

ON PSEUDOCONVEX CR MANIFOLDS

We study existence theorems for the tangential Cauchy-Riemann complex on
a smooth pseudoconvex CR manifold M in this chapter. When M is a strongly
pseudoconvex CR manifold, L2 existence theorems and subelliptic estimates for ∂̄b

and �b have been proved in Chapter 8 using pseudodifferential operators. We shall
establish here the existence theorems for ∂̄b in the C∞ and L2 categories when M is
the boundary of a smooth bounded pseudoconvex domain Ω in Cn. One purpose of
this chapter is to study the relationship between ∂̄ and ∂̄b. To solve ∂̄b, we construct
∂̄-closed extensions of forms from M to Ω and use the solvability for ∂̄ in Ω. The
extension problem can be converted into a ∂̄-Cauchy problem, which is to solve ∂̄
with prescribed support.

The Cauchy problem for a bounded pseudoconvex domain in Cn is formulated
and solved in the L2 sense in Section 9.1. In Section 9.2 we discuss C∞ extensions
of smooth forms from the boundary and obtain the C∞ solvability for ∂̄b on pseu-
doconvex boundaries. L2 existence theorems for ∂̄b and estimates in Sobolev spaces
are proved in Section 9.3. The closed-range property of �b and the strong Hodge
decomposition theorem for ∂̄b are proved in Section 9.4.

9.1 The L2 Cauchy Problem for ∂̄

Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2, not necessarily with
smooth boundary. We study the question of solving ∂̄ with prescribed support. The
L2 or C∞ Cauchy problem is the following question:

Given a ∂̄-closed (p, q)-form f with L2 (or C∞) coefficients in Cn such that f
is supported in Ω, can one find u ∈ L2

(p,q−1)(C
n) (or u ∈ C∞(p,q−1)(C

n)) such that
∂̄u = f in Cn and u is supported in Ω?

When q = 1, it has been proved in Theorem 3.1.1 that one can solve ∂̄ with com-
pact support for smooth (0, 1)-forms as long as Cn \Ω has no compact components.
There are no other restrictions on the boundary of Ω. When q > 1, we shall use
the duality of the ∂̄-Neumann problem to solve the Cauchy problem on bounded
pseudoconvex domains.

Let ? : C∞(p,q)(Ω)→ C∞(n−p,n−q)(Ω) be the Hodge star operator defined by

〈φ, ψ〉dV = φ ∧ ?ψ,
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where φ, ψ ∈ C∞(p,q)(Ω) and dV = indz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n denotes the volume
element in Cn as before. We can extend ? from L2

(p,q)(Ω) to L2
(n−p,n−q) (Ω) in a

natural way. This is an algebraic operator given explicitly as follows: if we write

ψ =
∑′

I,J
ψI,Jdz

I ∧ dz̄J ,

then
?ψ =

∑′

I,J
inεIJ ψ̄I,Jdz

[Î] ∧ dz̄[Ĵ],

where [Î] denotes the increasing (n−p)-tuple consisting of elements in {1, · · · , n}\I
and εIJ is the sign of the permutation from (I, J, [Î], [Ĵ ]) to (1, 1′, · · · , n, n′).

Lemma 9.1.1. For every φ ∈ C∞(p,q)(Ω), we have

(9.1.1) ? ? φ = (−1)p+qφ,

and

(9.1.2) ϑ = − ? ∂̄?,

where ϑ and ∂̄ are viewed as differential operators.

Proof. (9.1.1) is easy to check. To prove (9.1.2), we have, for any ψ ∈ C∞(p,q−1)(Ω)
and η ∈ C∞(p,q)(Ω) such that η has compact support in Ω,

(∂̄ψ, η) =
∫

Ω

∂̄ψ ∧ ?η = (−1)p+q

∫
Ω

ψ ∧ ∂̄ ? η +
∫

Ω

d(ψ ∧ ?η).

Since
∫
Ω
d(ψ ∧ ?η) = 0, using (9.1.1),

(∂̄ψ, η) = −
∫

Ω

ψ ∧ ? ? ∂̄ ? η = −(ψ, ?∂̄ ? η) = (ψ, ϑη).

This proves (9.1.2).

Theorem 9.1.2. Let Ω be a bounded pseudoconvex domain with C1 boundary in
Cn, n ≥ 2. Let δ = sup

z,z′∈Ω
|z − z′| be the diameter of Ω. For every f ∈ L2

(p,q)(C
n),

where 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1, with ∂̄f = 0 in the distribution sense in
Cn and f supported in Ω, one can find u ∈ L2

(p,q−1)(C
n) such that ∂̄u = f in the

distribution sense in Cn with u supported in Ω and

(n− q)
∫
Ω

| u |2 dV ≤ eδ2
∫
Ω

| f |2 dV.

Proof. From Theorem 4.4.1, the ∂̄-Neumann operator of degree (n− p, n− q) in Ω,
denoted by N(n−p,n−q), exists. We define

(9.1.3) u = −?∂̄N(n−p,n−q)?f,
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then u ∈ L2
(p,q−1)(Ω) and ?u ∈ Dom(∂̄∗).

Extending u to Cn by defining u = 0 in Cn \ Ω, we claim that ∂̄u = f in the
distribution sense in Cn. First we prove that ∂̄u = f in the distribution sense in Ω.

From (9.1.1) and (9.1.2),

(9.1.4)

∂̄u = −∂̄ ? ∂̄N(n−p,n−q) ? f

= (−1)p+q+1? ? ∂̄ ? ∂̄N(n−p,n−q) ? f

= (−1)p+q?ϑ∂̄N(n−p,n−q) ? f

= (−1)p+q?∂̄∗∂̄N(n−p,n−q) ? f,

where ϑ acts in the distribution sense in Ω. On the other hand, for any φ ∈
C∞(n−p,n−q−1)(Ω),

(9.1.5)

(∂̄φ, ?f)Ω = (−1)p+q

∫
Ω

∂̄φ ∧ f = (−1)p+q

∫
Ω

f ∧ ? ? ∂̄φ

= (−1)p+q(f, ?∂̄φ)Ω = (f, ϑ ? φ)Ω
= (∂̄f, ?φ)Cn

= 0

since supp f ⊂ Ω and ∂̄f = 0 in the distribution sense in Cn. If Ω has C1 boundary,
using the first part of the proof of Lemma 4.3.2, the set C∞(n−p,n−q−1)(Ω) is dense in
Dom(∂̄) in the graph norm. It follows from the definition of ∂̄∗ that ?f ∈ Dom(∂̄∗)
and ∂̄∗(?f) = 0. Using Theorem 4.4.1 when 1 ≤ q < n− 1 and Theorem 4.4.3 when
q = n− 1, we have

(9.1.6) ∂̄∗N(n−p,n−q) ? f = N(n−p,n−q−1)∂̄
∗(?f) = 0.

Combining (9.1.4) and (9.1.6),

∂̄u = (−1)p+q ? ∂̄∗∂̄N(n−p,n−q) ? f

= (−1)p+q ? (∂̄∗∂̄ + ∂̄∂̄∗)N(n−p,n−q) ? f

= (−1)p+q ? ?f

= f

in the distribution sense in Ω. Furthermore, we note that ?u ∈ Dom(∂̄∗) and this
additional condition implies that ∂̄u = f in the distribution sense in Cn. Using

∂̄∗(?u) = ϑ ? u = (−1)p+q ? ∂̄u = (−1)p+q ? f,

where ϑ ? u is taken in the distribution sense in Ω, we have for any ψ ∈ C∞(p,q)(C
n),

(9.1.7)

(u, ϑψ)Cn = (?ϑψ, ?u)Ω
= (−1)p+q(∂̄ ? ψ, ?u)Ω
= (−1)p+q(?ψ, ∂̄∗(?u))Ω
= (?ψ, ?f)Ω
= (f, ψ)Cn ,
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where the third equality holds since ?u ∈ Dom(∂̄∗). Thus ∂̄u = f in the distribution
sense in Cn. The estimate for u follows from Theorem 4.4.1. Theorem 9.1.2 is
proved.

The assumption that Ω has C1 boundary is used to show that C∞(n−p,n−q−1)(Ω)
is dense in Dom(∂̄) in the graph norm so that (9.1.6) holds. Using the proof of
Lemma 4.3.2, Theorem 9.1.2 also holds when the domain is star-shaped or locally
star-shaped.

When q ≤ n, including the top degree case, we also have the following result.

Theorem 9.1.3. Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2. For any
f ∈ L2

(p,q)(C
n), 0 ≤ p ≤ n, 1 ≤ q ≤ n, such that f is supported in Ω and

(9.1.8)
∫

Ω

f ∧ g = 0 for every g ∈ L2
(n−p,n−q)(Ω) ∩Ker(∂̄),

one can find u ∈ L2
(p,q−1)(C

n) such that ∂̄u = f in the distribution sense in Cn with
u supported in Ω and ∫

Ω

| u |2 dV ≤ eδ2
∫
Ω

| f |2 dV,

where δ = sup
z,z′∈Ω

|z − z′| is the diameter of Ω.

If Ω is a bounded pseudoconvex domain with smooth boundary, (9.1.8) can be
replaced by the condition

(9.1.9)
∫

Ω

f ∧ g = 0 for every g ∈ C∞(n−p,n−q)(Ω) ∩Ker(∂̄),

and the same conclusion holds.

Proof. Using Theorem 4.4.1 and Theorem 4.4.3, the ∂̄-Neumann operator N(p,q)

exists for any 0 ≤ p ≤ n and 0 ≤ q ≤ n. When q = 0, we have

(9.1.10) N(p,0) = ∂̄∗N2
(p,1)∂̄.

For every 0 ≤ q ≤ n, the Bergman projection operator P(p,q) is given by

(9.1.11) ∂̄∗∂̄N(p,q) = I − P(p,q).

We define u by

(9.1.12) u = − ? ∂̄N(n−p,n−q)?f.

Using Lemma 9.1.1, we have from (9.1.11),

(9.1.13)
∂̄u = (−1)p+q?∂̄∗∂̄N(n−p,n−q) ? f

= f − (−1)p+q?P(n−p,n−q) ? f.
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From (9.1.8), we get for any g ∈ L2
(n−p,n−q)(Ω) ∩Ker(∂̄),

(9.1.14) (?f, g) = (−1)p+q

∫
Ω

g ∧ f = 0.

Thus P(n−p,n−q)(?f) = 0 and ∂̄u = f in Ω from (9.1.13).
Using ?u ∈ Dom(∂̄∗) and extending u to be zero outside Ω, we can repeat the

arguments of (9.1.7) to show that ∂̄u = f in Cn in the distribution sense. The
estimate holds from Theorems 4.4.1 and 4.4.3. Thus, the proposition is proved
when f satisfies (9.1.8).

When bΩ is smooth, we have C∞(n−p,n−q)(Ω)∩Ker(∂̄) is dense in H(n−p,n−q)(Ω) =
L2

(n−p,n−q)(Ω)∩Ker(∂̄) in the L2(Ω) norm, using Corollary 6.1.6. Thus if f satisfies
condition (9.1.9), it also satisfies condition (9.1.8). Theorem 9.1.3 is proved.

Remark: When q < n, condition (9.1.9) implies that ∂̄f = 0 in the distribution
sense in Cn. To see this, we take g = ∂̄ ? v for some v ∈ C∞(p,q+1)(C

n) in (9.1.9).
Then we have

(f, ϑv)Cn =
∫

D

f ∧ ?ϑv = (−1)p+q+1

∫
D

f ∧ ∂̄ ? v = 0

for any v ∈ C∞(p,q+1)(C
n). This implies that ∂̄f = 0 in the distribution sense

in Cn. From the proof of Theorem 9.1.2, the two conditions are equivalent if
C∞(n−p,n−q−1)(Ω) is dense in Dom(∂̄) in the graph norm.

9.2 ∂̄-Closed Extensions of Forms and C∞ Solvability of ∂̄b

Let Ω be a bounded pseudoconvex domain in Cn with smooth boundary M = bΩ
and ρ be a smooth defining function for Ω such that |dρ| = 1 onM . We use E(p,q)(M)
to denote the smooth (p, q)-forms on M , where 0 ≤ p ≤ n, 0 ≤ q ≤ n− 1. Here the
extrinsic definition for E(p,q)(M) is used.

We consider the following two kinds of ∂̄-closed extension problems:
Given α ∈ E(p,q)(M),

(1) can one find an extension α̃ of α such that τα̃ = α on M and ∂̄α̃ = 0
in Ω? (We recall that τ is the projection of smooth (p, q)-forms in Cn to
(p, q)-forms on M which are pointwise orthogonal to the ideal generated by
∂̄ρ.)

(2) can one find an extension α̃ of α such that α̃ = α on M and ∂̄α̃ = 0 in Ω?
When q < n − 1, it is necessary that ∂̄bα = 0 on M in order to have a ∂̄-closed

extension. When α is a function (p = q = 0), this is the question of holomorphic
extension of CR functions. In this case problems (1) and (2) are the same. It
was proved in Theorem 3.2.2 that any CR function of class C1 on the boundary
of a C1 bounded domain Ω has a holomorphic extension as long as Cn \ Ω has no
bounded component. When α is a (p, q)-form with q ≥ 1, (2) seems to be a stronger
problem than (1). It will be shown in the next two theorems that these two kinds
of extension problems are equivalent for smooth forms also.
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Theorem 9.2.1. Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary M . Let α ∈ Ep,q(M), where 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1. Then there
exists α̃ ∈ C∞(p,q)(Ω) such that τα̃ = α on M and ∂̄α̃ = 0 in Ω if and only if

(9.2.1)
∫

M

α ∧ ψ = 0 for every ψ ∈ C∞(n−p,n−q−1)(Ω) ∩Ker(∂̄).

Furthermore, when 1 ≤ q < n− 1, (9.2.1) holds if and only if

(9.2.2) ∂̄bα = 0 on M.

Theorem 9.2.2. Let M and α be the same as in Theorem 9.2.1. There exists α̃
such that α̃ ∈ C∞(p,q)(Ω), α̃ = α on M and ∂̄α̃ = 0 in Ω if and only if (9.2.1) (for
1 ≤ q ≤ n− 1) or (9.2.2) (for 1 ≤ q < n− 1) holds.

Proof of Theorem 9.2.1. It is easy to see that (9.2.1) and (9.2.2) are necessary
conditions for the existence of ∂̄-closed extensions. We assume that α satisfies
(9.2.1).

Let α′ be a smooth extension of α by extending α componentwise from the
boundary to Ω. Thus α′ ∈ C∞(p,q)(Ω) and α′ = α on M . We set f = ∂̄α′ in Ω, then
f ∈ C∞(p,q+1)(Ω) and f ∧ ∂̄ρ = ∂̄bα ∧ ∂̄ρ = 0 on M . Using (9.2.1), we have for any
∂̄-closed ψ ∈ C∞(n−p,n−q−1)(Ω),∫

Ω

f ∧ ψ =
∫

Ω

∂̄(α′ ∧ ψ) =
∫

M

α ∧ ψ = 0.

Thus, f satisfies condition (9.1.9) in Theorem 9.1.3. We first assume that the ∂̄-
Neumann operator N(n−p,n−q−1) for (n− p, n− q− 1)-forms on Ω is C∞ regular up
to the boundary and define

(9.2.3) u = −?∂̄N(n−p,n−q−1)?f.

Then u ∈ C∞(p,q)(Ω). As in Theorem 9.1.3, it follows that ∂̄u = f in Ω and ?u ∈
Dom(∂̄∗). Since the boundary is smooth and u is smooth up to the boundary, we
can write u = τu+ νu. Using Lemma 4.2.1, we have

ν(?u) = 0 on M.

However, this is equivalent to

τu = 0 on M.

Setting α̃ = α′ − u, we have ∂̄α̃ = 0 in Ω and τα̃ = τα′ = α on M . This proves the
theorem assuming that N(n−p,n−q−1) is C∞ regular.

In general, instead of (9.2.3), we define

ut = −?∂̄N t
(n−p,n−q−1)?f,
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where N t
(n−p,n−q−1) is the weighted ∂̄-Neumann operator introduced in Theorem

6.1.2 with weight function φt = t|z|2, t > 0 and ? is taken with respect to the
metric L2(D,φt). Choosing t sufficiently large, from the proof of Theorem 6.1.4
and Corollary 6.1.5, for each large integer k > n+2, there exists a solution uk such
that uk ∈W k

(p,q)(Ω) ⊂ C1
(p,q)(Ω), ∂̄uk = f in Ω, τuk = 0 on M and

‖ uk ‖k(Ω) ≤ Ck ‖ f ‖k(Ω) .

To construct a solution u ∈ C∞(p,q)(Ω), we set hk = uk − uk+1. Each hk is ∂̄-closed
and τhk = 0 on M . This implies that ∂̄hk = 0 in Cn in the distribution sense.
Using Friedrichs’ lemma and the arguments in the proof of Lemma 4.3.2, we can
find a sequence hk

n ∈ C∞(p,q)(Ω) such that hk
n has compact support in Ω, hk

n → hk in
W k

(p,q)(Ω) and ∂̄hk
n → 0 in W k

(p,q+1)(Ω). For each arbitrarily large m ∈ N, one can

find vk
n ∈Wm

(p,q)(Ω) with τvk
n = 0 on M and ∂̄vk

n = ∂̄hk
n in Ω. Setting h̃k

n = hk
n− vk

n,

we have ∂̄h̃k
n = 0 in Ω, h̃k

n → hk in W k
(p,q)(Ω) with h̃k

n ∈ Wm
(p,q)(Ω) and τ h̃k

n = 0 on
M . This implies that inductively one can construct a new sequence u′k ∈W k

(p,q)(Ω)
such that ∂̄u′k = f in Ω, τu′k = 0 on M and

‖ u′k − u′k+1 ‖k(Ω) ≤ 1/2k, k ∈ N.

Writing

u = u′N +
∞∑

k=N+1

(u′k − u′k−1),

we have u ∈ C∞(p,q)(Ω) such that ∂̄u = f in Ω, τu = 0 on M . Setting α̃ = α′ − u,
the first part of the theorem is proved.

When 1 ≤ q < n − 1, setting ψ = ∂̄u for some u ∈ C∞(n−p,n−q−2)(Ω) in (9.2.1),
we have

(9.2.4)
∫

M

α ∧ ψ =
∫

M

α ∧ ∂̄u = (−1)p+q+1

∫
M

∂̄bα ∧ u = 0.

Thus, (9.2.1) implies (9.2.2). We see from (9.2.4) that (9.2.2) also implies (9.2.1),
since any ∂̄-closed form ψ in C∞(n−p,n−q−1)(Ω) can be written as ψ = ∂̄u for some
u ∈ C∞(n−p,n−q−2)(Ω) using Theorem 6.1.1. Thus, (9.2.1) and (9.2.2) are equivalent
when q < n− 1. The proof of Theorem 9.2.1 is complete.

In order to prove Theorem 9.2.2, we need the following lemma:

Lemma 9.2.3. Let Ω be a bounded domain in Cn with smooth boundary M and let
ρ be a smooth defining function for Ω. If α ∈ Ep,q(M) and ∂bα = 0 on M , where
0 ≤ p ≤ n, 0 ≤ q ≤ n − 1, then there exists E∞α such that E∞α ∈ C∞(p,q)(C

n),
E∞α = α on M and

∂̄E∞α = O(ρk) at M for every positive integer k.



9.2 ∂̄-Closed Extensions of Forms and C∞ Solvability of ∂̄b 213

Proof. We first extend α componentwise and smoothly from M to Eα in Cn. We
claim that for every positive integer k, there exist smooth (p, q)-forms α1, · · · , αk

and (p, q + 1)-forms γ1, · · · , γk such that

(9.2.5 a) Ekα = Eα− ρα1 −
ρ2

2
α2 − · · · −

ρk

k
αk,

and

(9.2.5 b) ∂̄Ekα = ρk

(
γk −

1
k
∂̄αk

)
= O(ρk).

Since ∂̄bα = 0 on M , ∂̄Eα ∧ ∂̄ρ = 0 on M . We can find α1 and γ1 such that

∂̄Eα = ∂̄ρ ∧ α1 + ργ1 = ∂̄(ρα1) + ρ(γ1 − ∂̄α1).

Setting E1α = Eα − ρα1, it follows that ∂̄E1α = ρ(γ1 − ∂̄α1) = O(ρ) at M . This
proves (9.2.5 a) and (9.2.5 b) for k = 1. We also note that α1 is obtained from the
first order derivatives of Eα and γ1 is obtained from the second derivatives of Eα.

Assuming (9.2.5 a) and (9.2.5 b) have been proved for some k ∈ N, we apply ∂̄
to both sides of (9.2.5 b) to obtain

0 = ∂̄2Ekα = kρk−1∂̄ρ ∧
(
γk −

1
k
∂̄αk

)
+ ρk∂̄γk.

Hence ∂̄ρ ∧
(
γk − (1/k)∂̄αk

)
= 0 on M . Thus, we can find a (p, q)-form αk+1 and

a (p, q + 1)-form γk+1 such that γk − (1/k)∂̄αk = ∂̄ρ ∧ αk+1 + ργk+1. We define

Ek+1α = Eα− ρα1 −
ρ2

2
α2 − · · · −

ρk

k
αk −

ρk+1

k + 1
αk+1

= Ekα−
ρk+1

k + 1
αk+1,

then

∂̄Ek+1α = ρk(∂̄ρ ∧ αk+1 + ργk+1)− ∂̄
(
ρk+1

k + 1
αk+1

)
= ρk+1

(
γk+1 −

1
k + 1

∂̄αk+1

)
= O(ρk+1).

This proves (9.2.5 a) and (9.2.5 b) for k + 1. Using induction, (9.2.5 a) and (9.2.5
b) hold for any positive integer k.

To find an extension E∞α such that E∞α = α on M and ∂̄E∞α = O(ρk) at
M for every positive integer k, we modify the construction as follows: Let Ωδ =
{z ∈ Ω| − δ < ρ(z) < δ} be a small tubular neighborhood of M and η(z) be a
cut-off function such that η ∈ C∞0 (Ωδ) and η = 1 on Ωδ/2. Let π(z) denote the
projection from Ωδ onto M along the normal direction and n(z) denote the unit
outward normal at z ∈M . We define η̃εj

(z) = η
(
π(z) + ρ(z)

εj
n(π(z))

)
and

E∞α = Eα−
∞∑

j=1

η̃εj
(z)

ρj

j
αj ,
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where εj is chosen to be sufficiently small and εj ↘ 0. One can choose εj so small
(depending on αj) such that, for each multiindex m = (m1, · · · ,m2n), we have∣∣∣∣Dm

(
η̃εj

(z)
ρj

j
αj

) ∣∣∣∣ ≤ Cm,jεj ≤
1
2j
, for every m with |m| ≤ j − 1.

The series converges in Ck for every k ∈ N to some element E∞α ∈ C∞(p,q)(C
n) and

E∞α = α on M . Furthermore, we have

∂̄E∞α = ∂̄

Eα− k∑
j=1

η̃εj
(z)

ρj

j
αj

− ∂̄
 ∞∑

j=k+1

η̃εj
(z)

ρj

j
αj


= O(ρk) at M,

for every positive integer k. This proves the lemma.

Proof of Theorem 9.2.2. Let α′ = E∞α where E∞α is as in Lemma 9.2.3. Using
the proof of Theorem 9.2.1, there exists u ∈ C∞(p,q)(Ω) such that ∂̄u = ∂̄α′ in Ω and
τu = 0 on M . Setting F0α = u, we have

(9.2.6 a) ∂̄F0α = ∂̄α′ in Ω,

(9.2.6 b) F0α ∧ ∂̄ρ = 0 on M.

We shall prove that for any nonnegative integer k, there exist (p, q − 1)-forms
β0, β1, · · · , βk and (p, q)-form ηk such that

(9.2.7)
F0α = ∂̄(ρβ0) +

1
2
∂̄(ρ2β1) + · · ·+ 1

k + 1
∂̄(ρk+1βk)

+ ρk+1

(
ηk −

1
k + 1

∂̄βk

)
.

From (9.2.6 a) and (9.2.6 b), we can write F0α = ∂̄ρ∧β0+ρη0 = ∂̄(ρβ0)+ρ(η0−∂̄β0)
for some (p, q − 1)-form β0 and (p, q)-form η0. This proves (9.2.7) for k = 0.

Assuming (9.2.7) is proved for k ≥ 0, from (9.2.6 a),

∂̄F0α = (k + 1)ρk∂̄ρ ∧
(
ηk −

1
k + 1

∂̄βk

)
+ ρk+1∂̄ηk = ∂̄α′.

Since ∂̄α′ vanishes to arbitrarily high order at the boundary M , we have ∂̄ρ∧ (ηk−
1/(k + 1)∂̄βk) = 0 on M and there exist a (p, q − 1)-form βk+1 and a (p, q)-form
ηk+1 such that ηk−1/(k+1)∂̄βk = ∂̄ρ∧βk+1+ρηk+1. Substituting this into (9.2.7),
we obtain

F0α = ∂̄(ρβ0) +
1
2
∂̄(ρ2β1) + · · ·+ 1

k + 1
∂̄(ρk+1βk)

+ ρk+1(∂̄ρ ∧ βk+1 + ρηk+1)

= ∂̄(ρβ0) +
1
2
∂̄(ρ2β1) + · · ·+ 1

k + 1
∂̄(ρk+1βk) +

1
k + 2

∂̄(ρk+2βk+1)

+ ρk+2

(
ηk+1 −

1
k + 2

∂̄βk+1

)
.
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Thus, (9.2.7) holds for k+1 and by induction, for any nonnegative integer k. Setting

(9.2.8) Fk+1α = F0α−
k∑

i=0

1
i+ 1

∂̄(ρi+1βi),

we have

(9.2.9a) ∂̄Fk+1α = ∂̄α′ in Ω,

(9.2.9b) Fk+1α = O(ρk+1) at M.

Also each βi is obtained by taking i-th derivatives of the components of F0α. Thus
each βi is smooth and Fkα ∈ C∞(p,q)(Ω).

Let η(z) and η̃εj
(z) be the same as in Lemma 9.2.3, we define

(9.2.10) F∞α = F0α−
∞∑

i=0

1
i+ 1

∂̄
(
η̃εj

(z)ρi+1βi

)
.

As in the proof of Lemma 9.2.3, we can choose εi sufficiently small such that the
series converges in every Ck norm to some element F∞α. F∞α satisfies ∂̄F∞α = ∂̄α′

in Ω and F∞α = O(ρk) at M for every k = 1, 2, · · · . Setting α̃ = E∞α− F∞α, we
have α̃ = α on M and ∂̄α̃ = 0 in Ω. This proves the theorem.

The extension result proved in Theorem 9.2.1 can be used to study the global
solvability of the equation

(9.2.11) ∂̄bu = α on M,

where α is a (p, q)-form with smooth coefficients, 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1. it
is easy to see that if (9.2.11) is solvable, then α must satisfy

(9.2.12) ∂̄bα = 0, when 1 ≤ q < n− 1.

Also using Stokes’ theorem, it is easy to see that if (9.2.11) is solvable for some
u ∈ Ep,q−1(M), then α must satisfy

(9.2.12 a)
∫

M

α ∧ φ = 0, φ ∈ En−p,n−q−1(M) ∩Ker(∂̄b)

where 1 ≤ q ≤ n − 1. We note that using Theorem 9.2.1, we can substitute φ in
(9.2.12 a) by φ ∈ C∞(n−p,n−q−1)(Ω) ∩Ker(∂̄).

When 1 ≤ q < n − 1, condition (9.2.12 a) always implies condition (9.2.12)
(regardless of pseudoconvexity). This can be seen easily if we take φ in (9.2.12 a)
to be of the form ∂̄bf , where f is any smooth (n− p, n− q − 2)-form on M .
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Theorem 9.2.4. Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary M . For any α ∈ Ep,q(M), where 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1, there
exists u ∈ Ep,q−1(M) satisfying ∂̄bu = α on M if and only if the following conditions
hold:

∂̄bα = 0 on M, when 1 ≤ q < n− 1,

and ∫
M

α ∧ ψ = 0, φ ∈ En−p,0(M) ∩Ker(∂̄b), when q = n− 1.

Proof. From Theorem 9.2.1, we can extend α to α̃ such that α̃ ∈ C∞(p,q)(Ω),

∂̄α̃ = 0, in Ω

and
α̃ ∧ ∂̄ρ = α ∧ ∂̄ρ, on M.

Using Theorem 6.1.1, we can find a ũ ∈ C∞(p,q−1)(Ω) such that

∂̄ũ = α̃ in Ω.

Denoting the restriction of ũ to M by u, we have ∂̄ũ ∧ ∂̄ρ = α̃ ∧ ∂̄ρ on M , or
equivalently ∂̄bu = α on M . This proves the theorem.

We conclude this chapter with the following theorem:

Theorem 9.2.5. Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary M . For any α ∈ Ep,q(M), where 0 ≤ p ≤ n and 1 ≤ q ≤ n − 1, the
following conditions are equivalent:

(1) There exists u ∈ Ep,q−1(M) satisfying ∂̄bu = α on M .
(2) There exists α̃ ∈ C∞(p,q)(Ω) with τα̃ = α (or α̃ = α) on M and ∂̄α̃ = 0 in Ω.
(3)

∫
M
α ∧ ψ = 0, φ ∈ En−p,n−q−1(M) ∩Ker(∂̄b).

When 1 ≤ q < n− 1, the above conditions are equivalent to
(4) ∂̄bα = 0 on M .

9.3 L2 Existence Theorems and Sobolev Estimates for ∂̄b

Let M be the boundary of a smooth domain Ω in Cn. We impose the induced
metric from Cn on M and denote square integrable functions on M by L2(M).
The set of (p, q)-forms on M with L2 coefficients, denoted by L2

(p,q)(M), is the
completion of Ep,q(M) under the sum of L2 norms of the coefficients. We define the
space of (p, q)-forms with Ck(M) coefficients by Ck

(p,q)(M). In particular, Ep,q(M) =
C∞(p,q)(M). By using a partition of unity and the tangential Fourier transform, we
can define the Sobolev space W s(M) for any real number s. Let W s

(p,q)(M) be the
subspace of L2

(p,q)(M) with W s(M) coefficients for s ≥ 0 and the norm in W s
(p,q)(M)

is denoted by ‖ ‖s(M). It is clear that W 0
(p,q)(M) = L2

(p,q)(M) and ‖ ‖0(M)=‖ ‖M .



9.3 L2 Existence Theorems and Sobolev Estimates for ∂̄b 217

The L2 closure of ∂̄b, still denoted by ∂̄b, is a linear, closed, densely defined operator
such that

(9.3.1) ∂̄b : L2
(p,q−1)(M)→ L2

(p,q)(M).

An element u ∈ L2
(p,q−1)(M) belongs to Dom(∂̄b) if and only if ∂̄bu, defined in the

distribution sense, is in L2
(p,q)(M).

Our main result in this section is the following theorem.

Theorem 9.3.1. Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary M . For every α ∈W s

(p,q)(M), where 0 ≤ p ≤ n, 1 ≤ q ≤ n− 2 and s is a
nonnegative integer, such that

(9.3.2) ∂̄bα = 0 on M,

there exists u ∈W s
(p,q−1)(M) satisfying ∂̄bu = α on M .

When q = n− 1, α ∈ L2
(p,n−1)(M) and α satisfies

(9.3.3)
∫

M

α ∧ φ = 0, φ ∈ C∞(n−p,0)(M) ∩Ker(∂̄b),

there exists u ∈ L2
(p,n−2)(M) satisfying ∂̄bu = α on M .

Corollary 9.3.2. Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary M . Then ∂̄b : L2

(p,q−1)(M) → L2
(p,q)(M), 0 ≤ p ≤ n, 1 ≤ q ≤ n − 1, has

closed range in L2.

It is easy to see that (9.3.2) and (9.3.3) are necessary conditions for ∂̄b to be
solvable in L2. To prove Theorem 9.3.1, we shall first assume that α is smooth. We
then show that there exists a constant Cs independent of α such that

(9.3.4) ‖ u ‖s(M) ≤ Cs ‖ α ‖s(M) .

Using Theorem 9.2.4, we can find a solution for any smooth α satisfying (9.3.2)
or (9.3.3). However, it is not easy to obtain estimates from this construction. We
shall use a different method to solve α by exploiting the relationship between the
norms on the boundary M and the tangential Sobolev norms. We also introduce
the weighted tangential Sobolev norms.

Let ρ be a defining function for Ω. Let Ω̃ be a large ball such that Ω ⊂⊂ Ω̃. We
set

Ω+ = Ω̃ \ Ω, Ω− = Ω.

For a small δ > 0, we set

Ω−δ = {z ∈ Ω− | −δ < ρ(z) < 0},
Ω+

δ = {z ∈ Ω+ | 0 < ρ(z) < δ},

Ωδ = {z ∈ Ω̃ | −δ < ρ(z) < δ},
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and
Γε = {z ∈ Cn | ρ(z) = ε}.

The special tangential norms in a tubular neighborhood Ω−δ , Ω+
δ and Ωδ are defined,

as in Section 5.2, by

|||f |||2s(Ωδ) =
∫ δ

−δ

‖f‖2s(Γρ)dρ,

|||f |||2
s(Ω−δ )

=
∫ 0

−δ

‖f‖2s(Γρ)dρ, |||f |||2
s(Ω+

δ )
=
∫ δ

0

‖f‖2s(Γρ)dρ.

For each m ∈ N, s ∈ R, we set

(9.3.5) |||Dmf |||s(Ωδ) =
∑

0≤k≤m

|||Dk
ρf |||s+m−k(Ωδ),

where Dρ = ∂/∂ρ. We also define the weighted tangential Sobolev norms by

(9.3.6)
|||Θmf |||s(Ωδ) = |||ρmDmf |||s(Ωδ)

=
∑

0≤k≤m

|||ρmDk
ρf |||s+m−k(Ωδ),

and similarly

|||DΘmf |||s(Ωδ) =
∑

0≤k≤m

|||DρmDk
ρf |||s+m−k(Ωδ).

Thus Θ can be viewed as a first order differential operator weighted with ρ. Cor-
responding norms are also defined on Ω−δ and Ω+

δ similarly. We always assume
that δ > 0 to be sufficiently small without specifying so explicitly in the following
lemmas.

The next lemma on the extension of smooth functions from the boundary is the
key to the proof of (9.3.4).

Lemma 9.3.3. Let M be the boundary of a smooth domain Ω in Cn. For arbitrary
smooth functions uj on M , j = 0, 1, · · · , k0, there exists a function Eu ∈ C∞0 (Ωδ)
such that Dj

ρEu = uj on M , j = 0, 1, · · · , k0. Furthermore, for every real number s
and nonnegative integer m, there exists a positive constant C depending on m and
s but independent of the uj’s such that

(9.3.7 i) |||DmEu|||s−m+ 1
2 (Ωδ) ≤ C

k0∑
j=0

‖uj‖s−j(M),

(9.3.7 ii) |||ΘmEu|||s+ 1
2 (Ωδ) ≤ C

k0∑
j=0

‖uj‖s−j(M).
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Proof. Using a partition of unity, it suffices to prove the lemma assuming that uj

is supported in a small neighborhood U ∩M , where U ⊂ Cn and that there exists
a special boundary coordinate chart on U with coordinates t1, · · · , t2n−1, ρ.

The Fourier transform for u in the special boundary chart is defined by

û(τ) =
∫

R2n−1
e−i〈t,τ〉u(t)dt,

where τ = (τ1, · · · , τ2n−1) and 〈t, τ〉 = t1τ1 + · · ·+ t2n−1τ2n−1.
Let ψ be a function in C∞0 (R) which is equal to 1 in a neighborhood of 0 and let

the partial Fourier transform of Eu be

(9.3.8) (Eu)̃ (τ, ρ) = ψ(λρ)
k0∑

j=0

ûj(τ)
ρj

j!
,

where λ = (1 + |τ |2)1/2. It is easy to see that Dj
ρEu = uj on M .

To prove (9.3.7 i) and (9.3.7 ii), we note that for every nonnegative integer i, by
a change of variables, there exists some C > 0 such that∫ ∞

−∞
|Di

ρ(ψ(λρ)ρj)|2dρ = λ2(i−j)−1

∫ ∞

−∞
|Di

ρ(ψ(ρ)ρj)|2dρ ≤ Cλ2(i−j)−1.

Thus we have

|||DmEu|||2s−m+ 1
2 (Ωδ) =

∑
0≤k≤m

|||Dk
ρEu|||2s−k+ 1

2 (Ωδ)

≤ C
k0∑

j=0

∫
R2n−1

λ2s−2j |ûj(τ)|2dτ

≤ C
k0∑

j=0

‖uj‖2s−j(M),

which proves (9.3.7 i). Since∫ ∞

−∞
ρ2m|Di

ρ(ψ(λρ)ρj)|2dρ = λ2(i−j−m)−1

∫ ∞

−∞
ρ2m|Di

ρ(ψ(ρ)ρj)|2dρ

≤ Cλ2(i−j−m)−1,

we see that

|||ΘmEu|||2s+ 1
2 (Ωδ) =

∑
0≤k≤m

|||ρmDk
ρEu|||2s+m−k+ 1

2 (Ωδ)

≤ C
k0∑

j=0

∫
R2n−1

λ2s−2j |ûj(τ)|2dτ

≤ C
k0∑

j=0

‖uj‖2s−j(M).
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This proves (9.3.7 ii) and the lemma.

Estimate (9.3.7 i) shows that when one extends a function from a smooth bound-
ary, one can have a “gain” of one half derivative. Estimate (9.3.7 ii) shows that the
operator ρD for any first order derivative D should be treated as an operator of
order zero in view of extension of functions from the boundary. This fact is crucial
in the proof of Theorem 9.3.1. We also remark that Lemma 9.3.3 also holds for
k0 =∞ using arguments similar to Lemma 9.2.3.

Lemma 9.3.4. Let M be the boundary of a smooth bounded domain Ω in Cn.
Let α ∈ C∞(p,q)(M), 0 ≤ p ≤ n, 1 ≤ q ≤ n − 1, and ∂bα = 0 on M . For every
positive integer k, there exists a smooth extension Ekα with support in a tubular
neighborhood Ωδ such that Ekα ∈ C∞(p,q)(Ωδ), Ekα = α on M and

(9.3.9) ∂̄Ekα = O(ρk) at M.

Furthermore, for every real number s and nonnegative integer m, there exists a
positive constant Ck depending on m and s but independent of α such that

(9.3.10 i) |||DmEkα|||s−m+ 1
2 (Ωδ) ≤ Ck‖α‖s(M),

(9.3.10 ii) |||ΘmEkα|||s+ 1
2 (Ωδ) ≤ Ck‖α‖s(M).

Proof. Using Lemma 9.3.3 with k0 = 0, we first extend α componentwise and
smoothly from M to Eα in Cn such that Eα has compact support in Ωδ and
satisfies the estimates

(9.3.11 i) |||DmEα|||s−m+ 1
2 (Ωδ) ≤ C‖α‖s(M),

(9.3.11 ii) |||ΘmEα|||s+ 1
2 (Ωδ) ≤ C‖α‖s(M),

where C depends on m and s but is independent of α. Using Lemma 9.2.3, for every
positive integer k, there exist smooth (p, q)-forms α1, · · · , αk and (p, q + 1)-forms
γ1, · · · , γk such that

(9.3.12 a) Ekα = Eα− ρα1 −
ρ2

2
α2 − · · · −

ρk

k
αk,

and

(9.3.12 b) ∂̄Ekα = ρk

(
γk −

1
k
∂̄αk

)
= O(ρk) at M.

From the proof of Lemma 9.2.3, each component of αi is a linear combination of
the i-th derivatives of Eα. To show that Ekα satisfies the estimates, it suffices to
estimate each ρiαi. Using (9.3.11 i) and (9.3.11 ii), we have for any s ∈ R,

|||Ekα|||s+ 1
2 (Ωδ) ≤ |||Eα|||s+ 1

2 (Ωδ) +
∑

1≤i≤k

|||ρiαi|||s+ 1
2 (Ωδ)

≤ C
∑

0≤i≤k

|||ΘiEα|||s+ 1
2 (Ωδ)

≤ C‖α‖s(M).
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Again using (9.3.11 i) and (9.3.11 ii), we have for any s ∈ R, m ∈ N,

|||ΘmEkα|||s+ 1
2 (Ωδ) ≤ C

∑
0≤i≤k

|||Θm+iEα|||s+ 1
2 (Ωδ) ≤ Ck‖α‖s(M),

and
|||DmEkα|||s−m+ 1

2 (Ωδ) ≤ C
∑

0≤i≤k

|||ΘiDmEα|||s−m+ 1
2 (Ωδ)

≤ Ck‖α‖s(M),

where we have used (9.3.7 i) and (9.3.7 ii). This proves Lemma 9.3.4.

The following decomposition of ∂b-closed forms on M as the difference between
two ∂̄-closed forms is an analog of the jump formula for CR functions discussed in
Theorem 2.2.3.

Lemma 9.3.5. Let M be the boundary of a smooth bounded domain Ω in Cn. Let
α ∈ C∞(p,q)(M) with ∂bα = 0, 0 ≤ p ≤ n, 0 ≤ q ≤ n− 1. For each positive integer k,

there exist α+ ∈ Ck
(p,q)(Ω

+
) and α− ∈ Ck

(p,q)(Ω) such that ∂α+ = 0 in Ω+, ∂α− = 0
in Ω and the following decomposition holds:

(9.3.13) α+ − α− = α on M.

Furthermore, we have the following estimates: for every integer 0 ≤ s ≤ k − 1,
0 ≤ m ≤ s,

(9.3.14 i) |||Dmα+|||s−m+ 1
2 (Ω+

δ ) ≤ C‖α‖s(M),

(9.3.14 ii) |||Dmα−|||s−m+ 1
2 (Ω−δ ) ≤ C‖α‖s(M),

where the constant C depends only on m, s, but is independent of α.

Proof. Let k0 be a positive integer to be determined later. Using Lemma 9.3.4, we
extend α from M to Ek0α in Cn smoothly such that Ek0α = α on M , Ek0α has
compact support in Ωδ and Ek0α satisfies (9.3.9) and (9.3.10) with k = k0.

We define a (p, q + 1)-form Ũk0 in Ω̃ by

Ũk0 =


−∂Ek0α, if z ∈ Ω−,
0, if z ∈M,

∂Ek0α, if z ∈ Ω+.

From (9.3.9), we have Ũk0 ∈ Ck0−1(Ω̃) and ∂Ũk0 = 0 in Ω̃ (in the distribution
sense if k0 = 1). It follows from (9.3.10 i) that for any nonnegative integer m,
0 ≤ m ≤ k0 − 1,

(9.3.15)
|||DmŨk0 |||s−m− 1

2 (Ωδ) ≤ C|||Dm+1Ek0α|||s−m− 1
2 (Ωδ)

≤ C‖α‖s(M).
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We define Vk0 = ∂̄∗N Ω̃
(p,q+1)Ũk0 . It follows from Theorem 4.4.1 that ∂Vk0 = Ũk0

in Ω̃. Since �(p,q+1) is elliptic in the interior of the domain Ω̃, ∂̄∗N Ω̃
(p,q+1) gains

one derivative in the interior. Since Ũk0 has compact support in Ωδ, we get from
(9.3.15) that

(9.3.16)
|||DmVk0 |||s−m+ 1

2 (Ωδ) ≤ C|||Dm+1Ek0α|||s−m− 1
2 (Ωδ)

≤ C‖α‖s(M),

for some C > 0 independent of α.
Setting

α+ =
1
2
(Ek0α− Vk0), z ∈ Ω+,

α− = −1
2
(Ek0α+ Vk0), z ∈ Ω,

we see that
α = Ek0α = (α+ − α−) on M.

We also have

∂α+ =
1
2
(∂Ek0α− ∂Vk0) =

1
2
(∂Ek0α− Ũk0) = 0 in Ω+,

and
∂α− = −1

2
(∂Ek0α+ ∂Vk0) = −1

2
(∂Ek0α+ Ũk0) = 0 in Ω.

If we choose k0 sufficiently large (k0 ≥ n + k + 1), then α+ ∈ Ck
(p,q)(Ω

+ ∪M) and
α− ∈ Ck

(p,q)(Ω) by the Sobolev embedding theorem. The estimates (9.3.14 i) and
(9.3.14 ii) follow easily from (9.3.16) and (9.3.10). Since this is true for an arbitrarily
large ball Ω̃, the lemma is proved.

Using the weighted ∂̄-Neumann operator on Ω−, we can solve ∂̄u− = α− in Ω−

with good estimates up to the boundary. To solve ∂̄ for α+ in Ω+, we use the
following lemma to extend α+ to be ∂̄-closed in Ω̃ with good estimates.

Lemma 9.3.6. Let Ω be a bounded pseudoconvex domain in Cn with C∞ boundary
M . Let α ∈ C∞(p,q)(M) such that ∂bα = 0, where 0 ≤ p ≤ n, 0 ≤ q < n − 1. For

every nonnegative integer k1, there exists α̃+ in Ck1
(p,q)(Ω̃) and α− ∈ Ck1

(p,q)(Ω) such

that ∂α̃+ = 0 in Ω̃, ∂α− = 0 in Ω− and α̃+ − α− = α on M . Furthermore, for
every 0 ≤ s ≤ k1, there exists a constant C depending only on s but independent of
α such that

(9.3.17 i) ‖ α̃+ ‖s− 1
2 (Ω̃) ≤ C‖α‖s(M).

(9.3.17 ii) ‖ α− ‖s+ 1
2 (Ω) ≤ C‖α‖s(M).

When q = n− 1, α ∈ C∞(p,n−1)(M) and α satisfies

(9.3.18)
∫

M

α ∧ φ = 0, φ ∈ C∞(n−p,0)(M) ∩Ker(∂̄b),
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the same conclusion holds.

Proof. Let k be an integer with k > 2(k1+n) and let α+, α− be defined as in Lemma
9.3.5. For any s ≥ 0 and 0 ≤ m ≤ s, using arguments similar to those in the proof
of Lemma 5.2.3, the norm |||Dmα−|||s−m+ 1

2 (Ω−δ ) is equivalent to ‖ α− ‖s+ 1
2 (Ω−δ ).

Thus (9.3.17 ii) follows immediately from (9.3.14 ii).
We next extend α+ to Ω̃. By the trace theorem for Sobolev spaces and inequality

(9.3.14 i), we have for any integer 0 ≤ j ≤ s− 1, 0 ≤ s ≤ k,

‖Dj
ρα

+‖s−j(M) ≤ C‖Dj+1
ρ α+‖s−j− 1

2 (Ω+
δ ) ≤ C‖α‖s(M).

Using the proof of Lemma 9.3.3, we can extend α+ from Ω+ to α′ in Ω̃ such that
α′ ∈ Ck(Ω̃), ∂α′ = 0 in Ω+ and the following estimates hold: for any integer
0 ≤ s ≤ k − 1, 0 ≤ m ≤ s,

(9.3.19 i) |||Dmα′|||s−m+ 1
2 (Ω−δ ) ≤ C‖α‖s(M),

(9.3.19 ii) |||Θmα′|||s+ 1
2 (Ω−δ ) ≤ C‖α‖s(M).

We define
Fα′ = −?∂N t

(n−p,n−q−1)?∂̄α
′ in Ω,

where N t
(n−p,n−q−1) is the weighted ∂̄-Neumann operator on (n−p, n−q−1)-forms.

Using Theorem 6.1.4, we can choose t sufficiently large such that Fα′ ∈W k−1
(p,q)(Ω) ⊂

C2k1+1
(p,q) (Ω). We set Fα′ = 0 outside Ω.
When q = n − 1, using the definition of α+, for every ∂̄-closed form φ ∈

C∞(n−p,0)(Ω), ∫
Ω

∂̄α′ ∧ φ =
∫

Ω

∂̄(α′ ∧ φ) =
∫

M

α′ ∧ φ = −1
2

∫
M

Vk0 ∧ φ

= −1
2

∫
Ω

Ũk0 ∧ φ =
1
2

∫
M

α ∧ φ = 0,

by (9.3.18). Thus ∂̄α′ satisfies condition (9.1.9). Using Theorem 9.1.2 (1 ≤ q ≤
n− 2) and Theorem 9.1.3 (q = n− 1) , it follows that{

∂̄Fα′ = ∂̄α′ in Ω̃,
Fα′ = 0 in Ω+.

We modify Fα′ to make it smooth at M . Setting F0α
′ = Fα′ and using argu-

ments similar to those in Lemma 9.2.3, one can choose (p, q − 1)-forms β0, · · · , βk1

and define

Fk1+1α
′ = F0α

′ −
k1∑

i=0

1
i+ 1

∂̄(ρi+1βi),

such that
∂̄Fk1+1α

′ = ∂̄α′ in Ω,
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and
Fk1+1α

′ = O(ρk1+1) at M.

Each βi is obtained by taking i-th derivatives of the components of F0α
′. Thus

Fk1+1α
′ ∈ Ck1

(p,q)(Ω). If we set Fk1+1α
′ = 0 in Ω̃ \ Ω, then Fk1+1α

′ ∈ Ck1
(p,q)(Ω̃). We

define

α̃+ =
{
α′ − Fk1+1α

′, in Ω,

α′ − Fk1+1α
′ = α+, in Ω̃ \ Ω,

then α̃+ ∈ Ck1
(p,q)(Ω̃) and ∂α̃+ = 0 in Ω̃. It remains to show that α̃+ satisfies (9.3.17

i). Since α+ satisfies (9.3.14 i) and α′ satisfies (9.3.19 i), to estimate α̃+, we only
need to estimate Fk1+1α

′ in Ω. To prove (9.3.17 i), it suffices to show

(9.3.20) ‖ Fk1+1α
′ ‖s− 1

2 (Ω) ≤ C ‖ α ‖s(M) .

From Theorem 6.1.4, we have the estimates

(9.3.21) ‖ Fα′ ‖s− 1
2 (Ω) ≤ C ‖ ∂̄α′ ‖s− 1

2 (Ω) ≤ C ‖ α ‖s(M) .

We claim that for each positive integer 0 ≤ m ≤ k1 + 1, 0 ≤ s ≤ k1,

(9.3.22) |||ρmDmFα′|||s− 1
2 (Ω−δ ) ≤ C ‖ α ‖s(M) .

If the claim is true, then (9.3.20) holds from our construction of Fk1+1α
′, since

Fk1+1α
′ can be written as combinations of terms in Fα′ and ρmDmFα′. Thus it

remains to prove (9.3.22).
(9.3.21) implies that (9.3.22) holds when m = 0. To prove the claim for m > 0,

it suffices to show for each positive integer 0 ≤ m ≤ k1 + 1, 0 ≤ s ≤ k1,

(9.3.23) |||DΘmFα′|||s− 3
2 (Ω−δ ) ≤ C ‖ α ‖s(M)

since Fα′ satisfies an elliptic system ∂̄ ⊕ ϑt. Decompose Ω−δ into subdomains Ωj

such that
Ωj = {z ∈ Ω−δ | δj+1 < −ρ(z) < δj},

where δj = δ/2j . This is a Whitney type decomposition where the thickness of
each Ωj is comparable to the distance of Ωj to the boundary. We define Ω∗j =
Ωj−1 ∪ Ωj ∪ Ωj+1. Let φj be a function in C∞0 (Ω∗j ) such that 0 ≤ φj ≤ 1, φj = 1
on Ωj . Moreover,

(9.3.24) sup |gradφj | ≤ Cδ−1
j ,

where C is independent of j. Since ∂̄ ⊕ ϑt is elliptic and φjΘmFα′ is supported in
Ω∗j , applying G̊arding’s inequality, we have

(9.3.25)

|||D(φjΘmFα′)|||s− 3
2 (Ω∗j )

≤ C
(
|||∂̄(φjΘmFα′)|||s− 3

2 (Ω∗j ) + |||ϑt(φjΘmFα′)|||s− 3
2 (Ω∗j )

+ |||φjΘmFα′|||s− 3
2 (Ω∗j )

)
,
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where C is independent of j. We also know that

(9.3.26)

|||∂̄(φjΘmFα′)|||s− 3
2 (Ω∗j )

≤ |||∂̄(φj)ΘmFα′|||s− 3
2 (Ω∗j ) + |||φjΘm∂̄Fα′|||s− 3

2 (Ω∗j )

+ |||φj [∂̄,Θm]Fα′|||s− 3
2 (Ω∗j ),

and using (9.3.24),

(9.3.27)
|||∂̄(φj)ΘmFα′|||s− 3

2 (Ω∗j ) + |||φj [∂̄,Θm]Fα′|||s− 3
2 (Ω∗j )

≤ C|||DΘm−1Fα′|||s− 3
2 (Ω∗j ).

Substituting (9.3.27) into (9.3.26), we obtain

(9.3.28)

|||∂̄(φjΘmFα′)|||s− 3
2 (Ω∗j )

≤ C(|||DΘm−1Fα′|||s− 3
2 (Ω∗j ) + |||Θm∂̄α′|||s− 3

2 (Ω∗j ))

≤ C(|||DΘm−1Fα′|||s− 3
2 (Ω∗j ) + |||DΘmα′|||s− 3

2 (Ω∗j )).

Similarly,

(9.3.29)

|||ϑt(φjΘmFα′)|||s− 3
2 (Ω∗j )

≤ |||ϑt(φj)ΘmFα′|||s− 3
2 (Ω∗j ) + |||φjΘmϑtFα

′|||s− 3
2 (Ω∗j )

+ |||φj [ϑt,Θm]Fα′|||s− 3
2 (Ω∗j )

≤ C|||DΘm−1Fα′|||s− 3
2 (Ω∗j ).

Substituting (9.3.28) and (9.3.29) into (9.3.25) and summing over j, we have using
induction,

|||DΘmFα′|||s− 3
2 (Ω−δ

2
)

≤ C(|||DΘm−1Fα′|||s− 3
2 (Ω−δ ) + |||Θm∂̄α′|||s− 3

2 (Ω−δ ))

≤ C ‖ α ‖s(M) .

This proves (9.3.23) for a smaller δ. Thus (9.3.17 i) holds. The proof of Lemma
9.3.6 is complete.

We note that both Lemma 9.3.5 and Lemma 9.3.6 hold for q = 0, i.e., when α is
CR. When q = 0 and n = 1, Lemma 9.3.5 corresponds to the Plemelj jump formula
in one complex variable (see Theorem 2.1.3). In this case, there is no condition
on α since ∂̄bα = 0 on M is always satisfied. In contrast, there is a compatibility
condition (9.3.18) for q = n−1 in Lemma 9.3.6 for n > 1. One should compare this
case with Corollary 2.1.4.

Using Lemma 9.3.6, we have the following lemma for smooth ∂̄b-closed forms:
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Lemma 9.3.7. Let Ω be a bounded pseudoconvex domain in Cn with smooth bound-
ary M . Let α ∈ C∞(p,q)(M), where 0 ≤ p ≤ n, 1 ≤ q ≤ n − 2, such that ∂̄bα = 0
on M . For every nonnegative integer s, there exists us ∈ W s

(p,q−1)(M) satisfying
∂̄bus = α on M . Furthermore, there exists a constant Cs independent of α such
that

(9.3.30) ‖us‖s(M) ≤ Cs‖α‖s(M).

When q = n − 1, α ∈ C∞(p,n−1)(M) and α satisfies (9.3.3), the same conclusion
holds.

Proof. Let s be a fixed nonnegative integer. From Lemma 9.3.6, there exists a
decomposition α = (α̃+ − α−) such that α̃+ ∈ Cs

(p,q)(Ω̃), ∂̄α̃+ = 0 in Ω̃, α− ∈
Cs

(p,q)(Ω) and ∂̄α− = 0 in Ω. We also have the estimates:

(9.3.31 i) ‖α̃+‖s− 1
2 (Ω̃) ≤ C‖α‖s(M),

(9.3.31 ii) ‖α−‖s+ 1
2 (Ω) ≤ C‖α‖s(M).

(9.3.31 i) and (9.3.31 ii) follow from (9.3.17 i) and (9.3.17 ii).
Since Ω is pseudoconvex, we define

u− = ∂
∗
tN

t
(p,q)α

−,

where N t
(p,q) is the weighted ∂̄-Neumann operator in Ω. If we choose t > 0 suf-

ficiently large, using Theorem 6.1.4, it follows that u− ∈ W s+ 1
2

(p,q−1)(Ω), ∂u− = α−

and
|||Du−|||s− 1

2 (Ω−δ ) ≤ C‖α
−‖s+ 1

2 (Ω) ≤ C‖α‖s(M)

for some constant C independent of α. Restricting u− to the boundary we have
∂̄bu

− = τα− on M and using the trace theorem for Sobolev spaces, we obtain

(9.3.32) ‖u−‖s(M) ≤ Cs|||Du−|||s− 1
2 (Ω−δ ) ≤ Cs‖α‖s(M).

Defining
ũ+ = ∂

∗
N Ω̃

(p,q)α̃
+,

where N Ω̃
(p,q) is the ∂̄-Neumann operator on Ω̃, we have ∂̄ũ+ = α̃+ in Ω̃ and ũ+ is

one derivative smoother than α̃+ in the interior of Ω̃. From (9.3.31 i),

|||Dũ+|||s− 1
2 (Ωδ) ≤ C‖α̃+‖s− 1

2 (Ω̃) ≤ C‖α‖s(M)

for some constant C independent of α. Restricting ũ+ toM , using the trace theorem
again,

(9.3.33) ‖ũ+‖s(M) ≤ C|||Dũ+|||s− 1
2 (Ωδ) ≤ C‖α‖s(M)

for some constant C independent of α. Letting

us = ũ+ − u− on M,

we get ∂bus = α on M . We also have from (9.3.32) and (9.3.33),

‖us‖s(M) ≤ Cs‖α‖s(M),

where Cs is independent of α. This proves (9.3.30) and the lemma.

To prove Theorem 9.3.1, we need the following density lemmas which are of
interest independently.
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Lemma 9.3.8. Let M be the boundary of a smooth bounded pseudoconvex domain
Ω in Cn, n ≥ 2. For each 0 ≤ p ≤ n, 0 ≤ q < n − 1 and s ≥ 0, the space
C∞(p,q)(M) ∩ ker(∂̄b) is dense in W s

(p,q)(M) ∩ ker(∂̄b) in the W s
(p,q)(M) norm.

Proof. We define Z∞ = C∞(p,q)(M) ∩ ker(∂̄b) and Zs = W s
(p,q)(M) ∩ ker(∂̄b). For

any α ∈ Zs, using Friedrichs’ Lemma (see Appendix D), there exists a sequence of
smooth forms αm ∈ C∞(p,q)(M) such that αm → α in W s

(p,q)(M) and ∂̄bαm → 0 in
W s

(p,q+1)(M). Since ∂̄bαm is a smooth form satisfying the compatibility condition
(9.3.2) (when q < n − 2) and (9.3.3) (when q = n − 2), Lemma 9.3.7 implies that
there exists a sufficiently smooth form vm such that ∂̄bvm = ∂̄bαm in M with

‖vm‖s(M) ≤ Cs‖∂̄bαm‖s(M) → 0.

We set
α′m = αm − vm.

Then ∂̄bα
′
m = 0 and α′m converges to α in W s

(p,q)(M). Thus, Zk is dense in Zs in
the W s

(p,q)(M) norm where k is an arbitrarily large integer.
For any ε > 0 and each positive integer k > s, there exists an αk ∈ Zk such that

‖αk − α‖s(M) < ε.

Furthermore, we can require that

‖αk − αk+1‖k(M) <
ε

2k

since Zk+1 is dense in Zk. The series

αk +
∞∑

N=k+1

(αN − αN−1)

converges in every W k
(p,q)(M) norm to some element α∞. The Sobolev embedding

theorem then assures that α∞ is in C∞(p,q)(M) ∩Ker(∂̄b). We also have

‖α∞ − α‖s(M) < 2ε.

This proves the lemma.

When q = n− 1, we have the density lemma in the L2 norm.

Lemma 9.3.9. Let M be the boundary of a smooth bounded pseudoconvex domain
Ω in Cn, n ≥ 2 and 0 ≤ p ≤ n. Let Z denote the space of all forms in L2

(p,n−1)(M)
satisfying (9.3.3) and Z∞ be the subspace of all forms in C∞(p,n−1)(M) satisfying
(9.3.3). Then Z∞ is dense in Z in the L2 norm.

Proof. Since the holomorphic degree p plays no role, for simplicity we assume p = n.
If α ∈ L2

(n,n−1)(M), we can write α = f(?∂̄ρ) for some f ∈ L2(M). Using the
Hahn-Banach theorem, it suffices to show that any bounded linear functional ` on
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L2
(n,n−1)(M) that vanishes on Z∞ also vanishes on Z. From the Riesz representation

theorem, there exists a g ∈ L2(M) such that ` can be written as

`(α) =
∫

M

α ∧ g, α ∈ L2
(n,n−1)(M).

For any u ∈ C∞(n,n−2)(M), it is easy to see that ∂̄bu ∈ Z∞. If ` vanishes on Z∞, we
have ∫

M

∂̄bu ∧ g = 0, for any u ∈ C∞(n,n−2)(M).

This implies that ∂̄bg = 0 in the distribution sense. Using Lemma 9.3.8 when
p = q = 0, there exists a sequence of smooth functions gm such that ∂̄bgm = 0 and
gm → g in L2(M). For any α ∈ Z, we have

`(α) =
∫

M

α ∧ g = lim
m→∞

∫
M

α ∧ gm = 0.

This proves the lemma.

We can now finish the proof of Theorem 9.3.1.

Proof of Theorem 9.3.1. When 1 ≤ q < n − 1, α can be approximated by smooth
∂̄b-closed forms αm in W s

(p,q)(M) according to Lemma 9.3.8. For each αm, we apply
Lemma 9.3.7 to obtain a (p, q − 1)-form um such that ∂̄bum = αm and

‖um‖s(M) ≤ Cs‖αm‖s(M).

Thus, um converges to some (p, q − 1)-form u such that ∂̄bu = α on M and

‖u‖s(M) ≤ Cs‖α‖s(M).

This proves the theorem when 1 ≤ q < n− 1.
When q = n − 1, we approximate α by αm ∈ Z∞ in the L2

(p,n−1)(M) norm
using Lemma 9.3.9. Repeating the arguments above with s = 0, we can construct
u ∈ L2

(p,n−2)(M) with ∂̄bu = α. This completes the proof of Theorem 9.3.1.

Corollary 9.3.2 follows easily from Theorem 9.3.1.

9.4 The Hodge Decomposition Theorem for ∂̄b

The L2 existence result proved in Theorem 9.3.1 can be applied to prove the
Hodge decomposition theorem for the ∂̄b complex on pseudoconvex boundaries. We
use the notation ∂̄∗b to denote the Hilbert space adjoint of the operator ∂̄b with
respect to the induced metric on M .

We define �b as in Chapter 8. Let �b = ∂b∂
∗
b + ∂

∗
b∂b be defined on Dom(�b),

where
Dom(�b) = {φ ∈ L2

(p,q)(M) | φ ∈ Dom(∂b) ∩Dom(∂
∗
b);

∂bφ ∈ Dom(∂
∗
b) and ∂

∗
bφ ∈ Dom(∂b)}.
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Repeating arguments in the proof of Proposition 4.2.3, we can show that �b is a
closed, densely defined self-adjoint operator.

We use Hb
(p,q) to denote the projection

Hb
(p,q) : L2

(p,q)(M)→ Ker(�b) = Ker(∂̄b) ∩Ker(∂̄∗b ).

When M is the boundary of a smooth bounded pseudoconvex domain, we claim
that for 1 ≤ q ≤ n− 2,

(9.4.1) Ker(�b) = Ker(∂̄b) ∩Ker(∂̄∗b ) = 0.

To prove (9.4.1), let α ∈ Ker(�b) = Ker(∂̄b) ∩ Ker(∂̄∗b ). Then α = ∂̄bu for some
u ∈ L2

(p,q−1)(M) by Theorem 9.3.1. Thus

(α, α) = (∂̄bu, α) = (u, ∂̄∗bα) = 0.

We have Hb
(p,q) = 0 for all 0 ≤ p ≤ n, 1 ≤ q ≤ n − 2. Only Hb

(p,0) ≡ S(p,0) (the
Szegö projection) and Hb

(p,n−1) ≡ S̃(p,n−1) are nontrivial where

S(p,0) : L2
(p,0)(M)→ Ker(∂̄b),

S̃(p,n−1) : L2
(p,n−1)(M)→ Ker(∂̄∗b ).

We derive some equivalent conditions for (9.3.3) in Theorem 9.3.1. Again one can
assume p = n. Let S = S(0,0) denote the Szegö projection on functions and S̃ denote
the projection from L2

(n,n−1)(M) onto L2
(n,n−1)∩Ker(∂̄∗b ). For any α ∈ L2

(n,n−1)(M),
we can write α = f(?∂̄ρ) for some f ∈ L2(M), where ? is the Hodge star operator
with respect to the standard metric in Cn. The following lemma links condition
(9.3.3) to the Szegö projection:

Lemma 9.4.1. For any α ∈ L2
(n,n−1)(M), the following conditions are equivalent:

(1) α satisfies condition (9.3.3).
(2) Sf̄ = 0, where α = f(?∂̄ρ).
(3) S̃α = 0.

Proof. Let θ = ?(∂ρ∧ ∂̄ρ). Since dρ = (∂ρ+ ∂̄ρ) vanishes when restricted to M , we
have

?∂ρ = θ ∧ ∂̄ρ = θ ∧ dρ− θ ∧ ∂ρ
= θ ∧ dρ+ ?∂̄ρ = ?∂̄ρ

on M . If ψ ∈ L2(M),∫
M

α ∧ ψ =
∫

M

fψ(?∂̄ρ) =
∫

M

fψ(?dρ)−
∫

M

fψ(?∂ρ)

=
∫

M

fψdσ −
∫

M

fψ(?∂̄ρ),



230 The Tangential Cauchy-Riemann Complex

where dσ = ?dρ is the surface measure on M . Hence, for any ψ ∈ L2(M),∫
M

α ∧ ψ =
1
2

∫
M

fψdσ =
1
2
(f, ψ̄)M .

Since Z∞ is dense in Z from Lemma 9.3.8, (1) and (2) are equivalent.
To prove that (3) and (1) are equivalent, we write β = g(?∂̄ρ) for any β ∈

L2
(n,n−1)(M), where g ∈ L2(M). It is easy to see that β ∈ Ker(∂̄∗b ) if and only if

∂̄bḡ = 0 on M . For any β ∈ L2
(n,n−1)(M) ∩Ker(∂̄∗b ),

(α, β)M =
∫

M

fḡdσ = 2
∫

M

α ∧ ḡ = 0.

This proves that (1) and (3) are equivalent.

We have the following strong Hodge decomposition theorem for ∂̄b.

Theorem 9.4.2. Let M be the boundary of a smooth bounded pseudoconvex domain
Ω in Cn, n ≥ 2. Then for any 0 ≤ p ≤ n, 0 ≤ q ≤ n − 1, there exists a linear
operator Nb : L2

(p,q)(M)→ L2
(p,q)(M) such that

(1) Nb is bounded and R(Nb) ⊂ Dom(�b).
(2) For any α ∈ L2

(p,q)(M), we have

α = ∂b∂
∗
bNbα⊕ ∂

∗
b∂bNbα, if 1 ≤ q ≤ n− 2,

α = ∂
∗
b∂bNbα⊕ S(p,0)α, if q = 0,

α = ∂b∂
∗
bNbα⊕ S̃(p,n−1)α, if q = n− 1.

(3) If 1 ≤ q ≤ n− 2, we have

Nb�b = �bNb = I on Dom(�b),

∂bNb = Nb∂b on Dom(∂b),

∂
∗
bNb = Nb∂

∗
b on Dom(∂

∗
b).

(4) If α ∈ L2
(p,q)(M) with ∂bα = 0, where 1 ≤ q ≤ n − 2 or α ∈ L2

(p,n−1)(M)

with S̃(p,n−1)α = 0, then α = ∂b∂
∗
bNbα.

The solution u = ∂
∗
bNbα in (4) is called the canonical solution, i.e., the unique

solution orthogonal to Ker(∂b).

Proof. From Corollary 9.3.2, the range of ∂̄b, denoted by R(∂̄b), is closed in every
degree. If 1 ≤ q ≤ n − 2, we have from Theorem 9.3.1, Ker(∂̄b) = R(∂̄b) and the
following orthogonal decomposition:

(9.4.2) L2
(p,q)(M) = Ker(∂̄b)⊕R(∂̄∗b ) = R(∂̄b)⊕R(∂̄∗b ).

Repeating the arguments of Theorem 4.4.1, we can prove that for every α ∈
Dom(∂b) ∩Dom(∂

∗
b),

(9.4.3) ‖α‖2 ≤ c(‖∂bα‖2 + ‖∂∗bα‖2),
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and for any α ∈ Dom(�b),

(9.4.4) ‖α‖2 ≤ c‖�bα, ‖2

where the constant c is independent of α.
(9.4.4) implies that �b is one-to-one and, from Lemma 4.1.1, that the range of

�b is closed. It follows that the strong Hodge decomposition holds:

L2
(p,q)(M) = R(�b)⊕Ker(�b)

= ∂̄b∂̄
∗
b (Dom(�b))⊕ ∂̄∗b ∂̄b(Dom(�b)).

Thus �b : Dom(�b) → L2
(p,q)(M) is one-to-one, onto, and it has a unique inverse

Nb : L2
(p,q)(M) → Dom(�b). Note that Nb is bounded. Following the same argu-

ment as in Theorem 4.4.1, we have that Nb satisfies all the conditions (1)-(4) and
Theorem 9.4.2 is proved when 1 ≤ q ≤ n− 2.

When q = 0,
L2

(p,0)(M) = R(∂̄∗b )⊕Ker∂̄b.

Thus for any α ⊥ Ker(∂̄b) and α ∈ Dom(�b),

(9.4.5) ‖α‖2 ≤ c‖∂̄bα‖2 ≤ c‖�bα‖‖α‖.

Thus �b has closed range on Ker(∂̄b)⊥ = Ker(�b)⊥ and

L2
(p,0)(M) = R(�b)⊕Ker∂̄b.

In particular, there exists a bounded operatorNb : L2
(p,0)(M)→ L2

(p,0)(M) satisfying
�bNb = I − S(p,0), Nb = 0 on Ker(∂̄b). This proves (1) and (2) when q = 0.
Properties (3) and (4) also follow exactly as before. The case for q = n− 1 can also
be proved similarly.

Thus, the strong Hodge decomposition for ∂b holds on the boundary of a smooth
bounded pseudoconvex domain in Cn for all (p, q)-forms including q = 0 and q =
n− 1.

NOTES

The ∂̄-closed extension of ∂̄b-closed functions or forms from the boundary of a
domain in a complex manifold was studied by J. J. Kohn and H. Rossi [KoRo 1] who
first introduced the ∂̄b complex. In [KoRo 1], they show that a ∂̄-closed extension
exists for any (p, q)-form from the boundary M to the domain Ω in a complex
manifold if Ω satisfies condition Z(n− q − 1). Formula (9.1.3) was first given there.
The L2 Cauchy problem on any pseudoconvex domain was used by M.-C. Shaw
[Sha 6] to study the local solvability for ∂̄b. Theorem 9.3.3 was first observed by
J. P. Rosay in [Rosa 1] where it was pointed out that global smooth solutions can
be obtained by combining the results of Kohn [Koh 6] and Kohn-Rossi [KoRo 1].
The ∂̄ Cauchy problem was also discussed by M. Derridj in [Der 1,2]. A. Andreotti
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and C. D. Hill used reduction to vanishing cohomology arguments to study the
Cauchy problem and ∂̄b in [AnHi 1]. Kernel methods were also used to obtain ∂̄-
closed extension from boundaries of domains satisfying condition Z(n− q − 1) (see
Henkin-Leiterer [HeLe 2]). We mention the papers of G. M. Henkin [Hen 3] and
H. Skoda [Sko 1] where solutions of ∂̄b, including the top degree case, on strongly
pseudoconvex boundaries were studied using integral kernel methods.

Much of the material in Section 9.3 on the L2 theory of ∂̄b on weakly pseudocon-
vex boundaries was based on the work of M.-C. Shaw [Sha 2] and H. P. Boas-M.-C.
Shaw [BoSh 1]. In [Sha 1], Kohn’s results of the weighted ∂̄-Neumann operator
on a pseudoconvex domain was extended to an annulus between two pseudoconvex
domains. Using the weighted ∂̄-Neumann operators constructed in [Koh 6] and [Sha
1], a two-sided ∂̄-closed extension for ∂̄b-closed forms away from the top degree was
constructed in [Sha 2]. The jump formula proved in Lemma 9.3.5 was derived from
the Bochner-Martinelli-Koppelman kernel in [BoSh 1] (c.f. Theorem 11.3.1). Our
proof of Lemma 9.3.5 presented here uses an idea of [AnHi 1]. Sobolev estimates
for ∂̄b were also obtained for the top degree case (q = n − 1) in [BoSh 1]. The
proof depends on the regularity of the weighted Szegö projection in Sobolev spaces.
For more discussion on the Sobolev estimates for the Szegö projection, see [Boa
1,2,4]. Another proof of Theorem 9.3.1 was given by J. J. Kohn in [Koh 11] using
pseudodifferential operators and microlocal analysis.

We point out that all results discussed in this chapter can be generalized to any
CR manifolds which are boundaries of domains in complex manifolds, as long as the
corresponding ∂̄-Neumann operators (or weighted ∂̄-Neumann operators) exist and
are regular (e.g, pseudoconvex domains in a Stein manifold). However, L2 existence
theorems and the closed range property for ∂̄b might not be true for abstract CR
manifolds. It was observed by D. Burns [Bur 1] that the range of ∂̄b is not closed in
L2 on a nonembeddable strongly pseudoconvex CR manifold of real dimension three
discovered by H. Rossi [Ros 1]. This example along with the interplay between the
closed-range property of ∂̄b and the embedding problem of abstract CR structures
will be discussed in Chapter 12.

There are also results on Sobolev estimates for �b on pseudoconvex manifolds.
Using subelliptic multipliers combining with microlocal analysis, J. J. Kohn (see
[Koh 10,11]) has proved subelliptic estimates for �b when the CR manifold is pseu-
doconvex and of finite ideal type. If the domain has a plurisubharmonic defining
function, Sobolev estimates for �b have been obtained by H. P. Boas and E. J.
Straube [BoSt 4]. In particular, the Szegö projections are exactly regular in both
cases.

Much less is known for the regularity of �b and the Szegö projection on pseu-
doconvex manifolds in other function spaces except when the CR manifold is the
boundary of a pseudoconvex domain of finite type in C2. We mention the work
of Fefferman-Kohn [FeKo 1] and Nagel-Rosay-Stein-Wainger [NRSW 1] and Christ
[Chr 1]. When the CR manifold is of finite type in Cn, n ≥ 3, and the Levi form
is diagonalizable, Hölder estimates for ∂̄b and �b have been obtained in Fefferman-
Kohn-Machedon [FKM 1]. Hölder and Lp estimates for the Szegö projection on
convex domains of finite type have been obtained by J. McNeal and E. M. Stein
[McSt 2]. It is still an open question whether Hölder or Lp estimates hold for �b

and ∂̄b on general pseudoconvex CR manifolds of finite type.
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CHAPTER 10

FUNDAMENTAL SOLUTIONS FOR �b

ON THE HEISENBERG GROUP

In Chapters 8 and 9, we have proved the global solvability and regularity for
the �b operator on compact pseudoconvex CR manifolds. Under condition Y (q),
subelliptic 1/2-estimates for �b were obtained in Chapter 8. On the other hand,
it was shown in Section 7.3 that the Lewy operator, which arises from the tan-
gential Cauchy-Riemann operator associated with the Siegel upper half space, does
not possess a solution locally in general. The main task of this chapter is to con-
struct a fundamental solution for the �b operator on the Heisenberg group Hn.
The Heisenberg group serves as a model for strongly pseudoconvex CR manifolds
(or nondegenerate CR manifolds). Using the group structure, we can construct
explicitly a solution kernel for ∂b and obtain estimates for the solutions in Hölder
spaces. The Cauchy-Szegö kernel on Hn is discussed in Section 10.2. We construct
a relative fundamental solution for �b in the top degree case and deduce from it the
necessary and sufficient conditions for the local solvability of the Lewy operator.

10.1 Fundamental Solutions for �b on the Heisenberg Group

Let us recall that the Siegel upper half space Ωn is defined by

(10.1.1) Ωn = {(z′, zn) ∈ Cn | Imzn > |z′|2},

where z′ = (z1, · · · , zn−1) and |z′|2 = |z1|2 + · · ·+ |zn−1|2. Denote by Aut(Ωn) the
group of all holomorphic mappings that are one-to-one from Ωn onto itself. Let
Hn ⊂ Aut(Ωn) be the subgroup defined by

(10.1.2) Hn = {ha; a ∈ bΩn | ha(z) = (a′ + z′, an + zn + 2i〈z′, a′〉)},

where 〈z′, a′〉 is the standard inner product in Cn−1, i.e., 〈z′, a′〉 =
∑n−1

i=1 ziāi. To see
Hn actually forms a subgroup of Aut(Ωn), put ha(z) = (w′, wn). Since Iman = |a′|2,
we have

Imwn − |w′|2 = Imzn − |z′|2.

Hence, each ha maps Ωn into Ωn and bΩn into bΩn. It is easily verified that if
a, b ∈ bΩn, then ha ◦ hb = hc with c = ha(b). It follows that if b = (−a′,−an),
then ha ◦ hb = the identity mapping. Thus, Hn is indeed a subgroup of Aut(Ωn)
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and it induces a group structure on the boundary bΩn. The boundary bΩn can be
identified with Hn = Cn−1 × R via the mapping

(10.1.3) π : (z′, t+ i|z′|2) 7→ (z′, t),

where zn = t+ is. We shall call Hn = Cn−1×R the Heisenberg group of order n−1
with the group structure induced from the automorphism subgroup Hn of Aut(Ωn)
by

(10.1.4) (z′1, t1) · (z′2, t2) = (z′1 + z′2, t1 + t2 + 2Im〈z′1, z′2〉).

It is easily verified that

Zj =
∂

∂zj
+ izj

∂

∂t
, j = 1, · · · , n− 1, and

T =
∂

∂t
,

are left invariant vector fields with respect to the Lie group structure on Hn such
that

(10.1.5) [Zj , Zj ] = −2iT, for j = 1, · · · , n− 1,

and that all other commutators vanish. Hence, Hn is a strongly pseudoconvex
CR manifold with type (1, 0) vector fields spanned by Z1, · · · , Zn−1. We fix a left
invariant metric on Hn so that Z1, · · · , Zn−1, Z1, · · · , Zn−1 and T are orthonormal
with respect to this metric. Let the dual basis be ω1, · · · , ωn−1, ω1, · · · , ωn−1 and
τ , where ωj = dxj + idyj , j = 1, · · · , n− 1 and τ is given by

τ = dt+ 2
n−1∑
j=1

(xjdyj − yjdxj).

Hence, 〈dxj , dxj〉 = 〈dyj , dyj〉 = 1/2, for j = 1, · · · , n− 1, and the volume element
is

dV = 21−ndx1 · · · dxn−1dy1 · · · dyn−1dt.

Next we calculate �b on the (p, q)-forms of the Heisenberg group Hn. Since p
plays no role in the formulation of the ∂b and ∂

∗
b operators, we may assume that

p = 0. Let f ∈ C∞(0,q)(Hn) be a smooth (0, q)-form with compact support on Hn.
Write f as

f =
∑′

|J|=q

fJ ωJ ,

where J = (j1, · · · , jq) is an increasing multiindex and ωJ = ωj1 ∧ · · · ∧ ωjq
. Then,

we have

∂bf =
∑′

|J|=q

(∑
k

ZkfJ ωk

)
∧ ωJ

=
∑′

|L|=q+1

(∑′

k,J

εLkJZkfJ

)
ωL,
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and

∂
∗
bf = −

∑′

|H|=q−1

(∑′

l,J

εJlHZlfJ

)
ωH .

It follows that

∂
∗
b∂bf = −

∑′

|Q|=q

(∑′

l,L

εLlQZl

(∑′

k,J

εLkJZkfJ

))
ωQ,

and

∂b∂
∗
bf = −

∑′

|Q|=q

(∑′

k,H

εQkHZk

(∑′

l,J

εJlHZlfJ

))
ωQ.

For fixed Q and l 6= k, it is easily verified that

εLlQε
L
kJ = −εQkHε

J
lH ,

and
[Zl, Zk] = 0.

Hence, we obtain

�bf = (∂b∂
∗
b + ∂

∗
b∂b)

(∑′

|J|=q

fJ ωJ

)

= −
∑′

|J|=q

((∑
k/∈J

ZkZk +
∑
k∈J

ZkZk

)
fJ

)
ωJ .

The calculation shows that �b acts on a (0, q)-form f diagonally. It is also easily
verified that

−
(∑

k/∈J

ZkZk +
∑
k∈J

ZkZk

)
= −1

2

n−1∑
k=1

(ZkZk + ZkZk) + i(n− 1− 2q)T.

Therefore, to invert �b it suffices to invert the operators

(10.1.6) −1
2

n−1∑
k=1

(ZkZk + ZkZk) + i(n− 1− 2q)T.

In particular, when n = 2 and q = 0, �b acts on functions and

�b = −ZZ

= −1
2
(ZZ + ZZ) + iT,

where Z is the Lewy operator. Hence, �b in general is not locally solvable.
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However, we shall investigate the solvability and regularity of �b via the following
more general operator Lα defined by

(10.1.7) Lα = −1
2

n−1∑
k=1

(ZkZk + ZkZk) + iαT,

for α ∈ C.
The second order term L0 = − 1

2

∑n−1
k=1(ZkZk + ZkZk) is usually called the sub-

Laplacian on a stratified Lie group. By definition, a Lie group is stratified if it is
nilpotent and simply connected and its Lie algebra g admits a vector space decom-
position g = V1 ⊕ · · · ⊕ Vm such that [V1, Vj ] = Vj+1 for j < m and [V1, Vm] = {0}.
The Heisenberg group Hn is a step two nilpotent Lie group, namely, the Lie algebra
is stratified with m = 2, where V1 is generated by Z1, · · · , Zn−1, Z1, · · · , Zn−1 and
V2 is generated by T . By Theorems 8.2.3 and 8.2.5, L0 satisfies a subelliptic esti-
mate of order 1/2 and is hypoelliptic. We want to construct an explicit fundamental
solution ϕ0 for L0. The group structure on the Heisenberg group suggests that one
can define a nonisotropic dilation in the following way: for a > 0,

a(z′, t) = (az′, a2t)

which forms an one-parameter subgroup of Aut(Hn). We also define a norm on Hn

by |(z′, t)| = (|z′|4 + t2)
1
4 to make it homogeneous of degree one with respect to the

nonisotropic dilation.
By following the harmonic analysis on real Euclidean spaces, it is reasonable to

guess that a fundamental solution ϕ0 for L0 should be given by some negative power
of |(z′, t)|, and that the power should respect the nonisotropic dilation on Hn. In
fact, we have the following theorem:

Theorem 10.1.1. Let ϕ0(z′, t) = |(z′, t)|−2(n−1) = (|z′|4 + t2)−
n−1

2 . Then L0ϕ0 =
c0δ, where δ is the Dirac function at the origin and c0 is given by

(10.1.8) c0 = (n− 1)2
∫

Hn

((|z′|2 + 1)2 + t2)−
n+1

2 dV.

Proof. Define, for ε > 0,

ϕ0,ε(z′, t) = ((|z′|2 + ε2)2 + t2)−
n−1

2 .

Then, a simple calculation shows that

L0ϕ0,ε(z′, t) = (n− 1)2ε2((|z′|2 + ε2)2 + t2)−
n+1

2

= ε−2n(n− 1)2
((∣∣∣∣z′ε

∣∣∣∣2 + 1
)2

+
(
t

ε2

)2)−n+1
2

= ε−2nφ

(
1
ε
(z′, t)

)
,
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where φ(z′, t) = (n − 1)2((|z′|2 + 1)2 + t2)−
n+1

2 . Then, by integration on Hn, we
obtain the following:∫

Hn

L0ϕ0,ε(z′, t) dV =
∫

Hn

ε−2nφ

(
1
ε
(z′, t)

)
dV

=
∫

Hn

φ(z′, t) dV = c0.

Hence, limε→0 L0ϕ0,ε = c0δ in the distribution sense. On the other hand, L0ϕ0,ε

also tends to L0ϕ0 in the distribution sense. This proves the theorem.

It follows that c−1
0 ϕ0 is the fundamental solution for L0. We now proceed to

search for a fundamental solution ϕα for Lα with α ∈ C. Observe that Lα has
the same homogeneity properties as L0 with respect to the nonisotropic dilation on
Hn, and that Lα is invariant under unitary transformation in z′-variable. Hence,
we can expect that certain ϕα will have the same invariant properties. From these
observations we intend to look for a fundamental solution ϕα of the form

ϕα(z′, t) = |(z′, t)|−2(n−1)f(t|(z′, t)|−2).

After a routine, but lengthy, calculation, we see that f must satisfy the following
ordinary second order differential equation:

(10.1.9)
(1− w2)

3
2 f ′′(w)−(nw(1− w2)

1
2 + iα(1− w2))f ′(w)

+ i(n− 1)αwf(w) = 0

with w = t|(z′, t)|−2.
By setting w = cosθ, f(w) = g(θ), 0 ≤ θ ≤ π, (10.1.9) is reduced to

(10.1.10)
(

sinθ
d

dθ
+ (n− 1)cosθ

)(
d

dθ
+ iα

)
g(θ) = 0.

Equation (10.1.10) has two linearly independent solutions

g1(θ) = e−iαθ,

and

g2(θ) = e−iαθ

∫
eiαθ

(sinθ)n−1
dθ.

Hence, the only bounded solutions for 0 ≤ θ ≤ π are g(θ) = ce−iαθ. It follows that

f(w) = c(w − i
√

1− w2)α = c

(
t− i|z′|2

|(z′, t)|2

)α

.

If we choose c = iα, then

(10.1.11) ϕα(z′, t) = (|z′|2 − it)−
(n−1+α)

2 (|z′|2 + it)−
(n−1−α)

2 .

Here we have used the principal branch for the power functions. Then we have the
following theorem.
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Theorem 10.1.2. Let ϕα(z′, t) be defined as in (10.1.11) for α ∈ C. Then,
Lαϕα = cαδ, where

cα =
24−2nπn

Γ(n−1+α
2 )Γ(n−1−α

2 )
.

Proof. For any ε > 0, set

ρε(z′, t) = |z′|2 + ε2 − it,

and define

(10.1.12) ϕα,ε(z′, t) = ρ
− (n−1+α)

2
ε ρ

− (n−1−α)
2

ε .

Hence, ϕα,ε is smooth and ϕα,ε tends to ϕα as distributions when ε approaches zero.
It follows that Lαϕα,ε tends to Lαϕα as distributions. Thus, it suffices to show that
Lαϕα,ε tends to cαδ in the distribution sense.

Recall that Zk = (∂/∂zk)+ izk(∂/∂t), for 1 ≤ k ≤ n− 1. Then, for a fixed ε and
any a ∈ C, a direct computation shows

Zkρ
a
ε = 2azkρ

a−1
ε , and Zkρ

a
ε = 2azkρ

a−1
ε ,

Zkρ
a
ε = Zkρ

a
ε = 0,

Tρa
ε = −iaρa−1

ε , and Tρa
ε = iaρa−1

ε .

It follows that

Lαϕα,ε(z′, t) =
(
−1

2

n−1∑
k=1

(ZkZk + ZkZk) + iαT

)(
ρ
− (n−1+α)

2
ε · ρ−

(n−1−α)
2

ε

)
= ε2((n− 1)2 − α2)ρ−

(n+1+α)
2

ε · ρ−
(n+1−α)

2
ε

= ε−2nLαϕα,1

(
1
ε
(z′, t)

)
.

Hence, ∫
Hn

Lαϕα,ε(z′, t) dV =
∫

Hn

ε−2nLαϕα,1

(
1
ε
(z′, t)

)
dV

=
∫

Hn

Lαϕα,1(z′, t) dV.

Since the mass of Lαϕα,ε concentrates at zero as ε → 0, it follows that Lαϕα,ε

tends to cαδ with cα =
∫
Lαϕα,1dV as distributions. Therefore, it remains only to

compute the integral cα.
We set a = 1

2 (n+ 1 + α) and b = 1
2 (n+ 1− α), then

cα =
1

2n−1

∫
Hn

((n− 1)2 − α2)(|z′|2 + 1− it)−a(|z′|2 + 1 + it)−b dxdydt

=
((n− 1)2 − α2)

2n−1

∫
Cn−1

(|z′|2 + 1)−n dxdy

∫ ∞

−∞
(1− it)−a(1 + it)−b dt.
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Here, if there is no ambiguity, we shall write dxdy for dx1 · · · dxn−1dy1 · · · dyn−1.
The first integral is evaluated by∫

Cn−1
(|z′|2 + 1)−n dxdy =

2πn−1

Γ(n− 1)

∫ ∞

0

r2n−3

(1 + r2)n
dr

=
πn−1

Γ(n− 1)

∫ ∞

1

t−n(t− 1)n−2 dt, t = 1 + r2

=
πn−1

Γ(n− 1)

∫ 1

0

(1− s)n−2 ds, s = t−1

=
πn−1

Γ(n)
,

where Γ(·) denotes the Gamma function. For the second integral we first assume
that −(n− 1) ≤ α ≤ n− 1 so that a ≥ 1 and b ≥ 1. We start with the formula∫ ∞

0

e−xsxb−1 dx = Γ(b)s−b

which is valid if the real part of s is positive. Set s = 1 + it, then

Γ(b)(1 + it)−b =
∫ ∞

0

e−ixte−xxb−1 dx = f̂(t),

where f̂(t) is the Fourier transform of f(x) defined by

f(x) =
{
e−xxb−1, for x > 0
0, for x ≤ 0.

Similarly, we obtain

Γ(a)(1− it)−a =
∫ ∞

0

eixte−xxa−1 dx

=
∫ 0

−∞
e−ixte−|x||x|a−1 dx

= ĝ(t),

where g(x) is defined by

g(x) =
{

0, for x ≥ 0
e−|x||x|a−1, for x < 0.

Hence, by the Plancherel theorem, we have

Γ(a)Γ(b)
∫ ∞

−∞
(1− it)−a(1 + it)−b dt =

∫ ∞

−∞
f̂(t)ĝ(t) dt

= 2π
∫ ∞

−∞
f(x)g(−x) dx

= 2π
∫ ∞

0

e−2xxa+b−2 dx

=
πΓ(n)
2n−1

.
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This implies

(10.1.13)
∫ ∞

−∞
(1− it)−a(1 + it)−b dt =

2−(n−1)πΓ(n)
Γ(a)Γ(b)

,

for −(n − 1) ≤ α ≤ n− 1. In fact, the left-hand side of (10.1.13) defines an entire
function of α from the following equality:∫ ∞

−∞
(1− it)−a(1 + it)−b dt =

∫ ∞

−∞
(1 + t2)−

n+1
2 eiαtan−1t dt.

Hence, (10.1.13) holds for all α ∈ C, and we obtain

cα =
((n− 1)2 − α2)

2n−1
· π

n−1

Γ(n)
· 2−(n−1)πΓ(n)
Γ(n+1+α

2 )Γ(n+1−α
2 )

=
24−2nπn

Γ(n−1+α
2 )Γ(n−1−α

2 )
.

This completes the proof of Theorem 10.1.2.

It follows from Theorem 10.1.2 that cα = 0 if α = ±(2k+n− 1) for any nonneg-
ative integer k. Hence, if α 6= ±(2k + n− 1) for k ∈ N ∪ {0}, then Φα = c−1

α ϕα is a
fundamental solution for Lα.

We now derive some consequences from Theorem 10.1.2. The convolution of two
functions f and g on Hn is defined by

f ∗ g(u) =
∫

Hn

f(v)g(v−1u) dV (v) =
∫

Hn

f(uv−1)g(v) dV (v).

Set ǧ(u) = g(u−1), then∫
Hn

(f ∗ g)(u)h(u) dV (u) =
∫

Hn

f(u)(h ∗ ǧ)(u) dV (u),

provided that both sides make sense.
If α 6= ±(2k + n − 1) for k ∈ N ∪ {0}, then for any f ∈ C∞0 (Hn), define

Kαf = f ∗ Φα. It is clear that Kαf ∈ C∞(Hn) since Φα has singularity only
at zero. For the rest of this section k will always mean a nonnegative integer.

Theorem 10.1.3. If f ∈ C∞0 (Hn) and α 6= ±(2k+n−1), then LαKαf = KαLαf =
f .

Proof. Since Lα is left invariant, clearly we have LαKαf = f . For the other equality,
let g ∈ C∞0 (Hn). Notice that −α 6= ±(2k + n − 1) whenever α 6= ±(2k + n − 1).
Then ∫

g(u)f(u) dV (u) =
∫
L−αK−αg(u)f(u) dV (u)

=
∫

(g ∗ Φ−α)(u)Lαf(u) dV (u)

=
∫
g(u)(Lαf∗Φ̌−α)(u) dV (u)

=
∫
g(u)KαLαf(u) dV (u).

Hence, KαLαf = f . This proves the theorem.
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Theorem 10.1.4. The operator Lα is hypoelliptic if and only if α 6= ±(2k+n−1).
In particular, �b is hypoelliptic on Hn for (0, q)-forms when 1 ≤ q < n− 1.

Proof. If α = ±(2k + n − 1) for some nonnegative integer k, then the function
ϕα(z′, t) defined in (10.1.11) is a nonsmooth solution to the equation Lαϕα = 0.

Next, let α 6= ±(2k + n− 1), f ∈ D′ such that Lαf = g is smooth on some open
set U . Let V ⊂⊂ U be an open set which is relatively compact in U . Choose a
cut-off function ζ ∈ C∞0 (U) with ζ = 1 in some open neighborhood of V . Then,
by Theorem 10.1.3, Kα(ζg) is smooth and satisfies LαKα(ζg) = ζg. Hence, to
show that f is smooth on V , it suffices to show that h = ζ(f −Kα(ζg)) is smooth
on V . Since h is a distribution with compact support, a standard argument from
functional analysis shows h = KαLαh. But on V we have

Lαh = Lαf − LαKα(ζg) = g − ζg = 0.

The fact that Φα(z′, t) is just singular at the origin will then guarantee that KαLαh
is smooth on V which in turns shows h, and hence f , is smooth on V .

The hypoellipticity of �b on (0, q)-forms when 1 ≤ q < n− 1 follows immediately
from the expression of �b in (10.1.6). This proves the theorem.

Theorem 10.1.3 can be used to obtain the following existence and regularity
theorem for the ∂b equation on Hn:

Theorem 10.1.5. Let f ∈ C(0,q)(Hn), 1 ≤ q < n − 1, with compact support. If
∂bf = 0 in the distribution sense, then u = ∂

∗
bKf satisfies ∂bu = f and u ∈

Λ1/2
(0,q)(Hn, loc), where K = Kα with α = n − 1 − 2q. Moreover, if f ∈ Ck

(0,q)(Hn),

k ∈ N, with compact support, then u ∈ Ck+ 1
2

(0,q)(Hn, loc).

Proof. Since f is a continuous (0, q)-form with compact support on Hn and 1 ≤ q <
n− 1, we obtain from Theorem 10.1.3 that

�bKf = (∂b∂
∗
b + ∂

∗
b∂b)Kf = f,

where K acts on f componentwise. The hypothesis ∂bf = 0 implies

∂bKf = K∂bf = 0.

Hence,
∂b∂

∗
bKf = f.

For the regularity of u = ∂
∗
bKf , we write f =

∑′
|J|=q fJ ωJ . Then, we obtain

from the previous calculation that

∂
∗
bKf = −

∑′

|H|=q−1

(∑′

l,J

εJlHZl(KfJ)
)
ωH .

Hence, it suffices to estimate the following integral, for 1 ≤ j ≤ n− 1:

(10.1.14) Zj

∫
Hn

f(ξ)Φ(ξ−1ζ) dV (ξ),
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where f is a continuous function with compact support on Hn and ζ = (z′, t),
ξ = (w′, u) and

Φ(z′, t) = (|z′|2 − it)−(n−1−q)(|z′|2 + it)−q.

We can rewrite (10.1.14) as

(10.1.15) −2(n− 1− q)f ∗ Ψ j(ζ) = −2(n− 1− q)
∫

Hn

f(ξ)Ψ j(ξ−1ζ) dV (ξ),

where
Ψ j(z′, t) = zj(|z′|2 − it)−(n−1−q)−1(|z′|2 + it)−q.

Define a new kernel Ψ j
y (z′, t, y) on Hn × R+, where R+ = {y ∈ R| y > 0}, by

Ψ j
y (z′, t, y) = zj(|z′|2 − it+ y)−(n−1−q)−1(|z′|2 + it+ y)−q.

It is easily seen that f ∗ Φj
y(z′, t, y) is smooth on Hn × R+ and

lim
y→0+

f ∗ Ψ j
y (z′, t, y) = f ∗ Ψ j(z′, t).

The assertion then follows from the Hardy-Littlewood lemma proved in Theorem
C.1 in the Appendix if one can show, for 0 < y ≤ 1/2, that

(10.1.16) |∇(f ∗ Ψ j
y )| ≤ cy− 1

2 ‖ f ‖L∞(Hn),

for some constant c > 0 and 1 ≤ j ≤ n− 1.
Since ξ−1ζ = (z − w, t − u − 2Imw · z), we may introduce new coordinates

η2j−1 = Re(zj−wj), η2j = Im(zj−wj) and δ = t−u−2Im(w ·z) for 1 ≤ j ≤ n− 1.
A direct calculation shows that (10.1.16) will be proved if one can show that

(10.1.17) I1 =
∫
|(η,δ)|≤M

dη1 · · · dη2n−2dδ

(|η|2 + |δ|+ y)n
≤ cy−

1
2 ,

(10.1.18) I2 =
∫
|(η,δ)|≤M

|ηj |dη1 · · · dη2n−2dδ

(|η|2 + |δ|+ y)n+1
≤ cy−

1
2 ,

and

(10.1.19) I3 =
∫
|(η,δ)|≤M

|ηjηk|dη1 · · · dη2n−2dδ

(|η|2 + |δ|+ y)n+1
≤ cy−

1
2 ,

where M > 0 is a positive constant. Notice first that (10.1.19) follows immediately
from (10.1.17). For I1 we have

I1 ≤ c
∫ M

0

∫ M

0

r2n−3

(r2 + δ + y)n
drdδ

≤ c
∫ M

0

r2n−3

(r2 + y)n−1
dr

≤ c
∫ M√

y

0

x2n−3

(1 + x2)n−1
dx

≤ c(M)(−logy)

≤ c(M,a)y−a,
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for any a > 0. I2 can be estimated as follows:

I2 ≤ c
∫ M

0

∫ M

0

r2n−2

(r2 + δ + y)n+1
drdδ

≤ c
∫ M

0

r2n−2

(r2 + y)n
dr

≤ cy− 1
2

∫ ∞

0

x2n−2

(1 + x2)n
dx

≤ cy− 1
2 .

This proves the case when f is continuous with compact support.
If f ∈ Ck

(0,q)(Hn) with compact support, we let X be any one of the left invari-
ant vector fields Z1, · · · , Zn−1,Z1, · · · , Zn−1 and T . Then, from (10.1.14) and the
convolution formula we get

XZj

∫
Hn

f(ξ)Φ(ξ−1ζ) dV (ξ) =
∫

Hn

Xf(ξ)ZjΦ(ξ−1ζ) dV (ξ)

= Zj

∫
Hn

Xf(ξ)Φ(ξ−1ζ) dV (ξ).

Since the left invariant vector fields Zj , Zj , where j = 1, · · · , n− 1, and T span the
tangent space of Hn, the assertion now follows from differentiating k times and the
first part of the proof. This proves the theorem.

The construction developed in this section can be extended to the generalized
Heisenberg group Hn,k which we now define. For each 1 ≤ k ≤ n− 1, let

Ωn,k = {(z′, zn) ∈ Cn| Imzn > |z1|2 + · · ·+ |zk|2 − |zk+1|2 − · · · − |zn−1|2}.

The boundary of Ωn,k is identified with the generalized Heisenberg group Hn,k =
Cn−1 × R by

π :
(
z′, t+ i

( k∑
j=1

|zj |2 −
n−1∑

j=k+1

|zj |2
))
7→ (z′, t),

where (z′, t) is the coordinates on Hn,k.
The group structure on Hn,k is defined by

(10.1.20) (z′, t) · (w′, u) =
(
z′ + w′, t+ u+ 2Im

( k∑
j=1

zjwj −
n−1∑

j=k+1

zjwj

))
.

One verifies immediately that

Zj =
∂

∂zj
+ izj

∂

∂t
, 1 ≤ j ≤ k,

Zj =
∂

∂zj
− izj

∂

∂t
, k + 1 ≤ j ≤ n− 1, and

T =
∂

∂t
,
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are left-invariant vector fields on Hn,k such that

[Zj , Zj ] =
{ −2iT , for 1 ≤ j ≤ k,

2iT, for k + 1 ≤ j ≤ n− 1,

and that all other commutators vanish. It follows that the Zj ’s define a nondegen-
erate CR structure on Hn,k such that the Levi matrix has k positive eigenvalues
and n− 1− k negative eigenvalues. Without loss of generality, k can be assumed to
be at least (n− 1)/2. We shall call such a CR structure k-strongly pseudoconvex.

We fix a left-invariant metric on Hn,k which makes Zj , Zj and T , 1 ≤ j ≤ n− 1,
orthonormal. The dual basis is given by ω1, · · · , ωn−1 , ω1, · · · , ωn−1 and τ , where
ωj = dxj + idyj for 1 ≤ j ≤ n− 1 and τ is given by

τ = dt+ 2
k∑

j=1

(xjdyj − yjdxj)− 2
n−1∑

j=k+1

(xjdyj − yjdxj).

The volume element is

dV = 21−ndx1 · · · dxn−1dy1 · · · dyn−1dt.

Next, we calculate �b on the generalized Heisenberg group Hn,k as before. Let
K = {1, · · · , k} and K ′ = {k + 1, · · · , n− 1}. For each multiindex J with |J | = q,
we set

αJ = |K \ J |+ |K ′ ∩ J | − |K ∩ J | − |K ′ \ J |,

where | · | denotes cardinality of the set. Hence, if f =
∑′

|J|=q fJ ωJ is a smooth
(0, q)-form with compact support on Hn,k, we get

�bf = (∂b∂
∗
b + ∂

∗
b∂b)

(∑′

|J|=q

fJ ωJ

)

= −
∑′

|J|=q

((∑
m/∈J

ZmZm +
∑
m∈J

ZmZm

)
fJ

)
ωJ

=
∑′

|J|=q

((
−1

2

n−1∑
m=1

(ZmZm + ZmZm) + iαJT

)
fJ

)
ωJ .

Notice that −(n − 1) ≤ αJ ≤ (n − 1). The extreme case αJ = n − 1 occurs if and
only if |J | = n − 1 − k and J = K ′. On the other hand, αJ = −(n − 1) occurs if
and only if |J | = k and J = K. Hence, we have

Theorem 10.1.6. �b is hypoelliptic for (0, q)-forms, 0 ≤ q ≤ n− 1, on Hn,k if
q 6= k and q 6= n− 1− k.

Proof. The assertion follows immediately from Theorem 10.1.4 if we change the
coordinates zj , k + 1 ≤ j ≤ n− 1, to zj . This proves the theorem.

We note that Theorem 10.1.6 is a variant of Theorem 8.4.4 since condition Y (q)
holds on Hn,k when q 6= k and q 6= n− 1− k. The conclusion of Theorem 10.1.5
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also holds on Hn,k when q 6= k and q 6= n− 1− k. The proof is exactly the same
and we omit the details.

10.2 The Cauchy-Szegö Kernel on the Heisenberg Group

In this section we compute the Szegö projection on Hn. Let Ωn be the Siegel
upper half space in Cn. Denote by H2(Ωn) the Hardy space of all holomorphic
functions f defined on Ωn such that

sup
s>0
‖ fs(z) ‖L2(bΩn) <∞,

where fs(z) = f(z′, zn + is) for z = (z′, zn) ∈ bΩn and s > 0. It will be clear
later that H2(Ωn) forms a Hilbert space under the norm ‖ f ‖H2(Ωn)= sups>0

‖ fs ‖L2(bΩn).
If f(z) ∈ H2(Ωn), then by definition f(z) satisfies

(10.2.1)
∫

Cn−1

∫ ∞

−∞
|f(z′, t+ i|z′|2 + is)|2 dtdx′dy′ < C,

where the constant C > 0 is independent of s > 0 and dx′dy′ stands for dx1 ∧ dy1 ∧
· · · ∧ dxn−1 ∧ dyn−1 with zj = xj + iyj for 1 ≤ j ≤ n− 1. By using the mean
value property of a holomorphic function it is not hard to see from (10.2.1) that
for each z′ ∈ Cn−1 and s > 0 the function f(z′, t + i|z′|2 + is), when viewed as
a function in t on R, is L2 integrable. Thus, we can form the Fourier transform
of f(z′, t + i|z′|2 + is) with respect to t which will be denoted by f̃s(z′, λ). The
resulting function f̃s(z′, λ) is L2 integrable with respect to λ and satisfies

(10.2.2)
1
2π

∫
Cn−1

∫ ∞

−∞
|f̃s(z′, λ)|2 dλdx′dy′ < C.

Since f is holomorphic on Ωn, we have by Cauchy’s theorem

(10.2.3) f̃s+s′(z′, λ) = e−λs′ f̃s(z′, λ),

for s, s′ > 0. It follows that, for fixed s > 0, we get that

(10.2.4)

∫
Cn−1

∫ ∞

−∞
|f(z′, t+ i|z′|2 + is+ is′)|2 dtdx′dy′

=
1
2π

∫
Cn−1

∫ ∞

−∞
|f̃s(z′, λ)|2e−2λs′ dλdx′dy′,

which implies f̃s(z′, λ) = 0 a.e. for λ < 0. Therefore, we may assume that f̃s(z′, λ)
is concentrated on R+ = {x ∈ R| x > 0} with respect to λ. It is also clear from
(10.2.3) that

f̃s(z′, λ) = f̃0(z′, λ)e−λs,
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for some measurable function f̃0(z′, λ). We set

f̃0(z′, λ) = f̃(z′, λ)e−λ|z′|2 .

Since f(z) is holomorphic on Ωn, the homogeneous tangential Cauchy-Riemann
equation on each level set {zn = t+ i(|z′|2 + s)} with s > 0 must be satisfied by f ,
namely, (

∂

∂zk
− izk

∂

∂t

)
f(z′, t+ i(|z′|2 + s)) = 0, 1 ≤ k ≤ n− 1.

It follows that (
∂

∂zk
+ λzk

)
f̃s(z′, λ) = 0, 1 ≤ k ≤ n− 1,

for s > 0. Hence, for 1 ≤ k ≤ n− 1, we have

0 =
(

∂

∂zk
+ λzk

)
f̃0(z′, λ)

=
(

∂

∂zk
+ λzk

)
(f̃(z′, λ)e−λ|z′|2)

=
∂f̃

∂zk
(z′, λ)e−λ|z′|2 .

This shows that f̃(z′, λ) is holomorphic in z′ and measurable in λ. By substituting
f̃(z′, λ) into (10.2.2), we obtain

1
2π

∫
Cn−1

∫ ∞

0

|f̃(z′, λ)|2e−2λ|z′|2 · e−2λs dλdx′dy′ < C,

where the constant C > 0 is independent of s > 0. Letting s tend to zero, we see
that the function f̃(z′, λ) satisfies

(10.2.5)
1
2π

∫
Cn−1

∫ ∞

0

|f̃(z′, λ)|2e−2λ|z′|2 dλdx′dy′ < C,

and the function f(z) is recovered by

(10.2.6) f(z) = f(z′, zn) =
1
2π

∫ ∞

0

f̃(z′, λ)eiλzn dλ,

for zn = t+ i|z′|2 + is with s > 0. Moreover, the Plancherel theorem shows that

(10.2.7)

lim
s,s′→0

∫
Cn−1

∫ ∞

−∞
|f(z′, t+ i|z′|2 + is)− f(z′, t+ i|z′|2 + is′)|2 dtdx′dy′

= lim
s,s′→0

∫
Cn−1

∫ ∞

0

|f̃(z′, λ)|2e−2λ|z′|2(e−λs − e−λs′)2 dλdx′dy′

= 0.

This means that f(z′, t+ i|z′|2 + is) converges in the L2 norm to f(z′, t+ i|z′|2) as
s→ 0.

The next theorem shows that the existence of the function f̃(z′, λ) with property
(10.2.5) is also sufficient for representing a function f(z) in the Hardy spaceH2(Ωn).
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Theorem 10.2.1. A complex-valued function f defined on Ωn belongs to H2(Ωn) if
and only if there exists a function f̃(z′, λ), (z′, λ) ∈ Cn−1×R+, which is holomorphic
in z′ and measurable in λ and satisfies

1
2π

∫
Cn−1

∫ ∞

0

|f̃(z′, λ)|2e−2λ|z′|2 dλdx′dy′ <∞,

where dx′dy′ stands for dx1 ∧ dy1 ∧ · · · ∧ dxn−1 ∧ dyn−1 and R+ = {x ∈ R| x > 0}.
The integral

f(z) = f(z′, zn) =
1
2π

∫ ∞

0

f̃(z′, λ)eiλzn dλ,

for zn = t + i|z′|2 + is, converges absolutely for all s > 0 and defines a function
f(z) ∈ H2(Ωn).

Proof. Suppose that there is a function f̃(z′, λ) which is holomorphic in z′ and
measurable in λ and f̃(z′, λ) satisfies (10.2.5). For any z′ and zn = t + i|z′|2 + is
with s > 0, we may choose a polydisc D(z′; r) in Cn−1 centered at z′ with small
multiradii r = (r1, · · · , rn−1) such that |w′|2 ≤ |z′|2 + (s/2) for all w′ ∈ D(z′; r).
Since the value of a holomorphic function is dominated by its L1 norm, we obtain
by Hölder’s inequality that∫ ∞

0

|f̃(z′, λ)eiλzn | dλ

.
∫ ∞

0

(∫
D(z′;r)

|f̃(w′, λ)| dV (w′)
)
e−λ|z′|2−λs dλ

.
∫ ∞

0

(∫
D(z′;r)

|f̃(w′, λ)|e−λ|w′|2 dV (w′)
)
e−λs/2 dλ

.

(∫
D(z′;r)

∫ ∞

0

|f̃(w′, λ)|2e−2λ|w′|2 dλdV (w′)
) 1

2
(∫

D(z′;r)

∫ ∞

0

e−λs dλdV (w′)
) 1

2

<∞.
This shows that the integral defined by (10.2.6) converges absolutely and defines
a holomorphic function on Ωn. To see f(z) is actually in H2(Ωn), we apply the
Plancherel theorem to the λ-variable and get∫

Cn−1

∫ ∞

−∞
|f(z′, t+ i|z′|2 + is)|2 dtdx′dy′

=
1
2π

∫
Cn−1

∫ ∞

0

|f̃(z′, λ)|2e−2λ|z′|2 · e−2λs dλdx′dy′

≤ C,
for all s > 0. This completes the proof of Theorem 10.2.1.

It is clear from the proof of Theorem 10.2.1 that H2(Ωn) can be identified with
a closed subspace of L2(bΩn), namely, any f(z) ∈ H2(Ωn) is identified with its L2

limiting value f(z′, t+ i|z′|2) on bΩn with the norm

‖ f ‖H2(Ωn) = sups>0 ‖ fs ‖L2(bΩn) = ‖ f(z′, t+ i|z′|2) ‖L2(bΩn) .

Thus, following the procedure of the Bergman kernel function, we obtain the repro-
ducing kernel, named Cauchy-Szegö kernel, S(z, w) for the Hardy space H2(Ωn).
We make the following definition:
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Definition 10.2.2. The Cauchy-Szegö kernel associated with Ωn is the unique func-
tion S(z, w) which is holomorphic in z and antiholomorphic in w with respect to
z ∈ Ωn and w ∈ Ωn such that

(10.2.8) f(z) =
∫

bΩn

S(z, w)f(w) dσw,

for any f ∈ H2(Ωn) and any z ∈ Ωn, where dσw is the surface element on bΩn.

For each fixed z ∈ Ωn, (10.2.8) defines a bounded linear functional on H2(Ωn).
It is also clear from general Hilbert space theory that S(z, w) can be expressed in
terms of any orthonormal basis {φk(z)}∞k=1 of H2(Ωn), i.e.,

S(z, w) =
∞∑

k=1

φk(z)φk(w).

Now we want to calculate the Cauchy-Szegö kernel S(z, w) on the Siegel upper
half space Ωn. One way to achieve this goal is via the pullback of the Cauchy-Szegö
kernel on the unit ball in Cn by the inverse Cayley transform. Recall that the
Cayley transform w = Φ(z) is a biholomorphic mapping from the unit ball Bn in
Cn onto the Siegel upper half space Ωn defined by (7.3.2). Thus, the inverse Cayley
transform φ = Φ−1 is given by

φ : Ωn → Bn

w 7→ z =
(
−2iw1

1− iwn
, · · · , −2iwn−1

1− iwn
,−1 + iwn

1− iwn

)
.

First, by constructing an orthonormal basis for H2(Bn) directly, the Cauchy-
Szegö kernel on the unit ball can be calculated as follows:

Proposition 10.2.3. The Cauchy-Szegö kernel S(ζ, η) on the unit ball in Cn can
be expressed explicitly as

(10.2.9) S(ζ, η) =
(n− 1)!

2πn

1
(1− ζ · η)n

,

where ζ · η = ζ1η1 + · · ·+ ζnηn.

Proof. It is clear that {ζα} forms an orthogonal basis for the Hardy space H2(Bn),
where α = (α1, · · · , αn) is any multiindex with αj ∈ N ∪ {0} for 1 ≤ j ≤ n.
Therefore, to get the Cauchy-Szegö kernel, we need to normalize {ζα}.

We proceed as in Section 6.3 for the Bergman kernel function on the unit ball
Bn in Cn. Hence, we get

cα =
∫

bBn

|ζα|2 dσ2n−1

= 2(|α|+ n)
∫

Bn

|ζα|2 dV2n

=
2πn · αn! · · ·α1!
(|α|+ n− 1)!

.
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It follows that the Cauchy-Szegö kernel S(ζ, η) on the unit ball is given by

S(ζ, η) =
∑
α

1
cα
ζαηα

=
(n− 1)!

2πn

(
1 +

∑
α6=0

n(n+ 1) · · · (n+ |α| − 1)
α1! · · ·αn!

ζαηα

)

=
(n− 1)!

2πn

(
1 +

∞∑
k=1

∑
|α|=k

n(n+ 1) · · · (n+ |α| − 1)
α1! · · ·αn!

ζαηα

)

=
(n− 1)!

2πn

(
1 +

∞∑
k=1

n(n+ 1) · · · (n+ k − 1)
k!

(ζη)k

)
=

(n− 1)!
2πn

1
(1− ζη)n

.

This proves the proposition.

Our next step is to pull the Cauchy-Szegö kernel S(ζ, η) on the unit ball back to
the Siegel upper half space. Denote by r(z) =

∑n
j=1 |zj |2 − 1 the defining function

for the unit ball in Cn, and fix the standard metric on Cn. Then, the surface element
ds on the boundary bBn is given by the interior product of the volume form dV2n

with dr/|dr|, namely,

ds = Reι∗
(( n∑

j=1

zjdzj

)
∨
(

1
2i

)n( n∧
k=1

dzk ∧ dzk

))

= Reι∗
( n∑

j=1

1
2n−1in

zjdzj ∧
(∧

k 6=j

dzk ∧ dzk

))
,

where ∨ denotes the interior product and ι : bBn → Cn is the inclusion map. Hence,
the pullback of ds by the inverse Cayley transform φ is

φ∗(ds) =
1

2n−1in

(
22n−1i

|1− iwn|2n
· 1− iwn

1− iwn
dwn ∧

(n−1∧
j=1

dwj ∧ dwj

)

+
n−1∑
j=1

22n−1wj(1 + iwn)
|1− iwn|2n+2

dwj ∧
(∧

k 6=j

dwk ∧ dwk

))
.

Since wn = t+ i|w′|2 on bΩn, we have

dwn = dt+ i
n−1∑
j=1

(wjdwj + wjdwj).

It follows that

dwn ∧
(n−1∧

j=1

dwj ∧ dwj

)
= dt ∧

(n−1∧
j=1

dwj ∧ dwj

)
,
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and, for 1 ≤ j ≤ n− 1,

dwj ∧
(∧

k 6=j

dwk ∧ dwk

)
= 2iwjdt ∧

(n−1∧
j=1

dwj ∧ dwj

)
,

on the boundary of Ωn. Thus,

φ∗(ds)

= (−2i)n

(
i

|1− iwn|2n
· 1− iwn

1− iwn
+

n−1∑
k=1

2i|wk|2(1 + iwn)
|1− iwn|2n+2

)
dt ∧

(n−1∧
j=1

dwj ∧ dwj

)

= (−2i)n

(
i(1 + w2

n) + (wn − wn)(1 + iwn)
|1− iwn|2n+2

)
dt∧
(n−1∧

j=1

dwj ∧ dwj

)

=
22n−1

|1− iwn|2n
dt∧
(n−1∧

j=1

duj ∧ dvj

)
,

where wj = uj + ivj .
Since the surface element dσ on the boundary bΩn is given by dσ = dt ∧

(∧n−1
j=1 duj∧dvj), the above calculation suggests that the Cauchy-Szegö kernel S(z, w)

associated with the Siegel upper half space should be given by

(10.2.10)

S((z′, zn), (w′, wn))

=
2n− 1

2

(1− izn)n
· 2n− 1

2

(1 + iwn)n
· (n− 1)!

2πn
· 1
(1− φ(z)φ(w))n

=
(−1)n2n−2(n− 1)!

πn
·
(
i(zn − wn) + 2

n−1∑
j=1

zjwj

)−n

.

We must show that the function S(z, w) obtained in (10.2.10) has the required
reproducing property for H2(Ωn) as stated in Definition 10.2.2. Theorem 10.2.1
suggests that one should check the Fourier transform of S(z, w).

Notice first that, for z ∈ Ωn and w ∈ Ωn, we have

Re
(
i(zn − wn) + 2

n−1∑
j=1

zjwj

)
= −yn − vn +

n−1∑
j=1

(zjwj + zjwj)

= −(yn − |z′|2)− (vn − |w′|2)− |z′ − w′|2,

which is always negative. Therefore, we can rewrite S(z, w) as

(10.2.11) S(z, w) =
2n−2

πn

∫ ∞

0

λn−1e(i(zn−wn)+2z′·w′)λ dλ,

and the above integral converges absolutely for z ∈ Ωn and w ∈ Ωn. Here we use
z′ · w′ to denote the inner product

∑n−1
j=1 zjwj in Cn−1.
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Define

(10.2.12) S̃(z′, λ;w) =
(

2
π

)n−1

λn−1e(−iwn+2z′·w′)λ.

We shall show that for each w ∈ Ωn, the integral

(10.2.13)
1
2π

∫
Cn−1

∫ ∞

0

|S̃(z′, λ;w)|2e−2λ|z′|2 dλdx′dy′

converges. Since w ∈ Ωn, wn = u+ i|w′|2 + iv with v > 0. Hence, (10.2.13) can be
rewritten as

22n−3

π2n−1

∫
Cn−1

∫ ∞

0

λ2n−2e−2λ|z′−w′|2 · e−2λv dλdx′dy′

=
22n−3

π2n−1

∫
Cn−1

∫ ∞

0

λ2n−2e−2λ|z′|2 · e−2λv dλdx′dy′

=
22n−2

πn(n− 2)!

∫ ∞

0

∫ ∞

0

λ2n−2e−2λr2
· e−2λvr2n−3 drdλ

=
2n−2

πn

∫ ∞

0

λn−1e−2λv dλ

=
(n− 1)!
4πnvn

.

It follows now from Theorem 10.2.1 and (10.2.11) that

S(z, w) =
2n−2

πn

∫ ∞

0

λn−1e(i(zn−wn)+2z′·w′)λ dλ

=
1
2π

∫ ∞

0

S̃(z′, λ;w)eiλzn dλ.

Hence, for each w ∈ Ωn, S(·, w) ∈ H2(Ωn). Let wj = αj + iβj for 1 ≤ j ≤ n− 1
and let dα′dβ′ denote dα1 ∧ dβ1 ∧ · · · ∧ dαn−1 ∧ dβn−1. Since S(z, w) = S(w, z), for
any z ∈ Ωn and any f ∈ H2(Ωn), we obtain

∫
bΩn

S(z, w)f(w) dudα′dβ′

=
1
2π

∫
Cn−1

∫ ∞

0

S̃(w′, λ; z)f̃(w′, λ)e−2λ|w′|2 dλdα′dβ′

=
2n−2

πn

∫
Cn−1

∫ ∞

0

λn−1eλ(izn+2z′·w′−2|w′|2)f̃(w′, λ) dλdα′dβ′
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=
2n−2

πn

∫
Cn−1

∫ ∞

0

λn−1eλ(izn+2|z′|2−2z′·w′−2|w′−z′|2)f̃(w′, λ) dλdα′dβ′

=
2n−2

πn

∫
Cn−1

∫ ∞

0

λn−1eλ(izn+2|z′|2) · e−2λ|η′|2 · e−2λz′·(z′+η′)

· f̃(z′ + η′, λ) dλdζ ′dξ′

=
1
2π

2n

(n− 2)!

∫ ∞

0

λn−1eiλzn f̃(z′, λ)
(∫ ∞

0

e−2λρ2
ρ2n−3 dρ

)
dλ

=
1
2π

∫ ∞

0

f̃(z′, λ)eiλzn dλ

= f(z),

where ηj = wj − zj = ζj + iξj for 1 ≤ j ≤ n− 1 and dζ ′dξ′ denotes dζ1 ∧ dξ1 ∧ · · · ∧
dζn−1∧dξn−1. The last equality is guaranteed by (10.2.6) in Theorem 10.2.1. Thus,
we have shown that the kernel function (10.2.10) reproduces the functions belonging
to the Hardy space H2(Ωn). Hence, by the uniqueness of the Cauchy-Szegö kernel
function, we obtain the following theorem.

Theorem 10.2.4. The Cauchy-Szegö kernel function S(z, w) associated with the
Siegel upper half space Ωn is given by

S(z, w) = S((z′, zn), (w′, wn))

=
(−1)n2n−2(n− 1)!

πn
·
(
i(zn − wn) + 2

n−1∑
j=1

zjwj

)−n

.

Hence, for any f ∈ L2(bΩn), the integral

(10.2.14) Sf(z) =
∫

bΩn

S(z, w)f(w) dσ(w),

defines a function Sf(z) in the Hardy space H2(Ωn) which has a well-defined L2

integrable limiting value on bΩn. We recall that the Szegö projection on bΩn is the
orthogonal projection from L2(bΩn) onto the closed subspace consisting of square
integrable CR functions, which coincide with the limiting values of functions be-
longing to the Hardy space H2(Ωn). We shall still use (10.2.14) to denote the Szegö
projection on bΩn.

Since, for each f ∈ L2(bΩn), Sf ∈ H2(Ωn), Theorem 10.2.1 shows that

lim
ε→0

Sf(z′, t+ i|z′|2 + iε2) = Sf(z′, t+ i|z′|2)

in the L2 sense. Denote Sf(z′, t+ i|z′|2 + iε2) by (Sf)ε(z′, t+ i|z′|2) which can be
regarded as an L2 integrable function on bΩn. Let

ρε(z′, t) = |z′|2 + ε2 − it,

on bΩn. Then we have
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Proposition 10.2.5. For any f ∈ L2(bΩn) and any ε > 0, (Sf)ε is given by

(10.2.15) (Sf)ε(z′, t+ i|z′|2) =
2n−2(n− 1)!

πn
f ∗ ρ−n

ε (z′, t),

where the convolution is taken with respect to the group structure on bΩn, and the
coordinates on bΩn are z′ = (z1, · · · , zn−1) and t.

Proof. Let β = (z′, t+ i|z′|2) and α = (w′, u+ i|w′|2). Hence,

2n−2(n− 1)!
πn

f ∗ ρ−n
ε (z′, t) =

2n−2(n− 1)!
πn

∫
bΩn

f(α)ρ−n
ε (α−1β) dσ(α).

A direct calculation shows that

α−1β = (−w′,−u+ i|w′|2) · (z′, t+ i|z′|2)
= (z′ − w′, t− u+ i|z′|2 + i|w′|2 − 2iz′ · w′).

It follows that we have

ρ−n
ε (α−1β) = (|z′ − w′|2 + ε2 − i(t− u)− z′ · w′ + z′ · w′)−n

= (|z′|2 + |w′|2 + ε2 − i(t− u)− 2z′ · w′)−n

= (−1)n(i(t+ i|z′|2 + iε2 − (u− i|w′|2)) + 2z′ · w′)−n

= (−1)n(i(zn + iε2 − wn) + 2z′ · w′)−n.

Hence, we obtain

2n−2(n− 1)!
πn

f ∗ ρ−n
ε (z′, t)

=
(−1)n2n−2(n− 1)!

πn

∫
bΩn

f(w′, u)
(i(zn + iε2 − wn) + 2z′ · w′)n

dσ(α)

= Sf(z′, t+ i|z′|2 + iε2).

This proves the proposition.

Finally, we can describe the Szegö projection on the Heisenberg group Hn as
follows:

Theorem 10.2.6. The Szegö projection Sf for any f ∈ L2(Hn) is given by

(10.2.16) Sf(z′, t) = lim
ε→0

22n−3(n− 1)!
πn

f ∗ ρ−n
ε (z′, t),

where the convolution is taken with respect to the group structure of Hn.

The convergence of (10.2.16) is guaranteed by Theorem 10.2.1. Notice also that
the factor 2n−1 that appears in the formulation of (10.2.16) is due to the fact that
the volume form dV on the Heisenberg group Hn has been taken to be

dV = 21−ndx1dy1 · · · dxn−1dyn−1dt.
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10.3 Local Solvability of the Lewy Operator

We now return to the local solvability of Ln−1 = �0
b on the Heisenberg group.

When �b acts on functions, �0
b is not hypoelliptic since it annihilates all CR func-

tions. However, we shall show that, modulo the Szegö projection S, there exists a
relative fundamental solution for �0

b . Rewrite �0
b as

(10.3.1) �0
b = Lα − i(α− n+ 1)T,

for α ∈ C. Recall that

ϕα(z′, t) = (|z′|2 − it)−
(n−1+α)

2 (|z′|2 + it)−
(n−1−α)

2 ,

and

cα =
24−2nπn

Γ(n−1+α
2 )Γ(n−1−α

2 )
.

Then, we have

�0
bϕα = Lαϕα − i(α− n+ 1)Tϕα

= cαδ − i(α− n+ 1)Tϕα.

(10.3.2)

Now with the aid of the identity

Γ(w)Γ(1− w) =
π

sinπw
,

we formally differentiate (10.3.2) with respect to α and evaluate it at α = n− 1 to
get

(10.3.3) �0
b

(
(n− 2)!
24−2nπn

log
(
|z′|2 − it
|z′|2 + it

)
(|z′|2−it)−n+1

)
= δ−2(n− 1)!

24−2nπn
(|z′|2−it)−n.

Here the logarithm of the quotient means the difference of the corresponding loga-
rithm. Set

(10.3.4) Φ =
(n− 2)!
24−2nπn

log
(
|z′|2 − it
|z′|2 + it

)
(|z′|2 − it)−n+1,

and define the operator K by

(10.3.5) Kf = f ∗ Φ,

where the convolution is taken with respect to the group structure on Hn.
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Theorem 10.3.1. Let the operator K be defined as in (10.3.5), then we have

�0
b ·K = K ·�0

b = I − S,

when acting on distributions with compact support.

Proof. It suffices to show only that �0
b ·K = I −S. The other identity then follows

immediately by transposition.
Set ρε = |z′|2 + ε2 − it, and define

Φε(z′, t) =
(n− 2)!
24−2nπn

log
(
|z′|2 + ε2 − it
|z′|2 + ε2 + it

)
(|z′|2 + ε2 − it)−n+1.

Then, by the calculations done in the proof of Theorem 10.1.2, we obtain

�0
bΦε = −

n−1∑
k=1

ZkZkΦε

=
(n− 2)!
24−2nπn

(
−4(n− 1)

|z′|2

ρερε
n

+ 2(n− 1)
1

ρερε
n−1

)
=

(n− 1)!
24−2nπn

(
4ε2

ρερ
n
ε

− 2
ρn

ε

)
.

Hence, as ε → 0, we get by the integral evaluated in the proof of Theorem 10.1.2,
that

�0
bΦ =

(
4(n− 1)!
24−2nπn

∫
Hn

(|z′|2 + 1− it)−n(|z′|2 + 1 + it)−1dV

)
δ

− 2(n− 1)!
24−2nπn

1
(|z′|2 − it)n

= δ − (n− 1)!
23−2nπn

1
(|z′|2 − it)n

.

The assertion now follows from (10.2.16). This proves the theorem.

Theorem 10.3.1 shows that the operator K inverts �0
b on the space of functions

that are orthogonal to the L2 integrable CR functions. It is also clear that S�0
b =

�0
bS = 0. Then, we have the following local solvability theorem for �0

b .

Theorem 10.3.2. Let f ∈ L2(Hn). The equation �0
bu = f is solvable in the L2

sense in some neighborhood of p ∈ Hn if and only if S(f) is real analytic in a
neighborhood of p.

Proof. We may assume that f is an L2 integrable function of compact support.
Suppose that S(f) is real analytic near p. Then, by the Cauchy-Kowalevski theorem,
there is a real analytic solution u1 locally such that

�0
bu1 = S(f)
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in some neighborhood of p. On the other hand, by Theorem 10.3.1, a solution
u2 = Kf exists for

�0
bu2 = (I − S)f.

Hence, u = u1 + u2 is a local solution of �0
bu = f.

Conversely, let u be a local solution of �0
bu = f . Choose a cut-off function ζ

with ζ = 1 in some open neighborhood of p. Set

�0
b(ζu) = h.

Then, Sh = 0 and f − h = 0 in some neighborhood of p. Now, from the explicit
formula (10.2.16) of the Szegö projection S, it is easily seen that S(f) = S(f −h) is
real analytic in some neighborhood of p. This completes the proof of the theorem.

If n = 2, we can deduce the local solvability of the Lewy operator from Theorem
10.3.2.

Theorem 10.3.3. Let Z = (∂/∂z) − iz(∂/∂t) and f ∈ L2(H2). The equation
Zu = f is locally solvable in the L2 sense in some open neighborhood of p ∈ H2 if
and only if S(f) is real analytic in a neighborhood of p.

Proof. f is still assumed to be an L2 integrable function with compact support. If
S(f) is real analytic in some neighborhood of p, then Theorem 10.3.2 assures the
existence of a solution v of the equation

�0
bv = −ZZv = f

which , by conjugation, gives a solution u = −Zv of the Lewy equation.
On the other hand, if there exists locally a solution u to the equation Zu = f ,

we may assume that u is of compact support. Hence, Theorem 10.3.1 guarantees a
solution v of the equation Zv = u−Su. Now, by Theorem 10.3.2 again, we see that
S(f) is real analytic in some open neighborhood of p. This proves the theorem.

We note that the Lewy’s example can be extended to any tangential Cauchy-
Riemann equation L of a hypersurface in C2 which is not Levi-flat, i.e., its Levi
form c(x), where

[L,L] = c(x)T, mod(L,L),

does not vanish identically in a neighborhood of the reference point. Note also
that, from the discussion at the end of Chapter 7, when the Levi form vanishes
completely, the ∂b-equation is reduced to a ∂-equation with a parameter.

Since we have established in Chapter 9 that the range of the �b operator on
the boundary of any smooth bounded pseudoconvex domain in Cn with n ≥ 2 is
closed, the arguments for proving Theorems 10.3.2 and 10.3.3 can then be applied
verbatim to the boundary of any smooth bounded pseudoconvex domain with real
analytic boundary, provided that the following analyticity hypothesis on the Szegö
projection is fulfilled:

Analyticity Hypothesis. Let D be a smooth bounded pseudoconvex domain in
Cn, n ≥ 2, with real analytic boundary bD and p ∈ bD. Let S be the corresponding
Szegö projection on bD. If f ∈ L2(bD) vanishes on some open neighborhood U of
p ∈ bD, then Sf is real analytic on U .

Now, with this hypothesis, we can state the following theorem:
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Theorem 10.3.4. Let D be a smooth bounded pseudoconvex domain in C2 with
real analytic boundary. Let r be a real analytic defining function for D and L =
(∂r/∂z2)(∂/∂z1)−(∂r/∂z1)(∂/∂z2). Suppose that the Szegö projection S associated
with bD satisfies the analyticity hypothesis. Then the tangential Cauchy-Riemann
equation Lu = f is locally solvable for some L2 function f near p ∈ bD if and only
if S(f) is real analytic near p.

Finally, following the arguments of Theorem 10.1.5 we obtain the regularity the-
orem of the Lewy operator Z in the usual Hölder class.

Theorem 10.3.5. Let f be a continuous function with compact support on H2, and
let p ∈ suppf . Suppose that S(f) is real analytic in some open neighborhood U of
p, then locally there exists a solution u ∈ Λ1/2(V ) on some open neighborhood V of
p with V ⊂ U such that Zu = f . Furthermore, if f ∈ Ck(H2) for k ∈ N ∪ {0} with
compact support, then u ∈ Ck+ 1

2 (V ).

NOTES

Most of the materials in Sections 10.1 are essentially taken from G. B. Folland
and E. M. Stein [FoSt 1]. Theorem 10.1.1 was proved by G. B. Folland [Fol 1].
The kernel Φα = c−1

α ϕα defined in (10.1.11) is homogeneous of order −2n+ 2 with
respect to the nonisotropic dilation on Hn. It follows that the regularity property of
the operator Kαf = f ∗Φα in the nonisotropic normed spaces can be drawn from a
general theory described in [FoSt 1]. We refer the reader to the book by E. M. Stein
[Ste 4] for a systematic treatment on analysis on Heisenberg groups. The proof of
Theorem 10.1.5 follows that of M.-C. Shaw [Sha 9]. The characterization via the
Fourier transform of the Hardy space H2(Ωn) on the Siegel upper half space was
proved by S. G. Gindikin [Gin 1] (Theorem 10.2.1). The Cauchy-Szegö kernel for
the ball Bn in Cn, n ≥ 2, was found by L. K. Hua [Hua 1] (Proposition 10.2.3), and
for the Siegel upper half space Ωn by S. G. Gindikin [Gin 1]. The characterization
of the range of the Lewy operator was proved by Greiner, Kohn and Stein [GKS 1].
(See also [GrSt 1]). We also refer the reader to the books by R. Beals and P. C.
Greiner [BeGr 1] and F. Treves [Tre 3,6] for more discussions on Heisenberg group
and CR manifolds.

The generalization of the nonsolvability of the Lewy operator to any tangential
Cauchy-Riemann equation on a hypersurface which is not Levi-flat in C2 was proved
by L. Hörmander [Hör 1,7]. It is known that the analyticity hypothesis holds on any
smooth bounded strongly pseudoconvex domain with real analytic boundary. For
instance, see [Tar 1,2] and [Tre 2] for n ≥ 3 and [Gel 1] for n = 2. Unfortunately,
there are no general theorems which would guarantee that the Szegö projection
S on weakly pseudoconvex boundaries satisfies this hypothesis. One should also
note that, in general, the analytic pseudolocality of S is false on pseudoconvex
boundaries, as shown by M. Christ and D. Geller in [ChGe 1].
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CHAPTER 11

INTEGRAL REPRESENTATIONS

FOR ∂̄ AND ∂̄b

In this chapter the method of integral representation in several complex variables
is discussed. This method can be viewed as a generalization of the Cauchy inte-
gral formula in one variable to several variables. The integral kernel method gives
solutions to ∂̄ and ∂̄b represented by integral formulas on strongly pseudoconvex
domains or boundaries. The representations are especially easy to construct on a
strictly convex domain where solution formulas can be written explicitly. It is in
this setting that we derive integral formulas for ∂̄ and ∂̄b in this chapter.

The L2 approach is fruitful for solving ∂̄ and ∂̄b in the Sobolev spaces on pseu-
doconvex domains and their boundaries. In Chapters 4-6, the L2 method to solve ∂̄
was discussed using the ∂̄-Neumann problem. In Chapters 8 and 9, we studied the
global solvability and regularity for the tangential Cauchy-Riemann operator in the
Sobolev spaces on compact CR manifolds. However, Hölder and Lp estimates for ∂̄
and ∂̄b are not easy to obtain by the L2 method. An explicit kernel was computed
in Chapter 10 for �b on the Heisenberg group and Hölder estimates were obtained
for solutions of ∂̄b. Our goal here is to construct integral formulas for solutions of
∂̄ and ∂̄b with Hölder and Lp estimates on strictly convex domains.

In Section 11.1, some terminology necessary in developing the kernel formulas is
defined. We derive the Bochner-Martinelli-Koppelman formula as a generalization
of the Cauchy integral. Unlike the Cauchy kernel in C1, the Bochner-Martinelli-
Koppelman kernel is only harmonic, but not holomorphic. Then we introduce
the Leray kernel and derive the homotopy formula for ∂̄ on convex domains in
Section 11.2. Hölder estimates for the solutions of ∂̄ on strictly convex domains are
obtained. In Section 11.3 the jump formula derived from the Bochner-Martinelli-
Koppelman formula is discussed and homotopy formulas for ∂̄b on strictly convex
compact boundaries are constructed and estimated.

The kernel method is especially suitable for the local solvability of ∂̄b on an open
subset with smooth boundary in a strictly convex boundary. It allows the derivation
of an explicit formula of a solution kernel on a domain with boundary in a strictly
pseudoconvex CR manifold. This is discussed in Section 11.4. The Lp estimates for
the local solutions for ∂̄b are proved in Section 11.5. We discuss the ∂̄b-Neumann
problem in Section 11.6, which is an analogue for ∂̄b of the ∂̄-Neumann problem.
The L2 Hodge decomposition theorem for ∂̄b on an open set with boundary in a
strictly pseudoconvex CR manifold is proved in Theorem 11.6.4.
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11.1 Integral Kernels in Several Complex Variables

Our first goal is to find a fundamental solution of ∂̄ for (p, q)-forms in several
complex variables. Since p plays no role in the ∂̄ equation, we shall assume that
p = 0. In C, the Cauchy kernel is a fundamental solution for ∂̄. This can be derived
by differentiating the fundamental solution for 4. Since

1
2π
4 log |z| = 2

π

∂2

∂z̄∂z
log |z| = δ0,

where δ0 is the Dirac delta function centered at 0, we have

2
π

∂

∂z̄

∂

∂z
log |z| = 1

π

∂

∂z̄

1
z

= δ0.

This implies that E(z) = 1/πz is a fundamental solution for ∂/∂z̄. For any bounded
function f on C with compact support in D, where D is a bounded domain in C,
we define

u(z) = f ∗ E(z) =
1
π

∫
D

f(ζ)
z − ζ

dV =
1

2πi

∫
D

f(ζ)
ζ − z

dζ ∧ dζ̄.

It follows that ∂u/∂z̄ = f in C in the distribution sense. This can also be proved
directly as in Theorem 2.1.2.

In Cn when n > 1, we can also derive a fundamental solution for the ∂̄ operator in
the top degree case similarly. Let α = fdz̄1∧· · ·∧dz̄n be a (0, n)-form in Cn where f
is a bounded function with compact support in Cn. Since there is no compatibility
condition for α to be solvable, we can derive a solution for the equation ∂̄u = α as
follows: Let e(z) be a fundamental solution for 4 in Cn, n ≥ 2, defined by

e(z) = e(r) =
−(n− 2)!

4πn

1
r2n−2

, r = |z|.

Both e(r) and all the first order derivatives of e(r) are locally integrable functions.
We define a (0, n)-form en = −4e(r)dz̄1 ∧ · · · ∧ dz̄n. Then

∂̄∂̄∗en = 4
n∑

i=1

∂2e(r)
∂z̄i∂zi

dz̄1 ∧ · · · ∧ dz̄n = δ0dz̄1 ∧ · · · ∧ dz̄n.

We define

E(z) = ∂̄∗en =
n∑

j=1

(−1)j (n− 1)!
πn

z̄j

r2n
dz̄1 ∧ · · ·

∧
dz̄j · · · ∧ dz̄n,

where
∧
dz̄j denotes that the term dz̄j is omitted. It follows that

∂̄E(z) = δ0dz̄1 ∧ · · · ∧ dz̄n.
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Define

(11.1.1)

u(z) = f ∗ E(z)

=
n∑

j=1

(
(−1)j (n− 1)!

πn

∫
D

z̄j − ζ̄j
|z − ζ|2n

f(ζ)dV
)

[
∧
dz̄j ],

where [
∧
dz̄j ] = dz̄1 ∧ · · ·

∧
dz̄j · · · ∧ dz̄n. Then u satisfies ∂̄u = α and E(z) is a funda-

mental solution for ∂̄ when q = n. For general 0 < q < n, due to the compatibility
condition, the fundamental solution for ∂̄ is more involved. We introduce some
notation first.

Let (ζ − z) = (ζ1 − z1, ζ2 − z2, · · · , ζn − zn) ∈ Cn and dζ = (dζ1, · · · , dζn). Let
A = (a1, · · · , an), B = (b1, · · · , bn) be two vectors in Cn. We define

< A,B > =
n∑

i=1

aibi, < A, dζ > =
n∑

i=1

aidζi.

Thus < ζ̄ − z̄, ζ − z >= |ζ − z|2 and < ζ̄ − z̄, dζ >=
∑n

i=1(ζ̄i − z̄i)dζi. Let V be an
open subset of Cn × Cn with coordinates (ζ, z) and let G(ζ, z) be a C1 map from
V into Cn such that G(ζ, z) = (g1(ζ, z), · · · , gn(ζ, z)). We define the (1, 0)-form ωG

by

ωG =
1

2πi
< G(ζ, z), dζ >
< G(ζ, z), ζ − z >

=
1

2πi

∑n
i=1 gi(ζ, z)dζi∑n

i=1 gi(ζ, z)(ζi − zi)

on the set of (ζ, z) ∈ Cn × Cn where < G, ζ − z > 6= 0.
When n = 1, ωG is independent of G and is the Cauchy kernel. We set the

Cauchy-Riemann operator on V equal to

∂̄ζ,z = ∂̄ζ + ∂̄z,

and

< ∂̄ζ,zG(ζ, z), dζ > =
n∑

i=1

∂̄ζ,zgi(ζ, z) ∧ dζi.

Let Ω(G) be an (n, n− 1)-form in (ζ, z) defined by

Ω(G) = ωG ∧ (∂̄ζ,zω
G)n−1 = ωG ∧ ∂̄ζ,zω

G ∧ · · · ∧ ∂̄ζ,zω
G︸ ︷︷ ︸

n−1 times

.

Given m maps Gi : V → Cn, i = 1, · · · ,m, we abbreviate ωGi

by ωi and Ω1···m is
the (n, n−m)-form defined by

Ω1···m = Ω(G1, · · · , Gm)

= ω1 ∧ · · · ∧ ωm ∧
∑

k1+···+km=n−m

(∂̄ζ,zω
1)k1 ∧ · · · ∧ (∂̄ζ,zω

m)km

on the set where all the denominators are nonvanishing. Since

(11.1.2) ∂̄ζ,zω
i =

1
2πi

< ∂̄ζ,zG
i, dζ >

< Gi(ζ, z), ζ − z >
− 1

2πi
< ∂̄ζ,zG

i, ζ − z > ∧ < Gi, dζ >

(< Gi, ζ − z >)2
,
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we have for k ≥ 0 that

(11.1.3) ωi ∧ (∂̄ζ,zω
i)k =

(
1

2πi

)k+1
< Gi, dζ >

< Gi, ζ − z >
∧
(
< ∂̄ζ,zG

i, dζ >

< Gi, ζ − z >

)k

.

This follows from the fact that ωi wedge the last term in (11.1.2) vanishes.
The following lemma is essential in the construction of the kernel formulas.

Lemma 11.1.1. Let Gi(ζ, z) : V ⊂ Cn × Cn → Cn, i = 1, · · · ,m, be C1 maps.
We have

(11.1.4) ∂̄ζ,zΩ1···m =
m∑

j=1

(−1)jΩ1···
∧
j ···m

on the set where < Gi, ζ− z > 6= 0 for every i = 1, · · · ,m, where
∧
j denotes that the

term j is omitted. In particular, we have

(11.1.4-i) ∂̄ζ,zΩ1 = 0,

(11.1.4-ii) ∂̄ζ,zΩ12 = Ω1 − Ω2,

(11.1.4-iii) ∂̄ζ,zΩ123 = −Ω23 + Ω13 − Ω12,

on the set where the denominators are nonvanishing.

Proof. We use the notation

(∂̄ζ,zω)Km = (∂̄ζ,zω
1)k1 ∧ · · · ∧ (∂̄ζ,zω

m)km

for each multiindex Km = (k1, · · · , km) and |Km| = k1 + · · ·+ km. It follows that

∂̄ζ,zΩ1···m =
m∑

j=1

(−1)j−1ω1 ∧ · · · ∧ ∂̄ζ,zω
j ∧ · · · ∧ ωm ∧

∑
|Km|=n−m

(∂̄ζ,zω)Km

=
m∑

j=1

(−1)j−1ω1 ∧ · · · ∧ ∧
ωj ∧ · · · ∧ ωm ∧

∑
|Km|=n−m+1,

kj≥1

(∂̄ζ,zω)Km

=
m∑

j=1

(−1)jΩ1···
∧
j ···m +

m∑
j=1

(−1)j−1ω1 ∧ · · · ∧ ∧
ωj ∧ · · · ∧ ωm

∧
∑

|Km|=n−m+1,
kj≥0

(∂̄ζ,zω)Km .

We claim that for each Km such that |Km| = n−m+ 1,

m∑
j=1

(−1)j−1ω1 ∧ · · · ∧ ∧
ωj ∧ · · · ∧ ωm ∧ (∂̄ζ,zω)Km = 0.
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We first observe that

(11.1.5) ω1 ∧ · · · ∧ ωj ∧ · · · ∧ ωm ∧ (∂̄ζ,zω)Km = 0,

since there are n+ 1 dζ ′s. Define

Θ = 2πi
n∑

j=1

(ζj − zj)dζj .

It is easy to see that

(11.1.6) Θ ∨ ωi = 1, i = 1, · · · ,m,

where ∨ denotes the interior product.
Also from (11.1.2), we have

(11.1.7) Θ ∨ ∂̄ζ,zω
i = 0, i = 1, · · · ,m.

Contraction of equation (11.1.5) with Θ, using (11.1.6) and (11.1.7), gives

0 = Θ ∨ (ω1 ∧ · · · ∧ ωj ∧ · · · ∧ ωm ∧ (∂̄ζ,zω)Km)

=
m∑

j=1

(−1)j−1ω1 ∧ · · · ∧ (Θ ∨ ωj) ∧ · · · ∧ ωm ∧ (∂̄ζ,zω)Km

=
m∑

j=1

(−1)j−1ω1 ∧ · · · ∧ ∧
ωj ∧ · · · ∧ ωm ∧ (∂̄ζ,zω)Km .

This proves the claim and the lemma.

We also write

Ω1···m =
n−m∑
q=0

Ω1···m
q ,

where Ω1···m
q denotes the piece in Ω1···m which is of degree (0, q) in z and (n, n−m−q)

degree in ζ. If f is a (0, q′)-form in Cn, the form Ω1···m
q (ζ, z)∧f(ζ) is a form of degree

(n, n−m−q+q′) in ζ and of degree (0, q) in z. We write the form Ω1···m
q (ζ, z)∧f(ζ)

uniquely as
∑′

|J|=q AJ(ζ, z) ∧ dz̄J where AJ(ζ, z) is an (n, n−m− q + q′)-form in
ζ only with coefficients depending on z and J is an increasing multiindex. We
shall define the integration of the the form Ω1···m(ζ, z) ∧ f(ζ) with respect to the ζ
variables on a (2n− l)-dimensional real manifold M as follows:∫

M

Ω1···m(ζ, z) ∧ f(ζ) =
∫

M

Ω1···m
q (ζ, z) ∧ f(ζ)

=
∑
|J|=q

′
(∫

M

AJ(ζ, z)
)
dz̄J ,



11.1 Integral Kernels in Several Complex Variables 265

where q = l−m+ q′, provided the integral on the right-hand side exists. Note that
from this definition, we have

∂̄z

∫
M

Ω1···m(ζ, z) ∧ f(ζ) = (−1)2n−l

∫
M

∂̄zΩ1···m(ζ, z) ∧ f(ζ)

= (−1)l

∫
M

∂̄zΩ1···m(ζ, z) ∧ f(ζ),

provided that the differentiation under the integral sign is allowed.
Let

G0(ζ, z) = (ζ̄ − z̄) = (ζ̄1 − z̄1, · · · , ζ̄n − z̄n).

The Bochner-Martinelli-Koppelman kernel B(ζ, z) is defined by

(11.1.8)

B(ζ, z) = Ω(G0) = Ω0

=
1

(2πi)n

< ζ̄ − z̄, dζ >
|ζ − z|2

∧
(
< dζ̄ − dz̄, dζ >
|ζ − z|2

)n−1

=
n−1∑
q=0

Bq(ζ, z),

where Bq is the summand which is of degree (0, q) in z and of degree (n, n− q− 1)
in ζ. Using (11.1.4-i), we have

(11.1.9) ∂̄ζB(ζ, z) + ∂̄zB(ζ, z) = 0 for ζ 6= z,

or equivalently, for each 0 ≤ q ≤ n,

(11.1.9-q) ∂̄ζBq(ζ, z) + ∂̄zBq−1(ζ, z) = 0 for ζ 6= z,

if we set B−1(ζ, z) = Bn(ζ, z) = 0. In particular, B0 is the Bochner-Martinelli
kernel defined by (2.2.1) and (11.1.9-q) was proved directly in (3.2.2) when q = 1.

When n = 1, B(ζ, z) = (2πi)−1
dζ/(ζ − z) is the Cauchy kernel. The following

theorem shows that the Bochner-Martinelli-Koppelman kernel is indeed a general-
ization of the Cauchy integral formula to several variables.

Theorem 11.1.2 (Bochner-Martinelli-Koppelman). Let D be a bounded do-
main in Cn with C1 boundary. For f ∈ C1

(0,q)(D), 0 ≤ q ≤ n, the following formula
holds:

(11.1.10)
f(z) =

∫
bD

Bq(·, z) ∧ f +
∫

D

Bq(·, z) ∧ ∂̄ζf

+ ∂̄z

∫
D

Bq−1(·, z) ∧ f, z ∈ D,

where B(ζ, z) is defined in (11.1.8).

Proof. For q = 0, the Bochner-Martinelli formula was proved in Theorem 2.2.1. We
first assume that 1 ≤ q < n.
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Let z0 ∈ D and βε be a small ball of radius ε centered at z0 such that βε ⊂ D.
We shall prove the theorem at z = z0. Applying Stokes’ theorem to the form
dζ(Bq(ζ, z) ∧ f(ζ)) on Dε ≡ D \ βε, we have, using (11.1.9), that

(11.1.11)

∫
bD

Bq(ζ, z) ∧ f −
∫

bβε

Bq(ζ, z) ∧ f

=
∫

Dε

∂̄ζBq(ζ, z) ∧ f −
∫

Dε

Bq(ζ, z) ∧ ∂̄ζf

= −
∫

Dε

∂̄zBq−1(ζ, z) ∧ f −
∫

Dε

Bq(ζ, z) ∧ ∂̄ζf.

Since B(ζ, z) = O(|ζ − z|−2n+1), B(ζ, z) is an integrable function for each fixed z.
We see from the dominated convergence theorem that

(11.1.12)
∫

Dε

Bq(ζ, z) ∧ ∂̄ζf →
∫

D

Bq(ζ, z) ∧ ∂̄ζf.

Note that∫
bβε

B0(ζ, z) =
1

(2πi)n

1
ε2n

∫
bβε

< ζ̄ − z̄, dζ > ∧ < dζ̄, dζ >n−1

=
1

(2πi)n

1
ε2n

∫
βε

< dζ̄, dζ >n =
n!
πn

∫
β1

dV = 1.

For any increasing multiindex J = (j1, · · · , jq), we get that∫
bβε

Bq(ζ, z) ∧ dζ̄J =
1

(2πi)n

1
ε2n

∫
bβε

< ζ̄ − z̄, dζ > ∧ < dζ̄ − dz̄, dζ >n−1 ∧dζ̄J

=
1

(2πi)n

1
ε2n

∫
βε

< dζ̄, dζ > ∧ < dζ̄ − dz̄, dζ >n−1 ∧dζ̄J

=
(n− q)(n− 1)!

πn

(∫
β1

dV

)
∧ dz̄J

=
n− q
n

dz̄J .

Let f(z0) denote the (0, q)-form whose coefficients are equal to the values of the
coefficients of f at z0. It follows from the above calculation that

(11.1.13)

∫
bβε

Bq(ζ, z) ∧ f =
n− q
n

f(z0) +
∫

bβε

Bq(ζ, z) ∧
(
f − f(z0)

)
−→ n− q

n
f(z0), as ε→ 0.

The kernel ∂̄zBq−1(ζ, z) = O(|ζ−z|2n) is not integrable but the components are the
classical singular integrals (see e.g. Stein [Ste 2]). The Principal-value limit defined
by

P.V.
∫

D

∂̄zBq−1(ζ, z0) ∧ f = lim
ε→0

∫
Dε

∂̄zBq−1(ζ, z0) ∧ f

= lim
ε→0

(
∂̄z

∫
Dε

Bq−1(ζ, z) ∧ f
)∣∣∣∣

z=z0
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exists for each z0 ∈ D. We claim that

(11.1.14) P.V.
∫

D

∂̄zBq−1(ζ, z0) ∧ f =
(
∂̄z

∫
D

Bq−1(ζ, z) ∧ f
)∣∣∣∣

z=z0

− q

n
f(z0).

We use the notation dζ̄ ∧ dζ = dζ̄1 ∧ dζ1 ∧ · · · ∧ dζ̄n ∧ dζn and [
∧
dζj ]= dζ̄1 ∧ dζ1 ∧

· · · ∧ dζ̄j ∧
∧
dζj ∧ · · · ∧ dζ̄n ∧ dζn, where

∧
dζj denotes that the term dζj is omitted. Let

f(ζ) = fJdζ̄
J , where J = (1, · · · , q). Using Stokes’ theorem, we obtain

∫
βε

Bq−1(ζ, z) ∧ f(ζ)

=
(n− 1)!
(2πi)n

q∑
j=1

(−1)j

(∫
βε

ζ̄j − z̄j

|ζ − z|2n
fJ(ζ)dζ̄ ∧ dζ

)
∧ dz̄1···

∧
j ···q

=
(n− 1)!
(2πi)n

q∑
j=1

(−1)j

∫
βε

(
−1
n− 1

)
∂

∂ζj

(
1

|ζ − z|2n−2

)
fJ(ζ) dζ̄ ∧ dζ ∧ dz̄1···

∧
j ···q

=
(n− 1)!
(2πi)n

q∑
j=1

(−1)j

n− 1

(∫
bβε

1
|ζ − z|2n−2

fJ(ζ)[
∧
dζj ]

+
∫

βε

1
|ζ − z|2n−2

∂fJ

∂ζj
(ζ)dζ̄ ∧ dζ

)
∧ dz̄1···

∧
j ···q.

Thus,

∂̄z

∫
βε

Bq−1(ζ, z) ∧ f(ζ) =
(n− 1)!
(2πi)n

q∑
j=1

(−1)j
n∑

k=1

(∫
bβε

ζk − zk

|ζ − z|2n
fJ(ζ)[

∧
dζj ]

+
∫

βε

ζk − zk

|ζ − z|2n

∂fJ

∂ζj
(ζ)dζ̄ ∧ dζ

)
dz̄k ∧ dz̄1···

∧
j ···q.

Since

(n− 1)!
(2πi)n

(−1)j

∫
bβε

ζk − zk

|ζ − z|2n
fJ(ζ)[

∧
dζj ] −→ δjk

(−1)j−1

n
fJ(z0),

and ∫
βε

ζk − zk

|ζ − z|2n

∂fJ

∂ζj
(ζ)dζ̄ ∧ dζ −→ 0, as ε→ 0,

we have

∂̄z

∫
βε

Bq−1(ζ, z) ∧ f(ζ) −→ q

n
fJ(z0)dz̄J .
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Thus

∂̄z

(∫
D

Bq−1(ζ, z) ∧ f(ζ)
) ∣∣∣∣

z=z0

= lim
ε→0

([
∂̄z

∫
Dε

Bq−1(ζ, z) ∧ f(ζ) + ∂̄z

∫
βε

Bq−1(ζ, z) ∧ f(ζ)
]∣∣∣∣

z=z0

)

= lim
ε→0

(∫
Dε

∂̄zBq−1(ζ, z0) ∧ f(ζ) + ∂̄z

∫
βε

Bq−1(ζ, z) ∧ f(ζ)
∣∣∣∣
z=z0

)

= P.V.
∫

D

∂̄zBq−1(ζ, z0) ∧ f(ζ) +
q

n
fJ(z0)dz̄J .

This proves the claim (11.1.14) for the special case of f . The proof for a gen-
eral (0, q)-form f is the same. Combining (11.1.11)-(11.1.14), we have proved the
theorem for 0 ≤ q < n. When q = n, it follows from (11.1.1) that

f(z) = ∂̄z

∫
D

Bn−1(·, z) ∧ f.

Thus Theorem 11.1.2 holds for all 0 ≤ q ≤ n.

Corollary 11.1.3. Let D be a bounded domain in Cn with C1 boundary. For
any f ∈ C(0,q)(D), 1 ≤ q ≤ n, such that f = 0 on bD and ∂̄f = 0 in D in the
distribution sense, there exists u ∈ Cα

(0,q−1)(D) with ∂̄u = f in the distribution
sense, where 0 < α < 1. Furthermore, there exists a C > 0 such that

(11.1.15) ‖u‖Cα(D) ≤ C‖f‖L∞(D).

Proof. For z ∈ D, define

u(z) =
∫

D

Bq−1(·, z) ∧ f.

We first prove (11.1.15). Since∣∣∣∣ ∫
D

Bq−1(·, z) ∧ f −
∫

D

Bq−1(·, z′) ∧ f
∣∣∣∣

≤ C

 n∑
j=1

∫
D

∣∣∣∣ ζ̄j − z̄j

|ζ − z|2n
−

ζ̄j − z̄′j
|ζ − z′|2n

∣∣∣∣dV
 ‖f‖L∞(D),

it suffices to show that for each 1 ≤ j ≤ n,

(11.1.16)
∫

D

∣∣∣∣ ζ̄j − z̄j

|ζ − z|2n
−

ζ̄j − z̄′j
|ζ − z′|2n

∣∣∣∣dV ≤ C|z − z′|∣∣ log |z − z′|
∣∣.

Let |z − z′| = 2ε. We divide D into three regions: βε(z), βε(z′) and Dε = D \
(βε(z) ∪ βε(z′)) where βε(z) is a ball of radius ε centered at z. On βε(z), we have∫

βε(z)

∣∣∣∣ ζ̄j − z̄j

|ζ − z|2n
−

ζ̄j − z̄′j
|ζ − z′|2n

∣∣∣∣dV ≤ 2
∫

βε(z)

1
|ζ − z|2n−1

dV ≤ C|z − z′|.



11.2 The Homotopy Formula for ∂̄ on Convex Domains 269

Similarly, we have the estimate on βε(z′). To estimate the integral on Dε, we note
that 1

3 |ζ − z
′| ≤ |ζ − z| ≤ 3|ζ − z′| for ζ ∈ Dε, thus there exists an A > 0 such that

∫
Dε

∣∣∣∣ ζ̄j − z̄j

|ζ − z|2n
−

ζ̄j − z̄′j
|ζ − z′|2n

∣∣∣∣dV ≤ C ∫
ε≤|ζ−z|≤A

|z − z′|
|ζ − z|2n

dV

≤ C|z − z′|
∣∣ log |z − z′|

∣∣.
This proves (11.1.16) and (11.1.15) follows.

If f ∈ C1
(0,q)(D), Theorem 11.1.2 implies that ∂̄u = f since f = 0 on bD. For

f ∈ C(0,q)(D), we use an approximation argument. We first assume that the domain
D is star-shaped and 0 ∈ D. Let φ(z) = φ(|z|) be a function supported in |z| ≤ 1
and φ ≥ 0,

∫
φ = 1. We set φδm = δ−2n

m φ(z/δm) for δm ↘ 0. Extending f to be 0
outside D, we define

fm(z) = f

(
z

1− 1
m

)
∗ φδm

for sufficiently small δm. One can easily check that fm has coefficients in C∞0 (D),
∂̄fm = 0 in D and fm → f uniformly in D. When the boundary is C1, we can
use a partition of unity {ζi}Ni=1, with each ζi supported in an open set Ui such that
Ui ∩ D is star-shaped. We then regularize ζif in Ui as before. It is easy to see
that there exists a sequence fm ∈ C∞(0,q)(D) with compact support in D such that
fm → f uniformly in D and ∂̄fm → 0 uniformly. Applying Theorem 11.1.2 to each
fm and letting m→∞, we have proved ∂̄u = f in the distribution sense.

Corollary 11.1.3 allows us to solve the equation ∂̄u = f for any ∂̄-closed form
f with compact support. Thus the Bochner-Martinelli-Koppelman kernel is a fun-
damental solution for ∂̄ in Cn. In the next section we introduce new kernels and
derive a homotopy formula for ∂̄ for forms which do not necessarily have compact
support.

11.2 The Homotopy Formula for ∂̄ on Convex Domains

The Bochner-Martinelli-Koppelman kernel is independent of the domainD. Next
we introduce another kernel, the Leray kernel, which in general depends on the
domain.

Definition 11.2.1. A Cn-valued C1 function G(ζ, z) = (g1(ζ, z), · · · , gn(ζ, z)) is
called a Leray map for D if it satisfies < G(ζ, z), ζ − z > 6= 0 for every (ζ, z) ∈
bD ×D.

In particular, the Cn-valued function G0(ζ, z) = (ζ̄ − z̄) = (ζ̄1 − z̄1, · · · , ζ̄n − z̄n)
is a Leray map for any domain D. We use the same notation Ω0 = Ω(G0) = B(ζ, z)
to denote the Bochner-Martinelli-Koppelman kernel. If G1(ζ, z) is another Leray
map, we set

(11.2.1) Ω1 = Ω(G1) =
(

1
2πi

)n
< G1, dζ >

< G1, ζ − z >
∧
(
< ∂̄ζ,zG

1, dζ >

< G1, ζ − z >

)n−1
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and

(11.2.2)

Ω01 = Ω(G0, G1) =
(

1
2πi

)n
< ζ̄ − z̄, dζ >
|ζ − z|2

∧ < G1, dζ >

< G1, ζ − z >

∧
∑

k1+k2=n−2

(
< dζ̄ − dz̄, dζ >
|ζ − z|2

)k1

∧
(
< ∂̄ζ,zG

1, dζ >

< G1, ζ − z >

)k2

.

Notice that Ω1 and Ω01 are well defined for ζ ∈ bD and z ∈ D. Also we use the
notation Ω1

q, Ω01
q to denote the summand of forms with degree (0, q) in z in Ω1, Ω01

respectively.

Theorem 11.2.2 (Leray-Koppelman). Let D be a bounded domain in Cn with
C1 boundary. Let G0 = (ζ̄ − z̄) and G1 be another Leray map for D. For f ∈
C1

(0,q)(D), 0 ≤ q ≤ n, we have

(11.2.3) f(z) =
∫

bD

Ω1
q ∧ f + ∂̄zTqf + Tq+1∂̄f, z ∈ D,

where
Tqf(z) =

∫
D

Ω0
q−1(ζ, z) ∧ f(ζ)−

∫
bD

Ω01
q−1(ζ, z) ∧ f(ζ).

Ω0, Ω1 and Ω01 are defined in (11.1.8), (11.2.1) and (11.2.2) respectively.

Proof. From (11.1.4-ii), we have

∂̄ζ,zΩ01 = Ω0 − Ω1

on the set where ζ ∈ bD and z ∈ D. Thus, for z ∈ D,∫
bD

Ω0 ∧ f =
∫

bD

∂̄ζ,zΩ01 ∧ f +
∫

bD

Ω1 ∧ f.

Applying Stokes’ theorem, we have∫
bD

∂̄ζΩ01 ∧ f =
∫

bD

dζ(Ω01 ∧ f)−
∫

bD

Ω01 ∧ ∂̄ζf = −
∫

bD

Ω01 ∧ ∂̄ζf.

Since Ω01 ∧ f is of degree (n, n− 1) in ζ, it follows that∫
bD

∂̄zΩ01 ∧ f = −∂̄z

∫
bD

Ω01 ∧ f.

Substituting the above formulas into (11.1.10), we have for z ∈ D,

f(z) =
∫

bD

Ω0 ∧ f +
∫

D

Ω0 ∧ ∂̄ζf + ∂̄z

∫
D

Ω0 ∧ f

=
∫

bD

Ω1 ∧ f + ∂̄z

(∫
D

Ω0 ∧ f −
∫

bD

Ω01 ∧ f
)

+
(∫

D

Ω0 ∧ ∂̄ζf −
∫

bD

Ω01 ∧ ∂̄ζf

)
.

(11.2.3) follows from the degree consideration.
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Corollary 11.2.3 (Leray). Let D be a bounded domain in Cn with C1 boundary.
Let G1 be any Leray map for D. For any f ∈ C1(D) ∩ O(D), we have

f(z) =
∫

bD

Ω1
0(ζ, z) ∧ f(ζ), z ∈ D,

where Ω1 is defined in (11.2.1) and Ω1
0 is the piece in Ω1 of degree (0,0) in z.

Corollary 11.2.3 shows that a holomorphic function in D is represented by its
boundary value through any Leray map for D. So far we have not constructed any
Leray map other than the Bochner-Martinelli-Koppelman kernel. Our next goal is
to construct a Leray map which is holomorphic in the z variable when the domain
is convex. We recall the following definition:

Definition 11.2.4. Let D ⊂⊂ RN be a domain with C2 boundary and ρ is any C2

defining function. D is a convex (or strictly convex) domain with C2 boundary if

N∑
i,j=1

∂2ρ

∂xi∂xj
(x)aiaj ≥ 0 (or > 0) on bD,

for every a = (a1, · · · , aN ) 6= 0 with
∑N

i=1 ai
∂ρ
∂xi

(x) = 0 on bD. Here we use
(x1, · · · , xN ) to denote the real coordinates for RN and ai ∈ R.

It is easy to check that the definition of convexity or strict convexity is indepen-
dent of the choice of the defining function ρ. In fact, for a strictly convex domain
D, we can choose a special defining function such that its real Hessian is positive
definite without restricting to the tangent plane as the next proposition shows.

Proposition 11.2.5. Let D be a strictly convex domain with C2 boundary in RN .
Then there exists a C2 defining function ρ such that

(11.2.4)
N∑

i,j=1

∂2ρ

∂xi∂xj
(x)aiaj ≥ c|a|2, for all x ∈ bDand a ∈ Rn,

where c is a positive constant.

Proof. Let ρ0 be any C2 defining function for D. We set ρ = eAρ0 − 1 where A
is a positive constant. Then ρ is another C2 defining function. Arguments similar
to those in the proof of Theorem 3.4.4 show that ρ is strictly convex and satisfies
(11.2.4) if we choose A sufficiently large.

A defining function ρ satisfying (11.2.4) is called a strictly convex defining func-
tion for D. By continuity, ρ satisfies (11.2.4) in a small neighborhood of bD.

Lemma 11.2.6. Let D be a bounded convex domain in Cn with C2 boundary and
let ρ be a C2 defining function for D. Then the map

(11.2.5) G1(ζ, z) =
(
∂ρ

∂ζ

)
=
(
∂ρ

∂ζ1
, · · · , ∂ρ

∂ζn

)
is a Leray map.
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Proof. Using convexity, we have for any z ∈ D, ζ ∈ bD,

(11.2.6) Re
n∑

i=1

∂ρ

∂ζi
(ζi − zi) > 0.

Thus G1 is a Leray map.

Note that G1 is a Leray map which is independent of z. The importance of the
existence of a Leray map which is holomorphic in z (or independent of z) is shown
in the next theorem.

Theorem 11.2.7 (A homotopy formula for ∂̄ on convex domains). Let D
be a bounded convex domain in Cn with C2 boundary bD and let ρ be a C2 defining
function for D. Suppose that G0 = (ζ̄ − z̄) and G1 is defined by (11.2.5). For
f ∈ C1

(0,q)(D), 0 ≤ q ≤ n, we have

(11.2.7) f(z) = ∂̄zTqf + Tq+1∂̄f, z ∈ D, if 1 ≤ q ≤ n,

(11.2.8) f(z) =
∫

bD

Ω1
0 ∧ f + T1∂̄f, z ∈ D, if q = 0,

where

(11.2.9) Tqf(z) =
∫

D

Ω0
q−1(ζ, z) ∧ f(ζ)−

∫
bD

Ω01
q−1(ζ, z) ∧ f(ζ).

Ω0, Ω1 and Ω01 are defined in (11.1.8), (11.2.1) and (11.2.2) respectively.

Proof. Since G1 is a Leray map which does not depend on z, the kernel Ω1 has no
dz̄’s. Thus for any 1 ≤ q ≤ n, Ω1

q = 0 and

∫
bD

Ω1
q ∧ f = 0.

Thus (11.2.7) and (11.2.8) follow from (11.2.3).

Corollary 11.2.8 (A solution operator for ∂̄ on convex domains). Let D be a
bounded convex domain in Cn with C2 boundary bD. Let f ∈ C1

(0,q)(D), 1 ≤ q ≤ n,
with ∂̄f = 0 in D. Then

u = Tqf(z)

is a solution to the equation ∂̄u = f , where Tq is defined in (11.2.9).

Formula (11.2.9) gives an explicit solution operator for ∂̄ when the domain is
convex. Next we shall estimate the solution kernel in Hölder spaces when the
domain is strictly convex.
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Lemma 11.2.9. Let D be a bounded strictly convex domain in Cn with C2 boundary
bD and let ρ be a strictly convex defining function for D. There exists a constant
C > 0 such that for any ζ ∈ bD, z ∈ D,

(11.2.10) Re < G1, ζ − z > ≥ C(ρ(ζ)− ρ(z) + |ζ − z|2),

where G1 is defined by (11.2.5).

Proof. Since ρ is a strictly convex defining function satisfying (11.2.4), we apply
Taylor’s expansion to ρ(z) at the point ζ ∈ bD, then

ρ(z) = ρ(ζ)− 2Re
n∑

i=1

∂ρ

∂ζi
(ζi − zi) +

n∑
i,j=1

∂2ρ

∂ζi∂ζ̄j
(ζi − zi)(ζ̄j − z̄j)

+ Re
n∑

i,j=1

∂2ρ

∂ζi∂ζj
(ζi − zi)(ζj − zj) + o(|ζ − z|2).

Thus, for |ζ − z| ≤ ε, where ε > 0 is sufficiently small,

Re
n∑

i=1

∂ρ

∂ζi
(ζi − zi) ≥

1
2
ρ(ζ)− 1

2
ρ(z) +

c

2
|ζ − z|2,

where c > 0 is the positive constant in (11.2.4). To show that (11.2.10) holds for
|ζ − z| > ε, we set

z̃ =
(

1− ε

|ζ − z|

)
ζ +

ε

|ζ − z|
z.

Then |ζ − z̃| = ε and z̃ ∈ D since D is strictly convex. It follows that

Re < G1, ζ − z > = Re
|ζ − z|
ε

< G1, ζ − z̃ >

≥ |ζ − z|
2ε

(ρ(ζ)− ρ(z̃) +
c

2
|ζ − z̃|2)

≥ cε2

4
≥ C(ρ(ζ)− ρ(z) + |ζ − z|2),

since (−ρ(z) + |ζ − z|2) ≤M for some constant M > 0.

Lemma 11.2.10. Let D be a bounded strictly convex domain in Cn with C2 bound-
ary and let ρ be a strictly convex defining function for D. The kernel Ω01

q−1(ζ, z),
0 < q < n, is absolutely integrable on bD for any z ∈ D. Furthermore, there exists
a constant C such that for any z ∈ D,

(11.2.11)
∫

bD

|Ω01
q−1(ζ, z)| < C,

where C is independent of z.

Proof. Let {
Φ(ζ, z) =< G1, ζ − z >,
Φ0(ζ, z) = |ζ − z|2.
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Using (11.2.10), the kernel Ω01(ζ, z) has singularities only at ζ = z on bD.
We choose a special coordinate system in a neighborhood of a fixed z near bD.

From the definition of Φ, we have dζΦ|ζ=z = ∂ρ and dζ(Im Φ)|ζ=z = 1
2i (∂ρ − ∂ρ).

Thus dρ and dζ(Im Φ) are linearly independent at ζ = z. On a small neighborhood
Uε = {ζ | |ζ − z| < ε} of a fixed z ∈ D, Let (t, y) = (t1, · · · , t2n−1, y) where
t = (t′, t2n−1) = (t1, · · · , t2n−1) are tangential coordinates for Uε ∩ bD, ti(z) = 0
and

(11.2.12)

{
y = ρ(ζ),

t2n−1 = ImΦ(ζ, z).

From (11.2.10) it follows that there exists a positive constant γ0 such that

(11.2.13)

{
|Φ(ζ, z)| ≥ γ0(|ρ(z)|+ |t′|2 + |t2n−1|),
|ζ − z| ≥ γ0(|ρ(z)|+ |t|).

Using (11.2.13), we have for some A > 0,

(11.2.14)

∫
bD∩Uε

|Ω01
q−1(ζ, z)| ≤ C

(
n−1∑
k=1

∫
bD∩Uε

|ζ − z|
|Φ|n−k|Φ0|k

dS

)

≤ C
∫

ζ∈bD∩Uε

1
|Φ||ζ − z|2n−3

dS

≤ C
∫
|t|≤A

dt1dt2 · · · dt2n−1

(|t2n−1|+ |t′|2)|t|2n−3

≤ C
∫
|t′|≤A

| log |t′||dt1 · · · dt2n−2

|t′|2n−3

≤ C
∫ A

0

r2n−3| log r|dr
r2n−3

≤ C,

where dS is the surface element on bD. This proves the lemma.

Thus the kernel Ω01 is integrable uniformly on bD. We have the following Hölder
regularity result for ∂̄:

Theorem 11.2.11 ( 1
2 -Hölder estimates for ∂̄ on strictly convex domains).

Let D be a bounded strictly convex domain in Cn with C2 boundary. For any
f ∈ C(0,q)(D), 1 ≤ q ≤ n, such that ∂̄f = 0 in D, there exists a u ∈ C1/2

(0,q−1)(D)
such that ∂̄u = f in D and

(11.2.15) ‖u‖
C

1
2 (D)

≤ C‖f‖L∞(D),

where C is a constant independent of f .

Proof. We first assume that f ∈ C1
(0,q)(D). Let

u = Tqf = u0 + u1,
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where
u0 =

∫
D

Ω0
q−1(ζ, z) ∧ f(ζ)

and
u1 = −

∫
bD

Ω01
q−1(ζ, z) ∧ f(ζ).

It follows from Corollary 11.2.8 that ∂̄Tqf = f . From Corollary 11.1.3, for any
z, z′ ∈ D,

|u0(z)− u0(z′)| ≤ Cα ‖ f ‖∞ |z − z′|α

for any α < 1. Also u1 is smooth in D. In order to estimate u1 near the boundary,
we use the assumption of strict convexity on D.

We may assume 1 ≤ q ≤ n − 1 since u1 = 0 if q = n. From Lemma 11.2.10,
u1 ∈ C(0,q−1)(D). Since u1 ∈ C∞(0,q−1)(D), using the Hardy-Littlewood lemma (see

Theorem C.1 in the Appendix), to prove that u1 ∈ C1/2
(0,q−1)(D), it suffices to show

that there exists a C such that

(11.2.16) |∇u1(z)| ≤ C|ρ(z)|−
1
2 , z ∈ D.

Using the same notation as in Lemma 11.2.10, we have for 1 ≤ q ≤ n− 1,∣∣∣∣∇z

∫
bD∩Uε

Ω01
q−1(ζ, z) ∧ f(ζ)

∣∣∣∣
≤ C ‖ f ‖∞

n−1∑
k=1

 ∫
bD∩Uε

|ζ − z|
|Φ|n−k+1|Φ0|k

dS +
∫

bD∩Uε

1
|Φ|n−k|ζ − z|2k

dS

 .

To prove (11.2.16), using the change of coordinates (11.2.12) and estimates (11.2.13),
it suffices to show that for some A > 0, there exists a C > 0 such that for δ > 0,
1 ≤ q ≤ n− 1,

(11.2.17)
∫
|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q+1|t|2q−1
< Cδ−

1
2 ,

(11.2.18)
∫
|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q(|t|+ δ)2q
< Cαδ

−1+α,

where 0 < α < 1 and C, Cα are independent of δ. To prove (11.2.17), integrating
with respect to t2n−1 and then using polar coordinates |t′| = r, we have∫

|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q+1|t|2q−1

≤ C
∫
|t′|≤A

dt1dt2 · · · dt2n−2

(δ + |t′|2)n−q|t′|2q−1

≤ C
∫ A

0

r2n−3dr

(δ + r2)n−qr2q−1
≤ C

∫ A

0

dr

δ + r2
≤ Cδ− 1

2 .
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(11.2.18) is proved similarly. Thus u1 ∈ C
1/2
(0,q−1)(D) and (11.2.15) is proved for

f ∈ C1
(0,q)(D).

When f ∈ C(0,q)(D), we can find a sequence fε ∈ C∞(0,q)(D) such that fε → f

uniformly in D and ∂̄fε = 0 in D. The fε’s can be constructed easily by a dilation
(assuming that 0 ∈ D) followed by regularization. Letting uε = Tqfε, we get

‖uε‖
C

1
2 (D)

≤ C‖fε‖L∞(D).

It is easy to see that uε converges C1/2(D) to u = Tqf ∈ C1/2
(0,q−1)(D) and ∂̄u = f

in the distribution sense.

Remark. In Chapter 5, we have proved that for any ∂̄-closed (0, q)-form with
W s(D) coefficients in a strictly pseudoconvex domain D, the canonical solution u

given by ∂̄∗Nf is in W s+ 1
2 (D) where N is the ∂̄-Neumann operator (see Theo-

rem 5.2.6). Theorem 11.2.11 gives a solution operator which has a “gain” of 1/2
derivatives in Hölder spaces on strictly convex domains. Near a boundary point
of a strictly pseudoconvex domain, locally there exists a holomorphic change of
coordinates such that it is strictly convex (see Corollary 3.4.5). Globally, one can
also embed strongly pseudoconvex domains in Cn into strictly convex domains in
CN for some large N (see, e.g., Fornaess [For 2]). The Hölder 1/2-estimates proved
in Theorem 11.2.11 can be extended to any strictly pseudoconvex domain, but we
omit the details here.

11.3 Homotopy Formulas for ∂̄b on Strictly Convex Boundaries

Let D be a bounded domain in Cn with C2 boundary and let ρ be a C2 defining
function for D, normalized such that |dρ| = 1 on bD. f is a (0, q)-form on bD with
continuous coefficients, denoted by f ∈ C(0,q)(bD), if and only if

(11.3.1) f = τg,

where g is a continuous (0, q)-form in Cn and τ is the projection operator from
(0, q)-forms in Cn onto (0, q)-forms on bD ( i.e., (0, q)-forms which are pointwise
orthogonal to ∂̄ρ ). (11.3.1) is also equivalent to the following condition: for any
continuous (n, n− q − 1)-form φ defined in a neighborhood of bD, we have

(11.3.2)
∫

bD

f ∧ φ =
∫

bD

g ∧ φ.

To see that (11.3.1) and (11.3.2) are equivalent, we note that for any (0, q−1)-form
h with continuous coefficients in Cn,∫

bD

∂̄ρ ∧ h ∧ φ =
∫

bD

(dρ− ∂ρ) ∧ h ∧ φ = 0.

The space of (0, q)-forms with Hölder or Lp coefficients are denoted by Cα
(0,q)(bD)

or Lp
(0,q)(bD), where 0 < α < 1 and 1 ≤ p ≤ ∞. If u ∈ Lp

(0,q−1)(bD), u satisfies
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∂̄bu = f for some f ∈ Lp
(0,q)(bD) in the distribution sense if and only if for any

φ ∈ C∞(n,n−1−q)(C
n),

(11.3.3)
∫

bD

u ∧ ∂̄φ = (−1)q

∫
bD

f ∧ φ.

Let D− = D and D+ = Cn \D. We define the Bochner-Martinelli-Koppelman
transform for any f ∈ C(0,q)(bD) as follows:

(11.3.4)
∫

bD

Bq(ζ, z) ∧ f(ζ) =
{
F−(z), if z ∈ D−,

F+(z), if z ∈ D+.

It is easy to see that F− ∈ C∞(0,q)(D
−) and F+ ∈ C∞(0,q)(D

+). In fact, F− and
F+ are continuous up to the boundary if f is Hölder continuous and we have the
following jump formula:

Theorem 11.3.1. (Bochner-Martinelli-Koppelman jump formula). Let D
be a bounded domain in Cn with C2 boundary. Let f ∈ C1

(0,q)(bD), where 0 ≤ q ≤
n− 1. Then

(11.3.5) F− ∈ Cα
(0,q)(D

−
), F+ ∈ Cα

(0,q)(D
+
),

for every α with 0 < α < 1 and

(11.3.6) f = τ(F− − F+), z ∈ bD.

Proof. We first assume that the boundary bD is flat with bD = {(z1, · · · , zn) ∈ Cn |
Imzn = 0} and f has compact support in bD. The coefficients of B(ζ, z) are of the
form

ζ̄j − z̄j

|ζ − z|2n
, j = 1, · · · , n.

We rename the real coordinates zj = xj +iyj by setting xj+n = yj , j = 1, · · · , n−1,
and y = yn. Similarly we set ξj+n = ηj , j = 1, · · · , n− 1, where ζj = ξj + iηj . Set
x = (x1, · · · , x2n−1), ξ = (ξ1, · · · , ξ2n−1) and z = (x, y). We define

{ py(ξ) =
y

(|ξ|2 + y2)n
, y > 0,

qj
y(ξ) =

ξj
(|ξ|2 + y2)n

, y > 0, j = 1, · · · , 2n− 1.

Then py is a constant multiple of the Poisson kernel for the upper half space
R2n

+ = {z| y > 0} and the qj
y’s are the conjugate Poisson kernels. If we write

f =
∑′

|I|=q fIdz̄
I , then each summand in

∫
bD
B(ζ, z) ∧ f is a constant multiple of

the following form:

PfI(z) =
∫

ξ∈R2n−1

y

(|ξ − x|2 + y2)n
fI(ξ) dξ1 ∧ · · · ∧ dξ2n−1 = py ∗ fI ,
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or

QjfI(z) =
∫

ξ∈R2n−1

ξj − xj

(|ξ − x|2 + y2)n
fI(ξ) dξ1 ∧ · · · ∧ dξ2n−1 = qj

y ∗ fI ,

where j = 1, · · · , 2n − 1. The Poisson integral P is bounded from C0(R2n−1) to
C(R2n

+ ). Since it ts a convolution operator, it is bounded from C1
0 (R2n−1) to

C1(R2n
+ ).. The integral QjfI is the Poisson integral of the Riesz transform of fI . To

see that QjfI is bounded from C1
0 (R2n−1) to Cα(R2n

+ ), we use integration by parts
and arguments similar to those used in Corollary 11.1.3. This proves (11.3.5) when
the boundary is flat. For the general case, we note that the Bochner-Martinelli-
Koppelman kernel is obtained by differentiation of the fundamental solution e(z)
for4 (c.f. 11.1). Using integration by parts and arguments in the proof of Corollary
11.1.3, one can also prove similarly that F− ∈ Cα

(0,q)(D
−

) and F+ ∈ Cα
(0,q)(D

+
).

To prove (11.3.6), we first extend f to D such that the extension, still denoted
by f , is in C1

(0,q)(D). From Theorem 11.1.2, we have

(11.3.7)

∫
bD

Bq(·, z) ∧ f +
∫

D

Bq(·, z) ∧ ∂̄ζf + ∂̄z

∫
D

Bq−1(·, z) ∧ f

=

{
f(z), z ∈ D,

0, z ∈ Cn \D.

When z ∈ D, (11.3.7) was proved in (11.1.10). From the proof of (11.1.10), it is
easy to see that (11.3.7) holds for z ∈ Cn \D. Since B(ζ, z) is an integrable kernel
in Cn, the term

∫
D
B(·, z) ∧ ∂̄ζf is continuous up to the boundary bD. We denote

by νz the outward unit normal to bD at z. Then for z ∈ bD,

lim
ε→0+

(∫
D

Bq(·, z − ενz) ∧ ∂̄ζf −
∫

D

Bq(·, z + ενz) ∧ ∂̄ζf

)
= 0.

It remains to see that the term ∂̄z

∫
D
B(·, z) ∧ f when restricted to the boundary

has no jump in the complex tangential component. For any φ ∈ C∞(n,n−q−1)(C
n),

we have

(11.3.8)

lim
ε→0+

∫
bD

∂̄z

[∫
D

Bq−1(ζ, z − ενz) ∧ f(ζ)
]
∧ φ(z)

= (−1)q lim
ε→0+

∫
bD

[∫
D

Bq−1(ζ, z − ενz) ∧ f(ζ)
]
∧ ∂̄zφ(z)

= (−1)q

∫
bD

[∫
D

Bq−1(ζ, z) ∧ f(ζ)
]
∧ ∂̄zφ(z).

Similarly, we obtain

(11.3.9)
lim

ε→0+

∫
bD

∂̄z

[∫
D

Bq−1(ζ, z + ενz) ∧ f(ζ)
]
∧ φ(z)

= (−1)q

∫
bD

[∫
D

Bq−1(ζ, z) ∧ f(ζ)
]
∧ ∂̄zφ(z).
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Thus from (11.3.7)-(11.3.9), we get for any φ ∈ C∞(n,n−q−1)(C
n),∫

bD

f(z) ∧ φ(z) = lim
ε→0+

∫
bD

(∫
bD

[Bq(ζ, z − ενz)−Bq(ζ, z + ενz)] ∧ f(ζ)
)
∧ φ(z)

=
∫

bD

[F−(z)− F+(z)] ∧ φ(z).

Using (11.3.2), we have proved (11.3.6). This proves the theorem.

Corollary 11.3.2. Let D be a bounded domain in Cn with C2 boundary. For any
f ∈ C1

(0,q)(bD) with ∂̄bf = 0 on bD, we have

f = τ(F− − F+), z ∈ bD,

and ∂̄F− = 0 in D−, ∂̄F+ = 0 in D+. Furthermore, we have F− ∈ Cα
(0,q)(D

−
),

F+ ∈ Cα
(0,q)(D

+
) for any 0 < α < 1.

Proof. Since F− ∈ C∞(0,q)(D), differentiation under the integral sign and Stoke’s
theorem imply that for z ∈ D,

∂̄zF
−(z) = −

∫
bD

∂̄zBq(ζ, z) ∧ f(ζ)

=
∫

bD

∂̄ζBq+1(ζ, z) ∧ f(ζ)

=
∫

bD

dζ (B(ζ, z) ∧ f(ζ)) +
∫

bD

Bq+1(ζ, z) ∧ ∂̄ζf(ζ)

= 0.

Here we have used (11.1.9). Similarly, ∂̄F+ = 0 in D+. Using Theorem 11.3.1, the
corollary is proved.

One should compare Corollary 11.3.2 with Lemma 9.3.5. When q = 0, Corollary
11.3.2 implies that any CR function f can be written as the difference of two
holomorphic functions. Thus Corollary 11.3.2 generalizes the Plemelj jump formula
in C proved in Theorem 2.1.3.

From Corollary 11.3.2, every ∂̄b-closed form can be written as the jump of two
∂̄-closed forms. Solving ∂̄b is reduced to solving the ∂̄ problem on both D− and
D+. When D is strictly convex, we have already discussed how to solve ∂̄ on D by
integral formulas. We shall use Theorem 11.3.1 to derive homotopy formulas for ∂̄b

when D is a strictly convex domain with C2 boundary.
Let ρ be a strictly convex defining function for D. Define C1 functions G− and

G+ in Cn × Cn by

G−(ζ, z) =
(
∂ρ

∂ζ1
, · · · , ∂ρ

∂ζn

)
,(11.3.10)

G+(ζ, z) =
(
− ∂ρ

∂z1
, · · · ,− ∂ρ

∂zn

)
.(11.3.11)

Using Lemma 11.2.6, G−(ζ, z) is a Leray map for D. Let

G0(ζ, z) = (ζ̄1 − z̄1, · · · , ζ̄n − z̄n)

be the same as before.
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Lemma 11.3.3. Let D be a strictly convex domain in Cn with C2 boundary and ρ
be a C2 strictly convex defining function for D. For ζ, z ∈ bD, the kernels

(11.3.12) Ω− = Ω(G−), Ω+ = Ω(G+),

(11.3.13) Ω−0 = Ω(G−, G0), Ω+0 = Ω(G+, G0)

have singularities only when ζ = z. Furthermore, there exists a constant C > 0
independent of z such that

(11.3.14)
∫

bD

(|Ω−0(ζ, z)|+ |Ω+0(ζ, z)|) < C, z ∈ bD.

Proof. Set {Φ(ζ, z) = < G−(ζ, z), ζ − z >,
Ψ(ζ, z) = < G+(ζ, z), ζ − z > .

Note that Φ(ζ, z) = Ψ(z, ζ). Using Lemma 11.2.9, there exists a constant C > 0
such that for any ζ ∈ bD, z ∈ D−,

(11.3.15) ReΦ(ζ, z) ≥ C(ρ(ζ)− ρ(z) + |ζ − z|2).

Let U be some small tubular neighborhood of bD. Again the proof of Lemma 11.2.9
shows that (11.3.15) holds for ζ ∈ D+ ∩ U if U is sufficiently small. Reversing the
role of ζ and z, we have for any z ∈ D+ ∩ U and ζ ∈ D,

(11.3.16)
ReΨ(ζ, z) = ReΦ(z, ζ) = Re

n∑
i=1

− ∂ρ
∂zi

(ζi − zi)

≥ C(ρ(z)− ρ(ζ) + |ζ − z|2).

Inequality (11.3.16) holds for z ∈ D
+ ∩ U since ρ is strictly convex in a neigh-

borhood of bD. Thus Ω+ and Ω0+ have singularities only at ζ = z ∈ bD. Using
estimate (11.3.15), we have already proved that Ω−0 is absolutely integrable in
Lemma 11.2.10. Since Ψ satisfies a similar estimate (11.3.16), the proof for Ω+0

follows from the arguments of Lemma 11.2.10. This proves (11.3.14) and the lemma.

For ζ 6= z, we set

Γ = Ω−0 − Ω+0 =
n−2∑
q=0

Γq(ζ, z),

where Γq = Ω−0
q −Ω+0

q is the summand which is of degree (0, q) in z. Using Lemma
11.3.3, Γ is an integrable kernel on bD. If f ∈ C(0,q)(bD), the form

(11.3.17) Hqf =
∫

bD

Γq−1(·, z) ∧ f =
∫

bD

(Ω−0
q−1 − Ω+0

q−1) ∧ f

is a well defined (0, q−1)-form on bD with continuous coefficients. The next theorem
shows that Γ(ζ, z) is a fundamental solution for ∂̄b on strictly convex boundaries.
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Theorem 11.3.4 (First homotopy formula for ∂̄b on strictly convex bound-
aries). Let D be a strictly convex domain in Cn with C2 boundary and let ρ be a
C2 defining function for D. Then for any f ∈ C1

(0,q)(bD), 0 < q < n− 1, we have

(11.3.18) f(z) = ∂̄bHqf + τHq+1∂̄bf, z ∈ bD,

where Hq is defined in (11.3.17).

Proof. For any f ∈ C1
(0,q)(bD), using Theorem 11.3.1, the Bochner-Martinelli-

Koppelman transform F− and F+ defined by (11.3.4) are continuous up to the
boundary. We denote the boundary value of F− and F+ by (

∫
bD
B(ζ, z) ∧ f(ζ))−

and (
∫

bD
B(ζ, z) ∧ f(ζ))+ respectively. From (11.3.6), we have for any z ∈ bD,

(11.3.19)
f(z) = τ(F−(z)− F+(z))

= τ

(∫
bD

B(ζ, z) ∧ f(ζ)
)−
− τ

(∫
bD

B(ζ, z) ∧ f(ζ)
)+

.

Applying (11.1.4-ii), we have for any ζ ∈ bD,

∂̄ζ,zΩ−0 = −Ω0 + Ω− = −B(ζ, z) + Ω−, z ∈ D−,

∂̄ζ,zΩ+0 = −Ω0 + Ω+ = −B(ζ, z) + Ω+, z ∈ D+.

Thus, for z ∈ D−,

(11.3.20)

∫
bD

B(·, z) ∧ f

= −
∫

bD

∂̄ζ,zΩ−0(·, z) ∧ f +
∫

bD

Ω−(·, z) ∧ f

= ∂̄z

∫
bD

Ω−0(·, z) ∧ f +
∫

bD

Ω−0(·, z) ∧ ∂̄bf +
∫

bD

Ω−(·, z) ∧ f.

Similarly, for z ∈ D+,

(11.3.21)

∫
bD

B(·, z) ∧ f

= −
∫

bD

∂̄ζ,zΩ+0(·, z) ∧ f +
∫

bD

Ω+(·, z) ∧ f

= ∂̄z

∫
bD

Ω+0(·, z) ∧ f +
∫

bD

Ω+0(·, z) ∧ ∂̄bf +
∫

bD

Ω+(·, z) ∧ f.

Since G− is independent of z, Ω−(ζ, z) = Ω−0 (ζ, z). It follows that

(11.3.22)
∫

bD

Ω−(·, z) ∧ f = 0, when q 6= 0.

Also since G+ is independent of ζ, we have Ω+(ζ, z) = Ω+
n−1(ζ, z) and

(11.3.23)
∫

bD

Ω+(·, z) ∧ f = 0, when 0 ≤ q < n− 1.

From Lemma 11.3.3, Ω−0 and Ω+0 are absolutely integrable kernels. Substituting
(11.3.20)-(11.3.23) into (11.3.19) and letting z → bD, we have proved (11.3.18). This
proves the theorem.
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Corollary 11.3.5 (A solution operator for ∂̄b on strictly convex bound-
aries). Let D be a bounded strictly convex domain in Cn with C2 boundary bD.
For f ∈ C(0,q)(bD), 1 ≤ q ≤ n− 2, such that ∂̄bf = 0 on bD, define

(11.3.24) u(z) = Hqf =
∫

bD

(Ω−0
q−1 − Ω+0

q−1) ∧ f, z ∈ bD.

Then u ∈ C(0,q−1)(bD) and u satisfies ∂̄bu = f .

Proof. Using Lemma 11.3.3, we have

‖ u ‖L∞(bD) ≤ C ‖ f ‖L∞(bD) .

Thus u ∈ C(0,q−1)(bD). From Theorem 11.3.4, it follows that ∂̄bu = f in the
distribution sense.

Remark. Under the same assumption as in Theorem 11.3.4, we also have the
following formula when q = 0 (f is a function) and q = n− 1 (the top degree case):

When q = n− 1, for any f ∈ C1
(0,n−1)(bD),

f(z) = −τ
∫

bD

Ω+
n−1(·, z) ∧ f + ∂̄b

∫
bD

Γn−2(·, z) ∧ f.

The kernel Ω+ = Ω+
n−1 is a holomorphic function in ζ. If f is a (0, n − 1)-form

satisfying the compatibility condition (9.2.12 a), then∫
bD

Ω+
n−1(·, z) ∧ f = 0, z ∈ D and z → bD.

Thus, we have

f(z) = ∂̄b

∫
bD

Γn−2(·, z) ∧ f, z ∈ bD.

This gives us an explicit solution formula for the ∂̄b operator on strictly convex
boundaries for q = n− 1.

On the other hand, for any f ∈ C1(bD),

f(z) =
∫

bD

Ω−0 (·, z) ∧ f +
∫

bD

Γ0(·, z) ∧ ∂̄bf.

If f is a CR function, we have

f(z) =
∫

bD

Ω−0 (·, z) ∧ f, z ∈ bD.

Thus Ω−0 is another reproducing kernel for holomorphic functions in O(D)∩C1(D).
We have already proved in Corollary 2.2.2 that the Bochner-Martinelli kernel is
a reproducing kernel. However, Ω− can be viewed as a true generalization of the
Cauchy kernel to Cn since Ω− is holomorphic in z.

We shall derive another homotopy formula for ∂̄b on strictly convex boundaries.
Let Ω−+ be defined by

(11.3.25) Ω−+ = Ω(G−, G+),

where G− and G+ are defined by (11.3.10) and (11.3.11). We first show that Ω−+

is integrable.
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Lemma 11.3.6. Let D be a bounded strictly convex domain in Cn with C2 boundary
and let ρ be a strictly convex defining function for D. The kernel Ω−+

q−1(ζ, z),
1 ≤ q ≤ n − 1 has singularities only at ζ = z for ζ, z ∈ bD. Furthermore, there
exists a constant C such that for any z ∈ bD,

(11.3.26)
∫

bD

|Ω−+
q−1(ζ, z)| < C,

where C is independent of z.

Proof. Since

Ω−+
q−1 =

(
1

2πi

)n
< G−, dζ >

< G−, ζ − z >
∧ < G+, dζ >

< G+, ζ − z >

∧
(
< ∂̄ζ,zG

−, dζ >

< G−, ζ − z >

)n−q−1

∧
(
< ∂̄ζ,zG

+, dζ >

< G+, ζ − z >

)q−1

,

it follows from (11.3.15) and (11.3.16) that Ω−+
q−1 has singularities only at ζ = z.

Thus we only need to estimate the kernel when ζ is close to z. For a fixed z, let Uε =
{ζ| |ζ − z| < ε} be a sufficiently small neighborhood of z, Φ(ζ, z) = < G−, ζ − z >
and Ψ(ζ, z) = < G+, ζ−z > the same as before. Using the same change of variables
t = (t1, · · · , t2n−1) = (t′, t2n−1) as in Lemma 11.2.10 with t2n−1 = ImΦ(ζ, z) and
ti(z) = 0 for i = 1, · · · , 2n−1, there exists a constant γ0 > 0 such that for ζ, z ∈ bD,

(11.3.27)

{ |Φ(ζ, z)| ≥ γ0(|t′|2 + |t2n−1|),
|Ψ(ζ, z)| ≥ γ0(|t′|2 + |t2n−1|2),
γ0|t| ≤ |ζ − z| ≤ (1/γ0)|t|.

We note that

(11.3.28)
| < G−, dζ > ∧ < G+, dζ > | = | < G−, dζ > ∧ < G+ −G−, dζ > |

= O(|ζ − z|).

Let dS denote the surface element of bD. Repeating the arguments of (11.2.14),
using (11.3.27) and (11.3.28), there exists an A > 0 such that∫

bD∩Uε

|Ω−+
q−1(ζ, z)| ≤ C

(∫
bD∩Uε

|ζ − z|
|Φ|n−q|Ψ|q

dS

)
≤ C

∫
ζ∈bD∩{|ζ−z|<ε}

1
|Φ|n−q|ζ − z|2q−1

dS

≤ C
∫
|t|≤A

dt1dt2 · · · dt2n−1

(|t2n−1|+ |t′|2)n−q|t|2q−1

≤ C.

Thus, the kernel Ω−+ is absolutely integrable and (11.3.26) is proved.
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Theorem 11.3.7 (Second homotopy formula for ∂̄b on strictly convex
boundaries). Let D be a strictly convex domain in Cn with C2 boundary and let ρ
be a C2 defining function for D. Then for any f ∈ C1

(0,q)(bD), where 0 < q < n−1,
we have

(11.3.29) f(z) = ∂̄bRqf +Rq+1∂̄bf, z ∈ bD,

where

Rqf = τ

∫
bD

Ω−+
q−1(·, z) ∧ f

and Ω−+ is defined by (11.3.25).

Proof. Using Lemma 11.3.6, the kernel Ω−+ is absolutely integrable. From Theorem
11.3.4, we have when 0 < q < n− 1,

f(z) = ∂̄b

∫
ζ∈bD

Γ(ζ, z) ∧ f + τ

∫
ζ∈bD

Γ(ζ, z) ∧ ∂̄bf.

Using (11.1.4-iii), we have for ζ, z ∈ bD and ζ 6= z,

(11.3.30)
∂̄ζ,zΩ−+0 = ∂̄ζ,zΩ(G−, G+, G0)

= Ω−0 − Ω+0 − Ω−+ = Γ− Ω−+.

For each fixed z ∈ bD, we claim that Ω−+0 and ∂̄ζ,zΩ−+0 are absolutely integrable
kernels and

(11.3.31)
∣∣∣∣ ∫

bD

Ω(G−, G+, G0)
∣∣∣∣ < C,

(11.3.32)
∣∣∣∣ ∫

bD

∂̄ζ,zΩ(G−, G+, G0)
∣∣∣∣ < C,

where C is independent of z. Let Φ0 = |ζ − z|2 as before. Using (11.3.27) and
(11.3.28), (11.3.31) can be estimated by

∣∣∣∣ ∫
bD∩Uε

Ω(G−, G+, G0)
∣∣∣∣ ≤ C

∑
k1+k2+k3=n−3

∫
bD∩Uε

|ζ − z|2

|Φk1+1Ψk2+1Φk3+1
0 |

dS

≤ C
n−2∑
k=2

∫
|t|≤A

|t|2dt1dt2 · · · dt2n−1

(|t2n−1|+ |t′|2)n−k|t|2k
<∞.

Since ∂̄ζ,zΦ = ∂̄ζΦ = O(|ζ−z|) and ∂̄ζ,zΨ = ∂̄zΨ = O(|ζ−z|), we can use (11.3.27),
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(11.3.28) and differentiation term by term to get∣∣∣∣ ∫
bD∩Uε

∂̄ζ,zΩ(G−, G+, G0)
∣∣∣∣

≤ C
∑

k1+k2+k3=n−3

∫
bD∩Uε

|ζ − z|
|Φk1+1Ψk2+1Φk3+1

0 |
dS

+ C
∑

k1+k2+k3=n−2

∫
bD∩Uε

|ζ − z|3

|Φk1+1Ψk2+1Φk3+1
0 |

dS

≤ C
n−2∑
k=1

∫
|t|≤A

|t|dt1dt2 · · · dt2n−1

(|t2n−1|+ |t′|2)n−k|t|2k

+ C
n−1∑
k=1

∫
|t|≤A

|t|3dt1dt2 · · · dt2n−1

(|t2n−1|+ |t′|2)n−k|t|2k+2
<∞,

where dS is the surface element of bD. This proves (11.3.32). From (11.3.31) and
(11.3.32), we can interchange the order of integration and differentiation to obtain

(11.3.33)

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ f =
∫

ζ∈bD

∂̄ζΩ−+0 ∧ f − ∂̄z

∫
ζ∈bD

Ω−+0 ∧ f

=
∫

ζ∈bD

Ω−+0 ∧ ∂̄bf − ∂̄z

∫
ζ∈bD

Ω−+0 ∧ f,

where the last equality follows from Stokes’ theorem. The Stokes’ theorem can be
used here by first substituting Φε = Φ + ε, Ψε = Ψ + ε and Φε

0 = Φ0 + ε for Φ, Ψ
and Φ0 respectively in the kernel Ω−+0 and then letting ε↘ 0. Similarly,

(11.3.34)

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ ∂̄bf =
∫

ζ∈bD

∂̄zΩ−+0 ∧ ∂̄bf

= −∂̄z

∫
ζ∈bD

Ω−+0 ∧ ∂̄bf.

From (11.3.33) and (11.3.34), we have

∂̄bτ

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ f + τ

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ ∂̄bf = 0, z ∈ bD.

Thus using (11.3.30), we obtain

f(z) = ∂̄b

∫
ζ∈bD

Γ(ζ, z) ∧ f + τ

∫
ζ∈bD

Γ(ζ, z) ∧ ∂̄bf

=
(
∂̄b

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ f + τ

∫
ζ∈bD

∂̄ζ,zΩ−+0 ∧ ∂̄bf

)
+
(
∂̄b

∫
ζ∈bD

Ω−+ ∧ f + τ

∫
ζ∈bD

Ω−+ ∧ ∂̄bf

)
= ∂̄b

∫
ζ∈bD

Ω−+ ∧ f + τ

∫
ζ∈bD

Ω−+ ∧ ∂̄bf

for every z ∈ bD. This proves Theorem 11.3.7.

From Lemma 11.3.6 and Theorem 11.3.7, we have derived another solution for-
mula for ∂̄b.
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Corollary 11.3.8 (Second solution operator for ∂̄b on strictly convex boun-
daries). Let D be a strictly convex domain in Cn with C2 boundary and let ρ be
a C2 defining function for D. Let f ∈ C(0,q)(bD), where 0 < q < n − 1 such that
∂̄bf = 0 on bD. Setting u = Rqf , then u is in C(0,q−1)(bD) and ∂̄bu = f on bD.

Proof. That u is in C(0,q−1)(bD) follows from Lemma 11.3.6. Using Theorem 11.3.7,
we have ∂̄bu = f on bD in the distribution sense.

Next we shall estimate Rqf in the Hölder and Lp spaces. We use ‖ ‖Lp to denote
the Lp

(0,q)(bD) norms for (0, q)-forms.

Theorem 11.3.9 (Hölder and Lp estimates for ∂̄b on strictly convex bound-
aries). Let D be a strictly convex domain in Cn with C3 boundary and ρ be a C3

defining function for D. For any f ∈ Lp
(0,q)(bD), 1 ≤ p ≤ ∞ and 1 ≤ q < n − 1,

Rqf satisfies the following estimates:
(1) ‖Rqf‖

L
2n

2n−1−ε ≤ C‖f‖L1 , for any small ε > 0.

(2) ‖Rqf‖Lp′ ≤ C‖f‖Lp , where 1
p′ = 1

p −
1
2n for 1 < p < 2n.

(3) ‖Rqf‖Lp′ ≤ C‖f‖Lp , where p = 2n and p < p′ <∞.
(4) ‖Rqf‖Cα ≤ C‖f‖Lp , where 2n < p <∞ and α = 1

2 −
n
p , Cα is the Hölder

space of exponent α on bD.
(5) ‖Rqf‖

C
1
2
≤ C‖f‖L∞ .

Proof. We shall prove that the kernel Ω−+(ζ, z) is of weak type 2n
2n−1 on bD uni-

formly in ζ and in z. (For definition of weak type, see Definition B.5 in the Ap-
pendix). Since Ω−+ only has singularities when ζ = z, following the change of
coordinates ζ → t and (11.3.27), it suffices to show that the function

(11.3.35) K(t) =
1

(|t2n−1|+ |t′|2)n−q|t′|2q−1

is of weak type 2n
2n−1 , where t = (t1, · · · , t2n−2, t2n−1) = (t′, t2n−1) and |t| < 1. Let

Aλ be the subset

Aλ = {t ∈ R2n−1, |t| < 1 | K(t) > λ}, λ > 0,

and let m be the Lebesgue measure in R2n−1. We shall show that there exists a
constant c̃ > 0 such that

(11.3.36) m(Aλ) ≤
(
c̃

λ

) 2n
2n−1

, for all λ > 0.

By a change of variables t → t̃ such that ti = λ−
1

2n−1 t̃i, i = 1, · · · , 2n − 2 and
t2n−1 = λ−

2
2n−1 t̃2n−1, we have for some c > 0,

m(Aλ) = cλ−
2n

2n−1m(A1) ≤
(
c̃

λ

) 2n
2n−1

,

since m(A1) < ∞. This proves (11.3.36). It follows from Theorem B.11 in the
Appendix that the estimates (1), (2) and (3) hold.
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To prove (4) and (5), we define Ω̃−+ by

Ω̃−+ =
(

1
2πi

)n
< G−, dζ >

Φ(ζ, z)
∧ < G+, dζ >

Ψ(ζ, z)− µρ(z)

∧
∑

k1+k2=n−2

(
< ∂̄ζ,zG

−, dζ >

Φ(ζ, z)

)k1

∧
(
< ∂̄ζ,zG

+, dζ >

Ψ(ζ, z)− µρ(z)

)k2

,

where µ > 0 is sufficiently large. We first note that the kernel Ω−+ is the same as
Ω̃−+ when ζ, z ∈ bD. It follows from (11.3.15) and (11.3.16) that there exists a
C > 0 such that for any ζ ∈ bD and z ∈ D,

(11.3.37) ReΦ(ζ, z) ≥ C(|ρ(z)|+ |ζ − z|2),

and

(11.3.38) ReΨ̃(ζ, z) ≡ ReΨ(ζ, z)− µρ(z) ≥ C(|ρ(z)|+ |ζ − z|2),

if µ is chosen sufficiently large. Let Dδ = {z ∈ D | ρ(z) < −δ} for some δ > 0.
From the Hardy-Littlewood lemma (see Theorem C.1 in the Appendix), to prove
(4) and (5), it suffices to show that for some small δ0 > 0 and all 0 < δ < δ0,

(11.3.39) sup
z∈bDδ

∣∣∣∣gradz

∫
bD

Ω̃−+(·, z) ∧ f
∣∣∣∣ ≤ Cδ− 1

2−
n
p ‖f‖Lp ,

where 2n ≤ p ≤ ∞. After the same change of variables in a small neighborhood
|ζ − z| < ε that of (11.2.12), applying (11.3.37) and (11.3.38), (11.3.39) is proved
for p =∞ if the following holds:

(11.3.40)
∫
|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q+1|t′|2q−1
< Cδ−

1
2 ,

(11.3.41)
∫
|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q|t′|2q+1
< Cδ−

1
2 ,

where C is independent of δ. Inequality (11.3.40) is proved in (11.2.17) and (11.3.41)
is proved similarly since 1 ≤ q < n− 1.

To prove (11.3.39) when p = 2n, it suffices to show that

(11.3.42)
∫
|t|≤A

|f |dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q+1|t′|2q−1
< Cδ−1‖f‖L2n ,

(11.3.43)
∫
|t|≤A

|f |dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q|t′|2q+1
< Cδ−1‖f‖L2n ,
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where C is independent of δ. To prove (11.3.42), we set n∗ = 2n
2n−1 and use Hölder’s

inequality to obtain∫
|t|≤A

|f |dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n−q+1|t′|2q−1

≤ ‖f‖L2n

(∫
|t|≤A

dt1dt2 · · · dt2n−1

(δ + |t2n−1|+ |t′|2)n∗(n−q+1)|t′|n∗(2q−1)

) 1
n∗

≤ ‖f‖L2n

(∫
|t′|≤A

dt1dt2 · · · dt2n−2

(δ + |t′|2)n∗(n−q+1)−1|t′|n∗(2q−1)

) 1
n∗

≤ C‖f‖L2n

(∫ A

0

r2n−3dr

(δ + r2)n∗(n−q+1)−1rn∗(2q−1)

) 1
n∗

≤ C‖f‖L2n

(∫ A

0

dr

(δ + r2)
2n+1
2n−1 r

2n−3
2n−1

) 1
n∗

, (v = r/
√
δ)

≤ Cδ−1‖f‖L2n

(∫ ∞

0

dv

(1 + v2)
2n+1
2n−1 v

2n−3
2n−1

) 1
n∗

≤ Cδ−1‖f‖L2n .

This proves (11.3.42) and (11.3.43) can be proved similarly. Inequality (11.3.39) is
proved for p = 2n and p = ∞. The other cases are proved by interpolation (see
Theorem B.6 in the Appendix). This completes the proof of Theorem 11.3.9.

Remark. In Chapter 8, we have proved that when bD is strictly pseudoconvex
or more generally, bD satisfies condition Y(q), the canonical solution gains 1/2-
derivatives in the Sobolev spaces (see Theorem 8.4.14). Theorem 11.3.9 gives a
solution operator which gains 1/2-derivatives in the Hölder space on strictly con-
vex boundaries. This result again can be generalized to any strictly pseudoconvex
boundary by a partition of unity since the boundary can be convexified locally. We
note that the solution for ∂̄b defined by (11.3.24) has the same properties as the
solution given by Rqf by a similar proof. It is interesting to note that when bD
is the boundary of the Siegel upper half space, Rqf obtained by the integral ker-
nel method agrees with the solution obtained in Theorem 10.1.5 using a completely
different method. The reader should compare Theorem 11.3.9 with Theorem 10.1.5.

11.4 Solvability for ∂̄b on CR Manifolds with Boundaries

Let D be a strictly convex domain in Cn with C2 boundary bD and ω ⊂⊂ bD
be a connected open CR manifold with smooth boundary bω. We consider the ∂̄b

equation

(11.4.1) ∂bu = α on ω,
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where α is a (0, q)-form on ω, 1 ≤ q ≤ n− 2. In order for (11.4.1) to be solvable, it
is necessary that α satisfies

(11.4.2) ∂bα = 0 on ω.

Note that when q = n − 1, (11.4.2) is void and (11.4.1) is related to the local
nonsolvable phenomenon of Lewy’s equation. Due to the fact that the compatibility
condition (11.4.2) is satisfied only on ω instead of the whole boundary bD, this
question cannot be answered from the global solvability results obtained in the
previous section. The solvability of (11.4.1) depends on the special geometry of the
boundary bω.

In Chapter 9, we have seen that when q = n−1 with an additional compatibility
condition (9.2.12 a), one still can solve ∂̄b globally on bD. In fact, we have proved
that ∂̄b has closed range in L2

(0,q)(bD) on any pseudoconvex boundary bD for any
1 ≤ q ≤ n− 1. When we discuss the local solvability of (11.4.1), we must avoid the
top degree case (when q = n− 1) due to the Lewy example.

In this section we study the solvability of (11.4.1) on ω for any α satisfying
(11.4.2) on ω. When q = n−2, there is another compatibility condition for (11.4.1)
to be solvable without shrinking. This compatibility condition can be derived as
follows:

Let K be a compact set in Cn and O(K) be the set of functions which are defined
and holomorphic in some open neighborhood of K. Let α be a form in C(0,n−2)(ω)
such that there exists u ∈ C(0,n−3)(ω) with ∂̄bu = α on ω. Then for any g ∈ O(bω),
we have ∫

bω

α ∧ g ∧ dz1 ∧ · · · ∧ dzn =
∫

bω

∂̄bu ∧ g ∧ dz1 ∧ · · · ∧ dzn

=
∫

bω

∂̄(u ∧ g ∧ dz1 ∧ · · · ∧ dzn)

=
∫

bω

d(u ∧ g ∧ dz1 ∧ · · · ∧ dzn) = 0.

Thus, another necessary condition for (11.4.1) to be solvable for some u ∈ C(0,n−3)

(ω) is that

(11.4.2 a)
∫

bω

α ∧ g ∧ dz1 ∧ · · · ∧ dzn = 0 for all g ∈ O(bω).

It is easy to see that (11.4.2 a) is also necessary for the existence of a solution
u ∈ C(0,n−3)(ω) by approximation. This additional condition makes it necessary to
differentiate between 1 ≤ q < n − 2 and q = n − 2 when considering (11.4.1). At
the end of this section, we will discuss when condition (11.4.2) implies (11.4.2 a)
and give an example to show that (11.4.2 a) is indeed an additional compatibility
condition.

We first describe the geometry of the boundary bω of ω on which one can con-
struct a solution kernel for ∂̄b on ω. Let ρ be a strictly convex defining function
for D. The set ω is a domain in bD defined by some C2 function r defined in a
neighborhood of bD such that

(11.4.3) ω = {z ∈ Cn | ρ(z) = 0, r(z) < 0}.



290 Integral Representations for ∂ and ∂b

We require that r be a C2 smooth function depending on only one complex variable.
Without loss of generality, we may assume that r depends on zn only. This implies
that the hypersurface M0 = {z ∈ Cn | r(zn) = 0} is a Levi-flat hypersurface. The
boundary bω is defined by

bω = bD ∩M0 = {z ∈ Cn | ρ(z) = 0, r(zn) = 0}.

On bω, we assume

(11.4.4) dρ ∧ dr 6= 0 on bω.

Thus, the hypersurfaces bD and M0 intersect transversally over R. If

(11.4.5) ∂ρ ∧ ∂r 6= 0,

we say that bD and M0 intersect transversally over C. The points in

Σ = {z ∈ bω | ∂ρ ∧ ∂r = 0}

are called characteristic points. Any point in bω \ Σ is called a noncharacteristic
point or a generic point.

If p is a characteristic point on bω, the space T 1,0
p (bD) ∩ T 1,0

p (M0) has complex
dimension n − 1. Near the noncharacteristic point p ∈ bω, the set T 1,0

p (bD) ∩
T 1,0

p (M0) has complex dimension n−2. This jump in the dimension of the tangential
(1,0) vector fields at the characteristic points makes it difficult to study (11.4.1) by
imitating the L2 techniques used in Chapter 4. We shall study the solvability of
(11.4.1) by integral kernels.

The following example shows that in general, an open CR manifold with smooth
boundary has characteristic points.

Example. If D = {z ∈ Cn | |z| < 1} is the unit ball and r(zn) = Im zn, then the
boundary bω of the set

ω = {z ∈ Cn | |z| = 1, Imzn < 0}

has two characteristic points at Σ = {(0, · · · ,+1), (0, · · · ,−1)}, since ∂ρ ∧ ∂r = 0
if and only if z1 = · · · = zn−1 = 0.

If r(zn) = |zn|2 and bω is the boundary of

ω1 = {z ∈ Cn | |z| = 1, |zn|2 <
1
2
},

then bω1 has no characteristic points.

Notice that ω is simply connected but ω1 is not.

To use the integral kernels to solve (11.4.1), our starting point is the homotopy
formula derived in Theorem 11.3.7. From (11.3.29), we have that Ω−+ is a funda-
mental solution for ∂̄b on the compact hypersurface bD. Thus, it gives a solution
kernel for (11.4.1) if α has compact support in ω. To solve ∂̄b for forms which do
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not vanish on bω, we introduce new kernels constructed from the special defining
function r for ω. Set

(11.4.6) G[(ζ, z) = G[(ζ) =
(

0, · · · , 0, ∂r(ζn)
∂ζn

)
and

(11.4.7) η(ζ, z) =
∂r(ζn)
∂ζn

(ζn − zn) = < G[, ζ − z > .

Let

(11.4.8) ω[ =
1

2πi
< G[, dζ >

< G[, ζ − z >
=

1
2πi

dζn
ζn − zn

,

where the notation [ is used to indicate that the hypersurface M0 defined by r is
Levi flat. Note that ω[ is independent of r and

∂̄ζ,zω
[ = 0, ζn 6= zn.

In other words, it is holomorphic both in the ζ and z variables away from singular-
ities. Setting

(11.4.9) Ω[−+ = Ω(G[, G−, G+),

we see that Ω[−+ is an (n, n− 3)-form. We write

(11.4.10) Ω[−+(ζ, z) =
n−3∑
q=0

Ω[−+
q (ζ, z),

where

Ω[−+
q =

1
(2πi)n

dζn
ζn − zn

∧ < G−(ζ), dζ >
Φ(ζ, z)

∧ < G+(z), dζ >
Ψ(ζ, z)

∧
[
< ∂ζG

−(ζ), dζ >
Φ(ζ, z)

]n−3−q

∧
[
< ∂zG

+(z), dζ >
Ψ(ζ, z)

]q

away from the singularities. Thus Ω[−+
q has exactly q dz̄’s.

If ζ ∈ bω and z ∈ ω, we have

r(ζn)− r(zn) > 0.

It follows that ζn 6= zn when ζ ∈ bω and z ∈ ω. The kernel Ω[−+ is well defined
and smooth when ζ ∈ bω and z ∈ ω.

For α ∈ C(0,q)(ω), 1 ≤ q ≤ n− 2, we define

(11.4.11) Sqα =
∫

ζ∈ω

Ω−+
q−1(ζ, z) ∧ α(ζ) +

∫
ζ∈bω

Ω[−+
q−1 (ζ, z) ∧ α(ζ),

where Ω−+(ζ, z) and Ω[−+(ζ, z) are kernels defined by (11.3.25) and (11.4.10) re-
spectively. The following two theorems are the main results of this section.
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Theorem 11.4.1 (A homotopy formula for ∂̄b on CR manifolds with bound-
aries). Let D be a strictly convex domain in Cn with C2 boundary and let ρ be a
C2 strictly convex defining function for D. Let ω ⊂⊂ bD be an open connected
CR manifold with smooth boundary defined by (11.4.3) where r(z) = r(zn) is a C2

function. We assume that dρ∧dr 6= 0 on bω. For any α ∈ C1
(0,q)(ω), 1 ≤ q < n−2,

(11.4.12) α = ∂̄bSqα+ Sq+1∂̄bα, z ∈ ω,

where Sq is the integral operator defined by (11.4.11).

Theorem 11.4.2 (A solution operator for ∂̄b on CR manifolds with bound-
aries). Let ω be as in Theorem 11.4.1. For any α ∈ C(0,q)(ω), 1 ≤ q < n− 2, with
∂bα = 0 on ω, the form u = Sqα is in C(0,q−1)(ω) and ∂̄bu = α on ω, where Sq is
the integral operator defined by (11.4.11).

When q = n− 2, we assume furthermore that α satisfies the additional compati-
bility condition∫

bω

α ∧ g ∧ dz1 ∧ · · · ∧ dzn = 0 for all g ∈ O(bω),

the same conclusion holds.

To prove Theorems 11.4.1 and 11.4.2, we start with the following proposition:

Proposition 11.4.3. Let bD and ω be as in Theorem 11.4.1. For every f ∈
C1

(0,q)(ω), 1 ≤ q < n− 1,

f(z) = ∂̄b

∫
ω

Ω−+
q−1 ∧ f(ζ) + τ

∫
ω

Ω−+
q ∧ ∂̄bf(ζ)− τ

∫
bω

Ω−+
q ∧ f(ζ)

for every z ∈ ω, where Ω−+ is defined by (11.3.25).

Proof. We first extend f to f̃ on an open set ω̃ ⊃⊃ ω such that f̃ ∈ C1
(0,q)(ω̃). Let

χε ∈ C∞0 (ω̃) be cut-off functions such that χε ≡ 1 on ω for every ε and χε converges
to the characteristic function of ω as ε→ 0. Applying the homotopy formula proved
in Theorem 11.3.7 to χεf̃ , we have for z ∈ ω,

f(z) = χεf̃ = ∂̄b

∫
bD

Ω−+
q−1 ∧ χεf̃ + τ

∫
bD

Ω−+
q ∧ ∂̄b(χεf̃)

= ∂̄b

∫
bD

Ω−+
q−1 ∧ χεf̃ + τ

∫
bD

Ω−+
q ∧ χε∂̄bf̃

+ τ

∫
ω̃\ω

Ω−+
q ∧ (∂̄bχε) ∧ f̃ .

For z ∈ ω, we note that Ω−+ is smooth for ζ ∈ (ω̃\ω) and we can apply Stokes’
theorem to the third term on the right-hand side to obtain

lim
ε→0

∫
ω̃\ω

Ω−+
q ∧ ∂̄bχε ∧ f̃ = lim

ε→0

∫
ω̃\ω

Ω−+
q ∧ dχε ∧ f̃

= lim
ε→0

∫
ω̃\ω

d(χεΩ−+
q ∧ f̃)− lim

ε→0

∫
ω̃\ω

χεd(Ω−+
q ∧ f̃)

= −
∫

bω

Ω−+
q ∧ f.



11.4 Solvability for ∂̄b on CR Manifolds with Boundaries 293

Thus for any z ∈ ω, letting ε → 0, since Ω−+ is an absolutely integrable kernel by
Lemma 11.3.6 , we have

f(z) = lim
ε→0

(
∂̄b

∫
bD

Ω−+
q−1 ∧ χεf̃ + τ

∫
bD

Ω−+
q ∧ χε∂̄bf̃

)
+ lim

ε→0
τ

∫
ω̃\ω

Ω−+
q ∧ (∂̄bχε) ∧ f̃

= ∂̄b

∫
ω

Ω−+
q−1 ∧ f + τ

∫
ω

Ω−+
q ∧ ∂̄bf − τ

∫
bω

Ω−+
q ∧ f.

This proves the proposition.

Proof of Theorem 11.4.1. We define

Ω[− = Ω(G[, G−) and Ω[+ = Ω(G[, G+),

where G− and G+ are defined by (11.3.10) and (11.3.11) respectively. The kernels
Ω[−(ζ, z) and Ω[+(ζ, z) are smooth for (ζ, z) ∈ bω × ω. Using (11.1.4-iii), we have

(11.4.13) ∂ζ,zΩ[−+ = −Ω−+ + Ω[+ − Ω[−

for any ζ ∈ bω and z ∈ ω. Applying Proposition 11.4.3 and (11.4.13), we obtain for
z ∈ ω,

(11.4.14)

α(z) = ∂b

∫
ω

Ω−+
q−1(ζ, z) ∧ α(ζ) + τ

∫
ω

Ω−+
q (ζ, z) ∧ ∂̄bα(ζ)

+ τ

∫
bω

∂ζΩ[−+
q (ζ, z) ∧ α(ζ) + ∂z

∫
bω

Ω[−+
q−1 (ζ, z) ∧ α(ζ)

− τ
∫

bω

Ω[+
q (ζ, z) ∧ α(ζ) + τ

∫
bω

Ω[−
q (ζ, z) ∧ α(ζ).

We claim that for any α ∈ C1
(0,q)(ω), the following three equalities hold for z ∈ ω:

(i)
∫

bω

∂ζΩ[−+
q (ζ, z) ∧ α(ζ) =

∫
bω

Ω[−+
q (ζ, z) ∧ ∂̄bα(ζ),

(ii)
∫

bω

Ω[−
q (ζ, z) ∧ α(ζ) = 0, 1 ≤ q ≤ n− 2,

(iii)
∫

bω

Ω[+
q (ζ, z) ∧ α(ζ) = 0, 1 ≤ q < n− 2.

Since the kernel Ω[−+(ζ, z) has the factor dζ1∧ · · ·∧dζn, applying Stokes’ theorem,
we have ∫

bω

∂ζΩ[−+(ζ, z) ∧ α(ζ) =
∫

bω

dζ(Ω[−+(ζ, z) ∧ α(ζ))

+
∫

bω

Ω[−+(ζ, z) ∧ ∂̄bα(ζ),
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which proves (i). Since w[ is holomorphic in both the ζ and z variables, for any
ζ ∈ bω and z ∈ ω, we have

(11.4.15) Ω[− = ω[ ∧ ω− ∧ (∂ζω
−)n−2,

(11.4.16) Ω[+ = ω[ ∧ ω+ ∧ (∂zω
+)n−2.

(ii) follows from (11.4.15) and the fact that integration of an (n, n− 2 + q)-form
on bω is zero. Similarly when 1 ≤ q < n − 2, (iii) follows from type consideration
since each component in (11.4.16) has (n − 2) dz’s and no dζ’s. Substituting (i),
(ii) and (iii) into (11.4.14), we have proved Theorem 11.4.1.

Proof of Theorem 11.4.2. When q < n− 2, Theorem 11.4.1 implies Theorem 11.4.2
if α ∈ C1

(0,q)(ω). If α is only in C(0,q)(ω), we approximate α by a sequence αn ∈
C∞(0,q)(ω) such that αn → α and ∂̄bαn → 0 uniformly on ω. This is possible from the
proof of Friedrichs’ lemma (see Appendix D). It is easy to see that Sq+1∂̄bαn → 0
in the distribution sense in ω and Sqαn → Sqα uniformly on compact subset of ω.
Thus u = Sqα is in C(0,q−1)(ω) and ∂̄bu = α in the distribution sense in ω.

To show that the theorem holds when q = n− 2, we use (11.4.14) to obtain

(11.4.17) α = ∂̄bSn−2α−
∫

bω

Ω[+
n−2(ζ, z) ∧ α(ζ), z ∈ ω.

To show that the last integral in (11.4.17) vanishes when q = n− 2, notice that the
kernel Ω[+(ζ, z) is holomorphic in ζ in a neighborhood of bω for each fixed z ∈ ω.
Thus from our assumption on α, we have for z ∈ ω,∫

bω

Ω[+
n−2(ζ, z) ∧ α(ζ) = 0.

This proves the theorem.

In general, the additional assumption (11.4.2 a) on α when q = n−2 is necessary.
The next proposition characterizes all domains ω such that condition (11.4.2) will
imply condition (11.4.2 a). At the end of this section we shall give an example of a
∂̄b-closed form which does not satisfy condition (11.4.2 a).

Proposition 11.4.4. Suppose that O(ω̄) is dense in O(bω) (in the C(bω) norm).
Then any (0, n − 2)-form α ∈ C(0,n−2)(ω) satisfying condition (11.4.2) also satis-
fies condition (11.4.2 a). In particular, if polynomials are dense in O(bω), then
condition (11.4.2) implies condition (11.4.2 a).

Proof. From the assumption, for any g ∈ O(bω), there exists a sequence of holo-
morphic functions gn ∈ O(ω̄) such that gn converges to g in C(bω). We have, for
any ∂̄b-closed α,∫

bω

α ∧ g ∧ dz1 ∧ · · · ∧ dzn = lim
n→∞

∫
bω

α ∧ gn ∧ dz1 ∧ · · · ∧ dzn

= lim
n→∞

∫
ω

∂̄(α ∧ gn ∧ dz1 ∧ · · · ∧ dzn)

= lim
n→∞

∫
ω

∂̄bα ∧ gn ∧ dz1 ∧ · · · ∧ dzn

= 0.
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Thus condition (11.4.2) implies condition (11.4.2 a). The proposition is proved.

Using Proposition 11.4.4, we have the following:

Corollary 11.4.5. Let ω be as in Theorem 11.4.1. We assume that the set C \ S,
where

S = {zn ∈ C | z = (z1, · · · , zn) ∈ bω},

is connected. For any α ∈ C(0,q)(ω), 1 ≤ q ≤ n − 2, with ∂bα = 0 on ω, the form
u = Sqα is in C(0,q−1)(ω) and ∂̄bu = α on ω, where Sq is the integral operator
defined by (11.4.11).

Proof. Using Theorem 11.4.2, we only need to prove the assertion for q = n − 2.
From (11.4.17), it suffices to show that∫

bω

Ω[+
n−2(ζ, z) ∧ α(ζ) = 0, z ∈ ω.

An approximation argument can be applied using the additional assumption on the
set S.

Since the set C \ S is connected by assumption, by the Runge approximation
theorem, the function

h(ζn) =
1

ζn − zn

can be approximated by polynomials Pν(ζn, zn) for each fixed zn in the sup norm
on S. We approximate Ψ by Ψε(ζ, z) = Ψ(ζ, z)+ ε for some ε and let ε→ 0+. Then
Ψε(ζ, z) is smooth when z ∈ ω and ζ ∈ ω. Also Ψε is holomorphic in ζ ∈ ω. Define

ω+
ε =

1
2πi

< G+(ζ), dζ >
< G+(ζ), ζ − z > +ε

=
1

2πi
< G+(ζ), dζ >

Ψ(ζ, z) + ε
.

We can apply Stokes’ theorem first to the modified kernel with Ψ substituted by
Ψε, letting ε→ 0, to obtain for z ∈ ω,∫

bω

Ω[+
n−2(ζ, z) ∧ α(ζ)

= lim
ν→∞

lim
ε→0+

∫
bω

Pν(ζn, zn)dζn ∧ ω+
ε ∧ (∂zω

+
ε )n−2 ∧ α(ζ)

= lim
ν→∞

lim
ε→0+

∫
ω

∂ζ

(
Pν(ζn, zn)dζn ∧ ω+

ε ∧ (∂zω
+
ε )n−2 ∧ α(ζ)

)
= 0

since every term in the integrand is ∂ζ-closed. This proves the corollary.

Example. We note that the additional assumption on α or ω when q = n − 2
cannot be removed. Let bD = {z | |z1|2 + |z2|2 + |z3|2 = 1} be the unit sphere in
C3. Let

ω = bD ∩ {z ∈ C3 | |z3|2 < 1/2}.



296 Integral Representations for ∂ and ∂b

Then S = {z3 ∈ C | |z3|2 = 1/2} does not satisfies the hypothesis imposed on S in
Corollary 11.4.5 since C \S is not connected. We shall show that equation ∂̄bu = α
is not solvable for q = 1 in ω. Let

α =
z̄1dz̄2 − z̄2dz̄1
(|z1|2 + |z2|2)2

.

Then α is a constant multiple of the Bochner-Martinelli-Koppelman kernel in C2

and ∂̄α = 0 for |z1|2 + |z2|2 6= 0. Thus α ∈ C∞(0,1)(ω) and

∂̄bα = 0 on ω.

If α = ∂̄bu for some u ∈ C(ω), then α must satisfy∫
bω

α ∧ 1
iz3

dz1 ∧ dz2 ∧ dz3 =
∫

bω

α ∧ dz1 ∧ dz2 ∧ dθ3 = 0,

where dθ3 = dz3/(iz3). On the other hand, we have that∫
bω

α ∧ dz1 ∧ dz2 ∧ dθ3 = 8π
∫
{|z1|2+|z2|2= 1

2}
(z̄1dz̄2 − z̄2dz̄1) ∧ dz1 ∧ dz2

= 16π
∫
{|z1|2+|z2|2< 1

2}
dz̄1 ∧ dz̄2 ∧ dz1 ∧ dz2

6= 0.

Thus there does not exist any solution u ∈ C(ω). There does not exist any u ∈ C(ω)
satisfying ∂̄bu = α either, by an approximation argument. Thus the assumption on
α in Theorem 11.4.2 cannot be removed. We note that O(ω) is not dense in O(bω)
here.

On the other hand, if

ω = bD ∩ {z ∈ Cn | Im z3 < 0},

then S = {z3 ∈ C | −1 < Rez3 < 1, Im z3 = 0} and C \ S is connected. Thus it
satisfies the hypothesis imposed in Corollary 11.4.5 and we can solve (11.4.1) for all
∂̄b-closed form α ∈ C(0,q)(ω) when 1 ≤ q ≤ n− 2.

11.5 Lp Estimates for Local Solutions of ∂̄b

Let D be a strongly pseudoconvex domain in Cn with smooth boundary M .
we shall study the local solvability of the tangential Cauchy-Riemann equations ∂b

near a point z0 in M . After a quadratic change of coordinates we may assume that
z0 = 0 and there exists a strictly plurisubharmonic defining function ρ(z) for M
which has the following form near the origin:

(11.5.1) ρ(z) = −Im zn +
n∑

j,k=1

Ajkzjzk +O(|z|3),
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where (Ajk) is a positive definite hermitian matrix (see the proof of Corollary 3.4.5).
The function ρ is strictly convex near the origin. Let U be a small neighborhood of
0 and δ0 > 0 be sufficiently small. We define {ωδ} by

(11.5.2) ωδ = {z ∈M ∩ U | Im zn < δ}, 0 < δ < δ0.

We can always choose U and δ0 > 0 sufficiently small such that each ωδ is an open
neighborhood in a connected strictly convex hypersurface whose boundary lies in a
flat surface. It is easy to see that ∩δωδ = {0}. Thus the {ωδ} forms a neighborhood
base at 0.

Using Theorem 11.4.2 and Corollary 11.4.5, there is a solution operator Sqα
satisfying ∂̄bSqα = α on ωδ for any ∂̄b-closed α ∈ C(0,q)(ωδ). Our main goal is to
prove that there exists a solution operator satisfying Lp estimates on ωδ.

Theorem 11.5.1 (Lp existence and estimates for local solutions of ∂̄b). Let
M be a strongly pseudoconvex hypersurface in Cn and z0 ∈ M . There exists a
neighborhood base {ωδ} of z0 such that for any α ∈ Lp

(0,q)(ωδ), 1 ≤ q ≤ n − 2 and
1 < p < ∞, satisfying ∂bα = 0, there exists u ∈ Lp

(0,q−1)(ωδ) satisfying ∂bu = α.
Furthermore, there exists a positive constant c such that the following estimate holds:

(11.5.3) ‖u‖Lp
(0,q−1)(ωδ) ≤ c‖α‖Lp

(0,q)(ωδ),

where c depends on p, ωδ but is independent of α.

Corollary 11.5.2. Let M and ωδ be as in Theorem 11.5.1. The range of ∂b is
closed in the Lp

(0,q)(ωδ) space, where 1 < p <∞ and 1 ≤ q ≤ n− 2.

Corollary 11.5.3. Let M and ωδ be as in Theorem 11.5.1. For each 1 ≤ q < n−2,
there exists a solution operator S̃q given by integral kernels such that for any ∂b-
closed α ∈ Lp

(0,q)(ωδ), 1 < p <∞, we have ∂̄bS̃qα = α and

‖S̃qα‖Lp
(0,q−1)(ωδ) ≤ c‖α‖Lp

(0,q)(ωδ),

where c depends on p, ωδ but is independent of α.

The rest of this section is to prove Theorem 11.5.1. Let ωδ be defined by (11.5.2).
To prove Theorem 11.5.1, we first prove the Lp estimates for the solution constructed
for ∂b-closed forms with C(ωδ) coefficients in Theorem 11.4.2.

Proposition 11.5.4. Let M be a strongly pseudoconvex CR manifold defined by
(11.5.1) and ωδ be defined by (11.5.2). For any α ∈ C(0,q)(ωδ) such that ∂bα = 0,
1 ≤ q ≤ n − 2, there exists a solution u ∈ C(0,q−1)(ωδ) satisfying ∂bu = α on ωδ.
Furthermore, for every 1 < p <∞, there exists a constant Cp > 0 such that

(11.5.4) ‖u‖Lp
(0,q−1)(ωδ) ≤ Cp‖α‖Lp

(0,q)(ωδ),

where Cp is independent of α and small perturbation of δ.

Proof. Let

(11.5.5) u(z) ≡ Sqα(z) = I1(α) + I2(α),
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where
I1(α) =

∫
ωδ

Ω−+
q−1(ζ, z) ∧ α(ζ)

and
I2(α) =

∫
bωδ

Ω[−+
q−1 (ζ, z) ∧ α(ζ).

Since the set C\S is connected. it follows from Theorem 11.4.2 and Corollary 11.4.5
that for every 1 ≤ q ≤ n− 2, ∂̄bu = α on ωδ and u ∈ C(0,q−1)(ωδ).

To prove Proposition 11.5.4, we only need to prove that u satisfies (11.5.4). Using
Theorem 11.3.9, there exists a C > 0 such that the integral I1(α) satisfies

(11.5.6) ‖ I1(α) ‖Lp(ωδ) ≤ C ‖ α ‖Lp(ωδ) .

We only need to estimate I2(α).
Since I2(α) is an integral on bωδ, we rewrite I2(α) to be an integral on ωδ to

facilitate the Lp estimates. Since the kernel Ω[−+(ζ, z) has singularities at ζn = zn

for any ζ, z ∈ ωδ, we shall modify the kernel first so that Stokes’ theorem can be
applied.

Let r(z) = r(zn) = Im zn. Then for any ζ, z ∈ ωδ,

(11.5.7) r(z)− r(ζ)− 2Re
∂r(ζ)
∂ζn

(zn − ζn) = 0.

We set

η̃(ζ, z) =
∂r(ζ)
∂ζn

(ζn − zn)− (r(ζ)− δ)

= η(ζ, z)− (r(ζ)− δ).

It follows from (11.5.7) that

(11.5.8)

Re η̃(ζ, z) =
1
2

(
−r(ζ)− r(z)

)
+ δ

=
1
2

(
−
(
r(ζ)− δ

)
−
(
r(z)− δ

))
> 0

for all ζ, z ∈ ωδ. Thus Re η̃(ζ, z) vanishes only when ζ and z are both in bωδ. Also
we have

η̃(ζ, z) = η(ζ, z), when ζ ∈ bωδ and z ∈ ωδ.

We define the kernel Ω̃[−+(ζ, z) by modifying Ω[−+ with η̃ substitute for η. Set

(11.5.9) Ω̃[−+(ζ, z) =
n−3∑
q=0

Ω̃[−+
q (ζ, z),

where

Ω̃[−+
q (ζ, z) =

1
(2πi)n

∂r
∂ζn

dζn

η̃(ζ, z)
∧ < G−(ζ), dζ >

Φ(ζ, z)
∧ < G+(z), dζ >

Ψ(ζ, z)

∧
[
< ∂ζG

−(ζ), dζ >
Φ(ζ, z)

]n−3−q

∧
[
< ∂zG

+(z), dζ >
Ψ(ζ, z)

]q
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away from the singularities. The kernel Ω̃[−+
q has exactly q dz̄’s. Since

(11.5.10) Ω̃[−+(ζ, z) = Ω[−+(ζ, z), when ζ ∈ bωδ and z ∈ ωδ,

we shall substitute Ω̃[−+ in I2(α) for Ω[−+. The advantage is that Ω̃[−+ is integrable
for each fixed z ∈ ωδ since η̃ satisfies (11.5.8). Thus for any z ∈ ωδ, by Stokes’
theorem and a limiting argument (substituting Φε = Φ + ε and Ψε = Ψ + ε for
Φ and Ψ, approximating α by smooth forms αε such that αε → α and ∂bαε → 0
uniformly on ωδ, then letting ε↘ 0), we can write

(11.5.11)
I2(α)(z) =

∫
ζ∈bωδ

Ω̃[−+
q−1 ∧ α(ζ) =

∫
ζ∈ωδ

∂ζ

(
Ω̃[−+

q−1 ∧ α(ζ)
)

=
∫

ζ∈ωδ

∂ζΩ̃[−+
q−1 ∧ α(ζ).

From (11.3.28), we have

| < G−(ζ), dζ > ∧ < G+(z), dζ > | = O(|ζ − z|).

Thus for every 1 ≤ q < n− 1,

(11.5.12) Ω̃[−+
q−1 (ζ, z) =

O(|ζ − z|)
Φ(ζ, z)n−q−1Ψ(ζ, z)q η̃(ζn, zn)

.

We write

∂ζΩ̃[−+
q−1 (ζ, z) =

1
(2πi)n

∂ζ

[ ∂r
∂ζn

dζn

η̃(ζ, z)
∧ < G−, dζ >

Φ(ζ, z)
∧ < G+ −G−, dζ >

Ψ(ζ, z)

∧
(
< ∂ζG

−, dζ >

Φ(ζ, z)

)n−2−q

∧
(
< ∂zG

+, dζ >

Ψ(ζ, z)

)q−1]
.

It follows from the definition of Φ and Ψ that{
∂ζΦ(ζ, z) = O(|ζ − z|),
∂ζΨ(ζ, z) = 0.

Using < G−, dζ >= ∂ζρ, ∂r
∂ζn

dζn = ∂ζr and estimate (11.3.15), after grouping terms
of the same form together, we have

|∂ζΩ̃[−+
q−1 (ζ, z)| ≤ C

∑[
|ζ − z|

|η̃(ζ, z)||Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q

+
|∂ζρ ∧ ∂ζr ∧ V2n−3(ζ)|

|η̃(ζ, z)||Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q

+
|ζ − z||∂ζρ ∧ ∂ζr ∧ ∂ζ η̃ ∧ V2n−4(ζ)|
|η̃(ζ, z)|2|Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q

]
,
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where
∑

ranges over all possible monomials V2n−3(ζ) and V2n−4(ζ) of degree 2n−3
and 2n− 4 respectively in dζ1, dζ1, · · · , dζn, dζn. Let

K1(ζ, z) =
|ζ − z|

|η̃(ζ, z)||Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q
,(11.5.13)

K2(ζ, z) =
|∂ζρ ∧ ∂ζr ∧ V2n−3(ζ)|

|η̃(ζ, z)||Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q
,(11.5.14)

K3(ζ, z) =
|ζ − z||∂ζρ ∧ ∂ζr ∧ ∂ζ η̃ ∧ V2n−4(ζ)|
|η̃(ζ, z)|2|Φ(ζ, z)|n−1−q|Ψ(ζ, z)|q

.(11.5.15)

We define

Ji(α)(z) =
∫

ζ∈ωδ

|α(ζ)|Ki(ζ, z)dm2n−1(ζ), i = 1, 2, 3,

where m2n−1(ζ) is the surface measure of ωδ. For z ∈ ωδ, using |η̃(ζ, z)| > 0,∫
ζ∈ωδ

|Ki(ζ, z)|dm2n−1(ζ) ≤ Cz, i = 1, 2, 3,

where Cz depends on z. Thus the operator Ji is bounded from Lp(ωδ) to Lp(ωδ, loc),
i = 1, 2, 3. Near the boundary bωδ, the singularities of Ki are not absolutely
integrable, but are of Hilbert integral type (see Theorem B.9 in the Appendix).
However, we shall show that there exists a constant c > 0 such that

(11.5.16) ‖Ji(α)‖Lp(ωδ) ≤ c‖α‖Lp(ωδ) i = 1, 2, 3.

Let rδ(ζn) = r(ζn) − δ be the defining function for ωδ. To prove (11.5.16), we use
the following lemma:

Lemma 11.5.5. If for every 0 < ε < 1, there exist a constant cε such that Ki(ζ, z)
satisfies

(11.5.17)
∫

ζ∈ωδ

|rδ(ζn)|−εKi(ζ, z) ≤ cε|rδ(zn)|−ε for all z ∈ ωδ,

(11.5.18)
∫

z∈ωδ

|rδ(zn)|−εKi(ζ, z) ≤ cε|rδ(ζn)|−ε for all ζ ∈ ωδ,

then for 1 < p <∞, there exists cp > 0 such that

‖Ji(α)‖Lp(ωδ) ≤ cp‖α‖Lp(ωδ)

for all α ∈ Lp(ωδ).
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Proof. By Hölder’s inequality and (11.5.17), we have

|Ji(α)(z)|p ≤
∫

ζ∈ωδ

Ki(ζ, z)|α(ζ)|p|rδ(ζn)|εp/p′dm2n−1(ζ)

·
(∫

ζ∈ωδ

Ki(ζ, z)|rδ(ζn)|−εdm2n−1(ζ)
)p/p′

≤ (cε)p/p′ |rδ(zn)|−εp/p′
∫

ζ∈ωδ

Ki(ζ, z)|α(ζ)|p|rδ(ζn)|εp/p′dm2n−1(ζ),

where 1
p + 1

p′ = 1. Integrating with respect to z and interchanging the order of
integration we obtain, using (11.5.18),∫

z∈ωδ

|Ji(α)(z)|pdm2n−1

≤ (cε)p/p′
∫

ζ∈ωδ

[∫
z∈ωδ

|rδ(zn)|
−εp
p′ Ki(ζ, z)dm(z)

]
· |α(ζ)|p|rδ(ζn)|

εp
p′ dm(ζ)

≤ (cε)p/p′(cεp/p′)‖α‖pLp(ωδ).

This proves Lemma 11.5.5 with the constant cp = (cε)1/p′(cεp/p′)1/p if one chooses
ε so small such that 0 < ε < 1 and 0 < εp/p′ < 1.

Thus, to prove (11.5.16), it suffices to prove (11.5.17) and (11.5.18) for i = 1, 2, 3.
Using a partition of unity in both ζ and z variables, we can assume that ζ lies in
a coordinate patch U and z lies in a coordinate patch W . When U ∩W = ∅, then
|Φ(ζ, z)| > 0 and |Ψ(ζ, z)| > 0 for ζ ∈ U and z ∈ W and the estimation will be
simpler. We assume U and W are the same coordinate patch and omit the other
cases.

Let Σ denote the set of the characteristic points, i.e., points where ∂ρ ∧ ∂r = 0
on bωδ. We first assume that U ∩ Σ = ∅. We shall choose special coordinates for
ωδ ∩ U .

Since dρ ∧ dr 6= 0 on bωδ, we can choose r(ζn) as a coordinate function near
U ∩ ωδ. Since dζΦ(ζ, z)|ζ=z = ∂ρ(ζ) and ∂ρ = −∂ρ on ωδ, it follows that ∂ρ(ζ) =
1
2 (∂ρ− ∂ρ) = idζImΦ(ζ, z)|ζ=z. Thus,

∂ρ(ζ) = idζImΦ(ζ, z) +O(|ζ − z|).

Similarly for ζ ∈ bωδ, we have

∂ζr = idζImη̃(ζn, zn) +O(|ζn − zn|).

Thus, if ζ ∈ bωδ \ Σ,

dr(ζn) ∧ dζImΦ(ζ, z) ∧ dζImη̃(ζn, zn) ∧ dρ(ζ)|ζ=z

= −dr(ζn) ∧ ∂ζρ(ζ) ∧ ∂ζr(ζn) ∧ dρ(ζ)
= −∂ζr ∧ ∂ζρ ∧ ∂ζr ∧ ∂ζρ

6= 0.
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Let ImΦ(ζ, z) = t1 and Imη̃(ζ, z) = t2. We can choose coordinates (r(ζn), t1, · · · ,
t2n−2) with ti(z) = 0, i = 1, · · · , 2n − 2. From (11.3.15), (11.3.16) and (11.5.8),
there exists c > 0 with

|Φ(ζ, z)| ≥ c(|t|2 + |t1|),(11.5.19)
|ReΨ(ζ, z)| ≥ c|t|2,(11.5.20)
|Reη̃(ζ, z)| ≥ c(|r(ζ)− δ|+ |r(z)− δ|).(11.5.21)

It follows that there exists C > 0 independent of z such that

|K1(ζ, z)| ≤
C

(|r(ζ)− δ|+ |r(z)− δ|)|t|2n−3
,

|K2(ζ, z)| ≤
C

(|r(ζ)− δ|+ |r(z)− δ|)(|t1|+ |t|2)n−1−q|t|2q
,

|K3(ζ, z)| ≤
C

(|r(ζ)− δ|+ |r(z)− δ|+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1
.

Estimate (11.5.17) will be proved for i = 1, 2, 3 when ζ and z are away from the
characteristic points using the following lemma (letting µ = |r(ζ) − δ| and σ =
|r(z)− δ|).

Lemma 11.5.6. Let t = (t1, · · · , t2n−2) and dt = dt1dt2 · · · dt2n−2. For any 0 <
ε < 1, A > 0, there exists ciε > 0, i = 0, 1, 2, 3, such that the following inequalities
hold: For any σ > 0, 1 ≤ q ≤ n− 2,

(1)
∫ ∞

0

µ−ε

σ + µ
dµ ≤ c0εσ−ε,

(2)
∫ ∞

0

∫
|t|≤A

µ−ε

(σ + µ)|t|2n−3
dtdµ ≤ c1εσ−ε,

(3)
∫ ∞

0

∫
|t|≤A

µ−ε

(σ + µ)(|t1|+ |t|2)n−1−q|t|2q
dtdµ ≤ c2εσ−ε,

(4)
∫ ∞

0

∫
|t|≤A

µ−εdtdµ

(σ + µ+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1
≤ c3εσ−ε.

Proof. (1) follows from a change of variables to the case when σ = 1. In fact one
can show using contour integration that c0ε = π/ sinπε.

Estimate (2) follows from (1) by using polar coordinates for t variables. To prove
(4), we integrate t1, t2 first and then use polar coordinates for t′′ = (t3, · · · , t2n−2)
and apply (1) to obtain∫ ∞

0

∫
|t|≤A

µ−ε

(σ + µ+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1
dtdµ

≤ C
∫ ∞

0

∫
|t′′|≤A

| log |t′′||µ−ε

(σ + µ)(|t′′|2)n−2−q|t′′|2q−1
dt′′dµ

≤ C
∫ ∞

0

(∫
0<v≤A

| log v|v2n−5

v2n−5
dv

)
µ−ε

(σ + µ)
dµ

≤ c3εσ−ε.
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Estimate (3) can be similarly proved.

Thus (11.5.17) is proved when there are no characteristic points. Similarly one
can prove (11.5.18) by reversing the roles of Φ and Ψ, ζ and z.

Near any characteristic point z ∈ Σ, we cannot choose r(ζn), ImΦ (ζ, z) and
Imη̃(ζ, z) as coordinates since they are linearly dependent at ζ = z. The kernel K1

is less singular than K2 or K3 and can be estimated as before by choosing r(ζn)
and Im Φ = t1 as coordinates. To estimate (11.5.17) and (11.5.18) when i = 2, 3,
one observes that at characteristic points, the numerator of each Ki(ζ, z), i = 2, 3
also vanishes. We shall prove (11.5.17) for K3 and the case for K2 is similar.

We write
g1(ζ, z) = ImΦ(ζ, z),

g2(ζ, z) = Imη̃(ζ, z) = −1
2
Re(ζn − zn).

It is easy to see that dζImη̃(ζ, z) ∧ dµ = −1
i ∂r ∧ ∂r. Since ∂ρ = (∂ρ − ∂̄ρ)/2 =

idζImΦ(ζ, z) +O(|ζ − z|), we have, setting µ(ζn) = δ − r(ζn),

dg1(ζ, z) ∧ dg2(ζ, z) ∧ dµ(ζ)
∣∣
ζ=z

= −dζImΦ(ζ, z) ∧ dζImη̃(ζ, z) ∧ dr(ζ)
∣∣
ζ=z

= ∂ζρ ∧ ∂r(ζ) ∧ ∂r(ζ)
∣∣
ζ=z

.

Thus (11.5.17) will be proved for i = 3 if we can prove that

(11.5.22) J̃3(z) ≤ Cσ−ε,

where J̃3(z) is the integral∫
ζ∈U∩ωδ

µ−ε|dg1(ζ, z) ∧ dg2(ζ, z) ∧ dµ ∧ V2n−4(ζ)|
(|g2(ζ, z)|+ µ+ σ)2(|g1(ζ, z)|+ |ζ − z|2)n−1−q|ζ − z|2q−1

.

The other terms are less singular and can be estimated as before.
Let x = (x1, · · · , x2n−2, µ) = (x′, µ) be real coordinates on U ∩ ωδ such that

z = (0, · · · , 0, µ(z)) where xi = Re(ζj−zj) or xi = Im(ζj−zj) for some j = 1, · · · , n.
In this coordinate system, we have, for some A > 0, J̃3 is bounded by the integral

J̃3(z) =
∫
|x|<A

µ−ε|dg1(x, z) ∧ dg2(x, z) ∧ dµ ∧ V2n−4(x)|
(|g2(x, z)|+ µ+ σ)2(|g1(x, z)|+ |x|2)n−1−q|x|2q−1

,

where V2n−4 is a monomial of degree 2n − 4 in dx1, · · · , dx2n−2. Without loss of
generality, we can assume that V2n−4 = dx3 ∧ · · · ∧ dx2n−2. Let BA = {x ∈ R2n−1 |
|x| < A}. The integral J̃3(z) is the pull-back of the integral I,

I =
∫

t=(t′,µ)∈G(BA)

µ−εdt1 ∧ dt2 · · · ∧ dt2n−2dµ

(σ + µ+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1
,

by the map
G : x ∈ BA → G(x) = (g1, g2, x3, · · · , x2n−2, µ).
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I can be estimated by

I =
∫

t=(t′,µ)∈G(BA)

µ−εdt1 ∧ dt2 · · · ∧ dt2n−2dµ

(σ + µ+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1

≤
∫ ∞

0

∫
|t′|≤A′

µ−εdt1 ∧ dt2 · · · ∧ dt2n−2dµ

(σ + µ+ |t2|)2(|t1|+ |t|2)n−1−q|t|2q−1
≤ c3εσ−ε,

using (4) in Lemma 11.5.6. However, the set {(g1, g2, x3, · · · , x2n−2, µ)||x| < A}
may cover the image G(BA) infinitely many times. We have to modify the function
g1 to guarantee a finite covering. We approximate g1(x, z) by the polynomial g̃1(x, z)
where g̃1(x, z) is the second-order Taylor polynomial in x of g1(x, z) at the point z.
From (11.3.15) we have for |x| sufficiently small,

(11.5.23) |Φ(x, z)| ≥ c(|g̃1(x, z)|+ |x|2)

where c is independent of z.
For each fixed a1 ∈ R and fixed x2, x3, · · · , x2n−2, µ > 0, the equation g2(x, z) =

a1 has at most two solutions by the strict convexity of the defining function ρ for ωδ.
For each fixed a ∈ G(BA), (g̃1, g2, x3, · · · , x2n−2, µ) = a has at most four solutions
from Bezout’s theorem (see [GrHa 1]) since g̃1 is a second-order polynomial in x.
With (11.5.23), one can estimate (11.5.22) by substituting g1(x, z) by g̃1(x, z) plus
remaining terms which are less singular. We have∫

|x|<A

µ−ε|dg̃1(x, z) ∧ dg2(x, z) ∧ dµ ∧ V2n−4(x)|
(|g2(x, z)|+ µ+ σ)2(|g̃1(x, z)|+ |x|2)n−1−q|x|2q−1

≤ CI ≤ Cεσ
−ε

for any 0 < ε < 1. This proves (11.5.22). Reversing the roles of Φ and Ψ, and ζ and
z, one can show (11.5.18) for i = 3 similarly. This proves (11.5.16) for i = 3 and

(11.5.24) ‖ I2(α) ‖Lp(ωδ) ≤ C ‖ α ‖Lp(ωδ) .

Combining (11.5.6) and (11.5.24), (11.5.4) follows with u = Sqα. We have proved
Proposition 11.5.4.

In order to prove Theorem 11.5.1, we need the following density lemma:

Lemma 11.5.7. Under the same assumption as in Theorem 11.5.1, the set of ∂b-
closed forms in C(0,q)(ωδ) is dense in the set of ∂b-closed Lp

(0,q)(ωδ) forms in the
Lp

(0,q)(ωδ) norm where 1 < p <∞, 0 ≤ q < n− 2.

Proof. Let α ∈ Lp
(0,q)(ωδ) and ∂̄bα = 0 on ωδ. We approximate α by smooth (0, q)-

forms αk ∈ C∞(0,q)(ωδ) such that αk → α in Lp
(0,q)(ωδ) and ∂bαk → 0 in Lp

(0,q+1)(ωδ).
This is possible by Friedrichs’ Lemma (see Appendix D). Since ∂bαk is a smooth
∂b-closed form on a slightly larger set ωδk

⊃ ωδ where δk ↘ δ and δk is sufficiently
close to δ, we can apply Proposition 11.5.4 to ∂bαk on ωδk

(since 1 ≤ q+1 < n− 1)
to find (0, q)-forms vk such that

(11.5.25)

{
∂bvk = ∂bαk on ωδk

,

‖vk‖Lp
(0,q)(ωδk

) ≤ cp‖∂bαk‖Lp
(0,q+1)(ωδk

),
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where cp is a constant independent of k and δ. This is true since the constant
proved in Proposition 11.5.4 is independent of small perturbation of δ. We set

(11.5.26) α′k = αk − vk,

then α′k ∈ C(0,q)(ωδ). It follows from (11.5.25) that α′k is ∂b-closed and α′k → α in
Lp

(0,q)(ωδ). This proves the lemma.

For the case when q = n− 2, we have the following density lemma:

Lemma 11.5.8. For every ∂b-closed form α ∈ Lp
(0,n−2)(ωδ), there exists a sequence

of ∂b-closed forms {αk} such that αk ∈ C∞(0,n−2)(ωδ) and αk converges to α in
Lp

(0,n−2)(ωδ, loc), 1 < p <∞.

Proof. Let B denote the space of all ∂b-closed L
p
(0,n−2)(ωδ) forms. We note that the

dual of Lp(ωδ, loc) in the Fréchet norm is the space of compactly supported functions
in Lp′(ωδ), where 1

p + 1
p′ = 1. Consider the linear functional L on Lp

(0,n−2)(ωδ, loc)
defined by

(11.5.27) L(β) =
∫

ωδ

β ∧ g for β ∈ B ∩ Lp
(0,n−2)(ωδ, loc),

where g ∈ Lp′(ωδ) such that g has compact support in ωδ. We assume that L(β) =∫
ωδ
β ∧ g = 0 for every β ∈ B ∩ C∞(0,n−2)(ωδ). From the Hahn-Banach theorem, the

lemma will be proved if one can show that

L(β) = 0 for every β ∈ B.

Let D be a strictly convex set in Cn such that the boundary of D, denoted by M ,
contains ωδ. Let K = supp g ⊂⊂ ωδ. Since (11.5.27) holds for all β = ∂bv for any
v ∈ C∞(0,n−3)(ωδ), ∂bg = 0 on ωδ in the distribution sense. We extend g to be zero
on M \ ωδ, then ∂bg = 0 on M in the distribution sense. Applying Theorem 11.3.9
for (n, 1) forms with Lp′(M) coefficients on M , we can find u = Rqf ∈ Lp′

(n,0)(M)
such that ∂bu = g on M . It follows from (11.3.27) that u ∈ C∞(n,0)(M \ K). Let
0 < δ0 < δ1 < δ be chosen such that K ⊂ ωδ0 ⊂ ωδ1 ⊂ ωδ1 ⊂ ωδ and let χ be
a cut-off function such that χ ∈ C∞0 (ωδ1) and χ ≡ 1 on K. We set u1 = χu and
u2 = (1− χ)u, then u1, ∂bu1 and ∂bu2 have compact support. Thus, we can write∫

ωδ

α ∧ g =
∫

ωδ

α ∧ ∂bu =
∫

ωδ

α ∧ ∂bu1 +
∫

ωδ

α ∧ ∂bu2.

We shall prove that for every α ∈ B,

(11.5.28)
∫

ωδ

α ∧ ∂bu1 = 0

(11.5.29)
∫

ωδ

α ∧ ∂bu2 = 0.
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Since u1 has compact support, we regularize u1 and (11.5.28) follows easily from
Friedrichs’ lemma and integration by parts.

To prove (11.5.29), we note that the coefficients of u2 are CR functions on M \ωδ1

since ∂bu2 = g = 0 on M \ ωδ1 . It follows from Theorem 3.3.2 (Lewy’s extension)
that one can extend u2 holomorphically into the set Dδ1 = D ∩ {z ∈ Cn | r(zn) >
δ1}. The set Dδ1 is convex. We can approximate u2 ∈ C∞(n,0)(Dδ1) by (n, 0)-forms
Pn with polynomial coefficients and the convergence is in C∞(M \ωδ1). Let χ1 be a
cut-off function such that χ1 ∈ C∞0 (ωδ) and χ1 ≡ 1 on ωδ1 . Since ∂bu2 is supported
on ωδ1 \K, we have

(11.5.30)

∫
ωδ

α ∧ ∂bu2 =
∫

ωδ

α ∧ χ1∂b(u2 − Pn)

=
∫

ωδ

α ∧ ∂b(χ1(u2 − Pn))−
∫

ωδ

α ∧ (∂bχ1) ∧ (u2 − Pn).

The first term on the right-hand side of (11.5.30) vanishes from the same arguments
of (11.5.28). Thus∫

ωδ

α ∧ ∂bu2 = −
∫

ωδ

α ∧ (∂bχ1) ∧ (u2 − Pn)→ 0

as n→∞, since u2 − Pn converges to 0 uniformly on the supp(∂bχ1). This proves
(11.5.29) and Lemma 11.5.8.

Proof of Theorem 11.5.1. Theorem 11.5.1 can be proved for any ∂b-closed α with
Lp(ωδ) coefficients using an approximation argument. We first assume 1 ≤ q < n−2.

Using Lemma 11.5.7, there exists a sequence of ∂̄b-closed forms α′m ∈ C(0,q)(ωδ)
such that α′m → α in Lp

(0,q)(ωδ). We can apply Proposition 11.5.4 to α′m to find
(0, q − 1)-form um such that

(11.5.31) ∂bum = α′m on ωδ,

and

(11.5.32) ‖um‖Lp
(0,q−1)(ωδ) ≤ cp‖α′m‖Lp

(0,q)(ωδ).

From (11.5.31) and (11.5.32), um must converge to some (0, q−1)-form u such that
u satisfies ∂̄bu = α on ωδ and

(11.5.33) ‖u‖Lp
(0,q−1)(ωδ) ≤ cp‖α‖Lp

(0,q)(ωδ).

Theorem 11.5.1 is proved for 1 ≤ q < n− 2.

When q = n − 2, from Lemma 11.5.8, there exists αk ∈ C∞(0,n−2)(ωδ) such that
∂bαk = 0 on ωδ and αk → α in Lp

(0,n−2)(ωδ′) for any 0 < δ′ < δ. Let δm be an
increasing sequence such that 0 < δm ↗ δ. Applying Proposition 11.5.4 to αk on
ωδm , there exists a solution um

k ∈ C(0,n−3)(ωδm) such that

(11.5.34) ∂bu
m
k = αk on ωδm
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and

(11.5.35) ‖um
k ‖Lp

(0,n−3)(ωδm ) ≤ C‖αk‖Lp
(0,n−2)(ωδm ),

where C is independent of m and k. It follows that um
k converges strongly to an

element um ∈ Lp
(0,n−3)(ωδm) for every m and

(11.5.36) ∂bu
m = α on ωδm .

Furthermore, we have

(11.5.37) ‖um‖Lp
(0,n−3)(ωδm ) ≤ C‖α‖Lp

(0,n−2)(ωδ),

where C is independent of m. There exists a subsequence of um which converges
weakly in Lp

(0,n−3)(ωδ) to a limit u ∈ Lp
(0,n−3)(ωδ). It follows from (11.5.36) that

∂bu = α on ωδ in the distribution sense. From Fatou’s lemma and (11.5.37) we have

‖u‖Lp
(0,n−3)(ωδ) ≤ C‖α‖Lp

(0,n−2)(ωδ).

Theorem 11.5.1 is proved for q = n− 2. This proves Theorem 11.5.1.

Corollary 11.5.2 follows easily from Theorem 11.5.1. To prove Corollary 11.5.3,
we define

S̃qα = I1(α) + Ĩ2(α)

where
I1(α) =

∫
ωδ

Ω−+
q−1(ζ, z) ∧ α(ζ),

and
Ĩ2(α) =

∫
ζ∈ωδ

∂ζΩ̃[−+
q−1 ∧ α(ζ).

Corollary 11.5.3 follows from the proof of Proposition 11.5.4 and Lemma 11.5.7.

11.6 The ∂̄b-Neumann Problem

Let D be a strongly pseudoconvex domain in Cn with smooth boundary bD. Let
ωδ be an open connected subset in bD with smooth boundary bωδ defined in (11.5.2).
The L2 existence theory for ∂̄b can be applied to obtain the Hodge theorem for ∂̄b

on ωδ. We shall set up the ∂b-Neumann problem along the lines of the ∂-Neumann
problem for pseudoconvex complex manifolds. Let ∂b be the linear, closed, densely
defined operator

∂b : L2
(0,q−1)(ωδ)→ L2

(0,q)(ωδ).

The formal adjoint of ∂b is denoted by ϑb and defined on smooth (0, q)-forms by the
requirement that (ϑbφ, ψ) = (φ, ∂bψ) for all smooth ψ with compact support in ωδ.
The Hilbert space adjoint of ∂b, denoted by ∂

∗
b , is a linear, closed, densely defined

operator defined on Dom(∂
∗
b) ⊂ L2

(0,q)(ωδ). An element φ belongs to Dom(∂
∗
b) if
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there exists a g ∈ L2
(0,q−1)(ωδ) such that for every ψ ∈ Dom(∂b) ∩ L2

(0,q−1)(ωδ), we

have (φ, ∂bψ) = (g, ψ). We then define ∂
∗
bφ = g. We have the following description

of the smooth forms in Dom(∂
∗
b):

For all φ ∈ E(0,q)(ωδ), ψ ∈ E(0,q−1)(ωδ), integration by parts gives

(11.6.1) (ϑbφ, ψ) = (φ, ∂bψ) +
∫

bωδ

〈σ(ϑb, dr)φ, ψ〉ds,

where ds is the surface measure of bωδ and σ(ϑb, dr) denote the symbol of ϑb in
the dr direction. More explicitly, for every x ∈ bωδ, σ(ϑb, dr)φ

∣∣
x

= ϑb(rφ)
∣∣
x
. The

following characterization of Dom(∂
∗
b) ∩ E(0,q)(ωδ) uses arguments similar to those

in Lemma 4.2.1:

Proposition 11.6.1. φ ∈ Dom(∂
∗
b) ∩ E(0,q)(ωδ) if and only if σ(ϑb, dr) φ = 0 on

bωδ. If φ ∈ Dom(∂
∗
b) ∩ E(0,q)(ωδ), ∂

∗
bφ = ϑbφ.

We next define the ∂̄b-Laplacian �b = ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b from L2

(0,q)(ωδ) to L2
(0,q)(ωδ)

such that Dom(�b) = {f ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ); ∂̄bf ∈ Dom(∂̄∗b ) and ∂̄∗b f ∈
Dom(∂̄b)}. Repeating the proof of Proposition 4.2.3, we have the following propo-
sition:

Proposition 11.6.2. �b is a linear, closed, densely defined self-adjoint operator.

We note that the smooth forms in Dom(�b) must satisfy two boundary condi-
tions, namely, the ∂b-Neumann boundary conditions. To be precise, we have the
following:

Proposition 11.6.3. ϕ ∈ E(0,q)(ωδ) is in Dom(�b) if and only if σ(ϑb, dr)ϕ = 0
on bωδ and σ(ϑb, dr)∂bϕ = 0 on bωδ.

The ∂̄b-Neumann problem is formulated in exactly the same way as the ∂̄-
Neumann problem. However, due to the existence of characteristic points, it is
much harder to study this boundary value problem using a priori estimates by
imitating the ∂̄-Neumann problem. By applying the L2 existence result proved in
Theorem 11.5.1, we have the following L2 existence theorem for the ∂̄b-Neumann
operator on ωδ:

Theorem 11.6.4. Let M be a strongly pseudoconvex hypersurface in Cn, n ≥ 4,
and z0 ∈M . Let {ωδ}, ωδ ⊂M , be the neighborhood base of z0 obtained in Theorem
11.5.1. Then for each fixed δ, 1 ≤ q ≤ n − 3, there exists a linear operator Nδ :
L2

(0,q)(ωδ)→ L2
(0,q)(ωδ) such that

(1) Nδ is bounded and Range(Nδ) ⊂ Dom(�b).
(2) For any α ∈ L2

(0,q)(ωδ), α = ∂b∂
∗
bNδα+ ∂

∗
b∂bNδα.

(3) Nδ�b = �bNδ = I on Dom(�b);
∂bNδ = Nδ∂b on Dom(∂b), 1 ≤ q ≤ n− 4;
∂
∗
bNδ = Nδ∂

∗
b on Dom(∂

∗
b), 2 ≤ q ≤ n− 3.

(4) If α ∈ L2
(0,q)(ωδ) and ∂bα = 0, then α = ∂b∂

∗
bNδα. The form u = ∂

∗
bNδα

gives the canonical solution (i.e., the unique solution which is orthogonal to
Ker(∂b)) to the equation ∂̄bu = α.
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Using Theorem 11.5.1 and Corollary 11.5.2, the ∂̄b operator has closed range
in L2

(0,q)(ωδ) when 1 ≤ q ≤ n − 2. Theorem 11.6.4 can be proved by repeating
the arguments of the proof of Theorem 4.4.1, Thus the L2 ∂b-Neumann problem is
solved for 1 ≤ q ≤ n− 3 and Nδ is called the ∂b-Neumann operator.

Thus the Hodge decomposition theorem for compact strongly pseudoconvex CR
manifolds proved in Theorem 8.4.10 has been extended to strongly pseudoconvex
CR manifolds with boundaries.

We next study the interior regularity of Nδ with applications to the regularity
of the solutions of ∂b and the related Szegö projection. Let W s(ωδ) denote the
Sobolev s space and W s(ωδ, loc) denote the Fréchet space of functions which are in
W s on every compact subset of ωδ.

Theorem 11.6.5. Under the hypothesis of Theorem 11.6.4, given α ∈W s
(0,q)(ωδ),

s ≥ 0, then φ = Nδα satisfies the following estimates: for any ζ, ζ1 ∈ C∞0 (ωδ) such
that ζ1 = 1 on the support of ζ, there exists a Cs > 0 such that

‖ζφ‖2s+1 ≤ Cs(‖ζ1α‖2s + ‖α‖2).

Proof. Since �bφ = (∂̄bϑb + ϑb∂̄b)φ = α in the distribution sense on ωδ and ωδ is
strongly pseudoconvex, the theorem follows from the interior regularity results for
�b on strongly pseudoconvex manifolds proved in Theorem 8.4.3.

Corollary 11.6.6. Let α ∈ L2
(0,q)(ωδ) ∩ W s

(0,q)(ωδ, loc) and ∂bα = 0, 1 ≤ q ≤
n − 3, then there exists u ∈ L2

(0,q−1)(ωδ) ∩ W s+1/2
(0,q−1)(ωδ, loc) satisfying ∂bu = α.

In particular, if α ∈ L2
(0,q)(ωδ) ∩ C∞(0,q)(ωδ), then there exists u ∈ L2

(0,q−1)(ωδ) ∩
C∞(0,q−1)(ωδ) satisfying ∂bu = α.

Proof. Let u = ∂
∗
bNδα and let ζ2 ∈ C∞0 (ωδ) such that ζ2 = 1 on supp ζ1, then from

Theorem 11.6.5, we have

‖ζu‖2s = ‖ζ∂∗bφ‖2s
≤ 2‖∂∗b(ζφ)‖2s + 2‖[ζ, ∂∗b ]φ‖2s
≤ c(‖ζφ‖2s+1 + ‖ζ1φ‖2s)
≤ c(‖ζ2α‖2s + ‖α‖2).

Thus, u ∈W s
(0,q−1)(ωδ, loc). To show that u ∈ L2

(0,q−1)(ωδ), we note that

‖u‖2 = (∂
∗
bNδα, ∂

∗
bNδα)

= (∂b∂
∗
bNδα,Nδα) = (α,Nδα)

≤ ‖α‖ ‖Nδα‖ ≤ c‖α‖2.

To show that u ∈ W
s+1/2
(0,q−1)(ωδ, loc), we assume first that s = 0. Let Λk be

the pseudodifferential operator of order k. Then, from Theorem 11.6.5 and the
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discussion above

‖ζu‖21/2 ≤ c(Λ
1/2ζ∂

∗
bNδα,Λ1/2ζ∂

∗
bNδα)

≤ c((ζ∂∗bNδα,Λ1ζ∂
∗
bNδα) + ‖α‖2)

≤ c((ζ∂b∂
∗
bNδα,Λ1ζNδα) + ‖α‖2)

≤ c(‖ζα‖ ‖ζNδα‖1 + ‖α‖2)
≤ c‖α‖2.

For general s ∈ N, one can prove that u ∈ W s+1/2
(0,q−1)(ωδ, loc) similarly by induction

and we omit the details. If α ∈ L2
(0,q)(ωδ) ∩ C∞(0,q)(ωδ), then α ∈ W s

(0,q)(ωδ, loc) for

every s ∈ N. Thus the solution u = ∂
∗
bNδα ∈ W s+1/2

(0,q−1)(ωδ, loc) for every s ∈ N. It
follows from the Sobolev embedding theorem that u ∈ C∞(0,q−1)(ωδ) and the corollary
is proved.

Definition 11.6.7. Let Hb(ωδ) = {f ∈ L2(ωδ) | ∂bf = 0} and let Sb denote
the orthogonal projection from L2(ωδ) onto Hb(ωδ). We shall call Sb the Szegö
projection on ωδ.

Sb is the natural analogue of the global Szegö projection. We have the following
expression for Sb which is an analogue of the formula for the Bergman projection
using the ∂-Neumann operator:

Theorem 11.6.8. Let f ∈ L2(ωδ). Then Sbf = (I − ∂∗bNδ∂b)f . In particular, if
f ∈ C∞(ωδ), then Sbf ∈ C∞(ωδ).

Proof. Since
∂b∂

∗
bNδ∂bf = (∂b∂

∗
b + ∂

∗
b∂b)Nδ∂bf = ∂bf

by (3) in Theorem 11.6.4, we have

∂b(f − ∂
∗
bNδ∂bf) = ∂bf − ∂bf = 0.

This implies that (I−∂∗bNδ∂b)f ∈ Hb(ωδ). On the other hand, for any h ∈ Hb(ωδ),

(∂
∗
bNδ∂bf, h) = (Nδ∂bf, ∂bh) = 0.

It follows that (I − ∂∗bNδ∂b)f = Sbf . The interior regularity proved in Theorem
11.6.5 implies Sbf ∈ C∞(ωδ) if f ∈ C∞(ωδ). In fact one can show that if f ∈
W s(ωδ), then Sbf ∈ W s(ωδ, loc) following the same argument as for the Bergman
projection and we omit the details.

NOTES

The use of explicit kernels to solve the Cauchy-Riemann equations in several
variables is a different approach parallel to the L2 method. It is an attempt to
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generalize the Cauchy integral formula in one variable to several variables. Start-
ing from the Bochner-Martinelli formula, the integral formula stated in Corollary
11.2.3 for holomorphic functions was discovered by J. Leray in [Ler 1,2]. G. M.
Henkin [Hen 1] and E. Ramirez [Ram 1] introduced Cauchy-type integral formu-
las for strictly pseudoconvex domains. Subsequently, H. Grauert and I. Lieb [GrLi
1] and G. M. Henkin [Hen 2] constructed the integral solution formulas for ∂̄ on
strictly pseudoconvex domains with uniform estimates. Our exposition of the first
three sections in this chapter follows that of R. Harvey and J. Polking [HaPo 1,2]
(see also the book of A. Boggess [Bog 2]) without referring to currents. It is their
notation that we adopt here.

The so-called Bochner-Martinelli-Koppelman formula was proved by S. Bochner
[Boc 1], E. Martinelli [Mar 1] independently for functions (when q=0) and W.
Koppelman [Kop 1] for forms. Our proof is due to N. N. Tarkhanov [Tark 1].
The jump formula of the Bochner-Martinelli-Koppelman formula was proved in R.
Harvey and B. Lawson [HaLa 1] for continuous functions. For more discussion on
the Bochner-Martinelli-Koppelman formula, see the book by A. M. Kytmanov [Kyt
1].

The Hölder estimates for ∂̄ in strongly pseudoconvex domains were proved in N.
Kerzman [Ker 1] using the integral solution operators for ∂̄ constructed by Grauert
and Lieb [GrLi 1] and Henkin [Hen 2]. Lp estimates were obtained by N. Kerzman
for q = 1 and by N. Øvrelid [Øvr 1]. Exact Hölder 1/2-estimates for ∂̄ were proved
by G. M. Henkin and A. V. Romanov [HeRo 1] for (0, 1)-forms and by R. M. Range
and Y.-T. Siu [RaSi 1] for the general case. Sup-norm and Hölder estimates for
derivatives of solution for ∂ are obtained in Siu [Siu 1] and Lieb-Range [LiRa 1].
Hölder estimates for ∂ on piecewise strongly pseudoconvex domains are discussed
in Michel-Perotti [MiPe 1], Polyakov [Poly 1], and Range-Siu [RaSi 1]. Optimal
Hölder and Lp estimates for ∂̄ was proved by S. G. Krantz [Kra 1], where a theorem
similar to Theorem 11.3.9 was proved for ∂̄. There are also many results on integral
kernels for ∂ on weakly pseudoconvex domains (see Chaumat-Chollet [ChCh 1],
Michel [Mic 1], and Range [Ran 1,3,7,8]). We refer the reader to the books by G.
M. Henkin and J. Leiterer [HeLe 1], S. G. Krantz [Kra 2] and R. M. Range [Ran 6]
for more discussion and references on integral representations for ∂̄.

The homotopy formula for ∂̄b on compact strictly pseudoconvex boundaries was
constructed by G. M. Henkin [Hen 3], A. V. Romanov [Rom 1] and H. Skoda [Sko
1] where Hölder and Lp estimates for ∂̄b are obtained. Our proof of Theorem 11.3.9
was based on [Hen 3]. These estimates have also been obtained by a different
method by L. P. Rothschild and E. M. Stein [RoSt 1]. Using the estimates for ∂̄b,
G. M. Henkin [Hen 3] and H. Skoda [Sko 1] have constructed holomorphic functions
in the Nevanlinna class with prescribed zeros in strongly pseudoconvex domains.
There is another proof of the Henkin-Skoda theorem using estimates for ∂̄ directly
by R. Harvey and J. Polking [HaPo 1]. When the domain is a ball, this is treated
explicitly in the book of W. Rudin [Rud 2]. The Henkin-Skoda theorem has been
extended to finite type domains in C2 by D.-C. Chang, A. Nagel and E. M. Stein
[CNS 1] and for convex domains of finite type recently by J. Bruna, P. Charpentier
and Y. Dupain [BCD 1].

There are many results on the Hölder and Lp estimates for ∂̄ and ∂̄b on convex
boundaries using kernel methods. In particular, Hölder estimates for ∂̄ on convex
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domains in C2 and for complex ellipsoids in Cn are proved by R. M. Range [Ran
3,8]. Range’s results have been generalized by J. Bruna and J. del Castillo [BrCa
1]. Hilbert integrals were used by J. Polking [Pol 1] to prove Lp estimates for ∂̄ on
convex domains in C2. Sharp Hölder estimates for ∂̄ on real ellipsoids are obtained
in Diederich-Fornaess-Wiegerinck [DFW 1]. Hölder estimates for ∂̄ on convex finite
type domains are proved in A. Cumenge [Cum 1](see also [DiFo 4] and [DFF 1] ).
Hölder and Lp estimates for ∂̄b on the boundaries of real ellipsoids are proved in
M.-C. Shaw [Sha 4] (for related results for ∂̄, see [CKM 1]). Hölder estimates for
∂̄b on convex boundaries in C2 are proved in D. Wu [Wu 1].

J. E. Fornaess [For 4] first obtained the sup-norm estimates for ∂̄ on certain
finite type domains in C2 which are not convexible, including the Kohn-Nirenberg
domains [KoNi 3]. Using pseudodifferential operators, Hölder estimates for ∂̄ and
∂̄b were obtained by C. Fefferman and J. J. Kohn in [FeKo 1] for finite type domains
in C2 (see also [CNS 1]) and for domains in Cn with diagonalizable Levi forms (see
Fefferman-Kohn-Machedon [FKM 1]). Lp estimates for ∂̄b for finite type domains
in C2 were obtained by M. Christ [Chr 1].

We also note that N. Sibony [Sib 1] has given an example to show that the sup-
norm estimates for ∂̄ in general fail for smooth pseudoconvex domains of infinite
type. The example in [Sib 1] is not convex and is strongly pseudoconvex except
at one boundary point. It is still unknown if sup-norm estimates hold for ∂̄ on
convex domains in C2. J. E. Fornaess and N. Sibony [FoSi 1] also showed that Lp

estimates, 1 < p ≤ ∞, also do not hold in general for pseudoconvex domains in C2

with smooth boundaries except for p = 2.
The local homotopy formula discussed in Section 11.4 was derived in G. M.

Henkin [Hen 3]. This homotopy formula is useful in proving the embeddability of
abstract CR structures (see the notes in Chapter 12). When q = n−2, A. Nagel and
J. P. Rosay [NaRo 1]) showed that there does not exist any homotopy formula for
∂̄b locally on a strictly convex hypersurface. The additional compatibility condition
(11.4.2 a) derived for q = n− 2 was observed in M.-C. Shaw [Sha 7]. The example
given at the end of Section 11.4 was due to J. P. Rosay [Rosa 2].

The Lp estimates for the local solution discussed in Section 11.5 was based on the
paper of M.-C. Shaw [Sha 3]. It is proved there that there does not exist any solution
operator which maps ∂̄b-closed forms with Lp, p < 2, coefficients to solutions with
L2 coefficients. It is also proved in [Sha 3] that the closed range property in L2 for
∂̄b is equivalent to the local embeddability of abstract strongly pseudoconvex CR
structures. Lemma 11.5.5 was based on the work of D. H. Phong and E. M. Stein
[PhSt 1] on Hilbert integral operators. Theorem 11.5.1 is also true for p = ∞ (see
the paper by L. Ma and J. Michel [MaMi 1]).

The ∂̄b-Neumann problem on strongly pseudoconvex CR manifolds with bound-
aries follows the paper by M.-C. Shaw [Sha 5]. The ∂̄b-Neumann problem with
weights was discussed earlier in M. Kuranishi [Kur 1] in order to prove the embed-
ding theorem for abstract CR structures. The weight functions used in [Kur 1] are
singular in the interior. Boundary regularity for the Dirichlet problem for �b is
discussed by D. Jerison [Jer 1].

Solvability of ∂̄b on a weakly pseudoconvex CR manifold near a point of finite
type is discussed in [Sha 6]. It is proved there that near a point of finite type,
there exists a neighborhood base ωδ such that ∂̄b is solvable on ωδ with interior
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Sobolev estimates. C∞ solvability for ∂̄b on weakly pseudoconvex manifolds with
flat boundaries were proved by J. Michel and M.-C. Shaw [MiSh 2] based on the
barrier functions constructed in [MiSh 3]. When the boundary is piecewise flat,
solvability for ∂̄b is discussed by J. Michel and M.-C. Shaw [MiSh 3,4]. Integral
kernels on a domain in a convex hypersurface with piecewise smooth boundary are
constructed by S. Vassiliadou in [Vas 1].

For integral formulas for ∂̄ on domains which are not pseudoconvex, we refer the
reader to the paper by W. Fischer and I. Lieb [FiLi 1] and the book by G. M. Henkin
and J. Leiterer [HeLe 2]. There are also results on the local solvability for ∂̄b when
the Levi form is not definite. For more discussion on the integral representation
for local solutions for ∂̄b under condition Y(q), we refer the reader to the papers
by R. A. Airapetyan and G. M. Henkin [AiHe 1], A. Boggess [Bog 1], A. Boggess
and M.-C. Shaw [BoSh 1] and M.-C. Shaw [Sha 8,9]. The reader should consult the
book by A. Boggess [Bog 2] for more discussions on integral representations for ∂̄b

and CR manifolds.
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CHAPTER 12

EMBEDDABILITY OF ABSTRACT

CR STRUCTURES

The purpose of this chapter is to discuss the embeddability of a given abstract
CR structure. This includes local realization of any real analytic CR structure. In
Section 12.2, using the subelliptic estimate for �b obtained in Chapter 8, global CR
embeddability into complex Euclidean space of any compact strongly pseudoconvex
CR manifold of real dimension 2n − 1 with n ≥ 3 is proved. In Sections 12.4 and
12.5, we present three dimensional counterexamples to the CR embedding either
locally or globally.

12.1 Introduction

Let (M,T 1,0(M)) be a smooth CR manifold of real dimension 2n − 1, n ≥ 2,
as defined in Section 7.1. If M is diffeomorphic to another manifold M1 of equal
dimension via a map ϕ, then clearly ϕ induces a CR structure ϕ∗(T 1,0(M)) on M1.
Since the most natural CR structures are those induced from complex Euclidean
spaces on a smooth hypersurface, it is of fundamental importance to see whether
a given abstract CR structure T 1,0(M) on M can be CR embedded into some
CN or not. Namely, can one find a smooth embedding ϕ of M into CN so that
the induced CR structure ϕ∗(T 1,0(M)) on ϕ(M) coincides with the CR structure
T 1,0(CN ) ∩ CT (ϕ(M)) from the ambient space CN . More precisely, we make the
following definition:

Definition 12.1.1. Let (M,T 1,0(M)) be a CR manifold. A smooth mapping ϕ
from M into CN is called a CR embedding if

(1) ϕ is an embedding, namely, ϕ is a one-to-one mapping and the Jacobian of
ϕ is of full rank everywhere,

(2) ϕ∗(T 1,0(M)) = T 1,0(CN ) ∩ CT (ϕ(M)).

The CR embedding problem could be formulated either locally or globally. The
following lemma shows that condition (2) in Definition 12.1.1 is equivalent to the
fact that each component ϕj of ϕ is a CR function.

Lemma 12.1.2. Let (M,T 1,0(M)) be a CR manifold and let ϕ = (ϕ1, · · · , ϕN ) be
a smooth embedding of M into CN . Then ϕ is a CR embedding if and only if ϕj is
a CR function for 1 ≤ j ≤ N .
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Proof. If ϕ is a CR embedding, then for any type (0, 1) vector field L on M , we
have L(ϕj) = ϕ∗L(zj) = 0 for 1 ≤ j ≤ N . Thus ϕj is a CR function. By reversing
the arguments we obtain the proof for the other direction.

To conclude this section, we prove that any real analytic CR structure is locally
realizable. Let (M,T 1,0(M)) be a CR manifold of real dimension 2n − 1, n ≥ 2,
and let p ∈M . Locally near p, a basis for T 1,0(M) can be described by

(12.1.1) Lj =
2n−1∑
k=1

ajk(x)
∂

∂xk
for j = 1, · · · , n− 1,

and the integrability condition is then equivalent to

(12.1.2) [Lj , Lk] =
n−1∑
p=1

bjkp(x)Lp,

for all 1 ≤ j, k ≤ n− 1. The real analyticity of the CR structure means that the
coefficient functions ajk(x) defined in (12.1.1) are real analytic. The real analyticity
of the bjkp’s then follows.

Theorem 12.1.3. Any real analytic CR manifold (M,T 1,0(M)) of dimension 2n−
1 with n ≥ 2 can locally be CR embedded as a hypersurface in Cn.

Proof. We may assume that

∂

∂x2n−1
/∈ T 1,0(M)⊕ T 0,1(M),

and that p is the origin. Choose a small neighborhood U0 of the origin in R2n−1,
and a ε > 0 small enough so that, when the variable x2n−1 is complexified, i.e.,
replacing x2n−1 by x2n−1 + it, the power series of the real analytic functions that
are involved in the expressions of (12.1.1) and (12.1.2) converge on U0 × (−ε, ε).

Define

Xj =
2n−1∑
k=1

ajk(x1, · · · , x2n−2, x2n−1 + it)
∂

∂xk
for 1 ≤ j ≤ n− 1,

and
Xn =

∂

∂x2n−1
+ i

∂

∂t
.

Then we have

[Xj , Xk] =
n−1∑
p=1

bjkp(x1, · · · , x2n−2, x2n−1 + it)Xp,

and
[Xj , Xn] = 0 for 1 ≤ j ≤ n− 1.
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Hence, by the Newlander-Nirenberg theorem proved in Section 5.4, there is a com-
plex structure defined on U0 × (−ε, ε), and M is embedded as the hypersurface
{t = 0} in this complex structure. This completes the proof of the theorem.

One should note that a compact real analytic CR manifold of real dimension
2n − 1, in general, can not be globally CR embedded into CN for any N . A
counterexample will be provided in Section 12.4.

12.2 Boutet de Monvel’s Global Embeddability Theorem

Let (M,T 1,0(M)) be a compact strongly pseudoconvex CR manifold of real di-
mension 2n − 1 with n ≥ 2. Choose a purely imaginary vector field T defined
on M so that Tp is complementary to T 1,0

p (M) ⊕ T 0,1
p (M) at each point p ∈ M .

Fix a Hermitian metric on CT (M) so that T 1,0(M), T 0,1(M) and T are mutu-
ally orthogonal. Let S be the orthogonal projection, called the Szegö projection,
from L2(M) onto the closed subspace H(M), where H(M)={f ∈ L2(M)| ∂bf =
0 in the sense of distribution}. Denote by Ep,q(M) the space of smooth (p, q)-forms
on M . Then we have the following global embeddability theorem of the CR struc-
tures:

Theorem 12.2.1 (Boutet de Monvel). Let (M,T 1,0(M)) be a compact strongly
pseudoconvex CR manifold of real dimension 2n−1 with n ≥ 3. Then (M,T 1,0(M))
can be globally CR embedded into Ck for some k ∈ N.

Theorem 12.2.1 will follow from the next theorem.

Theorem 12.2.2. Let (M,T 1,0(M)) be a compact strongly pseudoconvex CR man-
ifold of real dimension 2n− 1 with n ≥ 2. Suppose that

(1) ∂b : E0,0(M)→ E0,1(M) has closed range in the C∞ topology, and that
(2) S maps C∞(M) into C∞(M) continuously in the C∞ topology.

Then (M,T 1,0(M)) can be globally CR embedded into complex Euclidean space.
Also, CR functions separate points on M .

Proof. The first step is to show that CR functions separate points on M . By
assumption (2) we have the following orthogonal, topological direct sum decompo-
sition:

C∞(M) = (Ker(S) ∩ C∞(M))⊕ (Range(S) ∩ C∞(M)).

Let the range of ∂b on E0,0 be denoted by R which is a closed subspace of E0,1 in
the C∞ topology. Since both Ker(S)∩C∞(M) and R are Fréchet spaces, the open
mapping theorem implies that the isomorphism

(12.2.1) ∂b : Ker(S) ∩ C∞(M) ∼→ R

and its inverse are continuous.
For each p ∈M we claim that there exists a φp ∈ C∞(M) satisfying
(a) φp(p) = 0 and ∂bφ vanishes to infinite order at p,
(b) for some coordinate neighborhood system centered at p, we have

Reφp(x) ≥ c|x|2,
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in some neighborhood of p, where c is a positive constant,
(c) Reφp(x) ≥ 1 outside a small neighborhood of p on M .

Proof of the claim. If M is the boundary of a smooth bounded strongly pseudo-
convex domain D in Cn, and let r be a strictly plurisubharmonic defining function
for D, then we may take φ(z) to be the Levi polynomial gp(z) at p in some small
neighborhood of p and extend it suitably to M to satisfy (c). Namely, define

φp(z) = gp(z)

=
n∑

j=1

∂r

∂zj
(p)(pj − zj)−

1
2

n∑
j,k=1

∂2r

∂zj∂zk
(p)(pj − zj)(pk − zk),

in a small open neighborhood of p. Using Taylor’s expansion, it is easily verified
that for z ∈M near p we have

Reφp(z) ≥ c|z − p|2.

Thus φp satisfies (b), and (c) is done by an appropriate extension to M . This proves
the claim for the embedded case.

IfM is an abstract CRmanifold, we can first find functions ϕ1, · · · , ϕn ∈ C∞(M)
such that ϕj(p) = 0, dϕ1(p), · · · , dϕn(p) are linearly independent at p and ∂bϕj

vanishes to infinite order at p for j = 1, · · · , n. Then

ϕ = (ϕ1, · · · , ϕn) : M → Cn

is a smooth embedding of a small neighborhood of p on M into Cn with ϕ(p) = 0
and ϕ(M) is strongly pseudoconvex at the origin. Let g0(z) be the Levi polynomial
for ϕ(M) defined at the origin, then the pullback φp(x) = g0◦ϕ(x) is defined in some
small neighborhood of p and satisfies conditions (a) and (b) on a small coordinate
neighborhood. Condition (c) is satisfied by a suitable extension of φp to M . This
completes the proof of the claim.

Now if p, q ∈M with p 6= q, let φp(x) be the function satisfying (a), (b) and (c)
so that Reφp(q) ≥ 1. Consider the function

ut = e−tφp for t > 0.

Then ut ∈ C∞(M), ut(p) = 1 and ut(q) is close to 0 for large t > 0. Write

ut = S(ut) + (I − S)(ut).

Applying ∂b to ut we obtain

∂but = −te−tφp(∂bφp).

We claim that ∂but converges to zero in the C∞ topology as t → +∞. First we
note that any kth derivative of ∂but can be written in the following form:

(12.2.2) Ik = ±tje−tφpDβ(∂bφp)χ(x),
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where χ(x) is a smooth function on M and 1 ≤ j ≤ k + 1, |β| ≤ k. Hence, by (b),
(12.2.2) is bounded in some open neighborhood V1 of p by

|Ik| ≤ Ck(ct|x|2)je−ct|x|2 · |x|−2j |Dβ(∂bφp)(x)|,

for some positive constant Ck > 0. Given any ε > 0, since ∂bφp vanishes to infinite
order at p and (ct|x|2)je−ct|x|2 is uniformly bounded for all x and t > 0, one may
choose a sufficiently small neighborhood V2 b V1 so that |Ik| < ε on V2. For x /∈ V2,
we have |x| ≥ δ > 0 for some constant δ. Letting t be sufficiently large, we see also
that |Ik| < ε for x /∈ V2. This proves the claim.

It follows that, by (12.2.1), (I−S)(ut) also converges to zero in the C∞ topology
and that the CR function S(ut) for sufficiently large t > 0 will separate p and q.

By the same reasoning as above, we see that the functions

hj = S(ϕje
−tφp) for j = 1, · · · , n,

for sufficiently large t > 0, satisfy
(1) ∂bh

j = 0 for j = 1, · · · , n, and
(2) dh1(p), · · · , dhn(p) are linearly independent, and
(3) hj(p) = 0 for j = 1, · · · , n, if necessary, by a translation in Cn.
Hence, for each p ∈ M , there exists an open neighborhood Up of p on M and

smooth CR functions h1
p, · · · , hn

p such that dh1
p(x), · · · , dhn

p (x) are linearly inde-
pendent for all x ∈ Up.

Now cover M by a finite number of such Upi , i = 1, · · · , k, and let g1, · · · , gs be
the CR functions that separate points a, b with distance d(a, b) ≥ δ > 0 for some
constant δ. Then set

F = (h1
p1
, · · · , hn

p1
, h1

p2
, · · · , hn

p2
, · · · , h1

pk
, · · · , hn

pk
, g1, · · · , gs).

It is easily verified that F is a global CR embedding of M into Cnk+s. The proof
of Theorem 12.2.2 is now complete.

We now return to the proof of Theorem 12.2.1.

Proof of Theorem 12.2.1. By the hypothesis of the theorem Condition Y (1) (see
Definition 8.3.3) holds on (M,T 1,0(M)) if the real dimension of M is at least
five. Hence, Corollary 8.4.11 shows that the range of ∂b on W 0

(0,0)(M) is closed
in W 0

(0,1)(M) in the L2 sense. The formula for the Szegö projection S,

S = I − ∂∗bNb∂b

together with Theorem 8.4.14 shows that S maps C∞(M) continuously into itself
in the C∞ topology. Theorem 8.4.14 also shows that the range of ∂b on E0,0(M)
is closed in E0,1(M) in the C∞ topology. It follows that conditions (1) and (2) in
Theorem 12.2.2 are established for any compact strongly pseudoconvex CRmanifold
(M,T 1,0(M)) of real dimension 2n− 1 with n ≥ 3. This proves Theorem 12.2.1.
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12.3 Spherical Harmonics

In this section we will review the spherical harmonics in Rn. For any k ∈ N ∪ {0},
denote by Pk the vector space of all homogeneous polynomials of degree k over the
complex number field. A basis for Pk is given by all monomials {xα}|α|=k of degree
k, and it is easily seen that the dimension dk of Pk over C is equal to

dk =
(
n+ k − 1
n− 1

)
=

(n+ k − 1)!
(n− 1)!k!

.

We define an inner product on Pk as follows. For any P (x) =
∑

|α|=k aαx
α, Q(x)

=
∑

|α|=k bαx
α, the inner product between P (x) and Q(x) is defined by

(12.3.1) 〈P,Q〉 =
∑
|α|=k

aαbαα!.

If P (x) =
∑
α
aαx

α is any polynomial, set

P (D) =
∑
α

aα
∂α

∂xα
.

Then the inner product (12.3.1) can be realized as a differentiation

(12.3.2) 〈P,Q〉 = P (D)(Q(x)).

Lemma 12.3.1. For any P (x) ∈ Pk, we can write

(12.3.3) P (x) = P0(x) + |x|2P1(x) + · · ·+ |x|2lPl(x),

where each polynomial Pj(x) is homogeneous and harmonic of degree k − 2j for
0 ≤ j ≤ l with l being the largest integer less than or equal to k/2.

Proof. We may assume that k ≥ 2. Define a map Λk

Λk : Pk → Pk−2,

P (x) 7→ ∆P (x),

where ∆ is the classical Laplacian. The adjoint operator Λ∗k of Λk is then defined
by

〈Q,ΛkP 〉 = 〈Λ∗kQ,P 〉,

where P (x) ∈ Pk and Q(x) ∈ Pk−2. A direct computation shows that

〈Q,ΛkP 〉 = Q(D)(∆P )

= ∆Q(D)(P )

= Λ∗kQ(D)(P ).
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This implies that
Λ∗kQ(x) = |x|2Q(x).

It follows that Λ∗k is one-to-one, and the following decomposition holds:

Pk ' KerΛk ⊕ RangeΛ∗k.

Hence for any P (x) ∈ Pk, we can write P (x) as

P (x) = P0(x) + |x|2Q(x),

where P0(x) is a homogeneous harmonic polynomial of degree k and Q(x) ∈ Pk−2.
The proof of the lemma is then completed by an induction argument.

Lemma 12.3.1 shows that the restriction of any polynomial P (x) to the unit
sphere Sn−1 in Rn is given by a sum of restrictions of homogeneous harmonic
polynomials to Sn−1.

Definition 12.3.2. Denote by SHk the space of the restrictions to the unit sphere
Sn−1 of all homogeneous harmonic polynomials of degree k, i.e., SHk = HPk|Sn−1 ,
where HPk = KerΛk.

The restriction is clearly an isomorphism from HPk onto SHk, and

dimSHk = dimHPk

= dk − dk−2

=
(
n+ k − 1
n− 1

)
−
(
n+ k − 3
n− 1

)
,

for k ≥ 2. In particular, dimSH0 = 1 and dimSH1 = n.
The elements in HPk are called solid spherical harmonics and the elements in

SHk are called surface spherical harmonics, or simply spherical harmonics. As
an easy consequence of the Stone-Weierstrass theorem, we obtain the following
proposition:

Proposition 12.3.3. The finite linear combination of elements in ∪∞k=0SHk is
uniformly dense in C(Sn−1), and L2 dense in L2(Sn−1, dσ).

Proposition 12.3.4. If Y (j) ∈ SHj and Y (k) ∈ SHk with j 6= k, then∫
Sn−1

Y (j)(x′)Y (k)(x′) dσ(x′) = 0.

Proof. The proof will rely on the following two facts:

(i) (Green’s identity) Let D be a bounded domain with C2 boundary. If f, g ∈
C2(D), we have ∫

∂D

(
f
∂g

∂n
− g ∂f

∂n

)
dσ =

∫
D

(f∆g − g∆f) dV,
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where ∂/∂n is the unit outward normal derivative on the boundary ∂D.

(ii) If f ∈ C1(Bn) and is harmonic on Bn, then∫
∂Bn

∂f

∂n
dσ = 0.

Here Bn denotes the unit ball in Rn.

For x ∈ Rn, write x = rx′ with r = |x| and |x′| = 1. If Y (j) ∈ SHj and
Y (k) ∈ SHk, define

uj(x) = |x|jY (j)(x′) = rjY (j)(x′),

and
uk(x) = |x|kY (k)(x′) = rkY (k)(x′).

Case (I). If one of j or k is zero, say, j = 0, then uj(x) = c, a constant, and

∂

∂n
uk(x′) =

∂

∂r
(rkY (k)(x′)) = kY (k)(x′).

Thus, by fact (ii) we have∫
Sn−1

Y (j)(x′)Y (k)(x′) dσ =
c

k

∫
Sn−1

∂uk

∂n
(x′) dσ = 0.

Case (II). If both j and k are nonzero with j 6= k, then

(k − j)
∫

Sn−1
Y (j)(x′)Y (k)(x′) dσ =

∫
Sn−1

(
uj
∂uk

∂n
− uk

∂uj

∂n

)
dσ

=
∫

Bn

(uj∆uk − uk∆uj) dV

= 0.

This completes the proof of the proposition.

Let L2(Sn−1, dσ) be equipped with the usual inner product. For each k ∈
N ∪ {0}, let {Y (k)

1 , · · · , Y (k)
mk } be an orthonormal basis for SHk, where mk = dk −

dk−2. It follows from Proposition 12.3.3 that

∞
∪

k=0
{Y (k)

1 , · · · , Y (k)
mk
}

forms a complete orthonormal basis for L2(Sn−1, dσ). Hence, for f ∈ L2(Sn−1, dσ),
we have a unique representation

f =
∞∑

k=0

Y (k)
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such that the series converges to f in the L2 norm, and Y (k) ∈ SHk can be expressed
in terms of the Fourier coefficients

Y (k) =
mk∑
p=1

〈Y (k), Y (k)
p 〉Y (k)

p .

When n = 2, we have dk − dk−2 = 2 for all k ≥ 2. It is easily seen that
HPk = {zk, zk}. This implies, by normalization,{

1√
2π

}
∪
(

∞
∪

k=0

{
1√
π

coskθ,
1√
π

sinkθ
})

is a complete orthonormal basis for L2(S1).

12.4 Rossi’s Global Nonembeddability Example

We shall present in this section a compact real analytic three dimensional CR
manifold which can not be globally CR embedded into Cn for any dimension n.
In view of Theorem 12.1.3 one sees that the nature of global embedding of a CR
structure is quite different from that of local embedding. Global properties of the
CR structure should be taken into account in the set up of the global embedding
problem.

Let S3 = {(z1, z2) ∈ C2| |z1|2 + |z2|2 = 1} be the boundary of the unit ball in
C2, and let the induced CR structure T 1,0(S3) be generated by L = z2(∂/∂z1) −
z1(∂/∂z2). Thus, (S3, T 1,0(S3)) forms a compact strongly pseudoconvex CR man-
ifold of real dimension three. For each t ∈ R, |t| < 1, define a new CR structure
T 1,0

t (S3) on S3 by letting T 1,0
t (S3) be generated by the vector field Lt = L + tL.

If t = 0, T 1,0
0 (S3) coincides with the induced standard CR structure T 1,0(S3). It

is easily verified that for |t| < 1, (S3, T 1,0
t (S3)) is a compact real analytic strongly

pseudoconvex CR manifold of real dimension three.
The next theorem shows that any L2 integrable CR function f on S3 with respect

to the CR structure (S3, T 1,0
t (S3)) for 0 < |t| < 1 must be even. Obviously, this

implies that, for 0 < |t| < 1, (S3, T 1,0
t (S3)) can not be globally CR embedded into

any Cn.

Theorem 12.4.1. Any L2 integrable CR function f(z) on S3 with respect to the
CR structure T 1,0

t (S3), 0 < |t| < 1, is even, i.e., f(z) = f(−z).

Proof. Notice first that we can decompose the space of homogeneous harmonic
polynomials of degree k as follows.

HPk = ⊕
p+q=k

HPp,q
k ,

where HPp,q
k denotes the space of all homogeneous harmonic polynomials of degree

k that can be expressed as a linear combination of terms zαzβ with |α| = p, |β| = q
and p+ q = k. We set SHp,q

k = HPp,q
k |S3 , then we have

SHk = ⊕
p+q=k

SHp,q
k .
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If h is a harmonic function on C2, then a simple computation shows that both
Lh and Lh are also harmonic on C2. It follows that

L(SHp,q
k ) ⊂ SHp−1,q+1

k ,

and
L(SHp,q

k ) ⊂ SHp+1,q−1
k .

Thus, if f(z) is a square integrable CR function on S3 with respect to the CR
structure T 1,0

t (S3) for 0 < |t| < 1, according to Proposition 12.3.3, there is a unique
representation

f(z) =
∑
m≥0

fm(z),

where fm(z) ∈ SHm and the series converges to f in the L2 norm. Since Ltf(z) = 0
in the distribution sense on S3, we obtain Ltfm(z) = 0 on S3 for all m ≥ 0. For
m = 2k + 1, we can write

f2k+1 = f2k+1,0 + f2k,1 + · · ·+ fk+1,k + fk,k+1 + · · ·+ f1,2k + f0,2k+1,

where fp,q ∈ SHp,q
p+q. Here we have identified fp,q with its preimage in HPp,q

p+q.

Since Ltf2k+1(z) = 0 on S3, we obtain

Lf2k,1(z) = 0 on S3.

Hence, f2k,1(z) is a real analytic CR function on S3. By Theorem 3.2.2, f2k,1|S3

extends smoothly to a holomorphic function F2k,1(z) defined on B2. Then, by
harmonicity of f2k,1(z) and the maximum modulus principle, we obtain f2k,1(z) =
F2k,1(z) on B2. It follows that f2k,1(z) is holomorphic on C2 and that no z terms
appear in f2k,1(z). This implies that f2k,1(z) ≡ 0 on C2.

Similarly, we obtain f1,2k(z) ≡ 0 on C2. Inductively, one can show

f2k−2,3(z) = f2k−4,5(z) = · · · = f2,2k−1(z) = f0,2k+1(z) ≡ 0,

and
f3,2k−2(z) = f5,2k−4(z) = · · · = f2k−1,2(z) = f2k+1,0(z) ≡ 0.

Therefore, fm(z) ≡ 0 for all odd indices m, and f(z) must be even. This completes
the proof of the theorem.

Theorem 12.4.1 indicates that a three dimensional compact strongly pseudocon-
vex CR manifold in general can not be globally CR embedded into a complex
Euclidean space. However, we shall show now for any 0 < |t| < 1, (S3, T 1,0

t (S3))
can always be CR immersed into C3.

We have seen that the only possible solutions to the Lt equation on (S3, T 1,0
t (S3))

are the even functions. By reasoning similarly, one can show that for k even, if
u ∈ SHk such that Ltu = 0 and uk,0 = 0, then u = 0. It follows that the space of
solutions of Lt(u) = 0 in SH2 is of dimension three which is spanned by

X =
√

2
2i

(z2
1 + z2

2 + t(z1
2 + z2

2)),

Y =
√

2
2

(−z2
1 + z2

2 + t(z1
2 − z2

2)),

Z =
√

2(z1z2 − tz1z2).
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A direct computation shows that

(12.4.1) X2 + Y 2 + Z2 = −2t,

and

(12.4.2) |X|2 + |Y |2 + |Z|2 = 1 + t2.

For each fixed t, 0 < |t| < 1, equation (12.4.1) defines a two dimensional complex
submanifold Mt in C3. We claim that the map

(12.4.3)
π : (S3, T 1,0

t (S3))→Mt ⊂ C3

z = (z1, z2) 7→ (X(z), Y (z), Z(z))

is a two-to-one CR immersion.

Proof of the claim. First we show that π is two-to-one. If z = (z1, z2), w = (w1, w2)
are two points on S3 such that π(z) = π(w), then we have

(12.4.4) z2
1 + z2

2 + t(z2
1 + z2

2) = w2
1 + w2

2 + t(w2
1 + w2

2),

(12.4.5) −z2
1 + z2

2 + t(z2
1 − z2

2) = −w2
1 + w2

2 + t(w2
1 − w2

2),

and

(12.4.6) z1z2 − tz1z2 = w1w2 − tw1w2.

From (12.4.4) and (12.4.5) we obtain

t2(w2
1 − z2

1) = w2
1 − z2

1 .

Hence, w1 = ±z1. If w1 = z1 and w2 = z2, then w = z. Otherwise, we have w1 = z1
and w2 = −z2. From (12.4.6) this implies

z1z2 − tz1z2 = 0.

Hence, z1z2 = 0. If z1 = 0 and z2 6= 0, then w = −z. If z1 6= 0 and z2 = 0, then
w = z. Similarly, if w1 = −z1, we have either w = −z or w = z. Thus, π is a
two-to-one mapping.

Next we show that the Jacobian of π is of full rank at each point z ∈ S3. Since
CT (S3) is spanned by Lt, Lt and L2 − L2, where L2 = z1(∂/∂z1) + z2(∂/∂z2),
it suffices to show that the images π∗(Lt), π∗(Lt) and π∗(L2 − L2) are linearly
independent for each point z ∈ S3.

Let w = (w1, w2, w3) be the coordinates for C3. Suppose that we have

(12.4.7) aπ∗(Lt) + bπ∗(Lt) + cπ∗(L2 − L2) = 0.
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Case (i). For |z1| 6= |z2|, we apply dw2 and dw3 respectively to (12.4.7) to get

(12.4.8) −a(1− t2)(z1z2 + z1z2) + c(−z2
1 + z2

2 + t(−z2
1 + z2

2)) = 0,

and

(12.4.9) a(1− t2)(|z2|2 − |z1|2) + c(2z1z2 + t(2z1z2)) = 0.

A direct calculation shows the determinant of the coefficient matrix given by (12.4.8)
and (12.4.9) is

−(1− t2)(|z1|2 + |z2|2)((z2
1 + z2

2) + t(z2
1 + z2

2))

= −(1− t2)((z2
1 + z2

2) + t(z2
1 + z2

2))
6= 0.

It follows that a = c = 0, and hence b = 0.
Case (ii). For z2 = eiθz1 6= 0 with θ 6= π/2, 3π/2, we obtain similarly from Case

(i) that a = c = 0. Then by applying dw2 to (12.4.7) we get

0 = b(1− t2)(z1z2 + z1z2)

= b(1− t2)|z1|2(eiθ + e−iθ).

Hence, we have b = 0.
Case (iii). For z2 = ±iz1 6= 0, we have

dw1(π∗(Lt)) = a(±2
√

2)(1− t2)|z1|2 = 0,

dw1(π∗(Lt)) = b(±2
√

2)(1− t2)|z1|2 = 0,

dw3(π∗(L2 − L2)) = c(±2
√

2i)(z2
1 − tz2

1) = 0.

Thus, a = b = c = 0. It shows that π is a two-to-one CR immersion of (S3, T 1,0
t (S3))

into Mt in C3.

12.5 Nirenberg’s Local Nonembeddability Example

In this section we shall construct strongly pseudoconvex CR structures which
are not locally embeddable.

As in Section 7.3, the following notation will be used: The Siegel upper half space
Ω2 in C2 is defined by

Ω2 = {(z, w) ∈ C2| s > |z|2},

where z = x+ iy and w = t+ is. The boundary of Ω2 will be denoted by M , and
will be identified with the Heisenberg group H2 via the mapping

(12.5.1) π : (z, t+ i|z|2) 7→ (z, t).
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Hence, the tangential Cauchy-Riemann operator on M is generated by

(12.5.2) L =
∂

∂z
− 2iz

∂

∂w
,

and the corresponding Lewy operator on H2 is

(12.5.3) Z =
∂

∂z
− iz ∂

∂t
.

We start working on H2 = C×R with coordinates given by (x, y, t). Construct a
sequence of disjoint closed discs Dk on the xt-plane with centers (1/k, 0, 1/k). The
radii of these discs are chosen to be so small that Di ∩ Dj = ∅ if i 6= j, and that
Dj has no intersection with the t-axis for all j. Denote by Ck the boundary of Dk

and by Dk the interior of Dk. Then denote by Tk the open solid torus obtained by
sweeping Dk around the t-axis. The topological boundary of Tk is denoted by Sk

which is given by sweeping Ck around the t-axis.
Now lift these objects from H2 via the mapping π to M , namely, set

C̃k = π−1(Ck), S̃k = π−1(Sk) and T̃k = π−1(Tk).

Next, let P be the projection from C2 onto the second component, i.e., P (z, w) =
(0, w), and set

C ′k = P (C̃k), S′k = P (S̃k) and T ′k = P (T̃k).

It is then easily seen that {C ′k = S′k} is a sequence of disjoint simple closed curves
in the first quadrant of the w-plane converging to the origin, and T ′k is exactly the
open region bounded by C ′k. Obviously, we have the following lemma:

Lemma 12.5.1. P (M \ ∪∞k=1T̃k) is a connected subset of {w ∈ C| s ≥ 0} which
contains the t-axis.

For any function f : H2 → C, let f̃ be the lifting of f to M , namely, f = f̃ ◦π−1.
Hence f̃ is a CR function on M , i.e., Lf̃ = 0 on M , if and only if Zf = 0 on H2.
Then we have

Lemma 12.5.2. Let f̃ : M → C be a C1 function.
(1) If Lf̃ = 0 on an open subset V of M , then the function

F (w) =
∫

Γ(w)

f̃ dz

is holomorphic on {w ∈ C| Γ(w) ⊂ V }, where Γ(w) = M ∩ P−1(w).
(2) If Lf̃ = 0 on M \ ∪∞k=1T̃k, and Γ(w) ⊂M \ ∪∞k=1T̃k, then∫

Γ(w)

f̃ dz = 0.

(3) If Lf̃ = 0 on M \ ∪∞k=1T̃k, then for each k ≥ 1, we have∫∫
S̃k

f̃ dz ∧ dw = 0.
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Proof. For (1), notice that f̃ is a CR function of class C1. Hence, f̃ can be extended
to a C0 function, denoted also by f̃ , in an ambient neighborhood so that Df̃ exists
and is continuous on V and ∂f̃ vanishes on V . Also, the circle

Γ(w = t+ is) = {(z, t+ is)| s = |z|2}

can be parameterized by z =
√
seiθ, 0 ≤ θ ≤ 2π. Then, we have

∂

∂w
F (w) =

∂

∂w

∫
Γ(w)

f̃ dz

=
∂

∂w

∫ 2π

0

f̃(z, w)
∂z

∂θ
dθ

=
∫ 2π

0

(
∂f̃

∂z
(z, w)

∂z

∂w

∂z

∂θ
+ f̃(z, w)

∂2z

∂w∂θ

)
dθ

=
∫ 2π

0

d

dθ

(
f̃(z, w)

∂z

∂w

)
dθ

= 0.

The assertion in (2) follows now from (1). First, F (w) is holomorphic on the
interior of the set D = {w ∈ C| Γ(w) ⊂ M \ ∪∞k=1T̃k} and continuous up to the
boundary of D. Observe that Γ(w) degenerates to just a point on the t-axis, this
implies F (w) = 0 on the t-axis, and hence F (w) = 0 on D.

For (3), we parameterize C ′k by w(φ) for 0 ≤ φ ≤ 2π. Then S̃k is parameter-
ized by (z(φ, θ), w(φ)) = (

√
Imw(φ)eiθ, w(φ)), and using the fact that Γ(w(φ)) ⊂

M \ ∪∞k=1T̃k, we obtain∫∫
S̃k

f̃ dz ∧ dw =
∫ 2π

0

∫ 2π

0

f̃(z, w)
dw

dφ

∂z

∂θ
dθdφ

=
∫ 2π

0

(∫ 2π

0

f̃(z, w)
∂z

∂θ
dθ

)
dw

dφ
dφ

=
∫ 2π

0

( ∫
Γ(w(φ))

f̃ dz

)
dw

dφ
dφ

= 0.

This completes the proof of Lemma 12.5.2.

Lemma 12.5.3. Let D be a domain with C1 boundary on M . If f̃ : D → C is a
C1 function, then ∫∫

bD

f̃ dz ∧ dw = 2i
∫∫∫

D

(Lf̃) dtdxdy,

where L is defined in (12.5.2).

Proof. Notice that on M , w = t+ i|z|2. Hence,

dw = dt+ izdz + izdz.
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Then, by Stokes’ theorem we have∫∫
bD

f̃ dz ∧ dw =
∫∫∫

D

df̃ ∧ dz ∧ dw

=
∫∫∫

D

(
∂f̃

∂z
dz +

∂f̃

∂w
dw

)
∧ dz ∧ dw

=
∫∫∫

D

(
−∂f̃
∂z

+ 2iz
∂f̃

∂w

)
dt ∧ dz ∧ dz

= 2i
∫∫∫

D

(Lf̃) dtdxdy.

The proof of Lemma 12.5.3 is thus completed.

Now let g be a smooth function on H2 with support contained in ∪∞k=1T k such
that g is positive on ∪∞k=1Tk and vanishes to infinite order at the origin. Define the
operator Zg on H2 by

(12.5.4) Zg = Z + g
∂

∂t
.

There exists a neighborhood U of the origin such that Zg and Zg are linearly
independent and (U,Zg) defines a strongly pseudoconvex CR structure on U . The
next theorem shows that (U,Zg) can not be realized as a three dimensional CR
submanifold of Cn for any n ≥ 2.

Theorem 12.5.4 (Nirenberg). Let Zg be defined as in (12.5.4). Suppose that
f1 and f2 are two C1 functions on H2 such that Zgf1 = Zgf2 = 0 on U . Then
df1∧df2 = 0 at the origin. In particular, the CR structure (U,Zg) is not embeddable.

Proof. The corresponding vector field of Zg on M is given by

Lg = L+ g̃
∂

∂t
.

It follows that
Lg f̃1 = Lg f̃2 = 0

on π−1(U). Hence, by the construction of g, Lf̃1 = −g̃(∂f̃1/∂t) vanishes on M \
∪∞k=1T̃k. Lemma 12.5.2 then implies that for all k ≥ 1,

0 =
∫∫
S̃k

f̃1 dz ∧ dw = 2i
∫∫∫

T̃k

(Lf̃1) dtdxdy

= −2i
∫∫∫

T̃k

g̃
∂f̃1
∂t

dtdxdy.
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Since g̃ is positive on T̃k, each of the functions Re(∂f̃1/∂t) and Im(∂f̃1 /∂t) must
vanish at some point in T̃k for all k. Equivalently, both Re(∂f1/∂t) and Im(∂f1/∂t)
vanish at some point in Tk for all k. Hence, (∂f1/∂t)(0) = 0. The fact that f1 is
a CR function with respect to the CR structure (U,Zg) implies (∂f1/∂z)(0) = 0.
Thus, we obtain

df1(0) =
∂f1
∂z

(0)dz|0.

A similar argument also holds for f2. Therefore, df1(0) and df2(0) are always linearly
dependent for any two CR functions f1 and f2 of class C1 on H2. This proves the
theorem.

We now extend the local nonembeddability example to higher dimensions. Let M
be a smooth nondegenerate CR manifold in Cn+1, n ≥ 2, with signature n− 2 near
a point p, namely, the Levi form at p ∈M has either n−1 negative eigenvalues and
one positive eigenvalue or n − 1 positive eigenvalues and one negative eigenvalue.
We may assume p is the origin. Let r(z) be a local defining function for M . As in
the proof of Theorem 3.3.2 we may write

r(z) = Imzn+1 +
n∑

j,k=1

cjkzjzk +O(|z′||t|+ |t|2 + |(z′, t)|3)

in local coordinates z = (z′, zn+1), where zn+1 = t + is. Another linear change of
coordinates will turn the defining function r(z) locally to the form

(12.5.5) r(z) = s− |z1|2 +
n∑

j=2

|zj |2 −Ψ(z′, z′, t),

where Ψ(z′, z′, t) = O(|z′||t| + |t|2 + |(z′, t)|3). Then we show that a small pertur-
bation of the induced CR structure will in general yield a nonembeddable new CR
structure on M .

Theorem 12.5.5 (Jacobowitz-Treves). Let M be the nondegenerate CR mani-
fold with signature n− 2 defined locally near the origin in Cn+1 by (12.5.5). Then
there exists a new nonembeddable CR structure on M which agrees with the induced
CR structure CT (M) ∩ T 1,0(Cn+1) to infinite order at the origin.

Proof. We shall identify M locally with an open subset U containing the origin in
Cn × R via the map

π : (z′, t+ iφ(z′, z′, t))→ (z′, t),

where

(12.5.6) φ(z′, z′, t) = |z1|2 −
n∑

j=2

|zj |2 + Ψ(z′, z′, t).

It is easily verified that type (0, 1) vector fields on M are spanned by

(12.5.7) Lj =
∂

∂zj
− iλj

∂

∂zn+1
, j = 1, · · · , n,
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where

λ1 = 2
(
z1 + ∂Ψ

∂z1

1 + i∂Ψ
∂t

)
and λj = 2

(−zj + ∂Ψ
∂zj

1 + i∂Ψ
∂t

)
for j = 2, · · · , n.

It follows that the corresponding embeddable CR structure on U is spanned by

(12.5.8) Zj =
∂

∂zj
− iλj

∂

∂t
, j = 1, · · · , n,

where

λ1 =
z1 + ∂Ψ

∂z1

1 + i∂Ψ
∂t

and λj =
−zj + ∂Ψ

∂zj

1 + i∂Ψ
∂t

for j = 2, · · · , n.

To get a nonembeddable CR structure we shall perturb the induced CR structure
on U . Let h be any smooth function in zn+1 with support contained in {t + is ∈
C| |t| ≤ s}. Note that h must vanish to infinite order at the origin. We set w =
t+ iφ(z′, z′, t), the restriction of zn+1 to M , where φ(z′, z′, t) is defined in (12.5.6).
Then, the composition function h ◦w is supported in {(z′, t) ∈ U | |t| ≤ φ(z′, z′, t)}.
Define

(12.5.9) g =
h ◦ w

z1
∂w
∂t − h ◦ w

and λ̃j = λj(1 + g) for j = 1, · · · , n,

and set

(12.5.10) Zgj =
∂

∂zj
− iλ̃j

∂

∂t
= Zj − iλjg

∂

∂t
.

We claim that Zg1, · · · , Zgn defines a new CR structure on an open neigh-
borhood, denoted still by U , containing the origin in Cn × R which agrees with
Z1, · · · , Zn to infinite order at the origin. We shall show that

(1) [Zgj , Zgk] = 0 for 1 ≤ j, k ≤ n, and
(2) the coefficients of Zgj are smooth and agree with those of Zj to infinite

order at the origin.

Proof of the claim. Since the problem is purely local, we may assume that by
shrinking the domain, if necessary, the open set U is sufficiently small,

U = {(z′, t) ∈ Cn × R| |z1|+ |z′′|+ |t| < ε},

for some sufficiently small ε > 0, where z′′ = (z2, · · · , zn).
First, we show that the function g is well defined and smooth. The constant c

that appears below may be different at each occurrence. We estimate the function
w = t+ is with s = φ(z′, z′, t) as follows:

s ≤ |z1|2 − |z′′|2 + c(|z1||t|+ |z′′||t|+ |t|2) + ε(|z1|2 + |z′′|2 + |t|2)
≤ (1 + ε)|z1|2 − (1− ε)|z′′|2 + c(|z1|2 + |t|2 + |z′′||t|)
≤ (1 + ε+ c)|z1|2 + 2cε|t|.
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Since |t| ≤ s, we obtain if ε is sufficiently small,

s ≤ c|z1|2,

and
|w| ≤ c|z1|2,

on the support of h ◦ w.
Since h = O(|w|k) for any k ∈ N, we have z1 6= 0 if h ◦ w 6= 0. Noting that

(∂w/∂t) = O(1), we see that the denominator of g is never zero if h◦w 6= 0. Hence,
we get g = O(|z1|j |w|k) for any j, k ∈ N which in turn implies that g is smooth and
vanishes to infinite order at the origin. This proves (2).

To prove (1) we note that

[Zj , Zk] = 0, for 1 ≤ j, k ≤ n.

Hence, a direct calculation shows that

[Zgj , Zgk] =
{
λk

(
−iZj(g) +

∂λj

∂t
(g + g2)

)
− λj

(
−iZk(g) +

∂λk

∂t
(g + g2)

)}
∂

∂t
.

Thus, for the integrability of the new CR structure it suffices to show that

Zj(g) = λjA− i
∂λj

∂t
(g + g2), j = 1, · · · , n,

for some function A independent of j. Since Zjw = 0 for j = 1, · · · , n, we get

Zj

(
∂w

∂t

)
= i

∂λj

∂t

∂w

∂t
.

Note that
Zjw = Zj(w + w) = −2iλj ,

hence,

Zj(h ◦ w) =
(
∂h

∂w
◦ w
)
Zj(w) = −2iλj

(
∂h

∂w
◦ w
)
.

It follows that

Zj(g) = Zj

(
h ◦ w

z1
∂w
∂t − h ◦ w

)
=
−2iλj( ∂h

∂w ◦ w)
z1

∂w
∂t − h ◦ w

−
(h ◦ w)Zj(z1 ∂w

∂t − h ◦ w)
(z1 ∂w

∂t − h ◦ w)2

= λjA− i
∂λj

∂t
(g + g2),

where

A = −2i(1 + g)
∂h
∂w ◦ w

z1
∂w
∂t − h ◦ w
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is independent of j. This proves (1), and hence the claim.

Thus, we have shown that, for each smooth function h in zn+1 with support
contained in {t+ is ∈ C| |t| ≤ s}, Equations (12.5.9) and (12.5.10) define a new CR
structure on U . With an appropriate choice of h, we shall show that this new CR
structure is not realizable locally near the origin. Let f be a CR function of class
C1 with respect to the new CR structure, namely, Zgjf = 0 for j = 1, · · · , n. In
particular, we have

(12.5.11) Zg1f = 0.

We may set z′′ = (z2, · · · , zn) = 0 in (12.5.11), and reduces the problem to the
case when n = 1. Obviously, we have Z1w = 0 for w = t + i(|z1|2 + Ψ(z1, z1, t))
with Ψ = O(|z1||t| + |t|2 + |(z1, t)|3). Then, as in the three dimensional local
nonembeddability example we study the intersection of M1 = M |z′′=0 with the
complex line zn+1 = µ. Writing µ = α+ iβ, this intersection is given by

Γ(µ) = P−1(µ) ∩M1 = {(z1, µ)| β = |z1|2 + Ψ(z1, z1, α)},

where P (z1, zn+1) = (0, zn+1) is the projection from C2 onto the second component.
Then we have

Lemma 12.5.6. In the µ-plane there is a smooth curve γ given by β = β(α) such
that

(1) for β < β(α), Γ(α+ iβ) = ∅,
(2) for β = β(α), Γ(α+ iβ) is a point which varies smoothly in α,
(3) for β > β(α), Γ(α + iβ) is a simple closed curve which varies smoothly in

µ.

Proof. Let z1 = x+ iy, we write

F (x, y, α) = |z1|2 + Ψ(z1, z1, α)

= x2 + y2 + Ψ(x, y, α).

Since Ψ vanishes at the origin to the order at least two, it is easily seen that for
each fixed α the minimum of F occurs at a point (x(α), y(α)) which varies smoothly
with α. Set β(α) = F (x(α), y(α), α). This proves (1) and (2). For (3), we write

F (x, y, α) = β(α) +Q(x, y, α) + · · · ,

where Q is a positive definite quadratic in x1 = x − x(α) and y1 = y − y(α). It
follows that if β > β(α), then the level sets β = F are smooth simple closed curves
which vary smoothly with α and β. This completes the proof of Lemma 12.5.6.

Note that {t+ is ∈ C| |t| < s and s > β(t)} is an open subset in the zn+1-plane
with piecewise smooth boundary passing through the origin. Therefore, as in the
three dimensional local nonembeddability example one may construct a sequence
of disjoint open discs T ′k in this open set which converges to the origin, and let Tk

be the corresponding solid open topological torus π(Γ(T ′k)) in U . Now let h be a
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smooth nonnegative function in the zn+1-plane with support contained in ∪∞k=1T
′
k

such that h is positive on ∪∞k=1T
′
k. Define g by (12.5.9), and let the new CR structure

be defined by (12.5.10). Obviously, when restricted to {z′′ = 0}, g is supported in
∪∞k=1T k. Thus, it follows from the same arguments that Lemma 12.5.2 and 12.5.3
hold in this setting. Hence, for any solution f of class C1 to Zgjf = 0, 1 ≤ j ≤ n,
we have ∫

π(Γ(µ))

f dz1 = 0,

provided that µ /∈ ∪∞k=1T
′
k, and

(12.5.12)
∫∫∫

Tk

(Z1f) dxdydt = 0.

Since Z1f = iλ1g(∂f/∂t) on Tk, we get

(12.5.13)
∫∫∫

Tk

λ1g
∂f

∂t
dxdydt = 0.

On Tk, the previous estimate shows that both λ1 and z1(∂w/∂t)− h ◦ w are given
by z1 +O(|z1|2). Thus, (12.5.13) becomes

(12.5.14)

0 =
∫∫∫

Tk

(z1 +O(|z1|2))
h ◦ w

z1 +O(|z1|2)
∂f

∂t
dxdydt

=
∫∫∫

Tk

(1 +O(|z1|))(h ◦ w)
∂f

∂t
dxdydt.

Equation (12.5.14) holds for all k. Hence, we must have (∂f/∂t)(0) = 0. Since f
is a CR function of class C1 with respect to this new CR structure, we conclude
that (∂f/∂z1)(0) = · · · = (∂f/∂zn)(0) = 0. This implies df(0) = (∂f/∂z1)(0)dz1 +
· · · + (∂f/∂zn)(0)dzn. Obviously, this new CR structure locally can not be CR
embedded into CN for any N ≥ n+ 1. This proves Theorem 12.5.5.

NOTES

Boutet de Monvel’s global embeddability theorem 12.2.1 for compact strongly
pseudoconvex CR manifolds with dimension at least five is proved in [BdM 1]. Our
presentation here follows that of J. J. Kohn [Koh 7]. Based on the ideas of Boutet
de Monvel the formulation of Theorem 12.2.2 for n = 2 can be found in [Bur 1]. For
more details concerning various properties of the spherical harmonics the reader is
referred to [StWe 1].

The nonembeddable compact strongly pseudoconvex CR manifold (S3, T 1,0
t (S3))

of dimension three for 0 < |t| < 1 is due to H. Rossi [Ros 1]. We proved in
Section 12.4 that Rossi’s nonembeddable example can be CR immersed into a two
dimensional complex submanifold Mt sitting in C3. The image of (S3, T 1,0

t (S3)),
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0 < |t| < 1, under the map π defined by (12.4.3) is precisely described by (12.4.1)
and (12.4.2). In particular, the image bounds a relatively compact domain Ωt in
Mt. Thus, by combining a theorem proved by L. Boutet de Monvel and J. Sjöstrand
in [BdSj 1], one can show that the Szegö projection S on (S3, T 1,0

t (S3)) must map
C∞(S3) into C∞(S3) continuously in the C∞ topology (see also [Bur 1]). It follows
from Kohn’s work [Koh 10] that the nonclosedness of the range of ∂b on L2(S3) in the
L2 sense is the only obstruction to the global CR embeddability of (S3, T 1,0

t (S3)).
The three dimensional local nonembeddable strongly pseudoconvex CR structure

was discovered by L. Nirenberg [Nir 4]. Theorem 12.5.5 which generalizes Niren-
berg’s local nonembeddability example to higher dimension is due to H. Jacobowitz
and F. Treves [JaTr 1].

The local CR embedding problem for a strongly pseudoconvex CR manifold of
dimension 2n−1 with n ≥ 3 is more complicated. M. Kuranishi showed in [Kur 1,2,3]
that if n ≥ 5, the answer is affirmative. Later, it was proved by T. Akahori [Aka 1]
that the theorem remains true for n = 4. By employing Henkin’s homotopy formula
proved in Theorem 11.4.1 and using interior estimates of the solution operator, S.
Webster presents in [Web 2,3] a simplified proof of the theorem for the cases n ≥ 4
(see also [MaMi 2]). The remaining case n = 3 is still open. When the Levi form has
mixed signature, CR embedding problems are discussed in [Cat 5]. Local homotopy
formulas for ∂b on CR manifolds with mixed Levi signatures have been obtained in
[Sha 8,9] and [Tre 5].
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APPENDIX

A. Sobolev Spaces

We include a short summary of the basic properties of the Sobolev spaces for the
convenience of the reader. Our goal is to give precise definitions and statements of
all theorems or lemmas about the Sobolev spaces which have been used in this book.
Since most of the results are well-known and due to the vast amount of literature
on this subject, we will provide very few proofs.

Let f ∈ L1(RN ), the Fourier transform f̂ of f is defined by

(1.1) f̂(ξ) =
∫

RN

e−ix·ξf(x) dx,

where x · ξ =
∑n

j=1 xjξj . The estimate

‖ f̂ ‖∞ ≤ ‖ f ‖L1

is clear from the definition. We now list some basic properties of the Fourier trans-
form whose proofs are left to the reader or can be found in any standard text. For
instance, see Stein-Weiss [StWe 1].

Theorem A.1 (Riemann-Lebesgue). Suppose that f ∈ L1(RN ), then f̂(ξ) ∈
C0, where C0 denotes the space of continuous functions on RN that vanish at infin-
ity.

Theorem A.2 (Fourier Inversion). Suppose that f ∈ L1(RN ) and that f̂(ξ) ∈
L1(RN ). Then

f(x) = (2π)−N

∫
RN

eix·ξ f̂(ξ) dξ, a.e.

In other words, f(x) can be redefined on a Lebesgue measure zero set so that f(x) ∈
C0.

Theorem A.3 (Uniqueness). If f ∈ L1(RN ) and f̂(ξ) = 0 for all ξ ∈ RN , then
f(x) = 0 almost everywhere.

Denote by S the Schwartz space of rapidly decreasing smooth functions on RN ,
i.e., S consists of all smooth functions f on RN with

sup
RN

|xβDαf(x)| <∞,

for all multiindices α, β, where α = (α1, · · · , αN ), xα = xα1
1 · · ·x

αN

N and Dα =
Dα1

x1
· · ·DαN

xN
, each αi is a nonnegative integer. Obviously, any smooth function

with compact support belongs to S and we have the following formulas:

(1.2)
(D̂αf) (ξ) = (iξ)αf̂(ξ).

Dαf̂(ξ) = ( ̂(−ix)αf)(ξ).
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Theorem A.4. The Fourier transform is an isomorphism from S onto itself.

Since L2(RN ) * L1(RN ), the Fourier transform defined by (1.1) in general cannot
be applied to L2 functions directly. Using the following fundamental theorem of the
Fourier transform, one can extend the definition to L2 functions easily:

Theorem A.5 (Plancherel’s Theorem). The Fourier transform can be extended
to be an automorphism of L2(RN ) with

(1.3) ‖ f̂ ‖2 = (2π)N ‖ f ‖2 for all f ∈ L2(RN ).

Equation (1.3) is called the Parseval’s identity.

We collect a few results about the Sobolev spaces. For a detailed treatment
of the Sobolev spaces W s(Ω) for any real s, we refer the reader to Chapter 1 in
Lions-Magenes [LiMa 1] for smooth domains or to Grisvard [Gri 1] for nonsmooth
domains.

We first define the Sobolev spaces in RN . Let

p(D) =
∑
|α|≤m

aαD
α

be a differential operator of order m with constant coefficients. Then, by (1.2), it
is easy to see that for any f ∈ S,

(1.4) ̂(p(D)f)(ξ) = p(iξ)f̂(ξ).

Here, the polynomial p(iξ) is obtained by replacing the operator D in p(D) by iξ.
For any s ∈ R, we define Λs : S → S by

(1.5) Λsu(x) =
1

(2π)N

∫
RN

eix·ξ(1 + |ξ|2) s
2 û(ξ) dξ.

Set σ(Λs) = (1 + |ξ|2)s/2. σ(Λs) is called the symbol of Λs. Define the scalar
product (u, v)s on S × S by

(u, v)s = (Λsu,Λsv)

and the norm
‖ u ‖s =

√
(u, u)s for u ∈ S.

The Sobolev space Hs(RN ) is the completion of S under the norm defined above. In
particular, L2(RN ) = H0(RN ). The Sobolev norms ‖ ‖Hs(RN ) for any u ∈ C∞0 (RN )
is given by

(1.6) ‖ u ‖2Hs(RN ) =
∫

RN

(1 + |ξ|2)s|û(ξ)|2dξ.

Next, we define the Sobolev spaces for domains in RN . Let Ω ⊂⊂ RN be a domain
with Ck boundary, k = 1, 2, · · · . By this we mean that there exists a real-valued
Ck function ρ defined in RN such that Ω = {z ∈ RN |ρ(z) < 0} and |∇ρ| 6= 0 on bΩ.



338 Appendix

The implicit function theorem shows that locally, bΩ can always be expressed as a
graph of a Ck function. If the boundary can be expressed locally as the graph of a
Lipschitz function, then it is called a Lipschitz domain or a domain with Lipschitz
boundary.

For any domain Ω in RN , let Hs(Ω), s ≥ 0, be defined as the space of the
restriction of all functions u ∈ Hs(RN ) to Ω. We define the norm of Hs(Ω) by

(1.7) ‖ u ‖Hs(Ω) = inf
U∈Hs(RN )

U|Ω=u

‖ U ‖s(RN ) .

When s is a positive integer, there is another way to define the Sobolev spaces
by weak derivatives. For any domain Ω ⊂ RN , we define W s(Ω) to be the space of
all the distributions u in L2(Ω) such that

Dαu ∈ L2(Ω), |α| ≤ s,

where α is a multiindex and |α| = α1 + · · ·+ αN . We define the norm ‖ ‖W s(Ω) by

(1.8) ‖ u ‖2W s(Ω) =
∑
|α|≤s

‖ Dαu ‖2(Ω)<∞.

The space C∞(Ω) denotes the space of functions which are restrictions of func-
tions in C∞(RN ) to Ω. If Ω is a bounded Lipschitz domain, then C∞(Ω) is dense in
W s(Ω) in the W s(Ω) norm (see Theorem 1.4.2.1 in Grisvard [Gri 1]). Thus W s(Ω)
can also be defined as the completion of the functions of C∞(Ω) under the norm
(1.8) when Ω has Lipschitz boundary.

When Ω = RN , we have Hs(RN ) = W s(RN ) for any positive integer s. This
follows from Plancherel’s theorem and the inequality

1
C

∑
|α|≤s

|ξα|2 ≤ (1 + |ξ|2)s ≤ C
∑
|α|≤s

|ξs|2,

where C > 0.
Obviously for any bounded domain Ω, we have Hs(Ω) ⊆W s(Ω) for any Ω. If bΩ

is Lipschitz, the following theorem shows that the two spaces are equal:

Theorem A.6 (Extension Theorem). Let Ω be a bounded open subset of RN

with Lipschitz boundary. For any positive integer s, there exists a continuous linear
operator Ps from W s(Ω) into W s(RN ) such that

Psu|Ω = u.

The extension operator Ps can be chosen to be independent of s. In particular, we
have

W s(Ω) = Hs(Ω).

For a proof of Theorem A.6, see Chapter 6 in Stein [Ste 2] or Grisvard [Gri 1].
Thus when s is a positive integer and Ω is bounded Lipschitz, the Sobolev spaces
will be denoted by W s(Ω) with norm ‖ ‖s(Ω), or simply ‖ ‖s
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Theorem A.7 (Sobolev Embedding). If Ω is a bounded domain in RN with
Lipschitz boundary, then there is an embedding

W k(Ω) ↪→ Cm(Ω) for any interger m, 0 ≤ m < k −N/2.

Theorem A.8 (Rellich Lemma). Let Ω be a bounded domain in RN with Lip-
schitz boundary. If s > t ≥ 0, the inclusion W s(Ω) ↪→W t(Ω) is compact.

Theorem A.9 (Trace Theorem). Let Ω be a bounded domain in RN with smooth
boundary. For s > 1/2, the restriction map f → f

∣∣
bΩ

for any f ∈ C∞(Ω) can be
extended as a bounded operator from W s(Ω) to W s−1/2(bΩ). For any f ∈ W s(Ω),
f
∣∣
bΩ
∈W s−1/2(bΩ) and there exists a constant Cs independent of f such that

‖ f ‖s− 1
2 (bΩ) ≤ Cs ‖ f ‖s(Ω) .

We remark that in general, the trace theorem does not hold for s = 1/2. However,
if f ∈ W 1/2(Ω) and f is harmonic or f satisfies some elliptic equations, then the
restriction of f to bΩ is in L2 (c.f. Lemma 5.2.3).

Let Ω be a bounded domain in RN . We introduce other Sobolev spaces. Let
W s

0 (Ω) be the completion of C∞0 (Ω) under W s(Ω) norm. When s = 0, since C∞0 (Ω)
is dense in L2(Ω), it follows that W 0

0 (Ω) = W 0(Ω) = L2(Ω). If s ≤ 1/2, we also
have C∞0 (Ω) is dense in W s(Ω). Thus

W s(Ω) = W s
0 (Ω), s ≤ 1

2
.

This implies that the trace theorem does not hold for s ≤ 1/2. When s > 1/2,
W s

0 (Ω) ( W s(Ω).
We define W−s(Ω) to be the dual of W s

0 (Ω) when s > 0 and the norm of W−s(Ω)
is defined by

‖ f ‖−s(Ω) = sup
|(f, g)|
‖ g ‖s(Ω)

,

where the supremum is taken over all functions g ∈ C∞0 (Ω). We note that the
generalized Schwarz inequality for f ∈W s(Ω), g ∈W−s(Ω),

|(f, g)Ω| ≤ ‖ f ‖s(Ω)‖ g ‖−s(Ω)

holds only when s ≤ 1/2 for a bounded domain Ω. The proof of these results can
be found in Lions-Magenes [LiMa 1] or Grisvard [Gri 1].

The Sobolev spaces can also be defined for functions or forms on manifolds. Let
M be a compact Riemannian manifold of real dimension N . Choose a finite number
of coordinate neighborhood systems {(Ui, ϕi)}mi=1, where

ϕi : Ui
∼−→ Vi ⊂ RN

is a homeomorphism from Ui onto an open subset Vi contained in RN . For each i,
1 ≤ i ≤ m, let {ηi

j}Nj=1 be an orthonormal basis for CT ∗(M) on Ui, and let {ζi}mi=1
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be a partition of unity subordinate to {Ui}mi=1. Thus, locally on each coordinate
chart Ui, one may express a smooth r-form φ as

(1.9) φ =
∑′

|I|=r

φi
Iη

i
I ,

where I = (i1, · · · , ir) and ηi
I = ηi

i1
∧ · · · ∧ ηi

ir
. Then, we define the Sobolev s norm

of φ ∈ Er(M), for s ∈ R, by

(1.10) ‖ φ ‖2s =
m∑

i=1

∑′

|I|=r

‖ (ζiφi
I) ◦ ϕ−1

i ‖2s .

Denote byW s
r (M) the completion of Er(M) under the norm ‖ · ‖s. The definition of

W s
r (M) is highly nonintrinsic. Obviously, it depends on the choice of the coordinate

neighborhood systems, the partition of unity and the local orthonormal basis {ηi
j}.

However, it is easily seen that different choices of these candidates will come up
with an equivalent norm. Therefore, W s

r (M) is a well-defined topological vector
space. If M is a complex manifold of dimension n and Ω is a relatively compact
subset in M , the space W s

(p,q)(Ω), 0 ≤ p, q ≤ n and s ∈ R, are defined similarly.
The Sobolev embedding theorem and the Rellich lemma also hold for manifolds.

B. Interpolation Theorems and some Inequalities

There is yet another way to define the Sobolev spaces W s(Ω) when s is not an
integer and s > 0. Let k1 and k2 be two nonnegative integers and k1 > k2. On any
domain Ω in RN , we have W k1(Ω) ⊂ W k2(Ω). The space W s(Ω) for k2 < s < k1

can be defined by interpolation theory. We shall describe the procedure in detail
for the interpolation between W 1 and L2 (i.e., when k1 = 1 and k2 = 0).

For each v ∈W 1(Ω) and u ∈W 1(Ω),

(u, v)1 = (u, v) +
N∑

i=1

(Diu,Div),

where Di = ∂/∂xi. Let D(L) denote the set of all functions u such that the linear
map

v −→ (u, v)1, v ∈W 1(Ω)

is continuous in L2(Ω). From the Hahn-Banach theorem and the Riesz representa-
tion theorem, there exists Lu ∈ L2(Ω) such that

(2.1) (u, v)1 = (Lu, v), v ∈W 1(Ω).

If u ∈ C∞0 (Ω), then u ∈ D(L) and Lu = (−4 + 1)u. It is easy to see that L is a
densely defined, unbounded self-adjoint operator and L is strictly positive since

(Lu, u) = ‖u‖21 ≥ ‖u‖2.
Using the spectral theory of positive self-adjoint operators (see e.g. Riesz-Nagy
[RiNa 1]), we can define Lθ of L for θ ∈ R. Let

Λ = L1/2.

Then Λ is self-adjoint and positive in L2(Ω) with domain W 1. From (2.1), we have

(u, v)1 = (Λu,Λv), for every u, v ∈W 1(Ω).
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Definition B.1. Let W θ(Ω) be the interpolation space between the spaces W 1(Ω)
and L2(Ω) defined by

W θ(Ω) ≡ [W 1(Ω), L2(Ω)]θ = Dom(Λ1−θ), 0 ≤ θ ≤ 1,

with norm
‖u‖+ ‖Λ1−θu‖ = the norm of the graph of Λ1−θ,

where Dom(Λ1−θ) denotes the domain of Λ1−θ.

From the definition, we have the following interpolation inequality:

(2.2) ‖Λ1−θu‖ ≤ ‖Λu‖1−θ‖u‖θ

Thus

(2.3) ‖u‖θ ≤ C‖u‖1−θ
1 ‖u‖θ.

The general case for arbitrary integers k1 and k2 can be done similarly. Thus, this
gives another definition for the Sobolev spaces W s(Ω) when s is not an integer. If
bΩ is bounded Lipschitz, this space is the same Sobolev space as the one introduced
in Appendix A (see [LiMa 1] for details for the equivalence of these spaces). For a
bounded Lipschitz domain, we can use any of the definitions for W s(Ω), s ≥ 0.

The following interpolation inequality holds for general Sobolev spaces:

Theorem B.2 (Interpolation Inequality). Let Ω be a bounded domain in RN

with Lipschitz boundary. For any ε > 0, f ∈W s1(Ω), s1 > s > s2 ≥ 0, we have the
following inequality:

(2.4) ‖ f ‖2s ≤ ε ‖ f ‖2s1
+ Cε ‖ f ‖2s2

,

where Cε is independent of f .

Theorem B.3 (Interpolation Theorem). Let T be a bounded linear operator
from W si(Ω) into W ti(Ω), i = 1, 2, and

s1 > s2 ≥ −
1
2
, t1 > t2 ≥ −

1
2
,

then T is bounded from [W s1(Ω), W s2(Ω)]θ into [W t1(Ω),W t2(Ω)]θ, 0 ≤ θ ≤ 1.

We warn our reader of the danger of interpolation of spaces if the assumption si ≥
−1/2 and ti ≥ −1/2 is dropped! (See [LiMa 1].) Next we discuss the interpolation
between Lp spaces and some applications.

Definition B.4. Let (X,µ) and (Y, ν) be two measure spaces and let T be a linear
operator from a linear subspace of measurable functions on (X,µ) into measurable
functions defined on (Y, ν). T is called an operator of type (p, q) if there exists a
constant M > 0 such that

(2.5) ‖ Tf ‖Lq ≤M ‖ f ‖Lp

for all f ∈ Lp(X).

The least M for which inequality (2.5) holds is called the (p, q)-norm of T . If f
is a measurable function on (X,µ), we define its distribution function λf : (0,∞)→
[0,∞] by

λf (α) = µ({x | |f(x)| > α}).
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Definition B.5. Let (X,µ) and (Y, ν) be two measure spaces and let T be a linear
operator from a linear subspace of measurable functions on (X,µ) into measurable
functions defined on (Y, ν). T is a linear operator of weak type (p, q), 1 ≤ p ≤ ∞
and 1 ≤ q <∞, if there exists a constant k such that

λ(s) ≤
(
k ‖ f ‖Lp

s

)q

for every f ∈ Lp(X),

where λ is the distribution function of Tf .

We have the following interpolation theorems:

Theorem B.6 (Riesz-Thorin). Let (X,µ) and (Y, ν) be two measure spaces and
p0, p1, q0, q1 be numbers in [1,∞]. If T is of type (pi, qi) with (pi, qi)-norm Mi,
i = 0, 1, then T is of type (pt, qt) and

(2.6) ‖ Tf ‖Lqt ≤M1−t
0 M t

1 ‖ f ‖Lpt ,

provided
1
pt

=
1− t
p0

+
t

p1
and

1
qt

=
1− t
q0

+
t

q1

with 0 < t < 1.

For proof of this fact, see Theorem 1.3 in Chapter 5 in Stein-Weiss [StWe 1].

Theorem B.7 (Marcinkiewicz). Let (X,µ) and (Y, ν) be two measure spaces
and p0, p1, q0, q1 be numbers such that 1 ≤ pi ≤ qi ≤ ∞ for i = 0, 1 and q0 6= q1.
If T is of weak type (pi, qi), i = 0, 1, then T is of type (pt, qt) provided

1
pt

=
1− t
p0

+
t

p1
and

1
qt

=
1− t
q0

+
t

q1

with 0 < t < 1.

For a proof of this theorem, see Appendix B in Stein [Ste 3].

Theorem B.8 (Hardy’s Inequality). If f ∈ Lp(0,∞), 1 < p ≤ ∞ and

Tf(x) =
1
x

∫ x

0

f(t)dt, x > 0,

then
‖Tf‖Lp ≤ p

p− 1
‖f‖Lp .

Proof. We use a change of variables and Minkowski’s inequality for integrals,

‖Tf(x)‖Lp =
∥∥∥∥∫ 1

0

f(tx)dt
∥∥∥∥

p

≤
∫ 1

0

‖f(tx)‖pdt

=
∫ 1

0

‖f‖p
1

t
1
p

dt =
p

p− 1
‖f‖Lp .
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Theorem B.9. Let

Tf(x) =
∫ ∞

0

K(x, y)f(y)dy, x > 0,

where K(x, y) is homogeneous of degree −1, that is, K(λx, λy) = λ−1K(x, y), for
λ > 0. If for each 1 ≤ p ≤ ∞,∫

| K(1, y) | y−1/pdy = Ap <∞,

then
‖Tf‖Lp ≤ Ap‖f‖Lp , for every f ∈ Lp(0,∞).

In particular, the Hilbert integral defined by

Tf(x) =
∫ ∞

0

f(y)
x+ y

dy, x > 0,

is a bounded operator of type (p, p) for each 1 < p <∞.

Proof. Since

Tf(x) =
∫ ∞

0

K(1, y)f(xy)dy,

using Minkowski’s inequality for integrals, we get

‖Tf‖Lp ≤
(∫

| K(1, y) | y−1/pdy

)
‖f‖Lp = Ap‖f‖Lp .

The Hilbert integral is of type (p, p) since, for 1 < p <∞, using contour integration,
we have ∫

y−1/p

1 + y
dy =

π

sin(π/p)
.

Theorem B.10. Let (X,µ) and (Y, ν) be two measure spaces and let K(x, y) be a
measurable function on X × Y such that∫

X

|K(x, y)| dµ ≤ C, for a.e. y,

and ∫
Y

|K(x, y)| dν ≤ C, for a.e. x,

where C > 0 is a constant. Then, for 1 ≤ p ≤ ∞, the operator T defined by

Tf(x) =
∫

Y

K(x, y)f(y) dν

is a bounded linear operator from Lp(Y, dν) into Lp(X, dµ) with

‖ Tf ‖Lp(X) ≤ C ‖ f ‖Lp(Y ) .

For a proof of Theorem B.10, we refer the reader to Theorem 6.18 in Folland [Fol
3].
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Theorem B.11. Let (X,µ) and (Y, ν) be two measure spaces and 1 < q <∞. Let
K(x, y) be a measurable function on X × Y such that

ν{ y ∈ Y | K(x, y) > s} ≤
(
C

s

)q

, for a.e. x ∈ X,

and

µ{ x ∈ X | K(x, y) > s} ≤
(
C

s

)q

, for a.e. y ∈ Y,

where C > 0 is a constant. Then the operator T defined by

Tf(x) =
∫

Y

K(x, y)f(y) dν

is a bounded linear operator from Lp(Y ) into Lr(X) provided

1 < p < r <∞ and
1
p

+
1
q
− 1
r

= 1.

T is bounded from L1(Y ) to Lq−ε(X) for any ε > 0.

The proof of this theorem is based on the Marcinkiewicz Interpolation Theorem
B.7. We refer the reader to Theorem 15.3 in Folland-Stein [FoSt 1] or Theorem 6.35
in Folland [Fol 3].

C. Hardy-Littlewood Lemma and its Variations

We first prove the Hardy-Littlewood lemma for bounded Lipschitz domains.

Theorem C.1 (Hardy-Littlewood Lemma). Let Ω be a bounded Lipschitz do-
main in RN and let δ(x) denote the distance function from x to the boundary of Ω.
If u is a C1 function in Ω and there exists an 0 < α < 1 and C > 0 such that

(3.1) | ∇u(x) | ≤ C δ(x)−1+α for every x ∈ Ω,

then u ∈ Cα(Ω), i.e., there exists some constant C1 such that

| u(x)− u(y) | ≤ C1 | x− y |α for x, y ∈ Ω.

Proof. Since u is C1 in the interior of Ω, we only need to prove the assertion when
x and y are near the boundary. Using a partition of unity, we can assume that u is
supported in U ∩Ω, where U is a neighborhood of a boundary point x0 ∈ bΩ. After
a linear change of coordinates, we may assume x0 = 0 and for some ε > 0,

U ∩ Ω = {x = (x′, xN ) | xN > φ(x′), | x′ |< ε, | xN |< ε},

where φ(0) = 0 and φ is some Lipschitz function with Lipschitz constant M . The
distance function δ(x) is comparable to xN − φ(x′), i.e., there exists a constant
C > 0 such that

(3.2)
1
C
δ(x) ≤ xN − φ(x′) ≤ Cδ(x) for x ∈ Ω.
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We set x̃′ = θx′ + (1 − θ)y′ and x̃N = θxN + (1 − θ)yN . Let d = |x − y|. If
x = (x′, xN ), y = (y′, yN ) ∈ Ω, then the line segment L defined by θ(x′, xN +Md)+
(1− θ)(y′, yN +Md) = (x̃′, x̃N +Md), 0 ≤ θ ≤ 1, lies in Ω since

θ(xN +Md) + (1− θ)(yN +Md)

≥Md+ θφ(x′) + (1− θ)φ(y′)

≥Md+ θ(φ(x′)− φ(x̃′)) + (1− θ)(φ(y′)− φ(x̃′)) + φ(x̃′)

≥ φ(x̃′).

Since u is C1 in Ω, using the mean value theorem, there exists some (x̃′, x̃N +
Md) ∈ L such that

| u(x′, xN +Md)− u(y′, yN +Md) | ≤ | ∇u(x̃′, x̃N +Md) | d.

From (3.1) and (3.2), it follows that

| u(x′, xN +Md)− u(y′, yN +Md) | ≤ Cδ(x̃′, x̃N +Md)−1+α · d

≤ C̃((M + 1)d)−1+α · d ≤ CMdα.

Also we have

| u(x)− u(x′, xN +Md) |

=
∣∣∣∣∫ Md

0

∂u(x′, xN + t)
∂t

dt

∣∣∣∣
≤ C

∫ Md

0

δ(x′, xN + t)−1+αdt ≤ C
∫ Md

0

(xN + t− φ(x′))−1+αdt

≤ C
∫ Md

0

t−1+αdt ≤ C(Md)α.

Thus for any x, y ∈ Ω,

| u(x)− u(y) | ≤ | (u(x)− u(x′, xN +Md) | + | u(y′, uN +Md)− u(y) |
+ | u(x′, xN +Md)− u(y′, yN +Md) |
≤ CMdα.

This proves the theorem.

The following is a variation of the Hardy-Littlewood lemma for Sobolev spaces.

Theorem C.2. Let Ω be a bounded Lipschitz domain in RN and let δ(x) be the
distance function from x in Ω to the boundary bΩ. If u ∈ L2(Ω)∩W 1

loc(Ω) and there
exists an 0 < α < 1 such that

(3.3)
∫

Ω

δ(x)2−2α | ∇u |2 dV <∞,
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then u ∈ Wα(Ω). Furthermore, there exists a constant C, depending only on Ω,
such that

‖ u ‖2α(Ω) ≤ C
(∫

Ω

δ(x)2−2α | ∇u |2 dV +
∫

Ω

|u|2dV
)
.

Proof. For 0 < α < 1, Wα(Ω) = [W 1(Ω), L2(Ω)]1−α. The interpolation norm of a
function u in Wα(Ω) (see Lions-Magenes [LiMa 1]) is comparable to the infimum
over all functions

f : [0,∞)→ L2(Ω) +W 1(Ω) with f(0) = u

of the norm If where If is defined to be

(3.4) If =
(∫ ∞

0

‖t1−αf(t)‖2W 1(Ω)t
−1dt

) 1
2

+
(∫ ∞

0

‖t1−αf ′(t)‖2L2(Ω)t
−1dt

) 1
2

.

From (3.3), we have u ∈ W 1(Ω′) for any Ω′ ⊂⊂ Ω. Thus we only need to estimate
u in a small neighborhood of the boundary. Using a partition of unity and a change
of coordinates as in Theorem C.1, we can assume U ∩ Ω = {xN > φ(x′)}. Let
η ∈ C∞0 (−ε, ε) such that 0 ≤ η ≤ 1, η ≡ 1 when | t |< ε/2. We define

f(t) = u(x′, xN + t)η(t).

Then f(0) = u(x) and f(t) ∈ W 1(Ω) for t > 0. To compute the norm defined by
(3.4), we have

(3.5)
|If |2 ≤ C

(∫ ε

0

∫
Ω∩U

| u(x′, xN + t) |2 dx t1−2αdt

+
∫ ε

0

∫
Ω∩U

t1−2α | ∇u(x′, xN + t) |2 dxdt
)
.

Since 1− 2α > −1, the first integral on the right-hand side of (3.4) is bounded by
‖u‖2L2(Ω). To estimate the second integral on the right-hand side of (3.5), we first
note that for x ∈ Ω ∩ U , using (3.2), there exists C1 > 0,

δ(x′, xN + t) ≥ C1(xN + t− φ(x′))
≥ C1t.

Thus, after changing variables and the order of integration, we have∫ ε

0

∫
Ω∩U

t1−2α|∇u(x′, xN + t)|2dxdt

≤
∫

Ω∩U

∫ Cδ(x)

0

t1−2α|∇u(x)|2dtdx

≤ C
∫

Ω∩U

δ(x)2−2α|∇u(x)|2dx

<∞.

This implies that If <∞ and u ∈Wα(Ω). Theorem C.2 is proved.
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Theorem C.3. Let Ω be a bounded domain in RN with C∞ boundary and let s be
a positive integer. If u ∈W s

0 (Ω), then we have

δ−s+|α|Dαu ∈ L2(Ω), for every α with |α| ≤ s,

where δ is the distance function to the boundary, α is a multiindex and Dα is defined
as in Appendix A.

Proof. If f ∈ C∞0 (0,∞), using Taylor’s theorem, we have

f(x) =
1

(s− 1)!

∫ x

0

f (s)(t)(x− t)s−1dt.

Applying Hardy’s inequality (Theorem B.8 in the Appendix), we see that∥∥∥∥f(x)
xs

∥∥∥∥
L2

≤
∥∥∥∥ 1

(s− 1)! x

∫ x

0

|f (s)(t)|dt
∥∥∥∥

L2

≤ 2
(s− 1)!

‖f (s)(t)‖L2 .

Using localization and a partition of unity, we can assume that u is supported in
a compact set in the upper half space {x = (x′, xN ) | xN ≥ 0}. Applying the
argument to the Taylor expansion in the xN variable, we have for any u ∈ C∞0 (Ω),

‖δ−s+|α|Dαu‖L2(Ω) ≤ C‖u‖W s
0 (Ω).

The theorem follows by approximating u ∈W s
0 (Ω) by functions in C∞0 (Ω).

Theorem C.4. Let Ω be a bounded domain in RN with C∞ boundary. Let s be
any positive number such that s 6= n− 1/2 for any n ∈ N. If u ∈ L2(Ω, loc) and

(3.6)
∫

Ω

δ2s|u|2dV <∞,

where δ is the distance function to the boundary, then u ∈W−s(Ω).
When s = n − 1/2 for some positive integer n, if we assume in addition that u

is harmonic, the same statement also holds.

Proof. We first assume that s is a positive integer. For any υ ∈ W s
0 (Ω), we have

from Theorem C.3,

|(u, υ)| ≤ ‖δsu‖‖δ−sυ‖
≤ Cs‖δsu‖‖υ‖W s

0
.

Thus, u ∈W−s(Ω) from definition.
For other s when s 6= n − 1/2, we use interpolation between W−s(Ω). For s2 >

s1 ≥ 0, s1, s2 integers, if (1− θ)s1 + θs2 6= n− 1/2, then

(3.7) [W−s1(Ω),W−s2(Ω)]θ = W−(1−θ)s1−θs2(Ω).
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When (1− θ)s1 + θs2 = n− 1/2, (3.7) no longer holds (see Lions-Magenes [LiMa
1]) and we restrict ourselves to harmonic functions.

We first prove for s = 1/2. Using a partition of unity, we may assume that Ω is
star-shaped and 0 ∈ Ω. Define

v(x) =
∫ 1

0

1
s
u(sx)ds.

Then v is harmonic and

〈x,∇v(x)〉 =
N∑

i=1

∫ 1

0

xi
∂u

∂xi
(sx)ds =

∫ 1

0

∂

∂s
u(sx)ds = u(x)− u(0).

Without loss of generality, we may assume that u(0) = 0. We have expressed u as
a linear combination of the derivatives of some harmonic function v and, from our
assumption,

(3.8)
∫

Ω

δ(x)|〈x,∇v〉|2dV =
∫

Ω

δ(x)|u|2dV <∞,

where C is some positive constant. We claim that

(3.9)
∫

Ω

δ(x)|∇v|2dV ≤ C
(∫

Ω

δ(x)|〈x,∇v〉|2dV +
∫

Ω

δ(z)|v(x)|2dV
)
.

To prove (3.9), we apply the Rellich identity to the harmonic function v on the
boundary bΩη, where Ωη = {x ∈ Ω | δ(x) > η} for small η > 0. We have

(3.10)
∫

bΩη

(
|∇v|2〈x, n〉 − 2〈x,∇v〉∂u

∂n
− (N − 2)v

∂v

∂n

)
dS = 0,

where n is the outward normal on bΩη and dS is the surface element on bΩη. Identity
(3.10) follows from the equality

N∑
i=1

∂

∂xi

(
|∇v|2xi − 2

∂v

∂xi
〈x,∇v〉 − (N − 2)v

∂v

∂xi

)
= −24v〈x,∇v〉 − (N − 2)v4v = 0

and Stokes’ theorem. If η is sufficiently small, we have 〈x, n〉 > C0 > 0 for some
C0 > 0 uniformly on bΩη, it follows from (3.10) that

(3.11)

C0

∫
bΩη

|∇v|2dS ≤
∫

bΩη

∣∣∣∣2〈x,∇v〉 ∂v∂n + (N − 2)v
∂v

∂n

∣∣∣∣dS
≤ ε

∫
bΩη

∣∣∣∣ ∂v∂n
∣∣∣∣2dS + Cε

(∫
bΩη

|v|2dS + |〈x,∇v〉|2dS

)
,
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where ε > 0. If ε is sufficiently small, the first term on the right-hand side of (3.11)
can be absorbed by the left-hand side and we obtain

(3.12)
∫

bΩη

|∇v|2 ≤ C

(∫
bΩη

|v|2dS + |〈x,∇v〉|2dS

)
.

Multiplying (3.12) by η and integrating over η, (3.9) is proved. Using (3.8) and
(3.9), we get

(3.13)
∫

Ω

δ(x)|∇v|2dV ≤ C
∫

Ω

δ(x)|u|2dV <∞.

It follows from Theorem C.2 that v ∈ W 1
2 (Ω). Since for any first order derivative

D with constant coefficients, we have

(3.14) D : HW
1
2 (Ω)→ HW− 1

2 (Ω),

where HW s(Ω) = W s(Ω) ∩ {u ∈ C∞(Ω) | 4u = 0}. This implies that u ∈
W−1/2(Ω). The cases for other integers can be proved similarly and this completes
the proof of Theorem C.4.

We remark that (3.14) does not hold without restricting to the subspace of har-
monic functions (see [LiMa 1]). The technique used in the proof of Theorem C.2
involves real interpolation, while the proof of (3.14) uses complex interpolation. We
refer the reader to Jerison-Kenig [JeKe 1] and Kenig [Ken 3] for more discussion on
these matters.

D. Friedrichs’ Lemma

Let χ ∈ C∞0 (RN ) be a function with support in the unit ball such that χ ≥ 0
and

(4.1)
∫
χdV = 1.

We define χε(x) = ε−Nχ(x/ε) for ε > 0. Extending f to be 0 outside D, we define
for ε > 0 and x ∈ RN ,

fε(x) = f ∗ χε(x) =
∫
f(x′)χε(x− x′)dV (x′)

=
∫
f(x− εx′)χ(x′)dV (x′).

In the first integral defining fε we can differentiate under the integral sign to show
that fε is C∞(RN ). From Young’s inequality for convolution, we have

(4.2) ‖ fε ‖ ≤ ‖ f ‖ .
Since χε is an approximation of the identity, we have fε → f uniformly if f ∈
C∞0 (RN ). Since C∞0 (RN ) is a dense subset of L2(RN ), this implies that

fε → f in L2(RN ) for every f ∈ L2(RN ).

A very useful fact concerning approximating solutions of a first order differential
operator by regularization using convolution is given by the following lemma (see
Friedrichs [Fri 1] or Hörmander [Hör 2]):
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Lemma D.1 (Friedrichs’ Lemma). If v ∈ L2(RN ) with compact support and a
is a C1 function in a neighborhood of the support of v, it follows that

(4.3) aDi(v ∗ χε)− (aDiv) ∗ χε → 0 in L2(RN ) as ε→ 0,

where Di = ∂/∂xi and aDiv is defined in the sense of distribution.

Corollary D.2. Let

L =
N∑

i=1

aiDi + a0

be a first order differential operator with variable coefficients where ai ∈ C1(RN )
and a0 ∈ C(RN ). If v ∈ L2(RN ) with compact support and Lv = f ∈ L2(RN ) where
Lv is defined in the distribution sense, the convolution vε = v ∗ χε is in C∞0 (RN )
and

(4.4) vε → v, Lvε → f in L2(RN ) as ε→ 0.

Proof of Friedrichs’ lemma. First note that if v ∈ C∞0 (RN ), we have from the
discussion above,

Di(v ∗ χε) = (Div) ∗ χε → Div, (aDiv) ∗ χε → aDiv,

with uniform convergence. We claim that

(4.5) ‖ aDi(v ∗ χε)− (aDiv) ∗ χε ‖ ≤ C ‖ v ‖, v ∈ L2(RN ),

where C is some positive constant independent of ε and v. Since C∞0 (RN ) is dense
in L2(RN ), (4.3) will be proved if one can prove (4.5). To see this, we approximate
v by a sequence vj ∈ C∞0 (RN ) in L2(RN ) and observe that if (4.5) holds, we have

‖ aDi(v ∗ χε)− (aDiv) ∗ χε ‖
≤ C(‖ v − vj ‖ + ‖ aDi(vj ∗ χε)− (aDivj) ∗ χε ‖).

Thus, it remains to prove (4.5). Without loss of generality, we may assume that
a ∈ C1

0 (RN ) since v has compact support. We have for v ∈ C∞0 (RN ),

aDi(v ∗ χε)− (aDiv) ∗ χε

= a(x)Di

∫
v(x− y)χε(y)dy −

∫
a(x− y) ∂v

∂xi
(x− y)χε(y)dy

=
∫

(a(x)− a(x− y)) ∂v
∂xi

(x− y)χε(y)dy

= −
∫

(a(x)− a(x− y)) ∂v
∂yi

(x− y)χε(y)dy

=
∫

(a(x)− a(x− y)) v(x− y) ∂
∂yi

χε(y)dy

−
∫ (

∂

∂yi
a(x− y)

)
v(x− y)χε(y)dy.
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Let M be the Lipschitz constant for a such that |a(x) − a(x − y)| ≤ M |y| for all
x, y. We obtain

|aDi(v ∗ χε)− (aDiv) ∗ χε| ≤M
∫
|v(x− y)| (χε(y) + |yDiχε(y)|) dy.

Using Young’s inequality for convolution, we have

‖ aDi(v ∗ χε)− (aDiv) ∗ χε ‖ ≤M ‖ v ‖
∫

(χε(y) + |yDiχε(y)|) dy

= M(1 +mi) ‖ v ‖,

where
mi =

∫
|yDiχε(y)|dy =

∫
|y(Diχ)(y)|dy.

This proves (4.5) when v ∈ C∞0 (RN ). Since C∞0 (RN ) is dense in L2(RN ), we have
proved (4.5) and the lemma.

Proof of the Corollary. Since a0v ∈ L2(RN ), we have

lim
ε→0

a0(v ∗ χε) = lim
ε→0

(a0v ∗ χε) = a0v in L2(RN ).

Using Friedrichs’ lemma, we have

Lvε − Lv ∗ χε = Lvε − f ∗ χε → 0 in L2(RN ) as ε→ 0.

The corollary follows easily since f ∗ χε → f in L2(RN ).
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[BrCa 1] Bruna, J., and del Castillo, J., Hölder and Lp-estimates for the ∂̄-equation in some
convex domains with real-analytic boundary, Math. Ann., 269 (1984), 527–539.

[Bur 1] Burns, D., Jr., Global Behavior of Some Tangential Cauchy-Riemann Equations, Par-

tial Differential Equations and Geometry(Proc. Conf., Park City, Utah, 1977), Dekker,
New York, (1979), 51–56.

[CaZy 1] Calderón, A. P., and Zygmund, A., Singular integral operators and differential equa-
tions, Amer. J. Math. 79 (1957), 901-921.

[CaTh 1] Cartan, H., and Thullen, P., Zur Theorie der Singularitäten der Funktionen mehrerer
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auf q-konvexen Gebieten, Math. Ann., 208 (1974), 249–265.

[Fol 1] Folland, G. B., A fundamental solution for a subelliptic operator, Bull. Amer. Math.

Soc., 79 (1973), 373–376.

[Fol 2] Folland, G. B., Introduction to Partial Differential Equations, Math. Notes 17, Prince-
ton University Press, Princeton, New Jersey, 1976.

[Fol 3] Folland, G. B., Real Analysis, John Wiley & Sons, New york, 1984.

[FoKo 1] Folland, G. B., and Kohn, J. J., The Neumann Problem for the Cauchy-Riemann
Complex, Ann. Math. Studies 75, Princeton University Press, Princeton, N.J., 1972.

[FoSt 1] Folland, G. B., and Stein, E. M., Estimates for the ∂b complex and analysis on the

Heisenberg group, Comm. Pure and Applied Math., 27 (1974), 429–522.

[For 1] Fornaess, J. E., An increasing sequence of Stein manifolds whose limit is not Stein,

Math. Ann., 223 (1976), 275–277.

[For 2] Fornaess, J. E., Embedding strictly pseudoconvex domains in convex domains, Amer.

J. Math., 98 (1976), 529–569.

[For 3] Fornaess, J. E., A counterexample for the Levi problem for branched Riemann domains
over Cn, Math. Ann., 234 (1978), 275–277.

[For 4] Fornaess, J. E., Sup-norm estimates for ∂̄ in C2, Ann. Math., 123 (1986), 335–345.

[FoSi 1] Fornaess, J. E., and Sibony, N., On Lp estimates for ∂, Several Complex Variables and

Complex Geometry, (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 3,
Amer. Math. Soc., Providence, Rhode Island, (1991), 129–163.

[FoSte 1] Fornaess, J. E., and Stensønes, B., Lectures on Counterexamples in Several Complex

Variables, Math. Notes 33, Princeton University Press, Princeton, New Jersey, 1987.

[Fri 1] Friedrichs, K., The identity of weak and strong extensions of differential operators,

Trans. Amer. Math. Soc., 55 (1944), 132–141.

[FuSt 1] Fu, S., and Straube, E. J., Compactness of the ∂-Neumann problem on convex do-

mains., J. Funct. Anal., 159 (1998), 629–641.

[Gaf 1] Gaffney, M. P., Hilbert space methods in the theory of harmonic integrals, Trans. Amer.

Math. Soc., 78 (1955), 426–444.

[GaSp 1] Garabedian P. R., and Spencer, D. C., Complex boundary value problem, Trans. Amer.

Math. Soc., 73 (1952), 223–242.

[Gel 1] Geller, D., Analytic Pseudodifferential Operators for the Heisenberg Group and Local

Solvability, Math. Notes 37, Princeton University Press, Princeton, N.J., 1990.

[Gin 1] Gindikin, S. G., Analysis in homogeneous domains, Uspekhi Mat. Nauk, 19 (1964),

3–92; English transl, Russian Math. Surveys 19 (1964), 1-89.

[Gra 1] Grauert, H., On Levi’s problem and the imbedding of real analytic manifolds, Ann. of
Math., 68 (1958), 460–472.

[GrLi 1] Grauert H., and Lieb, I., Das Ramirezsche integral und die Lösung der Gleichung
∂̄f = α im Bereich der beschrinkten Formen, Proc. Conf. Complex Analysis, Rice
Univ. Studies, Houston, Texas, 56 (1970), 29–50.

[GKS 1] Greiner, P. C., Kohn, J. J., and Stein, E. M., Necessary and sufficient conditions for
solvability of the Lewy equation, Proc. Nat. Acad. Sci., 72 (1975), 3287–3289.



Bibliography 357

[GrSt 1] Greiner, P. C., and Stein, E. M., Estimates for the ∂-Neuman Problem, Math. Notes
19, Princeton University Press, Princeton, New Jersey, 1977.

[GrHa 1] Griffiths, P., and Harris, J., Principles of Algebraic Geometry, Wiley and Sons, Inc.,

New York, 1978.

[Gri 1] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

[GuRo 1] Gunning, R. C., and Rossi, H., Analytic Functions of Several Ccomplex Variables ,
Prentice-hall, Englewood Cliffs, New Jersey, 1965.

[HaWi 1] Hartman, P., and Wintner, A., On the existence of Riemannian manifolds which cannot

carry non-constant analytic or harmonic functions in the small, Amer. J. Math., 75
(1953), 260-276.

[Har 1] Hartogs, F., Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen

mehrerer Veränderlichen, Münch. Ber. 36 (1906), 223–242.

[HaLa 1] Harvey, R., and Lawson, B., On boundaries of complex analytic varieties,I, Ann. Math.,
102 (1975), 233–290.

[HaPo 1] Harvey, R., and Polking, J., Fundamental solutions in complex analysis, I. The Cauchy-

Riemann operator, Duke Math. J., 46 (1979), 253–300.

[HaPo 2] Harvey, R., and Polking, J., Fundamental solutions in complex analysis, II. The in-

duced Cauchy-Riemann operator, Duke Math. J., 46 (1979), 301–340.

[HaPo 3] Harvey, R., and Polking, J., The ∂-Neumann kernel in the ball in Cn, Proc. Sympos.

Pure Math., Amer. Math. Soc. Providence, R.I. 41 (1984), 117–136.

[HaPo 4] Harvey, R., and Polking, J., The ∂-Neumann solution to the inhomogeneous Cauchy-

Riemann equation in the ball in Cn, Trans. Amer. Math. Soc., 281 (1984), 587–613.

[Hen 1] Henkin, G. M., Integral representation of functions in strictly pseudoconvex domains

and applications to the ∂̄-problem, Math. USSR Sb., 7 (1969), 579-616.

[Hen 2] Henkin, G. M., Uniform estimates for solutions to the ∂̄-problem in Weil domains

(Russian), Uspehi Mat. Nauk, 26 (1971), 211-212.

[Hen 3] Henkin, G. M., The Lewy equation and analysis on pseudoconvex manifolds, (Russian

Math. Surveys,32(1977),59-130), Uspehi Mat. Nauk, 32 (1977), 57–118.

[HeIo 1] Henkin, G. M., and Iordan, A., Compactness of the Neumann operator for hyperconvex

domains with non-smooth B-regular boundary, Math. Ann., 307 (1997), 151–168.

[HIK 1] Henkin, G. M., Iordan, A., and Kohn, J. J., Estimations sous-elliptiques pour le
problème ∂̄-Neumann dans un domaine strictement pseudoconvexe à frontière lisse
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[Hör 5] Hörmander, L., The Frobenius-Nirenberg theorem, Ark. Mat., 5 (1965), 425–432.

[Hör 6] Hörmander, L., Hypoelliptic second-order differential equations, Acta Math., 119 (19-

67), 147–171.
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[Ran 2] Range, R. M., The Carathèodory metric and holomorphic maps on a class of weakly
pseudoconvex domains, Pacific J. Math, 78 (1978), 173–189.
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