CHAPTER 1

REAL AND COMPLEX MANIFOLDS

We shall begin by defining holomorphic functions and the Cauchy-Riemann equa-
tions in C". In Sections 1.2-1.4 of this chapter we will review the definitions and
various properties of a smooth real or complex manifold. In Section 1.5, the Cauchy-
Riemann complex is introduced on complex manifolds. Section 1.6 is devoted to
the Frobenius theorem. In the last section, in contrast to the Riemann mapping
theorem in one complex variable, we prove the inequivalence between the ball and
the polydisc in several variables.

1.1 Holomorphic Functions in Complex Euclidean Spaces

Let C" = C x --- x C denote the n-dimensional complex Euclidean space with
product topology. The coordinates of C™ will be denoted by z = (21, , z,,) with
zj = x; +1iy;j, 1 <j <n. Thus, C" can be identified with R*" in a natural manner,
2 (T1,Y1, 0 Ty Un)-

Definition 1.1.1. A complez-valued C* function f(z) defined on an open subset D
of C" is called holomorphic, denoted by f € O(D), if f(z) is holomorphic in each
variable z; when the other variables are fized. In other words, f(z) satisfies

of
1. - =
(111) =0
for each j =1,--- ,n, where
0 1/ 0 0
1.1.2 — == =—4+i—
( ) %j 2(3$J +l8yj)

is the so-called Cauchy-Riemann operator.

The objective of this book is to study the behavior of holomorphic functions. It
is closely related to the solvability and regularity of the inhomogeneous Cauchy-
Riemann equations

ou

(1.1.3) 57,

:fji forj=1,--~,n,

where f;’s are given functions.
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Some of the properties of holomorphic functions, like power series expansion, do
extend from one variable to several variables. They differ, however, in many impor-
tant aspects. It is therefore, not correct to consider the theory of several complex
variables as a straightforward generalization of that of one complex variable. For
example, in one variable the zero set of a holomorphic function is a discrete set. The
zero set of a holomorphic function in C™, n > 2, has a real 2n — 2 dimension. In C,
it is trivial to construct a holomorphic function in a domain D which is singular at
one boundary point p € bD. In contrast, in C* when n > 2, it is not always possible
to construct a holomorphic function in a given domain D C C™ which is singular
at one boundary point. This leads to the existence of a domain in several variables
such that any holomorphic function defined on this domain can be extended holo-
morphically to a fixed larger set, a feature that does not exist in one variable. In
Chapter 3 we will discuss this phenomenon in detail. Another main difference is
that there is no analog to the Riemann mapping theorem of one complex variable
in higher dimensional spaces. This phenomenon is analyzed in Section 1.7. Many
of these important differences will be further investigated in Chapters 4-6 using
solutions of the inhomogeneous Cauchy-Riemann equations (1.1.3).

There is yet another major difference in solving (1.1.3) in one and several vari-
ables. When n > 2, a compatibility condition must be satisfied in order for Equa-
tions (1.1.3) to be solvable:

ofi _ 9f;
ij 0z; ’

(1.1.4) for1 <i<j<n.

This will be discussed in the next few chapters on bounded domains in C".
We recall here the definition concerning the differentiability of the boundary of
a domain.

Definition 1.1.2. A domain D in R™, n > 2, is said to have C* (1 < k < 00)
boundary at the boundary point p if there exists a real-valued C* function r defined
in some open neighborhood U of p such that DNU = {x € U| r(z) <0}, bDNU =
{x € U| r(z) = 0} and dr(z) #0 on bD NU. The function r is called a C* local
defining function for D near p. If U is an open neighborhood of D, then r is called
a global defining function for D, or simply a defining function for D.

The relationship between two defining functions is clarified in the next lemma.

Lemma 1.1.3. Let r, and ro be two local defining functions for D of class C*
(1 < k < o0) in a neighborhood U of p € bD. Then there exists a positive ck-1
function h on U such that

(1) i =hre on U,

(2) dri(z) = h(z)dra(z) for x € UNbD.

Proof. Since dry # 0 on the boundary near p, after a C* change of coordinates,
we may assume that p = 0, x, = r2(z) and bDNU = {x € U| z,, = 0}. Let

' = (21, ,2p—1). Then r1(2’,0) = 0. By the fundamental theorem of calculus,

1
ri(z',xn) = ri(2,2n) —r(2/,0) = xn/ %(x’,txn)dt.
0 6$n
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This shows r; = hry for some C*~1 function h on U. For k > 2, we clearly have
(2) and h > 0 on U. When k = 1, (2) also follows directly from the definition of
differentiation at 0. This proves the lemma.

1.2 Real and Complex Manifolds

Let M be a Hausdorff space. M is called a topological manifold of dimension
n if each point p of M has a neighborhood U, homeomorphic to an open subset
Vp in R™. Let the homeomorphism be given by ¢, : U, — V,,. We call the pair
(Up, ¢p) a coordinate neighborhood of M near p. Since, for any ¢ € U, ¢,(q) is
a point in R™, we have the usual Euclidean coordinates (x1(p(q)), -, Zn(vp(q)))
for p(g). We shall call the set (z1(pp(q)),- - ,zn(pp(q))) the local coordinates for
the points ¢ in U, with respect to the coordinate neighborhood (Up, ¢,), and it will
be abbreviated by (z1(g),- - ,zn(q)), and the n-tuple (z1,--- ,x,) of functions on
U, will be called the local coordinate system on (U,, ¢p).

Let M be a topological manifold, then M is covered by a family of such coordinate
neighborhoods {(Uq, ¥a)}aca, where A is an index set. If for some «, § in A we
have Uyg = Uy NUg # 0, then there is a well-defined homeomorphism

foa=a003" 1 0aUap) = ©3(Uap).

These will be called the transition functions with respect to the coordinate neigh-
borhood system {(Uy, ¢a)}aca. Obviously, we have fzo = f(;ﬂl Now we give the
definition of a differentiable manifold.

Definition 1.2.1. Let M be a topological manifold together with a coordinate neigh-
borhood system {(Uy, o) }acr- We call M an n-dimensional differentiable manifold
of class C", or a C" manifold, 1 < r < oo, if all of the corresponding transition
functions are of class C". If r = oo, we call M a smooth manifold. If all of the
corresponding transition functions are real analytic, M will be called a real analytic
manifold, or a C* manifold.

Next we define complex manifolds.

Definition 1.2.2. Let M be a topological manifold together with a coordinate neigh-
borhood system {(Un, o) taca, where o (Uy) = Vo, are open sets in C*. M is called
a complex manifold of complex dimension n if the transition function fgo = pgopy!
is holomorphic on ¢, (Usg) C C", whenever Uy = Uy NUg # O for all «, 3.

It follows that a complex manifold is automatically a real analytic manifold. Here
are some important examples of real and complex manifolds.

Example 1.2.3. Any connected open subset M of R™ is a real analytic manifold.
The local chart (M,¢) is simply the induced one given by the identity mapping
¢ from M into R™. Similarly, any connected open subset M of C" is a complex
manifold of complex dimension n.

Example 1.2.4 (Real projective space, RP"). Define an equivalence relation
on the set R"*1\ {0}. Two points x and y in R"*1\ {0} are said to be equivalent
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if there is a nonzero real number A € R* = R\ {0} such that £ = Ay. The set of
equivalence classes given by this equivalence relation is called the real projective
space RP™ of dimension n. In other words, RP™ can be identified with the space
of all lines passing through the origin in R"*!. The mapping 7 from R"*!\ {0}
onto RP™ so that 7(x) is the equivalence class containing the point z is continuous,
provided that RP™ is equipped with the quotient topology, namely, a subset U of
RP" is open if and only if 771(U) is open in R™"*!\ {0}. Since 7 also maps the
compact set S™ onto RIP", we see that RP" is compact.

The coordinate neighborhood system {(Uj, gpj)}?ill is constructed as follows: for
each p € RP" pick an element z = (21, ,Z,4+1) € R\ {0} such that m(z) = p.
The point p can be represented by the corresponding homogeneous coordinates
[x1 : 29 : - - : xpyq1]. This representation is clearly independent of the choice of z.
Let Uj = {[z1 : -~ : &j + --- : Tpy1]|lz; # 0} be an open subset of RP", and the
homeomorphism ¢; from U; onto R" is given by

iz ray it pga])
= (@1/xj, - w1/, T [T, B [25)

Hence, if U; NU; = U;; # 0, say, @ < j, then the transition function f;; is

fii(y) = @io ;' (y)

=pillyr -ty iy tyn])
:<y1 LY Yoy Loy y)
yi7 9 y/L b yz b b yl 7yi7 yl’ 7yz

It follows that the real projective space RP™ is a real analytic compact manifold.

Example 1.2.5 (Complex projective space, CP™). If C is substituted for R
in the definition of the real projective space RP", we will end up with a compact
complex manifold of complex dimension n which we call the complex projective
space and denote by CP™.

Example 1.2.6 (Riemann surface). A Riemann surface M is by definition a
complex manifold of complex dimension one. Hence, any open subset U of C is a
Riemann surface. Complex projective space CP' is a compact Riemann surface,
also known as the Riemann sphere.

From now on we shall concentrate on complex manifolds, unless the contrary is
stated explicitly in the text. Let f be a continuous complex-valued function defined
on an open subset U of a complex manifold M, and let p be a point in U. We
say that f is holomorphic at p if there exists a small open neighborhood V of p,
contained in U NU, for some local coordinate neighborhood Uy, such that f o, ™!
is holomorphic on the open subset ¢, (V) in C". Clearly, the above definition of
holomorphic functions at a point p € U is independent of the choice of the local
coordinate system (U,,¢o). The function f is said to be holomorphic on U if f
is holomorphic at every point p € U. In particular, the local coordinate functions
zi,1 < i <mn,on U, of a complex manifold are holomorphic.

Let M and N be two complex manifolds of complex dimensions m and n with
local coordinate systems {(Un, ¥a) taca and {(Va,1¥g) } ger respectively, and let f be
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a continuous mapping from M into N. We shall say that f defines a holomorphic
mapping at p € M, if there exists an open neighborhood U, of p, contained in
a local coordinate neighborhood U,, with f(U,) contained in a local coordinate
neighborhood Vj such that ¢go f oy, ! defines a holomorphic mapping from 0o (Up)
into 93(V3). The definition is easily seen to be independent of the choice of the
local coordinate systems.

If f is a holomorphic mapping between two complex manifolds M and N of
equal dimensions such that f is one-to-one, onto and the inverse mapping f~! is
also holomorphic, then f will be called a biholomorphic map or a biholomorphism
from M onto N.

1.3 Tangent Spaces and the Hermitian Metric

Let C" be identified with R?" via the map (21, -+, 2n) — (T1,¥1, *** s Tn, Yn)-
For any point p € C" the tangent space T,(C™) is spanned by

(3> <a>”_(a> <3>
dx1), \oy ), \Oxn), \Oyn/,

Define an R-linear map J from 7,(C") onto itself by

0 0 0 0
J(Z) =(Z), () =—(2),
(3%);7 (3yj>p <ayj>p <5ﬂfj)p

for all j = 1,---,n. Obviously, we have J?2 = —1, and J is called the complex
structure on C".

The complex structure J induces a natural splitting of the complexified tangent
space CT,(C") = T,(C")@grC. First we extend J to the whole complexified tangent
space by J(z®a) = (Jx)®a. It follows that J is a C-linear map from CT},(C™) onto
itself with J2 = —1, and the eigenvalues of J are i and —i. Denote by TI}*O(C")
and T"'(C") the eigenspaces of J corresponding to i and —i respectively. It is

casily verified that 79'1(C") = T,°°(C") and T+°(C") N T (C") = {0}, and that

T,°(C") is spanned by
9N (2
821 p’ ’ 8zn p7

where (0/0z;), = 5(8/0x; —i0/dy;)p for 1 < j < n. Any vector v € T°(C") is
called a vector of type (1,0), and we call T € T' (C") a vector of type (0,1). The

space TI}’O(C") is called the holomorphic tangent space at p.
Let CT;(C") be the dual space of CT},(C"). By duality, J also induces a splitting

on

CT;(CM) = ALO(C™) & A (C),

where A)°(C") and A (C") are eigenspaces corresponding to the eigenvalues i and
—i respectively. It is easy to see that the vectors (dz1)p, - -, (dz,), span A,0(C")
and the space AD'(C™) is spanned by (dz1)p,: -+ ,(dZn)p.
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Let M be a complex manifold of complex dimension n and p be a point of M.
Let (21, - ,2n) be alocal coordinate system near p with z; = x;+iy;,j =1,--- ,n.
Then the real tangent space T),(M) is spanned by

(0/021)p, (8/0y1)ps -+ -+ (9) 0 ) p, (3 Oyn ) p-

Define as before an R-linear map J from T,(M) onto itself by

0 0 0 0
) = (=), I+ ==(+—) ,
(3%),; (3yj>p <5yj>p <5$j>p

for 1 < j < n. We observe that the definition of J is independent of the choice
of the local coordinates (21,--- ,2,) and that J? = —1. Therefore, an argument
similar to the one given above shows that

CT, (M) = T,(M) @r C = T,°(M) & T, (M),

and
* 1, ,1
CTy (M) = AL (M) ® A (M).

Next we introduce a Hermitian metric on M. By that, we mean at each point p €
M, a Hermitian inner product hy(u,v) is defined for u,v € Ty O(M). If (21, - , zn)
is a local coordinate system on a neighborhood U of p, then

0 0
hij(p) = hyp (az 8z>
T J

is a complex-valued function on U, and (h;;(p));;—; is a positive definite Hermitian
matrix defined for each point p of U. We shall assume the metric is smooth; namely,
that all the h;;’s vary smoothly on M. Then, we extend the metric to the whole
complexified tangent space in a natural way by requiring 7°(M) to be orthogonal
to TOY(M). If a complex manifold M is equipped with a Hermitian metric h, we
shall call (M, h) a Hermitian manifold.

1.4 Vector Bundles

Let M be a smooth manifold of real dimension n. The union of all the tan-
gent spaces T,,(M),p € M, inherits a natural geometric structure called the vector
bundle.

Definition 1.4.1. Let E and M be two smooth manifolds. E is called a vector
bundle over M of rank k if there exists a smooth mapping m, called the projection
map, from E onto M such that the following conditions are satisfied:

(1) For eachp € M, E, = 7w~ Y(p) is a vector space over R of dimension k. E,
1s called the fibre space over p.
(2) For each p € M, there exists an open neighborhood U containing p and a
diffeomorphism
h:n Y U) - U x R¥,

such that h(r=1(q)) = {q} xR¥ and the restriction hy : 7=1(q) — {q} xRF =
RF is a linear isomorphism, for every ¢ € U.
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The pair (U, h) is called a local trivialization.
When k =1, E is also called a line bundle over M.

For a vector bundle 7 : E — M, the manifold FE is called the total space and
M is called the base space, and E is called a vector bundle over M. Notice that
if two local trivializations (Uy, ho) and (Ug, hg) have nonempty intersection, i.e.,
UaNUg#D, then a map gap is induced on U,NUp:

o : UaNUs — GL(K,R),

such that
9ap(p) = (ha)p © (hg);l : RF — RF.

The matrices gop’s are called transition matrices. Clearly, they are smooth and
satisfy the following conditions:

(1) 9ap = pas
(2) Gap © 4By © Gya = I,
where I is the identity matrix of rank k.

Let E be a vector bundle over M, and let U be an open subset of M. Any smooth
mapping s from U to E such that 7 o s = idy, where idy is the identity mapping
on U, will be called a section over U. The space of all the sections over U will be
denoted by I'(U, E).

Notice that the concept of vector bundle can obviously be defined for other cate-
gories. For instance, if F and M are complex manifolds and the fibers are complex
vector spaces, then one can define a holomorphic vector bundle E over M by re-
quiring the morphisms and the transition matrices to be holomorphic mappings.

Here are some typical examples of vector bundles.

Example 1.4.2 (Tangent Bundles). Let M be a manifold of real dimension n.
The set formed by the disjoint union of all tangent spaces T,,(M) of p € M, namely,

TN = Y T,(M),

has a natural vector bundle structure of rank n over M. The local coordinate
neighborhoods of T'(M) and the local trivializations of the bundle are given by the
local coordinate systems of M as follows: let (z1,---,x,) be a local coordinate
system on U of M, and let p € U. Then any tangent vector v at p can be written

as U:iilw(x) (6?31');9.

Thus, we obtain a map ¢ from 7=1(U) onto U x R™ by

¢: 7 HU) — U xR",
(pa 'U) = (pv Ul(x)a e 7Un(1'))‘

If two local coordinate systems have nontrivial intersection, then the transition
matrix is clearly defined by the Jacobian matrix, with respect to these two local
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coordinate systems, which by definition is smooth. It is also clear that any global
section s in I'(M,T(M)) is a smooth vector field X defined on M.

Next, we can also form a new vector bundle from a given one. The most important
examples of such algebraically derived vector bundles are those originating from the
tangent bundle T'(M). For instance, by considering the dual space and the exterior
algebra of the tangent space T),(M), we obtain the following new vector bundles:

Example 1.4.3 (Cotangent Bundle). Let M be a smooth manifold of real
dimension n. The fibre of the cotangent bundle, T* (M), at each point p € M is
the R-linear dual space of T},(M), denoted by T, (M). Clearly, T*(M) is a vector
bundle of rank n over M. A section s of this bundle over an open set U of M is
called a smooth 1-form over U. We also have the complexified cotangent bundle,
denoted by A'(M) =T*(M) ®g C, over M.

Example 1.4.4 (Exterior Algebra Bundles). Let M be a complex manifold
of complex dimension n. Then the exterior algebra bundles over M are the vector
bundles A" (M) whose fibers at each point zy € M are the wedge product of degree
r of AL(M), and

Any smooth section s of A”(M) over an open subset U of M is a smooth r-form
on U. If, at each point zy of M, we take the wedge product of p copies of AM9(M)
and ¢ copies of A%!(M), where p < n and ¢ < n, we obtain the vector bundle of
bidegree (p, q), denoted by AP*4(M), and we have

AT(M)= @ API(M).

p+qg=r

Smooth sections of AP4(M), denoted by C2° (M), are called (p, q)-forms on M.

(psq)

1.5 Exterior Derivatives and the Cauchy-Riemann Complex

Let M be a complex manifold of complex dimension n, and let (z1,--- ,z,) be
a local coordinate system on an open neighborhood U of a point p of M, with
zj = xj +iy; for 1 < j <n. Let f be a C' complex-valued function defined on M.
Then, locally on U one can express df as

df = Z d +Z§—;dyj

(1.5.1)

where we have used the notation

of _ <8f af> 6f_1<8f af)
=5 (3=

9z, 2 \0x; oy, 0z, ox; oy,
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and
de :d$j+ldy]7 dfj :dxj —idyj,

for 1 < j < n. Define the operators 9 and 0 on functions by

of = Z dz], and Of = Z dzj

Then, (1.5.1) can be written as
df =0f + 0f.

This means that the differential df of a C'! function f on U can be decomposed into
the sum of a (1,0)-form df and (0, 1)-form Jf.

It is easily verified that the definitions of @ and d are invariant under holomorphic
change of coordinates. Hence, the operators @ and 0 are well defined for functions
on a complex manifold. A C! complex-valued function on a complex manifold is
holomorphic if and only if

of = 0.

Next we extend the definition of the operators @ and 0 to differential forms of
arbitrary degree. Let f be a (p, q)-form on U. Write f as

f=> fudd naz’,

[I|=p,|J|=q

where I = (i1,---,ip) and J = (j1,--- ,j,) are multiindices of length p and ¢
respectively, dz! = dz;, A+ Ndz;,,dz’ =dz;, A Ndz;,.
The exterior derivative df of f is then defined by

df = dfr.g ndz" A dz’

I.J

=0f +0f,
where 0f and Jf are defined by

of =3 Ofryndz' ndz!, Of =" 0frg Nd2 AdE,

I,J 1,J
which are of type (p+ 1,¢) and (p, ¢+ 1) respectively.

Since the transition matrices of a complex manifold M are holomorphic, the
operators 0 and 0 are well defined for (p, ¢)-forms on M, and we have

d=0+0.

Since

0=df =0%f + (90 +DO)f + D f
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and all terms are of different types, we obtain

(1.5.2) 2 =0, 99+90=0, 9 =0.
Since
(1.5.3) 7 =0,

It follows that the sequence

)

0— APO(ar) Loart (M) Lo Zarnt(ar) ZoAPT (M) — o,

for 0 < p < n, is a complex. This is called the Cauchy-Riemann complex. Denote
Op.g = 0 : AP9(M) — AP9HL(M). Tt follows that the image of 3, 4 lies in the kernel
of 5p7q+1. To measure the exactness of the sequence, we have to solve the following
inhomogeneous equation

(1.5.4) ou = f,
under the compatibility condition
(1.5.5) af =0.

The solvability of the d-equation as well as the smoothness of the solution is one of
the main issues throughout this book.

1.6 The Frobenius Theorem

Let U be an open neighborhood of the origin in R™, and let k£ be an integer with
1 <k < n. Then, the set N. = {& = (z1,- - ,2n) € U| Tp41 = Cht1, " ,Tn =
cn}, where ¢ = (cpy1,-++ ,¢n) € R"F is a constant vector, forms a k dimensional
submanifold of U. By a submanifold we mean that IV, is a closed subset of U and N,
forms a manifold itself. Notice that N., N N, = 0 if ¢1 # c. Also Uyegn-+ N, = U.
With such a submanifold structure, we shall say that U is foliated by k& dimensional
submanifolds ., and call N, a leaf of the foliation.

Let X3,---, X§ be k linearly independent vector fields on U such that they are
tangent to some N,, ¢ € R* % everywhere. Since the restriction of the vector field
X;,1 < i < k to each N, defines a vector field on N, it is easily seen that the
commutator [X;, X;] = X;X; — X;X;,1 < 4,j <k, is still a smooth vector field
tangent to N, everywhere on U. It follows that on U we have

k
(1.6.1) X0, X5 =Y ai(z)X,
=1

where a;;,(z) € C*(U).

In this section we shall show that condition (1.6.1) is also sufficient for a man-
ifold to be foliated locally by submanifolds whose tangent vectors are spanned by
X/s. Since the result is purely local, we shall formulate the theorem in an open
neighborhood U of the origin in R™.
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Theorem 1.6.1 (Frobenius). Let X1, -+, Xk, 1 < k <n, be smooth vector fields
defined in an open neighborhood U of the origin in R™. If

(1) X1(0),---, Xx(0) are linearly independent, and
(2) X, X;] = Zle aiji(x) Xy, 1 <i,5 <k, for some a;j(xz) € C*(U),
then there exist new local coordinates (y1,--- ,yn) n some open neighborhood V' of
the origin such that
a )
Xi 7;@]@)8%, i=1,--- K,

where (bi;(y)) is an invertible matriz. In other words, V is foliated by the k-
dimensional submanifolds {y € V |y; =¢;, i =k+1,--- ,n}.

Proof. The theorem will be proved by induction on the dimension n of the ambient
space. When n = 1, the assertion is obviously true. Let us assume that the assertion
is valid up to dimension n — 1.

First, we may simplify the vector field X;(z) = (a1(x), - ,an(x)). From the
basic existence theorem for a system of first order ordinary differential equation,
through every point p in a small open neighborhood of the origin, there exists
exactly one integral curve v(¢) = (71(t), -+ ,¥n(t)), where t € (=6,d) for some real
number § > 0, such that

D) = ar@), i=1

It follows that for any smooth function f in a small neighborhood V' of 0,

k
of(v(t) _ of((t))
X t)) = i(y(t = .
Locally one can introduce new independent variables, also denoted by (z1, -+, Zp),

which straighten out the integral curves so that Xy = d/0x,. Next, by subtracting
a multiple of X; from X; for 2 < i < k, we may also assume that

Xi(z) = ;cll(x)axl, 1=2,--+ k.
Denote ' = (22, ,&5). On the submanifold V N{z = (x1,2) | x1 = 0}, these
vector fields X5(0,27), -+, X (0,2), satisfy both conditions (1) and (2) in an open
neighborhood of the origin in R*~!. Hence, by the induction hypotheses, there exist
new local coordinates near the origin in R"~!, denoted also by =’ = (z2, -+ ,x,),
such that ¢;(0,2') =0for 2<i<kandl>k. For2<i<kand2<I[<n,we

have
801-1

oz, ¥ =

I

Xl(ﬂ?l) = [XlaXi](xl)

|
™=

a150(2) Xo (1)

a=2

Il
M=

a1i0(T)car ().

Q
I|
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Hence, the uniqueness part of the Cauchy problem for a system of first order ordi-
nary differential equations implies that ¢;;(z) = 0 for [ > k in an open neighborhood
V' of the origin. This completes the proof of the theorem.

It should be pointed out that the existence of the local coordinates (y1, - ,yn)
guaranteed by the Frobenius theorem is not unique. Suppose that there are k
smooth vector fields X7, --- , X defined in some open neighborhood of the origin in
R™ such that conditions (1) and (2) of Theorem 1.6.1 are satisfied. Let us consider
a system of overdetermined partial differential equations

(1.6.2) Xju=f;, j=1,---,k,

where the data f;’s are smooth functions given in an open neighborhood of the
origin. It is clear from condition (2) that the system (1.6.2) is solvable only if the
given data satisfy the following compatibility condition

k
(163) lej - Xjf’b = Zaijl(x)fl(x), 1 S Z,] S k.
=1

With the aid of Theorem 1.6.1, the next theorem shows that condition (1.6.3) is, in
fact, also sufficient for the solvability of (1.6.2).

Theorem 1.6.2. Under the same hypotheses as in Theorem 1.6.1, let f1,--- , fr be
smooth functions defined on U. Then, the system (1.6.2) has a smooth solution u in
an open neighborhood of the origin if and only if the compatibility conditions (1.6.3)
are satisfied. Furthermore, if H is a closed submanifold of U through the origin of
dimension n— k such that the tangent plane of H at the origin is complementary to
the space spanned by X;1(0), -+, Xk (0) , then given any smooth function uy, on H,
there exists an unique solution u to the equations (1.6.2) in an open neighborhood
of the origin with u|g = uy,.

Notice that in the language of partial differential equations, the hypothesis on
H is equivalent to stating that the manifold H is noncharacteristic with respect to
Xy, , Xk, or that, geometrically, H is transversal to the leaves of the foliation
defined by the vector fields X7, -+, X} in some open neighborhood of the origin.

Proof. Notice first that conditions (1) and (2) of Theorem 1.6.1 and equations
(1.6.2),(1.6.3) are invariant if we change variables or make linear combinations of the
equations. Hence, by Theorem 1.6.1, we may thus assume that X;(z) = 9/0z;,j =
1,---,k. It follows that a;;;(z) = 0 for all 1 < ¢,4,0 < k, and equation (1.6.3) is
reduced to

af;  9fi o
1.6.4 z _ =0, 1<i,j<k.
( ) ox; an =hl=
Let us write the local coordinates x = (2/,2") with ' = (z1, -+ ,zx) and 2" =
(k+1, "+ ;@n). Then, locally in some open neighborhood of the origin one may

express H as a graph over an open subset V containing the origin in R"~*, namely,
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H is defined by 2’ = h(z’") where h(z”) is a smooth function on V. Now, for each
fixed 2"/ € V,

k
Z fi(@! 2" dx;
j=1

is a differential of 2’ which in turn by (1.6.4) is closed. Hence, the line integral

ok
(1.6.5) u(z) = /h ij(sc',x”)dxj + up(h(2"),2"),

(') =

is well-defined, i.e., independent of the paths in 2’-space from h(z") to z’. Obviously,
(1.6.5) defines the unique solution u which is equal to the initial datum wup, on H to
the equations (1.6.2). This completes the proof of the theorem.

Now we turn to the complex analog of the Frobenius theorem. Let Lq,--- , Ly,
1 < k < n, be type (1,0) vector fields defined in some open neighborhood U of
the origin in C™ such that Lq,---, Ly are linearly independent over C on U. If
there exist local holomorphic coordinates (z1,--- ,z,) on U such that Ly,---, Ly
are tangent to the k dimensional complex submanifolds N. = {(z1,--,2n) €
C"zgr1 =cC1, - »2n = Cp_p} for ¢ = (c1, -+ ,cn_r) € C"7* then we see imme-
diately that the subbundle E spanned by Lq,-- -, Lj is closed under the Lie bracket
operation, and so is the subbundle E & E.

Conversely, if both the subbundles E and E @ E are closed respectively under
the Lie bracket operation, then locally on U one may introduce new holomorphic
coordinates (wy,--- ,w,) so that U is foliated by the complex submanifolds N, =
{(wy, -+ ,w,) € C*| wipi1=c1, -, Wy =Cy_p} for ¢ = (c1, -+ ,cn_p) € CK,
and E = T*9(N,). This is the so-called complex Frobenius theorem which can be
deduced from the Newlander-Nirenberg theorem proved in Chapter 5. When k = 1,
this will be proved in Chapter 2.

1.7 Inequivalence between the Ball and the Polydisc in C”

In one complex variable the Riemann mapping theorem states that any simply
connected region not equal to the whole complex plane is biholomorphically equiv-
alent to the unit disc.

However, the situation is completely different in higher dimensional spaces. Let
AN ={z€C||z| <1} and B, = {(21,"*+ ,2n) € C"| |21]*> + - + |2a]? < 1}. The
following theorem shows that an analog of the Riemann mapping theorem in several
variables is impossible.

Theorem 1.7.1 (Poincaré). There exists no biholomorphic map
f: A" — B,, forn>2,

where A™ is the Cartesian product of n copies of A\ in C™.

Proof. We shall assume that n = 2. The proof is the same for n > 2. Suppose
that f = (f1, f2) : A? — By is a biholomorphism. Let (z,w) be the coordinates
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in C%. For any point sequence {z;} in A with |z;| — 1 as j — oo, the sequence
gj(w) = f(zj,w) : A — By is uniformly bounded. Hence, by Montel’s theorem,
there is a subsequence, still denoted by g;(w), that converges uniformly on compact
subsets of A to a holomorphic map g(w) = (g1(w), g2(w)) : A — Ba. Since f is a
biholomorphism, we must have |g(w)|> = 1 for all w € A. Hence, |¢'(w)| = 0 for all
w € A which implies ¢'(w) =0 on A. It follows that

(1.7.1) lim f,(zj,w) = ¢'(w) = 0.
j—o0

Equation (1.7.1) implies that for each fixed w € A, f,,(z,w), when viewed as a
function of z alone, is continuous up to the boundary with boundary value identically
equal to zero. Therefore, by the maximum modulus principle we get

fw(z,w) =0, for all (z,w) € A%

This implies f is independent of w, a contradiction to the fact that f is a biholo-
morphic map. This completes the proof of the theorem.

Thus, according to Theorem 1.7.1, the classification problem in several variables
is considerably more complicated than in one variable. An approach towards the
classification of certain domains in C", n > 2, will be discussed in Section 6.3.

NOTES

For a general background on complex manifolds, the reader may consult books
by S. S. Chern [Cher 2], J. Morrow and K. Kodaira [MoKo 1] and R. O. Wells [Wel
1]. For a proof of the complex Frobenius theorem, the reader is referred to [Nir 1].
See also [Hor 5]. The inequivalence between the polydisc and the unit ball was first
discovered by H. Poincaré by counting the dimensions of the automorphism groups
of both domains. The proof of Theorem 1.7.1 that we present here is based on the
ideas of R. Remmert and K. Stein [ReSt 1]. See also [Nar 1] and [Ran 6].
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CHAPTER 2

THE CAUCHY INTEGRAL FORMULA
AND ITS APPLICATIONS

The main task of this chapter is to study the solvability and regularity of the
Cauchy-Riemann operator on the complex plane. We will first show that the so-
lution to the Cauchy-Riemann operator can be obtained via the Cauchy integral
formula. Then we shall prove the Plemelj jump formula associated with the Cauchy
transform. As an application of the Cauchy integral formula, given a (p, ¢)-form f
on a polydisc satisfying the compatibility condition df = 0, we will solve the inho-
mogeneous J-equation, du = f, on a relatively smaller polydisc in several complex
variables.

Next we shall present the Bochner-Martinelli formula which can be viewed as a
generalization of the Cauchy integral formula in several variables. Then, in a similar
manner, we will prove the jump formula associated with the Bochner-Martinelli
transform.

In Section 2.3, we will determine when a first-order partial differential equation
in two real variables is locally equivalent to the Cauchy-Riemann equation.

2.1 The Cauchy Integral Formula

All functions in this chapter are complex-valued unless otherwise stated. Then
the following formula, known as Cauchy’s integral formula, holds:

Theorem 2.1.1. Let D be a bounded open set in C with C! boundary bD. If
u € CY(D), we have

(2.1.1) u(z) = 5 (/D (-2 dCJF//D ¢— )

for any z € D.

Proof. The proof is an easy consequence of Stokes’ theorem. Let ¢ be any small
positive number less than the distance from z to the boundary of D. Denote by
B.(z) the open disc centered at z with radius e. Applying Stokes’ theorem to the
form u(¢)d¢/(¢ — z) on the punctured domain D, = D \ B, ( ), we obtain

/DC(C"h)ZdC—z/27r (z + ee'?) de—//D T d¢ A dC.

Letting ¢ — 0, we have (2.1.1).

Next we show how to apply the Cauchy integral formula to solve the Cauchy-
Riemann equation.
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Theorem 2.1.2. Let D be a bounded domain in C, and let f € C*(D) for k > 1.
Define

(2.1.2) u(z) = ;m//L)g(_OZ d¢ A dC.

Then u(z) is in C¥(D) and satisfies

(2.1.3) e f(2)

on D. When k = 0, u defined by (2.1.2) is in C(D) and satisfies (2.1.3) in the

distribution sense.

Proof. For the case k > 1, we first assume f € C§(C). Setting — = ¢ — 2, we have

2m//f ) ay nar.

Differentiation under the integral sign gives that u € C*(C). Using Theorem 2.1.1

we obtain
5
% 2m//< d¢ A dE = f(2).

For the general situation, let zy € D, and let x be a cut-off function, 0 < x < 1,
x = 1 in some neighborhood V of 2y and suppy C D. Thus,

):le//DCf(_OzdgAdg
zm//D c— dCAd<+ // 1_C—C (= XD 4 p g

—ul —|—U2(

It is easy to see that ug(z) is holomorphic in V. Hence, from the previous argument
for D = C, we obtain

ou Oup Ous
5—54'% =x(2)f(2) = f(2),
for z e V.

To prove the case for k = 0, we observe that 1/(¢ — z) is an integrable kernel
after changing to polar coordinates. The following estimate holds for u defined by
(2.1.2):

[ ulloo C £ lloo -

Approximate f by f, € C'(D) in the sup norm on D. Define u, by (2.1.2) with
respect to f,. Then u,, converges to u uniformly on D. This shows that u € C(D).
Also, in the distribution sense, we have du/0zZ = f, by letting n pass to infinity.
This proves the theorem.
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We recall that a function f defined in some domain D contained in R" is said to
be Hélder continuous of order A, 0 < A < 1, denoted by f € C*(D), if for any two
distinct points 1 and x5 in D, we have

|f(z1) — f(22)| < Kl|z1 — 22,

where the constant K is independent of 1 and x5. When A is equal to 1, f is called
Lipschitz. The space of Lipschitz continuous function on D is denoted by Al(D).
Notice that C'(D) ¢ AY(D) c C*(D) C C(D). A function f is said to be Holder
continuous of order k + A with £ € N and 0 < A < 1, if all the partial derivatives of
f of order k are Holder continuous of order .

For any continuous function f on the boundary, the Cauchy transform of f, i.e.,

(2.1.4) F(z) = % /bD g(_oz d¢ for z€ C\bD,

defines a holomorphic function F(z) off the boundary. The Cauchy transform F(z)
and the given data f on the boundary are related by the so-called Plemelj jump
formula as shown in the following theorem.

Theorem 2.1.3 (Jump formula). Let D be a bounded domain in C with C**+1
boundary, k € N, such that C\ D is connected, and let f be a C* function defined
on the boundary. Define F(z) as in (2.1.4), and set F_(z) = F(z) for z € D and
F,(2) = F(2) for z ¢ D. Then, for any given 0 < e <1, F_(2) € C*~¢(D)nO(D)
and F,(z) € C*=¢(C\ D)NO(C\ D) and

(2.1.5) f(z) =F_(2) — Fy(z) forzebD.

In particular, if D has C* boundary and f is smooth on bD, then both F_(z) and
F.(2) are smooth up to the boundary.

Proof. First we prove the identity (2.1.5). Let f.(z) be any C* extension of f to
the whole complex plane. Then, we have, for z € D,
1 f(Q) = fe(z)
2.1.6 Fo(2)— fulz) = — [ L2705 ge
(216) 0= hia) =5 [ TETE

and, for z € C\ D,

(2.1.7) Fo(z) = % . f(C)C—J;(27) d

C.
Since f is, at least, of class C'' on the boundary, the integral on the right-hand sides
of (2.1.6) and (2.1.7) defines a continuous function on the whole complex plane.
Therefore, letting z approach the same point on the boundary from either sides, we
obtain

f(z) =F_(2) — Fy(z) for z € bD.

This proves (2.1.5).
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For the regularity of F_(z) and F(z) near the boundary we shall invoke the
Hardy-Littlewood lemma (see Theorem C.1 in the Appendix). It is clear that,
without loss of generality, we may assume that f is compactly supported in a
boundary coordinate chart, with 9r/9z # 0 on this coordinate chart, where r is a
C*+1 defining function for D. When k = 1, using (2.1.6), we have

i) - s [ D gy [ HOZLEN,

p |z =]

1
< -
~ /bD ERS ds(<).

Here, A < B means there is an universal constant C, independent of A and B,
such that A < CB. For any given € > 0, to show F_(z) € C17¢(D), it suffices
to estimate (2.1.8) over a small neighborhood U of 7(z) on the boundary, where
m(z) is the projection of z on the boundary. Let d(z) be the distance from z to the
boundary. If z is sufficiently close to the boundary, it is easily seen that, for € U,
|z — ¢ is equivalent to d(z) + s(¢), where s({) is the distance from ¢ to w(z) along

the boundary. It follows that
ds(¢) e ds(¢)
d _ N
/Ulz—d * /U|z—<\1*€
ds(¢)

W [ e
< d(2)

s(¢)
(2.1.8)

IN

A

This proves that F_(z) € C1=¢(D). Similarly, we have F.(z) € C1=¢(C\ D).
For k > 1, observe that

0 _oror 0

_ 9 1
(2.1.9) 2 0z 62((92) 0z

satisfies T, (r) = 0. Hence, T, is a tangential vector field with C* coefficients along
the level sets of . Then, integration by parts shows, for z € D,

0 1 0 1
@F—(z): 27ri/bDf(O8z(C—z> dg¢

1 0 1
g [, 1 ()

1 1
=5 bDf(C)Tc(CZ> d¢

1 . 1
= /b ) Tgf(<)<g_z> d,

where T is a first order differential operator with C* =1 coefficients on the boundary.
It follows that

k
(2.1.10) @ = o [ @t 1)
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Since f is of class C* on the boundary, a similar argument shows that, for any small
€ > 0, we have

F_(z)

k
‘ 0 <d(z)"".

0zF

This proves F_(z) € C*¥=¢(D) from the Hardy-Littlewood lemma. Similarly, we
have F, (z) € C*=¢(C\ D). The proof of the theorem is now complete.

Corollary 2.1.4. Under the same hypotheses as in Theorem 2.1.3, f is the restric-
tion of a holomorphic function F € C*=<(D) N O(D) if and only if f is orthogonal
to {Z}2°_ on the boundary, namely,

(2.1.11) /bD f(z)z™ dz=0 forme {0} UN.

Proof. Assume that f is orthogonal to {Z™}°_, on the boundary. If z satisfies
|z| > |¢] for all ¢ € bD, we have

e — L / Q) g

2me Dg—z
— 271—2 </ f Cm dC) —m—1
=0.

Since Fy(z) is holomorphic on C\ D from Theorem 2.1.3, the identity theorem
shows that F'y (z) =0 for all z € C\ D. It is now clear from the jump formula that
F_(z) is a C*~¢ holomorphic extension of f to D.

Conversely, if f is the restriction of a function in C¥~¢(D)NO(D), we must have
F,(z) =0on C\ D. Thus, by reversing the above arguments for z outside a large
disc centered at the origin, we have

g( | s dc)zml 0.

/ f(O)¢™d¢=0 forme{0}UN,
bD

This implies

and hence proves the corollary.

Combining with Theorem 2.1.2, the arguments for proving Corollary 2.1.4 can be
applied, almost verbatim, to obtain necessary and sufficient conditions for solving
the 0-equation with compactly supported solution, via the Cauchy integral formula
in C.

Corollary 2.1.5. Let the domain D be as in Theorem 2.1.3, and let f € C*(D),
k > 1. Define u(z) by (2.1.2). Then u(z) satisfies du/0Z = f in C and is supported
in D if and only if

/ F(O¢™ d¢AdC =0 forme {0} UN.
D
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As an application, we will apply the Cauchy integral formula to solve the O-
equation on a polydisc in C*, n > 2. By a polydisc P({;r) centered at ( =
(&1, 0, Cn) with multiradii r = (ry, -+ ,7y) in C", we mean P((;r) = H?:1 D, (¢5)
where D, ((;) = {z € C| [z — (| < r;}. Let P'(¢;r') = [}, D, (¢;) be another
polydisc with r} < rj for 1 < j <n. Then, we have the following result:

Theorem 2.1.6. Let P and P’ be defined as above with ( = 0, and let f be a
smooth (qu + 1)-form, p >0, ¢ > 0, defined on P, which satisfies the compatibility
condition Of = 0. Then there exists a smooth (p,q)-form u on P’ such that Ou = f.

Note that we have solved the g-eguation on any slightly smaller subdomain P’.
In fact, it will be clear later that the 0-equation can be solved on the whole polydisc.

Proof. Write f as

!/
f= > fudd ndz,
|=p,|J|=q+1
where the prime means that we sum over only increasing multiindices. We shall
inductively prove the following statement:

Sk : The assertion holds if f involves only (0, 1)-forms from the set
{d?l, -+ ,dZp_1 and d?k}.

When k = n, S, gives the desired result.

Sk obviously holds when 0 < k < g, since f is of type (p,q + 1). Hence, we
assume the statement is valid up to Si_ for some k with £k —1 > ¢, and we proceed
to prove the statement Si. Write

f=dzi N+ a,

where § is a (p, ¢)-form and « is a (p, ¢ + 1)-form, and both « and 3 involve only
(0, 1)-forms from dzy,- -+ ,dzZx_1. Express

B= 3 B dt nd,

[T|=p,|J|=¢

It is easy to see by type consideration that 08;;/0z; = 0 for j > k and all I, J.
Now choose a cut-off function x(zr) € C§°(D,,) such that 0 < xy < 1 and x =1
in some open neighborhood of E’“%' Then Theorem 2.1.2 shows that, for each I, .J,
the function

Buy(z) = %//(C X(Ck)Brr(z1, -+ s Zk—1, Chy Zht1, "+ » Zn) dcy A dC,

Ck — 2k

is smooth and solves the d-equation

0B
0z

= X(2k)Brs(2) = B1s(2)
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on some neighborhood of P’. We also have, for j > k and all I, J,

0B
=0.
2 e)
Put ,
B= Y Byds nd7,
[Il=p,|J1=q
then
= Y (3228 ) paed pa
~ gz;
[I|=p,|J|=q ~j=1
=dzir A\ B+ ag,
where o is a (p,q + 1)-form that involves only (0, 1)-forms from dz;, - -+, dZx_1.
Hence,

f—0B=a-ay

is a smooth (p,q + 1)-form which is d-closed and involves only (0, 1)-forms from
dzy, -+, dZx—1. It follows now from the induction hypotheses that there exists a
smooth (p, ¢)-form wug that satisfies

Oug=a —ag = f — O0B.

Clearly, u = ug + B is a solution of Ou = f, and the proof is complete.

Theorem 2.1.7 (Cauchy integral formula for polydiscs). Let P(n;7) be a
polydisc in C", n > 2. Suppose that f is continuous on P(n;r) and holomorphic in
P(n;r). Then for any z € P(n;r),

f(Z) (27”)71 /|Cn—77n—7"n ~/|C1—771—7’1 (Cl — Zl) A (Cn — Zn) Cl Cn

Proof. 1t is easily seen that the integral representation of f(z) is obtained by re-
peated application of the Cauchy integral formula in one variable. This proves the
theorem.

Here are some easy consequences of Theorem 2.1.7:

Theorem 2.1.8 (Cauchy estimates). Under the same hypotheses as in Theorem
2.1.7. Suppose that |f| < M for all z € P(n;r). Then

a\“ Ma!
<
‘<8z> f(n)’ - fr?l . .frnOén,
where a = (aq,- -+ ,ay) is a multiindex with a; € {0} UN, o = aq!--- ! and

( ) = al (azn)a"'
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Theorem 2.1.9. If f is holomorphic in D C C", then locally near any point w in
D, f has a power series representation. In particular, f is real analytic.

By a power series representation for f near w, we mean
f(z) = aa(z —w)®
«

such that the series converges absolutely in some open neighborhood of w. Here
the summation is over multiindices o and (z — w)® = (21 — w1)* -+ (25, — wWy,)*".
It follows now from the power series expansion of holomorphic functions, we have

Theorem 2.1.10 (Identity Theorem). Let f and g be two holomorphic functions
defined on a connected open set D C C™. If f and g coincide on an open subset of

D, then f =g on D.

2.2 The Bochner-Martinelli Formula

In this section, we shall extend the Cauchy kernel from the complex plane to
higher dimensional space. Define the Bochner-Martinelli kernel by

n

> (G —z)dg A (kgjdfk A dCr),

j=1
for ¢ = (1, ,Cn)y 2= (21,-++ ,2,) € C" and ¢ # 2. B((,z) is a form of type

(n,n—1) in ¢. Tt is clear that when n =1,

11
oMl — 2z

(n—1)! 1
(2mi)™ ¢ — 2"

(2.2.1) B(¢,z) =

B(¢,2)

dg

which is the Cauchy kernel in C.
The following theorem is a generalized version of the Cauchy integral formula in
several variables.

Theorem 2.2.1. Let D be a bounded domain with C' boundary in C", n > 2, and
let f € C1(D). Then

@22 fC)= [ OB~ [ 21ABC2) forzeD.
and

(2.2.3) ():/bDf(C)B(C,z)—/Dgf/\B(C,z) for z ¢ D.

Proof. A direct calculation shows that ¢ B((, z) = 0 for ¢ # 2. Since B((, 2) is of
type (n,n — 1) in ¢, by Stokes’ theorem we have, for z € D,

/b 1OB(CA) = /D PREGECEE / FOB(, 2)

bBc(z)

:/ 5f(§)/\B(C,z)+/ F(Q)B(C, 2),
D.(2) bB.(z)
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where B.(z) = {¢ € C"| |¢ — z| < €} for small € > 0 and D.(z) = D \ B(z). Using
homogeneity of the kernel and Stokes’ theorem, we easily get

_ (=1
/bBE(z)B(QZ) - (2mi)m Z/B © |<‘2n d¢; A (, 9 de A dCr)

o (n—-1)1 1
‘mz"ewz/mdc NG A (4 G N dci)

=1

7

for all € > 0. Now, letting ¢ — 0, we obtain

9= [ roBcs) - [ a1 A8,
This proves (2.2.2).

Now for the proof of (2.2.3), since z ¢ D, the kernel is regular on D. Hence, an
application of Stokes’ theorem gives

/ F(OB(C.2) = / BF(C) A B(C 2).
bD D

This proves (2.2.3) and hence the theorem.

An immediate consequence of Theorem 2.2.1 is the following reproducing prop-
erty of the Bochner-Martinelli kernel for holomorphic functions:

Corollary 2.2.2. Let D be a bounded domain with C*! boundary in C*, n > 2. For
any f € O(D)NC(D), we have

(2.2.4) / f(Q)B(¢,z) forze D.

The integral (2.2.4) is zero if z ¢ D.

Proof. First we assume that f € C'(D). Then the assertion follows immediately
from Theorem 2.2.1. The general case now follows from approximation. This proves
the corollary.

Thus, the Bochner-Martinelli kernel also enjoys the reproducing property for
holomorphic functions, although B((, z) is no longer holomorphic in z.

A more systematic treatment of kernels in several variables will be given in Chap-
ter 11 where a reproducing kernel holomorphic in z variables will be constructed
for convex domains.

Theorem 2.2.3 (Jump formula). Let D be a bounded domain in C*,n > 2, with
connected C* boundary, and let f be a C' function defined on the boundary. Define

/ f(Q)B((,z) forze C"\bD,
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and let F_(z) = F(z) for z € D and Fy(2) = F(2) for z ¢ D. Then, for any small
€ >0, we have F_(z) € C'7¢(D), F(z) € C'=¢(C"\ D) and

(2.2.5) f(z)=F_(2) — Fy(z) forzebD.

Equation (2.2.5) is the so-called jump formula associated with the Bochner-
Martinelli transform. When n = 1, this is the Plemelj jump formula proved in
Theorem 2.1.3 where F_ and F. are also holomorphic.

Proof. Let f.(z) be any C! extension of f to the whole space. Then, for any z € D,
we have

(2.2.6) F_(2) - fulz) = /bD<f<<>—fe<z>>B<c,z>.

Since
IB(¢,2)| S |z — ¢t 2"

from the definition of Bochner-Martinelli kernel, the right-hand side of (2.2.6) de-
fines a continuous function on the whole space. Thus, we have F_(z) € C(D). For
z ¢ D, we get

(227) Fu@) = [ (0 =SB
Letting z tend to the same point on the boundary from either side, we obtain
f(z)=F_(2) — Fy(z) for z€bD.

This proves (2.2.5).

For the regularity of F_(z) and Fy (z) we again use the Hardy-Littlewood lemma
(see Theorem C.1 in the Appendix). Thus, we need to estimate the differential of
F_(2). An easy exercise shows that

d(F_(2) — fu(2))]
< /b B + /,, 1O = 4B )
1
< /w ¢t (©)
<d(z),

for any small € > 0, Whereﬂ(z) is the distance from z to the boundary of D. This
proves that F_(z) € C1=¢(D). Using (2.2.7), we obtain through a similar argument
the same assertion for F' (z). This proves the theorem.
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2.3 The Cauchy-Riemann Operator in C

Let
(2.3.1) X=X +iXs

be a first order partial differential operator defined in some open neighborhood U
of the origin in R?, where

9, 0
(2.3.2) X; =aj(z,y) = +b;(z,y) 1,2,

8z 87y7 J =
and a;(z,y),b;(x,y) are real-valued functions on U. We wish to study the solvability
of such operator. If X; and X5 are linearly dependent everywhere on U, then X;
and X, will be multiples of the same first order operator Xy with real coefficients
in some neighborhood of the origin. It follows that X is reduced to

(2.3.3) X = A\(2)Xo,

and the solvability of (2.3.3) will then follow from the basic theory of the ordinary
differential equations.

Thus, let us assume that X; and X, are linearly independent everywhere on U.
The most famous operator of this type is the Cauchy-Riemann operator,

o 1[0 0
2.3.4 — ==+t
(23.4) 0z 2(8x+28y)

In Theorem 2.1.2, we have shown how to obtain a solution for the inhomogeneous
Cauchy-Riemann equation via the Cauchy integral formula.

As another application of the Cauchy integral formula, we shall show that, under
certain regularity hypotheses on the coefficients a;(z,y) and b;(z,y), locally one
may introduce a new holomorphic coordinate w so that X can be converted to the
Cauchy-Riemann operator in w. Hence, one can deduce the solvability of X from
the knowledge of the Cauchy-Riemann operator. More precisely, we will prove the
following theorem.

Theorem 2.3.1. Let X be given as in (2.3.1) and (2.3.2) in some open neigh-
borhood U of the origin in R?. Suppose that the coefficients a;(z,y) and b;(z,y),
7 =1,2, are Hélder continuous of order \, 0 < A < 1. Then there exists a new local
holomorphic coordinate w in some neighborhood of the origin so that

9]
X(w) = —.
(W) = 5
By a linear transformation on z,y with constant coefficients we may assume that
the operator X takes the following form

0 0

(2.3.5) X(z) = % a(z)&,
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with a(0) = 0, and that a(z) is Hélder continuous of order A. Hence, the assertion
of Theorem 2.3.1 is equivalent to the existence of a solution w(z) to the equation

wz(2) — a(z)w,(z) =0,
or, in terms of the partial differential operator Z,
(2.3.6) wz(z) = Zw(z),

where Z = a(2)(0/0%), with w,(0) # 0.

We shall use an iteration process to construct a solution to equation (2.3.6) for
the remaining parts of this section. This is where one needs Holder regularity for
the coefficients of X. We shall first prove some lemmas and estimates that are
needed in the sequel. We denote by Dg = Bgr(0) the disc centered at the origin
with radius R in R2.

Lemma 2.3.2. Let ¢ = (a,b) € Dg. Putr = |z —C|. Then, for any X > 0, we
have

A 2
2.3. — dzdy < == (2R)".
(237) J] % iy < o)

Proof. This is obvious if we apply polar coordinates to the disc centered at ¢ with
radius 2R.

Lemma 2.3.3. Let 0 < €1,e2 < 1 with €1 + €2 # 2. Then, for any two distinct
points (1 and (a2 contained in Dy, we have

z// dz \dz < cfer. ) 1
92 cler, €3) ———.
2 )Jpg lz =GP e = QP T b |C1 — Gof2er—e2

What is essential in this lemma is that the constant c(eq, e2) depends only on €;
and €s, but not on (; and (s.

Proof. By changing to polar coordinates it is easy to see that the integral exists.
For the estimate of the integral, let 26 = |¢; — (2| and

Alz{ZEDR| |Z—C1‘<6},
AQZ{ZGDR| |Z—<2‘ <(§}7
As = D\ {5 U A},

Then, by changing to polar coordinates, the integral over AA; can be estimated as
follows:

. - s
i // dz Ndz < 27“552_2/ re—lgn — 27775e1+52—2.
2))a, Iz =GPz = QP T 0 €1

Similarly, we have the estimate over A,

1// dZ/\d? < 215611%272.
2/, Iz =GPz =GP T e
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Both estimates are of the desired form. For the estimate over Az, note that the
function (z — (1)/(z — {2) is smooth on A;. Hence, we obtain

<3, forze As.

It follows we have

z// dz A dz - // dxdy
— 3 2
2 ) as 12 =GPz = P g o= Glimae

< 32-e // dxdy
C\Ay |z = (i[ime—ee

< 92732~ E2/ rerte=3qp
4

2—e€o
_ 273 sertea—2.

2761762

This completes the proof of Lemma 2.3.3.
The following lemma, is the key for the regularity of the d-equation.

Lemma 2.3.4. Let f(z) be a complex-valued continuous function defined on Dg
which satisfies

(2.3.8) f(z1) — f(z2)] < Blz1 — 22|,

for any two points z1,zo € D, where \, B are positive constants with 0 < A < 1.
Define the function F(C) for ¢ € Dgr by

2m /

Then F € CY*X(Dg). If |f(2)| < A for all z € Dg, then we have

(1) F¢ and Fg exist, and F¢(C) = f(¢), ¢ € Dr.

(2) |F(¢)| <4RA, ¢ € Dg.

(3) |Fe(Q)] < <2*“>RAB (€ Dp.

4) [F(G) — F(G)| < 2(A+ (Z5)RB)|GL — Gl ¢, G2 € D
(5) [Fe(¢) = Fe(Ga)l < nNBIG — G, ¢1,C2 € Dr.

where (X)) > 0 is independent of (1 and (s.

Proof. The existence of F¢ and the equality FZ(C ) = f(¢) are guaranteed by Theo-
rem 2.1.2. To prove the existence of F¢({), we write

_ 1 f(z) = F(©)
FC)_M/DR Z—C d/\d +27‘('Z//DRZ— d/\dZ

Note that by Cauchy’s integral formula (2.1.1), we get

— 1 1 _
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Hence, if f € CY(D), we clearly have

(2.3.9) Fil) = 5 / / ORI = ) 4z dz.

In general, if f is only Holder continuous of order A, 0 < A <1, we approximate f
by functions in C*(D) to get (2.3.9). This proves (1).
Estimate (2) then follows from (2.1.2) and Lemma 2.3.2 with A = 1 since

// dzdy < 4RA.
Dr |2 — CI

Similarly, from (2.3.8) and (2.3.9) we have

B C‘)\ 2>\+1 N
Fe( dzdy < R*B.
rel=3 [ e iy < (%5

This gives (3). Now (4) follows immediately from the Mean Value Theorem and
estimate (3).
Finally, we estimate (5). Let (3 and (2 be two fixed distinct points in Dg, and

set
f(&) — f(&)
G—CG
By the assumption (2.3.8) on f(¢), we have

8=

18] < B|¢1 — ML

Set f(z) = f(z) + Bz, then we have

" f2)
PO = g [[[ 155 deniz= PO - pR 4 51

It follows that R 3
Fe(Q) = Fe(¢) + B¢

Note also that the definition of 3 gives the following:

(1) f(¢) = f(G),
2) f(2) = [(G) = f(2) = F(GQ) + B(z = ),
(3) f( ) — f(C2) = f(2) = f(¢2) + B(z — (2),

Based on these observations, we obtain
2mi( Fg G1) —
- ( Q) I =6) 4.
pr\ (22— Cl (z —C2)

_ (C)(G = Q)(z—=C) + (2 —¢2)) LA dE
= //D (- 02z — () de ndz
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f(¢2) _
= (¢1 —¢2) //DR Z—C1 Z—Cz) dz Ndz
f(¢r)
+ (G —¢2) //DR Z—C1 ) dz Ndz

1
+26(C1_C2)//DR(Z_Cl)(Z_CQ) dz Adz
=1+ 1+ Is.

By Lemma 2.3.3 the term I; can be estimated by

dxd
ni<esia-al [ e <anBla -Gl

where the constant ¢(\) depends only on A. A similar estimate holds for I. The
term I3 can be written as

h=2-6) | g dend

‘Qﬁ/AR(z—cl_z—cz)dZ“r

= (47”)ﬂ(C1 - CQ)'

Hence, we have
|I3] < 47 B|¢1 — G|

These estimates together show that

[Fe(C1) = Fe(G)l < [Fe(G) — Fel(G)l + 18116 — ¢
(VB¢ — Gl
The constant p(\) is obviously independent of ¢; and (s, and the proof of Lemma
2.3.4 is now complete.

With the aid of Lemma 2.3.4 we now prove the following existence and uniqueness
theorem of an integro-differential equation from which Theorem 2.3.1 will follow.

Proposition 2.3.5. Let
(2.3.10) Zw = a(z)w,,

be a partial differential operator whose coefficient a(z) is Holder continuous of order
A, 0 < A< 1, and vanishes at z = 0. Then the equation

(2.3.11) 2miw (¢ // - 2wz g, ANdz=0(C), (€ Dg,
Dpgr -

where o(C) is a holomorphic function with o(0) = 0, has exactly one solution w(z) €
CY*X(Dg), provided that R is sufficiently small.
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Before proceeding to the proof of this proposition, based on Lemma 2.3.4, we shall
first make some further estimates of integrals. The hypotheses of the proposition
imply the existence of a number M > 0 so that the following estimates hold,

(2.3.12) 1< M, |o(0)] <M,

(2.3.13) Ih(¢1) — h(G)] < MG — G|,
M2

(2.3.14) |Za(C1) — Zo(G2)| < 27,\|C1 — G,

where (, (1, (2 denote any three points of Dg and h(z) stands for the functions a(z)
and o(z). Since a(z) and Zo(z) both vanish at z = 0, we have

(2.3.15) la(Q)] < M|¢* < MR,
and
(2.3.16) |Zo(¢)| < M2R™.

Now we consider the function F'(¢) defined in Lemma 2.3.4 and using the notation
of the lemma, we obtain

A+1
A

(2.3.17) ZF(Q)] = a()Fe] < ( )MRQ*B,

and

|ZF(C1) — ZF(G)]

— JalGR(C) ~ 0l Fe(G)
518) < wi6 - 6P (50 ) R MR BIG -

< M|G - ¢ 9(R)B,

o) = (5 +utn)

is a function of R which tends to zero as R approaches zero.

where

Proof of Proposition 2.3.5. Based on the estimates obtained above, we shall first
prove the existence of a solution to (2.3.11) by successive approximations. In order
to make the iteration converge, we shall choose the radius R to be sufficiently small
so that it satisfies

2
(2.3.19) 4R* <1 and 227 <1 + A)}#A <1
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Denote by ¢ > 0 another universal constant such that

2A+1

(2.3.20) 1(A) + <e

Now we construct a sequence of functions {w;(()}52, to generate a solution of
(2.3.11). We first set

(2.3.21) 2miwo(¢) = o(¢),

and inductively define for ¢ € Dg,

Zwy(2)
(2.3.22) 2miwn1(C // Wnl2) gondz m=0.1.9.-.
Dr

Z*

Claim 2.3.6. The functions {w;(¢)}32, satisfy the following estimates:
(1) |wn(Q)] < M(eMR)™, ¢ € Dp.

(2) |Zwn(Q) < M(cMR*)"*!, ¢ € Dp.

(3) |wn(C1) —wn(G2)| < M(CMJZ?A)"Kl G, G,¢2 € Dr.

(4) 12w (C1) = Zwa(G)| < (55 ) (€M BN — Gl G1.G € Dr.

In particular, estimate (4) of the claim implies that the function under the integral
sign in (2.3.22) is Holder continuous of order A, thus allowing the definition of the
next integral, and the iteration continues.

Proof of the claim. The claim will be proved by an induction on n. The initial
step n = 0 follows easily from (2.3.12),(2.3.13),(2.3.14) and (2.3.16). Hence, let us
assume that the claim is valid up to step n and proceed to prove the statement for
n+ 1.
By estimates (2) and (4) of Lemma 2.3.4, the choice of R in (2.3.19) and the
induction hypotheses, we obtain
|wny1(C)] < 4ARM (cMRM™ 1 < M(cMRM™H,

and

[Wn41(C1) — wng1(C2)]
T C e

— M(eMR™)¢, — cgl*(w )241 Gl

< M(CMRX>TL+1|CI _ C2|>\ (22—)\ (1 + )\)Rl—)\)
< M(eME)"™ G = Gl

This proves (1) and (3) of the claim for n + 1.
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Next, we apply (2.3.17), (2.3.19) and (2.3.20) and the induction hypotheses to
get (2) for n + 1,

2A+1

Zwnia(Q)] < (A)MWA(CQ%Q)(CMRA)"

2
= M(cMRM"*?( —
ey 2( )
< M(cMRM™2,

Estimate (4) of the claim for n + 1 can be obtained from (2.3.18), (2.3.19) and
(2.3.20) as follows:

2
1Z0,1(@0) - Zunia (@) < (550 ) @MBN 16 = G (s ot
2
< (50 )eMmy i - el

This completes the induction procedure, and hence the proof of the claim.

We return to the proof of Proposition 2.3.5. In addition to (2.3.19), let the radius
R of the domain be chosen so small that it also satisfies cM R* < 1. It follows that
the series

(2.3.23) > wj(2)

converges absolutely and uniformly in D, and defines a solution w(z) € C***(Dg)
which satisfies (2.3.11).

For the uniqueness of the solution when R is sufficiently small, let 1(z) be another
solution of (2.3.11) such that Zn(z) satisfies a Holder condition of order A. Then
the function

w(z) = w(z) = n(2)

satisfies the equation

(2.3.24) 2mi(() = //D Zf_(’? dz A dz.

Put

A= A(R) = sup |Zw(()],

CeDRr
and 7 7
B=B(R)= sup |Z20(G) — 11)((:2”
¢1,62€DR €1 — Cal
C1#C2

Obviously, A and B will in general depend on R, and both decrease as R tends to
zero. Then, from (2.3.17) and (2.3.18) we obtain

2)\+1
A§< 3 )MR”B,
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and
B < Mg(R)B.

Since g(R) approaches zero when R tends to zero, we must have B = 0 for suffi-
ciently small R. This implies A = 0 when R is sufficiently small. Hence w(z) = n(z)
on Dpg for some sufficiently small R. This proves the uniqueness part of the propo-
sition, and the proof of Proposition 2.3.5 is now complete.

Proof of Theorem 2.3.1. We are now in a position to prove Theorem 2.3.1. To solve
equation (2.3.6) we set o(z) = z in the statement of Proposition 2.3.5. Then there
exists a unique solution w(z) € C**(Dg) to the equation

Z

2m'w(§)—// Zw(z) dzNdz =(, for (e Dg,
pr =€

with w¢(0) # 0 if R is sufficiently small. Since Zw(z) satisfies a Holder condition

of order \, we see by Lemma 2.3.4 that w(z) satisfies equation (2.3.6). This proves

Theorem 2.3.1.

NOTES

The Plemelj jump formula associated with the Cauchy transform was proved in
[Ple 1]. Theorem 2.1.6 which is the analog of the Poincaré lemma for the d operator
is often known as the Dolbeault-Grothendieck lemma (see [Dol 1,2]).

Theorem 2.2.1 is a special case of the so-called Bochner-Martinelli-Koppelman
formula due to W. Koppelman [Kop 1]. Corollary 2.2.2 concerning the reproducing
property of the Bochner-Martinelli kernel for holomorphic functions was discovered
independently by S. Bochner [Boc 1] and E. Martinelli [Mar 1]. The jump for-
mula stated in Theorem 2.2.3, which extends the jump formula associated with the
Cauchy transform on the complex plane, can be found in [HaLa 1]. See also the
book by R. M. Range [Ran 6] for more discussions.

Theorem 2.3.1 is known to geometers as the theorem of Korn and Lichtenstein
which states that given a Riemannian metric

ds® = gi1(z,y)da? + 2g12(2, y)dzdy + goz (v, y)dy?,

in some open neighborhood U of the origin in R2, where the coefficient functions
gij(z,y),1 < 4,5 < 2, are Holder continuous of order A\, 0 < XA < 1, we have
near every point there is a neighborhood whose local coordinates are isothermal
parameters. By isothermal parameters we mean that, under new local coordinates,
the metric ds? takes the following normal form

ds® = \u,v)(du® 4 dv?),

for some A(u,v) > 0. If the coefficient functions g;;(z,y),1 < i,j < 2, are as-
sumed to be continuous only, then the Riemannian metric ds? cannot always be
transformed to the normal form. A counterexample was found by P. Hartman and
A. Wintner [HaWi 1]. The proof we present here for Theorem 2.3.1 is essentially
taken from [Cher 1] and [Ber 1]. See also Chapter IV of the book, Volume II, by R.
Courant and D. Hilbert [CoHi 1].
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CHAPTER 3

HOLOMORPHIC EXTENSION
AND PSEUDOCONVEXITY

Let M be a C* hypersurface in C*, and let p be a point on M, where k € N.
By this we mean that there exists a C* real-valued defining function p and an open
neighborhood U of p such that M NU = {z € Ulp(z) = 0} and dp(z) # 0 on
MNU. M divides U into two sides, Uy and U_, where U = {z € U|p(z) > 0} and
U_ ={z € U|p(z) < 0}. Define by L, a type (0,1) vector field on M, such that

L= Zaj(z)ag on MNU,
i=1 “

where the a’s satisfy

Zaj(z)%(z) =0 forallze MNU.
j=1 J

Any such vector field L on M is called a tangential Cauchy-Riemann equation.
Suppose that f € CH(U_) N O(U_). By continuity, we see that Lf =0 on M NU.
This shows that the restriction of a holomorphic function f to a hypersurface will
automatically satisfy the homogeneous tangential Cauchy-Riemann equations.

Definition 3.0.1. Let M be a C' hypersurface in C*, n > 2. A C! function f
on M is called a CR function if f satisfies the homogeneous tangential Cauchy-
Riemann equations

for all a = (ay,--- ,a,) € C" with 377_, a;(0p/0%Z;)(z) = 0, z € M, where p(z) is
a C' defining function for M.

The restriction of a holomorphic function f to a hypersurface is a C'R function.
Conversely, given any C'R function f on M, can one extend f holomorphically into
one side of M? This is the so-called holomorphic extension of C'R functions. In
general, the converse part is not true.

For instance, let M be defined by y; = 0 in C", where z; = z; +1y;,1 < j <
n. Consider a real-valued smooth function f(x1,22, -+, 2z,) = f(x1), which is
independent of zo,--- , z,, in some open neighborhood of the origin. Suppose that
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f(z1) is not real analytic at the origin. Note that f(x1, 22, -, 2,) is annihilated by
the tangential type (0, 1) vector fields 0/0za, - - ,0/0%,, hence f is a CR function
on M. Still, f can not be holomorphically extended to some open neighborhood of
the origin, or to just one side of the hypersurface M.

In this chapter, we first consider the problem of global holomorphic extension
of a CR function on a compact hypersurface. We then study the local one-sided
holomorphic extension of a CR function. In Sections 4 and 5, we define plurisub-
harmonic functions, pseudoconvex domains and domains of holomorphy. We study
their relations with each other, and give several equivalent definitions of pseudocon-
vexity. Finally, we discuss the Levi problem and its relations with the d-equation.

3.1 The Hartogs Extension Theorem

One of the major differences between one and several complex variables is the
so-called Hartogs extension theorem, which states that if a bounded domain D in
C™, n > 2, has connected boundary, then any holomorphic function f(z) defined
in some open neighborhood of the boundary bD can be holomorphically extended
to the entire domain D. This sort of extension phenomenon fails in one complex
variable. For instance, f(z) = 1/z is holomorphic on the entire complex plane
except the origin, but there is no way to extend it as an entire function.

We consider the inhomogeneous Cauchy-Riemann equations in C™

(3.1.1) Ou = f,

where f is a (0,1)-form of class C* with k > 1. Write f as f = E?Zl fjdz;. Since
9 is a complex, a necessary condition for solving the d-equation is Of = 0. More
explicitly, the equation (3.1.1) is overdetermined. In order to solve (3.1.1) for some
function u, it is necessary that the f;’s satisfy the following compatibility conditions:

of;  Ofk
3.1.2 = 27
( ) 0zy, 82]-’
forall1<j<k<n.

First we prove the following theorem:
Theorem 3.1.1. Let f; € CE(C"),n>2,j=1,---,n, and let k > 1 be a positive
integer such that (3.1.2) is satisfied. Then there is a function u € CE(C") satisfying

(3.1.1). Whenk =0, if (3.1.2) is satisfied in the distribution sense, then there exists
a function u € Co(C™) such that u satisfies (3.1.1) in the distribution sense.

Proof. For k > 1, set

_ 1 fl(CaZQf"aZn) =
_ 1 f1(<+21722,"'72n) 3
=50 . : d¢ A dC.

It is easily seen that u € C*(C") from differentiation under the integral sign. We
also have u(z) = 0 when |2o|+ - - - + |2,,| is sufficiently large, since f vanishes on the
set.
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By Theorem 2.1.2, we have
8u
— = f1(2).

For j > 1, using the compatibility condltlon (3.1.2), we obtain

of;
ou 1 87‘%((’227"' ,Zn)
an N 211, C C—Zl

d¢ N dC = f;(2).

Hence, u(z) is a solution to the d-equation (3.1.1). In particular, u is holomorphic on
the unbounded component of the complement of the support of f. Since u(z) =0
when |zo| + -+ + |zy,| is sufficiently large, we see from the Identity Theorem for
holomorphic functions that u must be zero on the unbounded component of the
complement of the support of f. This completes the proof of the theorem for k > 1.
When k = 0, define u(z) by the same equation. We see that u € C%(C"), and
that u(z) = 0 when |2za| + - - - + |2y| is sufficiently large.
By Theorem 2.1.2,
For j > 1, let ¢ € C§°(C™). Then, using ( , )c» to denote the pairing between
distributions and test functions, we have

(92
<8’¢>(cn_<u7 35')@

o fl C+213227"' ) (,ZS
- 7/ <2m ¢ dCAdC)ﬁ AGz)

2_711 Cé( h(C+z,2, z)aai dA(z)) d¢ N dC
- 271m Cz(afl (C+ 21,22, ’Zn)wé)cn d¢ A dC
B 2;1@ Cé( (Gt 2,2, ,zn)% dA(z)) d¢ A dC
:_/n<2m - C+Zl’§2"" ) chdc>¢ aA(2)
(821 (27m/ e C’?g"l" n) dC/\dC) ¢>Cn
= (f5»9) cns
where the last equality is again guaranteed by Theorem 2.1.2. Hence,
gsj = fi(2),

for 7 > 1 in the distribution sense. One shows, similarly, that v must vanish on
the unbounded component of the complement of the support of f. This proves the
theorem.



3.1 The Hartogs Extension Theorem 37

Theorem 3.1.2 (Hartogs). Let D be a bounded domain in C"™ with n > 2, and
let K be a compact subset of D so that D\ K is connected. Then any holomorphic
function f defined on D\ K can be extended holomorphically to D.

Proof. Choose a cut-off function x € C5° (D) such that xy = 1 in some open neigh-
borhood of K. Then —f(9x) € C’&j’l)(C") satisfies the compatibility conditions,
and it has compact support. By Theorem 3.1.1 there is a u € C§°(C™) such that

gu = 7f5Xa
and that u = 0 in some open neighborhood of C™ \ D. Then, it is easily seen that
F=Q1-x)f-u

is the desired holomorphic extension of f.

Theorem 3.1.1 is the key for proving the Hartogs extension theorem. The hy-
pothesis n > 2 made in Theorem 3.1.1 is crucial. Using Corollary 2.1.5 it is clear
that in general, we cannot solve the equation du/9z = f for a solution with compact
support in C when the given function f has compact support.

Next, we prove another version of the holomorphic extension theorem which is
an easy application of the Cauchy integral formula.

Theorem 3.1.3. Let f be a continuous function on a domain D in C™, and let S
be a smooth real hypersurface in C™. Suppose that f is holomorphic in D\ S. Then
f is holomorphic on D.

Proof. 1t suffices to show f is holomorphic near each p € DN S. Let us fix such a
point p. We may assume that p is the origin, and that locally near p, the hypersur-
face S is realized as a graph which can be represented as

S={(z1=z+iy,2) € Cx Ty =gz, )},

for some smooth function ¢ such that ¢(0) = 0 and d¢(0) = 0.
Hence, for any small 3 > 0, there exists a 35 > 0 and a polydisc Uz in C*~1
centered at the origin, such that

|p(z,2")| < B

for all |z| < 63 and 2’ € Ug. Let 1 > 0 be sufficiently small, and let 32 > (1 be a
positive number sufficiently close to 31, then we may assume that Vp x Ug,, where

Vo={z €C||z| < I, and B1 <y < B2}

is contained in D\ S. Thus, f € O(Vy x Upg,).
Next, for each 2’ € Ug,, f(z1,7') is continuous on

V ={z €C| |z| <dp, and |y| < f2}

and holomorphic on V' except for the smooth curve y = ¢(z,2’). By Morera’s
theorem in one complex variable, f(z1,2’) is holomorphic in z; on V. Now choose
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a contour of integration I" in Ug,. Namely, let ' =Ty x --- x I',, where I'; = {z; €
C| |zj] = r;j}, for 2 < j < n, so that I' C Ug, .
Define

1 f(21,¢)
Flzy,2) = — / ! dCy - dCy.
N e (P AR (T R
It is easily seen that F(z1,2’) is holomorphic on V' x U, where U = Dy X - -+ X D,
and D; = {z; € C| |z;| < r;}. Since for (z1,2’) € Vo x U, we have

F(z1,2") = f(21,7).

Since f is continuous, it follows from the Identity Theorem that f is holomorphic
on V x U. The proof of the theorem is now complete.

3.2 The Holomorphic Extension Theorem from a Compact Hypersurface

In this section we shall prove a generalized version of the Hartogs extension
theorem. The following lemma is useful.

Lemma 3.2.1. Let M be a C* hypersurface with a C* defining function r, k > 1.
Then any CR function of class C* on M can be extended to a C*k=1 function f in
some open neighborhood of M such that Of =0 on M.

Proof. We first extend f to a C* function in some open neighborhood of M, still
denoted by f. Since f is CR on M, we have

Lif=0, onM,i=1---,n—1,

where Ly, -+, L,_1 forms a basis of the tangential Cauchy Riemann equations. Let
r be a defining function for M such that |dr| = 1 on M. Then we simply modify f
to be f = f — 4r(L, f), where L, = Zg‘zl(ar/azj)(a/azj) is the type (1,0) vector
field transversal to the boundary everywhere. When k > 2, we have that r(L,, f) is
a C*~1 function and

(3.2.1) Lnf=(Lnf) —4(L,r)(Lnf) =0 on M.

This proves df = 0 on M.
When k = 1, (L,f) is only a C° function but it is easy to check, from the
definition, that 7(L, f) is C* on M and (3.2.1) still holds. This proves the lemma.

Theorem 3.2.2. Let D be a bounded domain in C", n > 2, with connected C*
boundary. Let f be a CR function of class C' defined on bD. Then, for any small
e > 0, f extends holomorphically to a function F € C'=¢(D) N O(D) such that
Flyp = f.

Proof. We define F_(z) and F(z) as the Bochner-Martinelli transform of f on D
and C"\ D. From Theorem 2.2.3, we have F_ € C'~¢(D), F, € C'~¢(C"\ D) and

f(z)=F_(2) = F4(2) for z € bD.
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We will first show that F_(z) € O(D) and F.(z) € O(C" \ D). Define B(¢,z) by

(2.2.1) and

Bi(¢, 2)
nfl noo_ n—2 n
(2w (Z ¢ — z|2" CJ) A <Z dc; /\de) A <Z dz; /\de)-
Jj=1 j=1

Then we have

(3.2.2) 9.B((,2) +9¢B1(¢,2) =0, for ¢ # z.

Identity (3.2.2) is proved by a straightforward calculation as follows: For ¢ # z,

B n—l)' dz; A d¢; —
= G Z K_lej A( /\jdgkAde)

! n n (C-—Z-)((—z) B
- (2;)" z:: <Z j\C —]z|2i+2 = dz A dCJ) A (k/;jdck A dCr)

j=1 \l=1
- 1 1 n n—1
- _&TWML<Z®A%> (ng /\dCJ)
j=1
)
Jj#l
n n—2
A (Z d¢; Ad@-)
j=1

py L IG5 dz; Nd¢ A (A dCp A dG)
27i)" IC— 227 [C — 222 J TNk k

Jj=1
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— 1 n B

j=1

n(n—1) Z (Z] —Z;) (G — 1)

(2mi)m ¢ — z[2n+2 de ANdC Ndzp AN dG

il

n n—2
A (Z d¢; A dg—)
j=1

fnn D (5 G n e (zdmdg)
(2] ¢ =22 ’ T

n—1 1 L n—1 n 3
:_WW<chjAd@-) A(jz_;dszdgj)

(=1 [~ (G —Z) (G —2) no_ n—2
Homr (ZE s | (30 )

= d¢B1(¢, 2).

This proves (3.2.2).

Since f is a CR function of class C* on bD, using Lemma 3.2.1, one can extend
f to be a continuous function in some open neighborhood of the boundary so that
f is differentiable at bD and 0f = 0 on bD. It follows now from (3.2.2) that for

z € D, we have
- [ 1052
bD

- / FQBBuC,2)
- [ Bromic)

- [ @B
bD
= 0.

Thus, F_(z) € O(D) and, similarly, F, (z) € O(C"\ D).

Finally, we claim F(z) = 0. We let |z2| + -+ + |z,| be sufficiently large, then
F.(-,z2,-++ ,2,) is an entire function in z; which tends to zero as |z1| tends to
infinity. Thus, by Liouville’s theorem F, (z) = 0 if |23| + - - - + |2, is large enough.
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It follows now from the identity theorem that F (z) = 0. Setting F = F_, we have
F_|pp = f and this proves the theorem.

3.3 A Local Extension Theorem

The result in this section deals with the local one-sided holomorphic extension of
a smooth C'R function defined on some neighborhood of p on M. It turns out that
this question is related to the geometry of the domain. In particular, it is related
to the so-called Levi form of the domain.

Definition 3.3.1. Let D be a bounded domain in C™ with n > 2, and let r be a C?
defining function for D. The Hermitian form

- &?r _
(3.3.1) Ly(rit) =Y m(p)tjtk, p € bD,
Gk=1_"J

defined for allt = (t1,-- ,tn) € C" with 377_, t;(0r/0z;)(p) = 0 is called the Levi
form of the function r at the point p, denoted by Ly(r;t).

If p is another C? defining function for D, then p = hr for some C! function
h with A > 0 on some open neighborhood of bD. Hence, for p € bD and t =
(tr,--- ,ty) € C" with 37, t;(0r/dz;)(p) = 0, we have

Z@z@zk ' _Za;() “”Zaz] (P)ist

n 82 -
+h(0) Y (Pt

k=

Z 3z](92k

J.k=1

1 8Zj 0z

This shows that the Levi form associated with D is independent of the defining
function up to a positive factor. In particular, the number of positive and negative
eigenvalues of the Levi form are independent of the choice of the defining function.

For p € bD, let

T)0(bD) = {t = (t1,-- ,tn) € C"| Y _t;(0r/dz;)(p) = 0}.

Jj=1

Then T,°(bD) is the space of type (1,0) vector fields which are tangent to the
boundary at the point p. Smooth sections in T%1(bD) are the tangential Cauchy-
Riemann operators defined in the introduction. By definition, the Levi form is
applied only to the tangential type (1,0) vector fields. We now state and prove the
local extension theorem for C'R functions.
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Theorem 3.3.2. Let r be a C? defining function for a hypersurface M in a neigh-
borhood U of p where p € M. Assume that the Levi form L,(r;t) < 0 for some
t e Tpl’O(M). Then there exists a neighborhood U' C U of p such that for any

. —/
CR fuﬁcltwn f(z) of class C?> on M N U’, one can find an F(z) 76 oYUy,
where U, = {z € U'|r(z) >0}, so that F = f on M NU" and OF = 0 on
Ul ={z € U'|r(z) > 0}.

Proof. First we introduce new local coordinates near p. By a linear coordinate
change we may assume that p = 0 and that the Taylor expansion at 0 gives

r(2) = yn + A(2) + O(I2),

where z,, = x,, + iy, and

Consider the following holomorphic coordinate change. Let

wj=z; for 1<j<n—-1,

Then the Taylor expansion becomes

02r .
ﬁ(o)ijk + O(|lwf?).

8’(1}]' w0

r(w) = Imw,, + Z
jk=1

Therefore, we may assume that we are working in a local coordinate system z =
(21, ,2n) so that

r(z) =Tmz, + Y Mjezze + O(|2%),
j,k=1

where (M) is a Hermitian symmetric matrix. The hypothesis on the Levi form im-
plies that the submatrix (Mjk)?;il is not positive semidefinite. Hence, by another
linear change of coordinates, we may assume that Mj; < 0. Notice that

r(21,0,--+,0) = Mu|z1]? + O(|=1]?).
Thus, we can first choose § > 0, and then € > 0 so that

0%r

021071 i

) <0

on
U'={2€C"| |z1| <d and |z2] + -+ |2z| <€} C U,
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and r(z) < 0 on the part of the boundary where |z1| = §. For any fixed 2/ =
(22, ,2n) with |z2| + -+ 4 |za]| < €, the set of all z; with |z;| < ¢ such that
r(z1,2’) < 0 must be connected. Otherwise, r(z1,2’) will attain a local minimum
at some point |z1| < ¢ and we will have A, r(z1,2") > 0. This is a contradiction.

Consider now, a CR function f of class C? on U’ N M. Using Lemma 3.2.1,
extend f to U!, also denoted by f, so that f € CI(U;) and satisfies 0f = 0 on
U' N M. If we write

n

f =g=>_ gdz;,
J

1

then g, € C(U;) and g; = 0 on the boundary U’ N M.

The g;'s, extending by zero outside U’ , will be viewed as functions defined on
W =CxV, where V = {2/ = (22, ,2,) € C" Y|z + -+ + |25| < €}. For any
z' € V, define

(3.3.2) Glo, 7)) = i/ D& e e

T o c (—=

We have immediately that G(z) € CO(W). Since dg = 0 in the sense of distribution,
Theorem 3.1.1 implies 0G = g in the distribution sense.
Similarly, (9G/9%;)(z) = 0 on W\ U, for 1 < j < n. It follows that G is

holomorphic on VV\U,+ Also, notice that for any sufficiently small positive number
0 < 1 << 1, there is a small open neighborhood Vj of (0,---,0, —in) in C*~! =
{2 = (22, -+ ,2,)} such that C x V} is contained in W and r(z1,2’) < 0 on C x V.
It implies that G(z) = 0 on C x V. Hence, by the identity theorem, G(z) = 0 on
W\UI+ In particular, G(z) = 0 on {z € U’'| 7(z) = 0}. Now the function F = f—G
is in C’O(U;) with F = f on {z € U'| 7(z) = 0} and satisfies 0F = 0 on U/. This
proves the theorem.

Theorem 3.3.2 states that if the Levi form associated with the hypersurface M
has one nonzero eigenvalue, then we have one-sided holomorphic extension of the
CR functions. In particular, if the Levi form has eigenvalues of opposite signs,
then the given C'R function f(z) on M can be extended holomorphically to both
sides, say, F(z) and F_(z) respectively, such that Fy(2)|y = F-(2)|m = f(2) on
M. Hence, by Theorem 3.1.3, F, (z) and F_(z) can be patched together to form a
holomorphic function defined in some open neighborhood of the reference point p
in C™.

3.4 Pseudoconvexity

Let D be a bounded domain in C™ with n > 2. In this section we define the
concept of pseudoconvexity. We also discuss the relations between pseudoconvexity
and plurisubharmonic functions.

Definition 3.4.1. Let D be a bounded domain in C™ with n > 2, and let r be a C?
defining function for D. D is called pseudoconvex, or Levi pseudoconvez, atp € bD,
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if the Levi form

n

(3.4.1) Z azk p)tity >0
7,k=1

for allt € T)°(bD). The domain D is said to be strictly (or strongly) pseudoconvex
at p, if the Levi form (8.4.1) is strictly positive for all such t # 0. D is called a
(Levi) pseudoconvex domain if D is (Levi) pseudoconvex at every boundary point
of D. D is called a strictly (or strongly) pseudoconvex domain if D is strictly (or
strongly) pseudoconver at every boundary point of D.

Note that Definition 3.4.1 is clearly independent of the choice of the defining
function r.

Definition 3.4.2. A function ¢ defined on an open set D C C™, n > 2, with values
in [—o0,+00) is called plurisubharmonic if

(1) ¢ is upper semicontinuous,
(2) for any z € D and w € C", ¢(z + Tw) is subharmonic in 7 € C whenever
{z+Tw| T € C} C D.

Theorem 3.4.3. A C? real-valued function ¢ on D is plurisubharmonic if and only
if

n 82¢
82J62k

(3.4.2)

rM
IV
=)

forallt = (t1,-- ,t,) € C" and all z € D.

Proof. The assertion follows immediately from the nonnegativeness of the Laplacian
of the subharmonic function ¢(z + 7w) in 7 € C whenever it is defined.

If (3.4.2) is strictly positive, we shall call ¢ a strictly plurisubharmonic function.
It is obvious from Definition 3.4.2 that any plurisubharmonic function satisfies the
submean value property on each complex line where it is defined. The following
theorem shows that there always exists a strictly plurisubharmonic defining function
for any strongly pseudoconvex domain.

Theorem 3.4.4. Let D be a bounded strongly pseudoconvex domain in C*, n > 2,
with a C* (2 < k < 00) defining function r(z). Then there exists a C* (2 < k < 00)
strictly plurisubharmonic defining function for D.

Proof. For any A > 0, set

p(z) =€ —1 for z€D.
We will show that p(z) is the desired strictly plurisubharmonic defining function
for D if X is chosen to be sufficiently large.

First, p is a C* defining function for D since

Vp(z) =AVr(z) 20 for z € bD.
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Next, we calculate the Levi form of p(z) for z € bD to get that

8zjmc Z 2)tt, + A’ Z azj

j.k=1

J,k=1

for t € C". By homogeneity, we may assume that |[¢| = 1. Since D is of strong
pseudoconvexity, by continuity there exists an € > 0 such that

n 82[)

Gk=1

s

on the set {(2,t) | 2 € bD, t € C", |t| = 1, | 37_,(0r/02;)(2)t;| < €}. On the other
hand, if t € C™ is of unit length and satisfies | 3_7_, (0r/02;)(2)t;| > § for 2 € bD,
we may also achieve Z;ﬁk:l(agp/azjﬁzk)(z)tﬁk > 0 simply by choosing A to be
sufficiently large. This shows that p is strictly plurisubharmonic near the boundary
by continuity if A is large enough. This proves the theorem.

We recall that a bounded domain D € RY with C? boundary is called strictly
convex if there is a C? defining function p for D such that

82

for all t = (t1,--- ,ty) € RN with Zjvzl Op/0x;(p)t; = 0.

Corollary 3.4.5. Let D be a bounded pseudoconvex domain with C? boundary in
C™, n>2. Then D 1s strongly pseudoconvez if and only if D is locally biholomor-
phically equivalent to a strictly convex domain near every boundary point.

Proof. Suppose first that D is strongly pseudoconvex. By Theorem 3.4.4 there is
a C? strictly plurisubharmonic defining function r(z) for D. Let p be a boundary
point. After a holomorphic coordinate change as we did in Theorem 3.3.2, we may
assume that p is the origin and the defining function takes the following form

r2) = Resy+ Y0 T 7= (023 + (1<),
J

J,k=1

Since the quadratic term is positive by hypothesis for any z # 0, it is now easy
to see that D is strictly convex near p. The other direction is trivially true. This
proves the corollary.

Definition 3.4.6. A function ¢ : D — R on an open subset D in R™ is called an
exhaustion function for D if for every ¢ € R the set {x € D| p(x) < ¢} is relatively
compact in D.

Clearly, if ¢ is an exhaustion function for D, then ¢(x) — oo as  — bD. This
condition is also sufficient if the domain D is bounded. Next, we show the exis-
tence of a smooth strictly plurisubharmonic exhaustion function on a pseudoconvex
domain. Let dp(z) denote the Euclidean distance from z € D to bD.
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Theorem 3.4.7. Let D be a bounded pseudoconvex domain in C", n > 2, with a
C? boundary. Then —log(dp(z)) is plurisubharmonic near the boundary.

Proof. First set

(343) T( ) — { 7dD(Z) - 7diSt(ZabD)a fOI' z € D,

dist(z,bD), for z ¢ D.
Then it follows from the implicit function theorem that 7(z) is a C? defining function
for D in some small open neighborhood of the boundary. Hence the Levi form

defined by r is positive semidefinite.
If —log(dp(z)) is not plurisubharmonic near the boundary, then

2

0
5 (Tlogdp(z—i—Tw)h 0>0

for some w € C™ and z close to the boundary where dp(z) is C2. Expand logdp(z+
Tw) at 7 =0 to get

logdp (z + Tw) = log(dp(2)) + Re(ar + 47%) + 9|7* + O(I7),

for small 7. Here a, 8 € C, v > 0 are constants. Choose 1 € C" such that z+n € bD
and |n| = dp(z). Then consider the analytic disc

={z(1)=z2+TW+ ne(”+572| |7] <6}

for some sufficiently small § > 0. Using Taylor’s expansion, for |7| < §, 7 # 0, we
get

2
dp(=(r)) = dp(z + Tw) = [n]|e” ™7
> [n](e31"" = 1)]en7 07|
>0,

if 0 is small enough. Since z(0) = z + n € bD, this implies that A; is tangent to
the boundary at z(0). Hence,

0 9?

§dD(Z(T))|T:0 =0 and ﬁdD(Z(T)”T:O > 0.

From the definition of r, this means

oo " —
kzzjlaZk(z—i-n)zk(O) 0 and Z 8zjﬁk +1)2;(0)2,(0) < 0.

This contradicts the nonnegativeness of the Levi form at z(0) = z + 7. Hence
—log(dp(z)) is plurisubharmonic near the boundary. This proves the theorem.
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Corollary 3.4.8. Let D be a bounded pseudoconvexr domain in C™, n > 2, with
a C? boundary. Then there exists a smooth strictly plurisubharmonic exhaustion
function on D.

Proof. By Theorem 3.4.7, —log(dp(z)) is a C? plurisubharmonic function for z € D
near the boundary. Let 1(z) be a C? function on D such that 7(z) = —log(dp(z)) on
U N D, where U is an open neighborhood of bD. We may assume that —log(dp(z))
is plurisubharmonic on U N D. Then it is easily seen that

Mz) =n(2) + M|2|?

is a C? strictly plurisubharmonic exhaustion function on D if M is chosen large
enough.

The next step is to regularize A(z). For each j € N, we set D; = {z € D|A(z) <
j}, then D; CC D. Choose a function x(z) = x(|z|) € C§°(B(0;1)) such that
x(z) >0 and [ x(z)dV =1. Set x(z) = € ?"x(z/e€). For z € D;, the function

Ml2) = / Az — Oxe(O)dV () = / Az — €Q)x(Q)dV(Q)

is defined and smooth on Dj if € is sufficiently small. Since A is strictly plurisub-
harmonic of class C?, it is clear that A\ (z) is strictly plurisubharmonic and, by the
submean value property, A, < A, if €1 < €2, and A\.(z) converges uniformly to A(z)
on any compact subset of D.

Therefore, by extending A.(z) in a smooth manner to D, we see that there are
functions A, (2) € C*(D) for j € N such that A, (z) is strictly plurisubharmonic
on Djia, A(2) < Ae,(2) < A(2) + 1 on Dy and A(z) < A, (2) < A(z) + 1 on Dy for
7 > 2. It follows that

Ae;(2) =j+1<0on Dj_5 for j >3,

and B
)\Ej(z)_j+1 > 0 on Dj —Dj,1 f0r323

Now choose a B(z) € C®(R) with 8(z) = 0 for z < 0 and B(x), §'(z), 8" (z)
positive for > 0. Then, B(A¢,(2) —j+1) >0 and B(\;(2) —j+1) =0o0n D;_».
A direct computation shows that 3(A, (z) —j+1) is plurisubharmonic on D; 2 and
strictly plurisubharmonic on ﬁj —D;_;. Thus, one may choose inductively m; € N
so that, for k > 3,

k
Pr(2) = Ay (2) + Y mB(Ae; (2) = j +1)
j=3

is strictly plurisubharmonic and ¢ (z) > A(z) on Dg. Clearly, pr(z) = ¢r—1(2) on
Dy.—2. Thus, p(z) = limg_,o0 ¢ (2) is the desired smooth strictly plurisubharmonic
exhaustion function on D. This completes the proof of Corollary 3.4.8.

Now if D is a bounded pseudoconvex domain in C” with a C? boundary, accord-
ing to Corollary 3.4.8, there exists a smooth strictly plurisubharmonic exhaustion
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function ¢(z) on D. Define D. = {z € D| ¢(z) < ¢} for every ¢ € R. Tt follows
from Sard’s Theorem that, for almost every ¢ € R, D, is a strictly pseudoconvex
domain with smooth boundary. In other words, any bounded pseudoconvex domain
D in C" with a C? boundary can be exhausted by a sequence of smooth bounded
strictly pseudoconvex domains D..

When the domain D does not have smooth boundary or D is not bounded, we
define pseudoconvexity by the following

Definition 3.4.9. An open domain D in C" is called pseudoconver if there exists
a smooth strictly plurisubharmonic exhaustion function ¢(z) on D.

Theorem 3.4.10. Let D be a pseudoconver domain in C", n > 2, in the sense of
Definition 3.4.9. Then —log(dp(z)) is plurisubharmonic and continuous on D.

Proof. Let ¢ be a smooth plurisubharmonic exhaustion function on D. We shall
show that if zg is a point in D and w € C™ is a nonzero vector, then —logdp (zo+7w)
is subharmonic in 7 € C whenever zg + 7w € D. Choose § > 0 so that

No={z0+Tw| |T| <6} C D,

and let f(7) be a holomorphic polynomial such that
(3.4.4) —logdp(zo + Tw) < Ref(r) for || =4.
We want to show that

—logdp(z0 + Tw) < Ref(r) for |7| <4.
Equation (3.4.4) is equivalent to
(3.4.5) dp(zo +1w) > e | for |7] = 4.
Now, for any n € C™ with |n| < 1, we consider the mapping with 0 <¢ < 1,
(3.4.6) T 2 4+ 1w + tne~F (T for |7] < 4.

The image of (3.4.6) is an analytic disc. Let A; = {2 + 7w + tne=/ (7| |7] < 5}.

Set E = {t € [0,1]| A¢; C D}. Clearly, 0 € E and F is open. To show that E is
closed, set K = Up<i<1b/\;. Estimate (3.4.5) implies that K is a compact subset of
D. Now, if Ay C D for some t, (29 + 7w + tne~/ (7)) would define a subharmonic
function in some open neighborhood of the closure of the unit disc in C. Therefore,
by the maximum principle for subharmonic functions and the exhaustion property
of ¢, we see that A; must be contained in {z € D| ¢(z) < supgy}, a compact
subset of D. It follows that E is closed, and hence E = [0, 1]. This implies, for any
n € C" with |n| <1 and |7| < 4, that

z0+ 1w+ ne 7 e D.

Thus, we have
dp(z + 1w) > |e 7| for |7] <6,
or equivalently,
—logdp(zo + Tw) < Ref(r) for || < 4.
Hence, —logdp(zp + Tw) is subharmonic in 7 € C whenever zp + 7w € D. This
proves the theorem.

The equivalence between Definitions 3.4.1 and 3.4.9 on domains with smooth
boundaries is proved in the following theorem.
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Theorem 3.4.11. Let D be a bounded domain in C*, n > 2, with C? bound-
ary. Then D is Levi pseudoconvex if and only if D is pseudoconvex according to
Definition 3.4.9.

Proof. If D is Levi pseudoconvex, then by Corollary 3.4.8 D is pseudoconvex in the
sense of Definition 3.4.9.

On the other hand, assume D is pseudoconvex according to Definition 3.4.9.
Define 7 by(3.4.3). Then 7(z) is a C? defining function for D in some small open
neighborhood of the boundary.

Now Theorem 3.4.10 asserts that —log(dp(z)) is a C? plurisubharmonic function
if z € D is sufficiently close to the boundary. Thus, following from the plurisubhar-
monicity of —log(dp(z)), we obtain that

z": ( 1 0%dp )+ 1
0T -
dDaszk gk d%

J,k=1

2
>0

piy )

" ddp .
8zj J
=1

for any a € C"™ and z € D sufficiently close to bD. Therefore,

Z 8zzk z)ajag > 0 lfzazj

7,k=1

Passing to the limit, we obtain the desired assertion. This proves the theorem.
We note that by Definition 3.4.9 every pseudoconvex domain D can be exhausted
by strictly pseudoconvex domains, i.e.,

D =UD,,

where D, CC D, 41 CC D and each D, is a strictly pseudoconvex domain.
To end this section we show that there always exists a bounded strictly plurisub-
harmonic exhaustion function on any smooth bounded pseudoconvex domain.

Theorem 3.4.12. Let D C C", n > 2, be a smooth bounded pseudoconver domain.
Let r be a smooth defining function for D. Then there exist constants K > 0 and
0 < no < 1, such that for any n with 0 < n < g, p = —(—re’K‘Z‘Q)” is a smooth
bounded strictly plurisubharmonic exhaustion function on D.

Note that p is continuous on D and vanishes on bD.

Proof. We first assume that z € D with |r(z)| < e for some small ¢ > 0. With

p=—(-re K7
) 2
La(pit) = n(=r)" 2 KV (KTQ <t|2 —nkK )

j=1
" or L
55 (2+))
=1 Jj=1

1. a direct calculation shows, for t € C",

+(-7) (czm - 2nKRe(
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For each z with |r(z)| < € and ¢ = (t1,--- ,t,) € C", write t = t™ + ¥, where
# = (1, ,12) with

5 (Z;‘l_l tjg;@)) or
= (=0

n - = Z),
Py 5%(2'”2 9z},

and t7 = (t7,--- ,t}) € T = {a € C"| 3°7_,(9r/9z;)(2)a; = 0}. Such a decompo-
sition is clearly smooth when e is sufficiently small. Also, let 7(z) be the projection
of z along the normal on the boundary. Obviously, 7 is smooth for small e. Then
the Levi form of r at z is

e O
LorstT) = Y 5 (I ()T (2)
ig=1_"*773
" 0%r N —
Z: AR ACICETIC)
= Z bij(z)tﬁ],
i,j=1

where b;;(z) is defined by the last equality. Hence, by pseudoconvexity of the
domain, we have

Lo(r;t7(2)) 2 La(r587(2)) = La(z) (157 (7(2)))

n

(3.4.7) = > (bij(2) = by (m(2)))tit;

1,j=1

—Clr(2)|It?,

v

for some constant C' > 0. Since

(3.4.8) | = O(

"9
>0

(3.4.7) and (3.4.8) together imply

. or
L.(rit) > =Clr(2)|lt]* — CJt]|> 5t
J

j=1

Hence

L.(pit) > l—r)r—2e=7KI<E (m?u — OnE P

" or ; " or
E —t; _
= 8Zj

— Cr? |t + COrlt|
82’]‘

+(1-n) t

\

=1
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for some constant C' > 0. Since

2
C|7"||t| + Cir?jtf?,

Jz 4

j= 1

we have

£a(pit) 2 -ry 2 (20— Cort)

—(C+C)r* it + ( - n)

el

Now, if we first choose K > 2(C' 4+ C7) 4+ 10 and then 7 to be sufficiently small so
that n < 1/4 and CnK < 1/2, we have

L.(p;t) >0, forteC™\{0}.

For this case we may take g = min(1/4,1/(2CK)).
If |r(2)| > €, the situation is even simpler. This proves the theorem.

3.5 Domains of Holomorphy

Throughout this section, D will denote a domain in C™, n > 1. Here we give the
definition of a domain of holomorphy.

Definition 3.5.1. A domain D in C" is called a domain of holomorphy if we
cannot find two nonempty open sets D1 and D4y in C™ with the following properties:
(1) Dy is connected, D1 ¢ D and Dy C Dy N D.
(2) For every f € O(D) there is a f € O(Dy) satisfying f = f on Ds.

According to Hartogs’ theorem (Theorem 3.1.2), if we remove a compact subset
K from the unit ball B(0;1) in C", n > 2, such that B(0;1) \ K is connected, then
the remaining set B(0;1) \ K is not a domain of holomorphy. Also, from Theorem
3.3.2, if the Levi form of a smooth bounded domain D in C", n > 2, has one
negative eigenvalue, then D is not a domain of holomorphy.

In this section, we shall characterize the domain of holomorphy in C" for n > 2.
Let K be a compact subset of D. Define the holomorphically convex hull K pof K
in D by

(3.5.1) Kp ={z€ D||f(z)| <sup|f], for all f € O(D)}.
K

A compact sgbset K of D is called holomorphically convex if K p = K. We obviously
have IA(D = [A(D. Using f(z) = exp(a121 + -+ anzn) witha; e Cfor i =1,--- | n,
it is clear that Kp must be contained in the geometrically convex hull of K, and
is a closed subset of D. However, K p in general is not a closed subset of (C”

K p in general is not a compact subset of D. In one complex variable K D
is obtalned from K by filling up all the bounded components of the complement
Ke¢. For higher dimensional spaces, the situation is more subtle. In addition to the
concept of holomorphically convex hull, we define:
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Definition 3.5.2. A domain D in C" is called holomorphically convex if I?D 1
relatively compact in D for every compact subset K of D.

The main task of this section is to prove the following characterization of domains
of holomorphy.

Theorem 3.5.3. Let D be a domain in C*, n > 2. The following statements are
equivalent:
(1) D is a domain of holomorphy.
(2) dist(K,D¢) = dist(.f(\'p, D*) for every compact subset K in D, where dist(K,
D¢) denotes the distance between K and D¢ = C™\ D.
(3) D is holomorphically conver.
(4) There exists a holomorphic function f on D which is singular at every bound-
ary point of D.

Proof. (2) = (3) and (4) = (1) are obvious. We need to show (1) = (2) and (3)
= (4).

If P(0;r) is a polydisc centered at zero with multiradii r = (ry, - -, 1), for each
z €D, we set
d,(z) = sup{A > 0] {z} + AP(0;r) C D}.

To prove (1) = (2), we first show:

Lemma 3.5.4. Let K be a compact subset of a domain D in C", and let f € O(D).
Suppose that
If(2)| < dp(2) forze K.

Let ¢ be a fized point in I?D, Then any h € O(D) extends holomorphically to
DU{CH+ [£(OIP(0;7)}

Proof. For each 0 < t < 1, the union of the polydiscs with centers at z € K

(3.5.2) Ei= U {{z} +1f(z)|P(0;)}

is a compact subset of D. Hence, for any h € O(D), there exists M; > 0 such that
|h(2)] < M; on K;. Using Cauchy’s estimates of h, we obtain

|98 (=) 1] £ (2)]

al

(3.5.3) < M,

for z € K and all multiindices a = (aq,- -+ ,@y,) with || = ag + -+ + . Since
(Oah/aza)(z)f(z)‘al is holomorphic on D, by definition, (3.5.3) also holds for z €

Kp. Letting t tend to one, we see that h(z) extends holomorphically to DU{{¢} +
|£(O)|P(0;7)}. This proves the lemma.

We write

dist(z, D) =sup{r > 0| z+aw € D, for all we C", |w| <1 and
a€C, |a| <r}
nf1 dy(2),

i
lw]<
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where
dy(z) =sup{r >0| z+aw € D, forall a €C, |a| <r}.

Fix a w, we may assume that w = (1,0,---,0). Denote by P; = P(0;7(j)) the
polydisc with multiradii 7(j) = (1,1/4,---,1/7) for 7 € N. Then it is easily seen
that

]lggo dy(j)(2) = dw(2).

Thus, given € > 0, if j is sufficiently large, we have
(3.5.4) dist (K, D) < (1 +€)dr;)(2), z€ K.

We let f(z) = dist(K, D)/(1+ €) be the constant function. Since D is a domain of
holomorphy, using estimate (3.5.4), Lemma 3.5.4 shows that

dist(K, D) < (1+ €)dy(jy(Q) < (1 + €)dy(C), forall ¢ € Kp.
Letting € tend to zero, we get

dist(K, D) < inf ( inf d,(Q))
(eRp w|<1
= inf dist(¢, D)
CeEKp

= dist(Kp, D°).

This proves that (1) = (2).

Finally, we show (3) = (4). Assume that D is holomorphically convex. Let P be
the set containing all points in D with rational coordinates. Clearly, P is countable
and dense in D. Let {(;}22; be a sequence of points in D such that every point
belonging to P appears infinitely many times in the sequence. Now, we exhaust
D by a sequence of increasingly holomorphically convex compact subsets { K };‘;1

of D with K; C Kjy1, where K4, is the interior of K;;. For each i, denote
by P, the largest polydisc of the form P, = {¢;} + nP(0;1) that is contained in
D, where n > 0 and P(0;1) is the polydisc centered at the origin with multiradii
o
r=(1,---,1). Then, inductively for each j, pick a z; € (P, \ Kn;) N K,
{Kp, } is a suitable subsequence of {K;}, and a f;(z) € O(D) satisfying

;41> Where

1
G5 < o7 2 € Ko,
and

j—1
1) =) 1 filz) + 5+ 1.
=1

It follows that

h(z) =) fi(2)
j=1
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defines a holomorphic function on D and that

j—1 00
()| = 15 )l = Y1)l = D 1fiz)] = 4,
i=1 1=j+1

which implies h(z) is singular at every boundary point of D. Otherwise, if h(z)
extends holomorphically across some boundary point, then h(z) would be bounded
on P¢, for some ¢;. Obviously, it contradicts the construction of h. This proves (3)
= (4), and, hence the theorem.

We see from Theorem 3.5.3 that the concept of domains of holomorphy is equiva-
lent to that of holomorphic convexity. With this characterization, the next theorem
shows that a domain of holomorphy is pseudoconvex.

Theorem 3.5.5. If D is a domain of holomorphy, then D is pseudoconvex in the
sense of Definition 3.4.9.

Proof. Let D be a domain of holomorphy and {Kj;}32; be a sequence of increas-
ingly holomorphically convex compact subsets of D which exhausts D. We may

o
assume that K; C K;4 for all j. Then, by hypothesis for each j € N there exist

fit, -+ fim; € O(D) such that the function ¢;(z) 9| fik(2)|? satisfies
1

(3.5.5) oi(z) < > for z € Kj,

and

¢](2)>j fOFZEKj+2\Kj+1.

Hence,
2) = ()
j=1

is a continuous exhaustion function defined on D. In fact, ¢(z) is real analytic. It
can be seen easily from (3.5.5) that the series

z(z fir(2) Tl )

converges uniformly on compact subsets of D x D*, where D* = {Z | z € D} de-
notes the conjugate domain of D. Thus the series defines a holomorphic function on
D x D*. By substituting Z for w in the above series, we obtain the real analyticity
of p(z) on D, and that one can differentiate ¢(z) term by term. Obviously, ¢(z)
is plurisubharmonic on D. It follows that |z|? + ¢(2) is a smooth strictly plurisub-
harmonic exhaustion function on D, and by definition, D is pseudoconvex. This
proves the theorem.
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3.6 The Levi Problem and the 9 Equation

Let D be a pseudoconvex domain in C™ with n > 2. One of the major problems
in complex analysis is to show that a pseudoconvex domain D is a domain of
holomorphy. Near each boundary point p € bD, one must find a holomorphic
function f(z) on D which cannot be continued holomorphically near p. This problem
is called the Levi problem for D at p. It involves the construction of a holomorphic
function with certain specific local properties.

If the domain D is strongly pseudoconvex with C*° boundary bD and p € bD,
one can construct a local holomorphic function f in an open neighborhood U of
p, such that f is holomorphic in U N D, f € C(DNU \ {p}) and f(z) — oo as
z € D approaches p. In fact f can be easily obtained as follows: let r be a strictly
plurisubharmonic defining function for D and we assume that p = 0. Let

F(z)=-2 lzzl Z azzazj )%i%j-

3,5=1

F(z) is holomorphic, and it is called the Levi polynomial of r at 0. Using Taylor’s
expansion at 0, there exists a sufficiently small neighborhood U of 0 and C' > 0
such that for any z € DNU,

ReF(z) Z azz 0)z:z; + O(|z*) > Oz

Thus, F(z) # 0 when z € DN U \ {0}. Setting

f - F )
it is easily seen that f is locally a holomorphic function which cannot be extended
holomorphically across 0.

Global holomorphic functions cannot be obtained simply by employing smooth
cut-off functions to patch together the local holomorphic data, since the cut-off
functions are no longer holomorphic. Let x be a cut-off function such that x €
C§°(U) and x =1 in a neighborhood of 0. We note that x f is not holomorphic in
D. However, if x f can be corrected by solving a J-equation, then the Levi problem
will be solved.

Let us consider the (0,1)-form g defined by

g=0(xf) = (0x)f.

This form g can obviously be extended smoothly up to the boundary. It is easy
to see that g is a 0-closed form in D and g € C(‘”OJ)(D). If we can find a solution

u € C*(D) such that

(3.6.1) du=g in D,
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then we define for z € D,

h(z) = x(2)f(2) — u(z).
It follows that h is holomorphic in D, h € C*°(D\ {0}) and h is singular at 0. Thus
one can solve the Levi problem for strongly pseudoconvex domains provided one
can solve equation (3.6.1) with solutions smooth up to the boundary.

Problems of this sort are among the most difficult in complex analysis and they
are the main topics of the next three chapters. In Chapter 4, we will solve the Levi
problem using the L? estimate method for 9 (Hérmander’s solution) on pseudo-
convex domains (Theorem 4.5.2). In Chapter 5, we study the boundary regularity
for @ on strongly pseudoconvex domains. This gives another solution (Kohn’s so-
lution) of the Levi problem on complex manifolds (Theorem 5.3.11). In Chapter 6,
we further investigate the boundary regularity of 9 on pseudoconvex domains with
smooth boundaries for other applications.

NOTES

Theorem 3.1.2 is a theorem due to F. Hartogs [Har 1]. The present proof of The-
orem 3.1.2 as pointed out by L. Ehrenpreis [Ehr 2] is essentially based on Theorem
3.1.1, i.e., the existence of compactly supported solutions to the Cauchy-Riemann
equation. The proof of Theorem 3.1.3 is based on an idea of F. Hartogs [Har 1].

Using a more delicate proof found in Harvey and Lawson [HaLa 1], one can prove
Theorem 3.2.2 in an optimal way. Namely, if the domain D has C* (1 < k < 00)
boundary and f is a C'R function of class C* on the boundary, then the holomorphic
extension F is also in C*(D). See also the book by R. M. Range [Ran 6].

Theorem 3.3.2 is concerned with the local one-sided holomorphic extension of CR
functions which is essentially due to H. Lewy [Lew 1]. Another way to prove the
local extension theorem for the C'R functions is to invoke the result discovered by
Baouendi and Treves [BaTr 1]. This is the so-called analytic disc method. See the
books by A. Boggess [Bog 2] and M. S. Baouendi, P. Ebenfelt and L. P. Rothschild
[BER 1] for details and the references therein.

Corollary 3.4.5 in general is false for weakly pseudoconvex domains. A coun-
terexample was discovered by J. J. Kohn and L. Nirenberg [KoNi 3]. The concept
of plurisubharmonicity (Definition 3.4.2) was first introduced in two variables by K.
Oka [Oka 1], and by K. Oka [Oka 2] and P. Lelong [Lel 1] in arbitrary dimension. It
was K. Oka [Oka 1] who first proved the plurisubharmonicity of —log(dp(z)) for a
pseudoconvex domain (Theorem 3.4.10) in C2. Later, similar results were obtained
independently by K. Oka [Oka 2], P. Lelong [Lel 2] and H. Bremermann [Bre 2]
in C™. The existence of a Holder bounded strictly plurisubharmonic exhaustion
function on a C? bounded pseudoconvex domain was first proved by K. Diederich
and J. E. Fornaess [DiFo 2]. The proof we present here for Theorem 3.4.12, based
on an idea of J. J. Kohn [Koh 6], is due to R. M. Range [Ran 4].

The characterization of domains of holomorphy in Theorem 3.5.3 is due to H.
Cartan and P. Thullen [CaTh 1]. For more discussion on pseudoconvexity and
domains of holomorphy, we refer the reader to the books by L. Hérmander [Hor 9]
and R. M. Range [Ran 6].
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CHAPTER 4

L? THEORY FOR 0
ON PSEUDOCONVEX DOMAINS

Let D be a domain in C”. We study the existence of solutions of the Cauchy-
Riemann equations

(4.0.1) ou=f in D,

where f is a (p, g)-form and u is a (p,¢—1)-formon D, 0 <p <n, 1 < ¢ < n. Since
0% = 0, it is necessary that

(4.0.2) of =0 in D

in order for equation (4.0.1) to be solvable.

In this chapter, we prove Hormander’s L? existence theorems for the 0 oper-
ator on pseudoconvex domains in C". To study Equation (4.0.1), Hilbert space
techniques are used in the context of the d-Neumann problem. First, we set up
the O-Neumann problem with weights and derive the basic a priori estimates of
Morrey-Kohn-Hormander. We then choose suitable weight functions in order to
obtain existence theorems with L? estimates.

The L? existence theorems for d also give existence theorems for the 9-Neumann
operator. We will conclude the chapter with a discussion of existence theorems in
other function spaces. The solution of the Levi problem will be given at the end.

4.1 Unbounded Operators in Hilbert Spaces

We shall use Hilbert space techniques to study the @ operator. To do this we
need to formulate the O operator as a linear, closed, densely defined operator from
one Hilbert space to another. This will be done in the next section. We first discuss
some basic facts for unbounded operators in Hilbert spaces.

Let H; and Hs be two Hilbert spaces and let T : H; — Hs be a linear, closed,
densely defined operator. We recall that T is closed if and only if the graph of
T is closed. The domain of definition for T is denoted by Dom(7T"). If T is an
unbounded operator, Dom(T') is a proper subset of H; by the closed graph theorem.
The norms in Hy, Hs are denoted by || |1, || ||2, respectively. Then the adjoint of
T, T* : Hy — H; is also a linear, closed, densely defined operator and 7" = T.
(See [RiNa 1].)
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We use Ker(T') and R(T) to denote the kernel and the range of T respectively.

Since T is a closed operator, Ker(T) is closed. Let R(T) denote the closure of the
range of T'. By the definition of the adjoint operator, it is easy to see that

(4.1.1) Hy, =Ker(T) @ R(T*)
and
(4.1.2) Hy =Ker(T*) ® R(T).

In later applications, the operator T" will be a system of differential operators
associated with the Cauchy-Riemann equations and Hy, Ho will be spaces of forms
with L? coefficients. To solve Equation (4.0.1) in the Hilbert space sense is to
show that the range of T is closed. Using (4.1.2), the range of T is then equal to
Ker(T*)J‘.

In order to show that the range of T is closed, we use the following lemma for
unbounded operators in Hilbert spaces to reduce the proof to verifying an estimate.

Lemma 4.1.1. Let T : Hi — Hy be a linear, closed, densely defined operator.
The following conditions on T are equivalent:

(1) R(T) is closed.
(2) There is a constant C' such that

(4.1.3) N fllh <CI|Tfllz2 forall f € Dom(T)NR(T*).

(3) R(T™) is closed.
(4) There is a constant C' such that

(4.1.4) I fle<CITfIli  for all f € Dom(T*) N R(T).

The best constants in (4.1.8) and (4.1.4) are the same.
Proof. We assume that (1) holds. From (4.1.1),

T : Dom(T)NR(T*) — R(T)
is one-to-one, and its inverse
T71: R(T) — Dom(T) N R(T*)

is well-defined and is also a closed operator. Thus from the closed graph theorem,
T~ is continuous and this proves (2). It is obvious that (2) implies (1). Similarly,
(3) and (4) are equivalent.

To prove that (2) implies (4), notice that

(g T ol = [(T7g, I <C N T g LI TF |2,

for g € Dom(7T*) and f € Dom(T) N R(T*). Thus

[(g,h)2] < C || T*g ||1]|| k ||2, for g € Dom(T™*) and h € R(T),
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which implies (4). Similarly, (4) implies (2).

4.2 The J-Neumann Problem

Let D be a bounded domain in C™, n > 2, not necessarily with a smooth bound-

ary. Let C&f q)(D) denote the smooth (p, ¢)-forms on D, where 0 <p <n, 0 < g <
n. We use C(O;jq)(ﬁ) to denote the smooth (p,q)-forms on D, i.e., the restriction
of smooth (p, ¢)-forms in C" to D. Let (21, - ,2,) be the complex coordinates for

C™. Then any (p, q)-form f € OE’;’7q)(D) can be expressed as

(4.2.0) F=Y""frdz" ndz’,
I,J

where I = (i1, ,ip) and J = (j1, - ,Jj,) are multiindices and dz! = dz;, A -+ A
dz;,, dz? =dzj, N+ A dz;,. The notation 3" means the summation over strictly
increasing multiindices and the f; ;’s are defined for arbitrary I and J so that they
are antisymmetric. The operator

5 = 5(;07,1) : C(O;q)(D) — C(C;iq_,'_l)(D)

is defined by

= “~ 0f1.g

_ / s I _J

(4.2.1) af=>">" . dzi Ndz' A dz? .
I,J k=1

Let L?(D) denote the space of square integrable functions on D with respect to

the Lebesgue measure in C" such that the volume element is dV = i"dz; A dz; A

-+« Adzy NdZ,. This volume element differs from the usual Euclidean measure by a

factor of 2™ and it is more suitable for our purpose. We use L%p Q) (D) to denote the

space of (p, q)-forms whose coefficients are in L?(D). If f = Z/I’J fr.adzt A dz7,
g=>",; g1,7dz" Adz’ are two (p,q)-forms in L%p o (D), we define

(F9) = "frangra), 7= 0 =D Il
1,

1,0

171= [ g.pav =5 [ \grspav.
I,J

We use (, )p to denote the inner product in L%pﬂ)(D) and when there is no
danger of confusion, we drop the subscript D in the notation. If ¢ is a continuous
function in D, then L?(D, ¢) is the space of functions in D which are square inte-
grable with respect to the weight function e=®. The norm in L? (D, ) is defined

(p,q)
by
1712 = /D fRPetdv,  fel? (D).
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The inner product in L(p (D, ) is denoted by (, )s. Notice that the space

L%p oD, ¢) is equal to L(p (D) if ¢ is continuous on D. Let L?(D,loc) denote the

space of locally square integrable functions. A function f is in L?(D,loc) if and only
if f is in L2(K) for every compact subset K of D. L( q)(D, loc) is defined similarly.

When there is no danger of confusion, we also use L?(D) to denote L%pﬁq)(D).
The formal adjoint of O : Coram H(D) — C’(Oziq)(D), 1 < ¢ < n, under the usual
L? norm is denoted by ¢, where

V="04.q) : Cip(D) = Cfp -1y (D).

The operator 1 is defined by the requirement that

(4.2.2) (9f,9) = (£.99)

for all smooth g € C?;qfl)(b) with compact support in D. If f is expressed by
(4.2.0) and g = ZI|I|:p,\K|:q—lgvidZI A dz% | we have

(1. 09) = (107 7S (s 2225

I,K k=1

n
Ofrik
p+1 / < f . 91K

IK k=1

= (ﬂf’ g)'

Therefore, ¥ can be expressed explicitly by

(4.2.3) Py Zaf”Kd A dz"

K j=1

where I and K are multiindices with |I| = p and |K| = ¢ — 1. It is easy to check
that 9% = 92 = 0. Let 9, be the formal adjoint of 9 under the L?(D, ¢) norm, i.e.,

(4.2.4) (Vsf.9)0 = (f,09)s

for every compactly supported g € C (a— 1)(D). We have the following relation
between ¥ and Jy: for any f € CF (D),

(4.2.5) Do f = V(e ?f).

Thus 9, ¥ and 9, are systems of first order differential operators. B
We take the (weak) L? closure of the unbounded differential operator 9, still
denoted by 0. Let

0= 51741*1 : L%p,qfl)(D7 (b) - L%p,q) (D7 (b)

be the maximal closure of the Cauchy-Riemannn operator defined as follows: an
element u € L(p o 1)(D, @) is in the domain of 9 if Qu, defined in the distribution
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sense, belongs to L(p q)(D #). Then O defines a linear, closed, densely defined

operator. 0 is closed since differentiation is a continuous operation in distribution
theory. It is densely defined since Dom(0) contains all the compactly supported
smooth (p,q — 1)-forms. If D is bounded, any f € C7; 1)(D) is in Dom(9).

The Hilbert space adjoint of 9, denoted by 97, is a linear, closed, densely defined
operator and

845 L(p q) (D (b) - L?p7q_1)(D, ¢)

When ¢ = 0, we denote the adjoint by 0*. Let Dom(9*) and Dom(g(“;) denote the
domains for 9* and 5;;, respectively. An element f belongs to Dom(é*) if there
exists a g € L(pq 1)(D,¢>) such that for every ¢ € Dom(d) N L(pq 1 (D, ¢), we
have

(fv 5¢)¢ = (g7w)¢

We then define 5;;f = g. Note that if f € Dom(é(’;), then it follows from (4.2.4)
that 5; f =1¢f where ¥4 is defined in the distribution sense in D.
If D is bounded, we have C7 ;)

in CF (D) is in Dom(8¢) Any element in Dom(9*) (or Dom(éj;)) must satisfy

(D) € Dom(9). However, not every element

certain boundary conditions in the weak sense. If D has C! boundary bD, then any

f € Dom(9;)N Cly. q)(i) must satisfy the following:

Lemma 4.2.1. Let D be a bounded domain with C* boundary bD and p be a C*

defining function for D. For any f € Dom(é*) N C'(lp q)( ), where ¢ € CY(D), f

must satisfy the boundary condition
(4.2.6) o(¥,dp)f(z) =0, z €bD,

where o(9,dp) f(z) = H(pf)(z) denotes the symbol of ¥ in the dp direction evaluated
at z. More explicitly, if f is expressed as in (4.2.0), then [ must satisfy

(4.2.6") Z fr, kK =0 onbD forall, K,

where |I| =p and |K| =q¢—1.

Proof. We first assume that ¢ = 0. Note that (4.2.6) and (4.2.6") are independent
of the defining function p. We normalize p such that |dp| =1 on bD.

Let f bea (0,1)-form and f = >, fidz;. Using integration by parts and (4.2.3),
we have for any ¢ € C*°(D) C Dom(0),

wf,w):i(—af%,w)

=1
-y (5 5) - / gl s

— (1, 00) + /b DW’ dp)f, b)ds
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where dS is the surface measure of bD. Similarly, for a (p,q)-form f and ¢ €

Ci q—1)(D) € Dom(9), using integration by parts, we obtain

(42.7) 01.0) = (100)+ [ (o(0.dp)f.0)S:

If, in addition, % has compact support in D, we have

0" f,4) = (9f,4) = (f, ),

where the first equality follows from f € Dom(0*) N C’(lp o)

(D), we must have

(D). Since compactly

supported smooth (p, g — 1)-forms are dense in L%p’qfl)

/bD<U(19, dp)f,¥)dS =0, for any 1 € Caiqq)(ﬁ)-

This implies that o(9,dp)f(z) =0 for z € bD.

If f is expressed by (4.2.0), one can easily show that (4.2.6) implies that (4.2.6")
holds on bD for each I, K. The case for ¢ # 0 can be proved similarly and is left
to the reader. This proves the lemma.

Another way to express condition (4.2.6) or (4.2.6") is as follows. Let V be the
interior product defined as the dual of the wedge product. For any (p,q)-form f,
Op V f is defined as the (p, g — 1)-form satisfying

(gnap,f)=1(g,0pV [), ge€C 1) (C").

Using this notation, condition (4.2.6) or (4.2.6") can be expressed as
(4.2.6") dpVf=0 on bD.

It is also easy to see that f € C(lp,q) (D)N Dom(g':;) if and only if f satisfies one of

the three equivalent conditions (4.2.6), (4.2.6") or (4.2.6").

For a fixed 0 < p < n, 1< ¢ < n, we define the Laplacian of the 0 complex

d(p,q—1) 9(p,q)
—_— —

12, (D)

2
L(p,qfl) (D — (p,q)

D).

- e L(P,qul)(

QZP,Q) 8?p,q+1)

Definition 4.2.2. Let U, ) = 5(1,’11_1)5(*1)7(]) + 5Ekp,q+1)6(p7Q) be the operator from

L%p,q) (D) to Ii(2p7q)(D) such zihat Dom(l](pﬂ)) ={f¢€ L%p,g)(D) | f e Dom(é(nq)) N

Dom(a(*p’q)); Op,q).f € Dom(0, )) and 5E*p7q)f € Dom(0(p,q—1)) }-

"
(p,q+1

Proposition 4.2.3. U, ;) is a linear, closed, densely defined self-adjoint operator.

Proof. O, 4y is densely defined since Dom(0, 4)) contains all smooth forms with
compact support. To show that [, 4) is closed, one needs to prove that for every
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sequence f, € Dom(0(, 4)) such that f, — f in L%p’q)(D) and O, q) fn converges,

we have f € Dom(l](p’q)) and O, o) fn — Ogp,q) f- Since fr, € Dorn(D(p’q))7

(D(p,q)fru fn) = (55*fn7 fn) + (5*6fn7 fn)
= 0" full® + 10 £al1%,

thus ?*fn and Of, converge in L%p,q—l)(D) ande%p,q—s-l)(Q)’ respectively. Since 0
and 0* are closed operators, we have f € Dom(d) N Dom(9*) and

Ofn — 0f and O*f, — 0*f in L2

To show that 0f € Dom(9*) and 9* f € Dom(d), we note that since O, 4) fn =

00" fn + (i*? [n converges, both 00* f, and 0*0f, converge. This follows from the
fact that 00* f,, and 0*9f, are orthogonal to each other since

(00" fn,0%0fn) = (0°0* fn, 0fn) = 0.
It follows again from the fact that @ and 9* are closed operators that
00* fn, — 00*f and 9*0f, — 9 0f.
Therefore, we have proved that U, o) fn — Upq) f and U, 4) is a closed operator.
Let Dz‘p a) be the Hilbert space adjoint of [, 4. It is easy to see that [, 4) =

Efp’q) on Dom(U;,,q))NDom(LF, ). To show that Dom(Uy, q))=Dom(L, ), de-
ne

L1 =00"+0"0+I1=04q+1 on Dom(Oy,).
We shall prove that Ll_1 is self-adjoint. By a theorem of Von Neumann [RiNa 1],
(I+00%)"" and (I+0%9)!
are bounded self-adjoint operators. We define
Qi=I+00) '+ (I+0%09)" - I
Then @, is bounded and self-adjoint. We claim that @, = Ll_l. Since
(I+80°)"Y — [ = (I (I +85))(I +55*)"
— _00°(1 + 857",
we have that R(I 4+ 90*)~' C Dom(99*). Similarly, we have R(I + 0*0)~' C
Dom(0*0) and
Q1= (I+8"9)"! — 80" (I + 55") ",
Since 9% = 0, we have R(Q1) C Dom(9*d) and
5°9Q = 09I + 5°9)
Similarly, we have R(Q1) C Dom(09*) and
85°Qr = 89 (I + 85"
Thus, R(Q1) C Dom(L;) and
L1Q1 =00 (I +099*) ' +9"0(I+070)"' + Q1 =1.

Since L, is injective, we have that @1 = Lfl. This proves that L is self-adjoint
which implies U, ;) = L1 — [ is self-adjoint. The proposition is proved.

The following proposition shows that smooth forms in Dom (O, ,)) must satisfy
two sets of boundary conditions, namely, the J-Neumann boundary conditions.
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Proposition 4.2.4. Let D be a bounded domain with C* boundary and p be a C*
defining function. If f € C( q)( D), then

f € Dom(Op q))

if and only if
o(¥,dp)f =0 and o(9,dp)0f =0 onbD.

Iff= ZIJ frydz! ndz? € C2 (D) N Dom(0D,q)), we have

(p:q)

1
(4.2.8) Opaf=-7 > IAfrdzt A dE

where A =437 8%/02,0z, = > _,(0?/0xs + 0% /0y3) is the usual Laplacian on
functions.

Proof. If f € 02 ( ) N Dom(0(, q)), then f € Dom(d") and 8f € Dom(d ).
Thus from the same arguments as in Lemma 4.2.1, f must satisfy o(d,dp)f =
o(9,dp)0f = 0 on bD. Conversely, if o(d,dp)f = o(9,dp)0f = 0, then f €
Dom(g*) and 0f € Dom(g*) from integration by parts. Also, it is easy to see that
fand 0% f =9 f are in Dom(d). Thus f € Dom(O, q)).

If fe C’(p q)( ) N Dom(O, ), we have

Oip.g)f = (09 +99) .

A direct calculation, using (4.2.1) and (4.2.3), gives us that

fIJ I _J
DOf = Z Zazkadez A dz

(4.2.9) 52
pz ZZ fl’]Kdz Adzt A dzE
and
(4.2.10) dVf = (—1)P~1 ’Zz fI’]Kdzk/\dz A dzE
Z;c Zj
LK j k

Adding (4.2.9) and (4.2.10), we get that

Pfrg g1 g L 1557
Op.g) Z Zazkazkdz ndzl = =23 Afradst Nz

1,0
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Example. Let D be a smooth bounded domain in C™ with the origin 0 € bD. We
assume that for some neighborhood U of 0

DNU={Imz, =y, <0}NU.

Let f =3, frdZ, € 0(20’1)(5) and the support of f lies in UND. Then f is in
Dom(Co,1y) if and only if f satisfies

(a) fan=0 onbDNU,
ofi

(b) f:o onbDNU, i=1,---,n—1.
0z,

Proof. (a) follows from the condition that f € Dom(9*). To sce that (b) holds, we
note that df € Dom(9*), implying

— = D .

9z, 0% 0 onbDNU

From (a), we have 0f,/0z; =0 on bDNU for i =1,--- ,n — 1 since each 9/0%; is
tangential. This proves (b).

We note that the first boundary condition (a) is just the Dirichlet boundary value
problem. The second condition (b) is the complex normal derivative 9/9z, on each
fi instead of the usual normal derivative 9/9y,,. It is the second boundary condi-
tion which makes the system noncoercive, i.e., it is not an elliptic boundary value
problem (One can check easily that it does not satisfy the Lopatinski’s conditions,
see e.g., Treves [Tre 1]).

There are two objectives to the study of the d-Neumann problem: one is to show
that the range of [J, 4 is closed in L? and that there exists a bounded inverse of
the operator U, ) on any bounded pseudoconvex domain; the other is to study the
regularity of the solution of [, ;) up to the boundary. In the next sections we shall
prove L? existence theorems for 0 and Up,q)- We discuss the boundary regularity
for the solution of [, ) in Chapters 5 and 6.

4.3 L? Existence Theorems for 9 in Pseudoconvex Domains

In this section we prove the L? estimates and existence theorems for the d oper-
ator with precise bounds on any bounded pseudoconvex domains.
Let D be a domain with C? boundary bD. Let p be a C? defining function in
a neighborhood of D such that D = {z | p(z) < 0} and |dp| = 1 on bD. For each
¢ €N, we set
Df, ) = Dom(9*) N C(, (D)

and - o
'D(p’q) = Dom((‘)*) N C(D;)q) (D)
Let ¢ € C?(D) be a fixed function. Let

D¢

() = Dom(95) N Chra (D).
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It is easy to see from the arguments in the proof of Lemma 4.2.1 that f € D?p ) if

and only if o(¢,dp)f(z) = 0 for any z € bD, a condition independent of ¢. Thus
we have

] _
Di.g) = Pwa):

which is also independent of ¢. Similarly, we also have

4
Dom(8¢) n C(p7q)( ) D(

P,q)"

Let Q% be the form on D(p,q) defined by

QU(f, f) = IOf 113 + 195113
We shall first prove the following basic a priori identity:

Proposition 4.3.1 (Morrey-Kohn-H6rmander). Let D CC C" be a domain
with C? boundary bD and p be a C? defining function for D such that |dp| =1 on
bD. Let ¢ € C*(D). For any f =" 1j=p,|7|=q[1,7d2" Ndz’ € D}

(p,q)’

QU(f. ) =11 0F IIF + 1 96 £ II7

Z Z/ (9 — fIszI]Ke ¢dV

[T|=p,|K|=q—1 i.j

(4.3.1) 3f1 J

—¢dv

l|=p:|J|=q k

+ Z/ 8z,82JfI ik frje”%dS.

[I|=p,|K|=q—1 i,j

Proof. From (4.2.1), (4.2.3) and (4.2.5), we have

(4.3.2) ar=>"% af”d A dz! A dz?
I,J j
and
(4.3.3) Do f = (=D)P1 D 'S 601 cde’ A dz"
I.K j

0 —
where 5fu = e¢67( ®u). Thus, setting L; = 9/0%;, we get
J

19£12 + 106flIZ = D" el (Ti(fr.s), Le(fr.o))s

I,J,L 3¢

+ I (6 ks SR firK) g,

I,K 3,k

(4.3.4)
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where €)7 =0, unless j ¢ J,£ ¢ L and {j} U J = {¢} UL, in which case ¢}; is the
sign of permutation (ZL) Rearranging the terms in (4.3.4) gives

10F13 + 196515 = > "> ILifr.slI3
I,J j

(4.3.5) =Y Twfrirs Lifrex)s

LK jk

+ ZIZ (6j‘>f1,jKa 5 fre)o-

LK jk

We now apply integration by parts to the last term in (4.3.4). Note that for each
u, v € C%(D),

(u, 6%v) —(Lju, v) = uve~%dS
A 8zj
and 5
¢ Tlu=6Tru — Lid%u = .
[6J, kU 67 Liu k07U u@zjafk
Thus, we find that
(6?1&, 5;511)(25
— 0
— (—T.5° P (5%u)pe—®
(—=Lk0%u, 11)¢+/ 8zk(6 u)ve”?dS
bD
- - dp _
_ ¢ @ ¢ ¢
(4.3.6) = (=07 Lyu, v)y + ([5]-,Lk]u, V) —&—/bD 6—&((% w)ve” ?dS

iu Vg
8zj82k ’

ap @ _ / 5‘
+ 5%u)ve=?dS — Lru)ve?dS.
/bD azk( o bD 823( ku)?

When u, v arein C 1(D), (4.3.6) also holds by approximation since C2(D) is a dense
subset in C1(D). Using (4.3.6) for each fixed I, K, it follows that

> (62 frjxs 6 frax)s

Jik

= (Lxu, Ljv)y + (

82
= (Lwfrir: Lifirx)e + Z £ ;_ frix, free)s
j

7,k

+Z / (62 fr.j) frrxce?dS

_Z / sz ( - ngK) f[,kKeiqde.

If f € D'(, 4, Lemma 4.2.1 and (4.2.6") show that

(4.3.7)

(4.3.8) Z 8p f[ kxk = 0 onbD
k
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for each I, K. Since Y., frix % is tangential to bD, we conclude from (4.3.8)
that

. 0 dp
Zk:fl,kKTZk zj:a frixk | = 0 onbD for each I, K.

This implies

(4.3.9) ZZ f[,u{ O aJ(;IZZK ZZfI,JKfI kK
%

J

on bD. Combining (4.3.5)-(4.3.9), we have proved (4.3.1) and the proposition.

In order to pass from a priori estimates (4.3.1) to the real estimates, the following
density lemma is crucial:

Lemma 4.3.2 (A density lemma). Let D be a bounded domain with C*+1 bound-

ary bD, £ > 1 and ¢ € C*(D). Then Dfp’q) is dense in Dom(d) N Dom(é;ﬁ) in the

graph norm

F=1flls + 1101l + 11055 11 6-

Proof. The proof is essentially a variation of Friedrichs’ lemma (see Appendix D).
We divide the proof of the lemma into three steps.
(i). o, q)(i) is dense in Dom(d) N Dom(a’;) in the graph norm.

By this we mean that if f € Dom(d) N Dom(é*), one can construct a sequence
fn€Cq ( ) such that f,, — f, Ofn — Of and 9y f, — V4 f in L2(D, ¢). We first
show that thls can be done on a compact subset in D from the usual regularization
by convolution.

Let x € C§°(C™) be a function such that x > 0, [ xdV =1, x(z) depends only on

|z| and vanishes when |z| > 1. We define x.(2) = ¢~ 2"x(z/¢) for € > 0. Extending
f to be 0 outside D, we define for € > 0 and z € C*,

fs(z) :f*Xe( )
/f Yxe(z — 2)dV (2 /fZ—EZ (2z")dv (2,

where the convolution is performed on each component of f. In the first integral
defining f., we can differentiate under the integral sign to show that f. is C°(C").
From Young’s inequality for convolution, we have

I fell < Fl-
Since f. — f uniformly when f € C§°(C"), a dense subset of L?(C"), we have that
fe— f in L*(C™) for every f € L*(C").

Obviously, this implies that f. — f in L%(D, ).
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Let 6, be a sequence of small numbers with §, \, 0. For each d,, we define
Ds, = {z € D| p(z) < =6,}. Then Dy, is a sequence of relatively compact open
subsets of D with union equal to D. Using similar arguments as before, for any
first order differential operator D; with constant coefficients, if D; f € L?(D, ¢), we
have

Dife = Di(f * xe) = Dif *xe — Dif in L*(Ds,,9)
as e — 0. Since ¥, = ¥+ Ag where Ag is an operator of degree 0, we have df. — 0f
and 9y f. — Uy f in L?(Ds,,¢) on Ds,, where f. € C(O;q)(ﬁgu).
To see that this can be done up to the boundary, we first assume that the

domain D is star-shaped and 0 € D is a center. We approximate f first by dilation
componentwise. Let D¢ = {(1+¢)z | z € D} and

r=1(1=).

where the dilation is performed for each component of f. Then D CC D¢ and
f€ € L3(D9). Also 0f¢ — 8f € L*(D) and U, f¢ — Vs f € L*(D). By regularizing
f¢ componentwise as before, we can find a family of f) € C(";’, a) (D) defined by

z
(4.3.10) feo) =f(1+6) * X5,
where d. \, 0 as € N\, 0 and J. is chosen sufficiently small. We have f) — f in
LQ(D, (b), 5f(6) - 5f and ’L9¢f(€) — 19¢f in LQ(D, ¢) Thus, C&iq) (5) is dense in the
graph norm when D is star-shaped. The general case follows by using a partition of
unity since we assume our domain has at least C? boundary. (In fact, C'! boundary
will suffice in this step).

(ii). Compactly supported smooth forms (i.e., forms with coefficients in C§°(D))
are dense in Dom(0}) in the graph norm

f = 1flle + 195 £lle-

We first assume that ¢ = 0. Since 0 is the maximal closure (i.e., the domain of 0
contains all elements in C(O;’ q)(D)) of the Cauchy-Riemann operator, its L? adjoint,

d*, is minimal. This means that if f € Dom(8*) and we extend f to f on the whole

space C™ by setting f:co be zero in D¢, then ¥f € L?(C") in the distribution sense.
In fact, for f € Dom(9*), we have

9f =0f
where 1/97 =¢f in D and 1/9? = 0 in D¢. This can be checked from the definition of

0*, since for any v € C’E’;’,qfl)(@"),

(fa 51})@" = (fa 51})D = (5*fa U)D = (ﬂfa U)D = (1?,771))([:7“
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Again, we can assume that D is star-shaped and 0 is a center. The general case can
be proved using a partition of unity. We first approximate f by

e 7 z
f _f(1—6>'

Then f~¢ has compact support in D and 9f ¢ — df in L2 (C™). Regularizing fe
by convolution as before, we define

(4.3.11) f(,e) = f <1 c ) * X6, -
—€
Then the f(_.) are (p,q)-forms with coefficients in C§°(D) such that f_.y — f in
L?(D) and Vf—e — Vf in L?(D). This proves (ii) when ¢ = 0. Again, in this step
we only require that the boundary be C!. The case for 5;; can be proved similarly.
However, compactly supported smooth forms are not dense in Dom (0) in the
graph norm f — || f|l¢ + ||0f]l¢. Nevertheless, we have:

(iii). Dfp’q) is dense in Dom(9) in the graph norm
f=1Iflle + 10 £1ls-

To prove (iii), we must use Friedrichs’ lemma in a more subtle way. From (i), it

suffices to show that for any f € C’@f o) (D) that one can find a sequence f,, € Dfp 0

such that f, — f in L?(D, ¢) and df, — Of in L*(D,¢). We may assume ¢ = 0
and the general case is similar.

We regularize near a boundary point zg € bD. Let U be a small neighborhood of
zo. By a partition of unity, we may assume that D NU is star-shaped and f is sup-
ported in UND. Let p be a C**! defining function such that |dp| = 1 on bD. Shrink-
ing U if necessary, we can choose a special boundary chart (¢1,ta, - ,t2n—1,p)
where (t1,t2, -+ ,tan—1), when restricted to bD, forms a coordinate system on bD.
Let w',--- ,@" be an orthonormal basis for (0,1)-forms on U such that dp = w".

Written in this basis,
f: Z/ fLJwI/\lZ)J,
[I=p,|J|=q
where I = (i1, ,i,) and J = (j1,---,j,) are increasing multiindices, and w! =

wh A Aw' ! = wI AL Awla. Each fr s is a function in C*(D). We note that

both 9 and ¥ are first order differential operators with variable coefficients which

are in C*(D) when computed in the special frame w?,--- , w™. We write

f=f+r,
where
= > frw A,
[I|=p,|J|=q, n¢J
= ' aa

[I|=p,|J|=q, n€J
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f7 is the complex tangential part of f, and f* is the complex normal part of f.
From Lemma 4.2.1 and (4.2.6"), it follows that

fe Dfp,q) ifand only if f“=0 on bD.

We also observe that from integration by parts, for f € C(O;jq)(D), 9€Cy q+1)(5),

(43.12) (3f.9) = (f.09) + / (0(8.dp) f. g)dS,

bD

where dS' is the surface measure of bD and
o(d,dp)f =0(pf) =0pNf=0pAfT  on bD.

Thus, when we do integration by parts for df, only the tangential part f7 will
appear in the boundary term. This is called the Cauchy data of f with respect to
the operator 9. The Cauchy data of f with respect to O contains the tangential
part of f, and it does not contain the complex normal part f” (From (4.2.7), it is
easy to see that the Cauchy data of f for ¥ is the complex normal part f).

We regularize only the complex normal part of f and leave the complex tangential
part f7 unchanged. Let f” be the extension of f¥ to C” by setting f” equal to zero
outside D. We approximate f” by the dilation and regularization by convolution

as in (4.3.11),
v v z
f(*e):f (16)*)(55'

Thus, f(l’fe) is smooth and supported in a compact subset in D N U. By this, we

approximate f* by f("_e) € C5°(DNU) in the L? norm. Furthermore, by extending

Jf¥ to be zero outside D N U and denoting the extension by df¥, we have
8f =afv  in LA(C")
in the distribution sense. This follows from (4.3.12) since f* € C*(D) and for any

g € C(o;;q_t,_l) (Cn)a

(7. 0g)cr = (Bf”.g)p — /b @o 1) = (01 g)er.

Since O is a first order differential operator with variable coefficients, using the
arguments for (ii), but now applying Friedrichs’ lemma (see Appendix D), we have

(4.3.13) Off o — 0f" in L*(C").
We set
f—o ="+ 1y

It follows f(_.) € ’Dfp’q) since each coefficient and w’ is in C*(D N U). Also we see
that
fco €D(,p and f_g — f in L*(D).
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To see that f(_) — 0f in the L?(D) norm, using (4.3.13), we find that
Of —o=0fT+0f{_ oy — 0f inL*D) ase—0.

Thus, Dfp o) 1s dense in Dom(0) in the graph norm f — ||f|ls+ [|0f||¢. This proves
(ii).

To finish the proof of the lemma, we assume that ¢ = 0. For any f € Dom(9) N
Dom(9*), we use a partition of unity and the same notation as before to regularize

f in each small star-shaped neighborhood near the boundary. We regularize the
complex tangential and normal part separately by setting

fo =Tl + 1l

where f7 is the regularization defined by (4.3.10) for each coefficient in the com-
plex tangent component and f(”_e) is the regularization defined by (4.3.11) for each
coefficient in the complex normal component. It follows that for sufficiently small
€ >0, f{_,) has coefficients in C§°(D) and f() has coefficients in €' (D). Thus we
see that ~ R

fio €Dy flo— f in L*D).

It follows from steps (i), (iii) and Friedrichs’s lemma that
Of — of  in L*(D).
Also, from steps (i) and (ii), it follows that
Of —9f in L*C"),

where f is the extension of f to be zero outside D. This shows that Dfp o 18 dense

in Dom(9)NDom(9*) in the graph norm f — || f||+[|0f]|+/0* f||. Thus, the lemma
is proved for ¢ = 0. For ¢ # 0 the proof is similar and the density lemma is proved.

Proposition 4.3.3. Let D be a bounded pseudoconvexr domain in C" with C?
boundary and ¢ € C%(D). We have for every f € Dom(d) N Dom(gj;),

82 . _ .
@319 S [ ST s etV < 08 13+ 1041 1.
LE  jk p

Proof. From the assumption that D is pseudoconvex and has C? boundary, we have

for any f € D(lp,q),

82[) 7 —¢
Z 9205 frixfrijxe ?dS >0,
= Jop 02i0%;

since f satisfies (4.2.6"). The proposition follows directly from Proposition 4.3.1
and Lemma 4.3.2.
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Theorem 4.3.4 (L? existence theorems for 9). Let D be a bounded pseudo-
convex domain in C". For every f € L? (D), where 0 < p <n, 1 <q<n with

- (p.9) =
df =0, one can find u € L?pﬂ_l)(D) such that Ou = [ and
(43.15) df1upaveer [17par,

D D

where § = sup |z — 2/| is the diameter of D.
z,2'€D

Proof. We first prove the theorem for D with C? boundary. Without loss of gen-
erality, we may assume that 0 € D. We shall choose ¢ = t|z|? for some positive
number ¢. From Proposition 4.3.3, we have for any g € Dom(9) N Dom(él),

_tl22 — —%
(4.3.16) tq/D | g2 e FFav < (| 9g I3 + || 949 II3 -

Since 0% = 0, we have

(4.3.17) R(9) C Ker(d) and R(d,) C Ker(d,).

It follows from (4.3.16) that for any g € Dom@;) N Ker(9),

2|2 —*
(4.3.18) tq /D g2 e tlav < | Tog |2
Using Lemma 4.1.1, we have that R(0) is closed in L%pyq)(D, ¢). To show that

(4.3.19) R(9) = Ker(9),

we claim that for any f € L%p)q) (D) with 0f = 0, there exists a constant C' > 0
such that

(4.3.20) | (f,9)s ] <C| 529 llg, forall ge Dom@;).
Using Lemma 4.1.1, 7'\’,(5:;) is also closed. From (4.1.1), we have
L}, (D, ¢) = Ker(d) ® Ker(9)* = Ker(d) & R(7,).

For any g; € Dom(gzj) N Ker(9), using (4.3.18),

1 -
| (Frg)s | <A FHlsll 91 lle < —= 1 £ lloll 9p91 lls -

Viq

If go € Dom@;) N Ker(9)+, we have

(fa 92)¢ = 07
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since f € Ker(9). For any g € Dom@;), we write g = g1 + g2 where g; € Ker(d)
and go € Ker(9)* = R@;) C Ker@;). Thus, g2 € Dom@;) and 5292 = 0. This
implies that g; € Dom@;) and 5:; g= 5; g1. Hence, we have for any g € Dom(gz;),

[ (£,9)e | =1(f91)0 |

1 .
<—|f 0491
Nz I f lloll 991 Il

1 —*
= g 1 ol 969 lo -

This proves the claim (4.3.20). Using the Hahn-Banach theorem and the Riesz
representation theorem applied to the antilinear functional 5:;9 — (f,9), there
exists u € L%p,qq)(Dv ¢) such that for every g € Dom(5;)7

(f.9)s = (u,959)0,
and

1
‘|U||¢§ﬁ||f”¢

This implies that Ou = f in the distribution sense and u satisfies

q/ ‘ u |2 av < qet52/|u |2 e—t|z|2dV
D D
L 452 2 —t|z]?
¢ | f17e dv

D

1

Zew/ | £ |2 dV.
D

IN

IN

2 . . .. _
5" achieves its minimum when ¢ = §~2, we have

q/|u\2dV§ec32/\f|2dV.
D D

This proves the theorem when the boundary bD is C2.
For a general pseudoconvex domain, from Definition 3.4.9, one can exhaust D
by a sequence of pseudoconvex domains with C'*° boundary D,. We write

Since the function %e

[e%S)
D= UD,,
v=1

where each D, is a bounded pseudoconvex domain with C*° boundary and D, C
D, 1 C D for each v. Let §, denote the diameter for D,,. On each D,,, there exists

au, € L%p’qfl)(D,,) such that du, = f in D, and

q/|uy|2dV§653/|f|2dV§652/|f|2dV.

D, D, D
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We can choose a subsequence of u,,, still denoted by u,,, such that u, — u weakly

in L%p _1)(D). Furthermore, u satisfies the estimate

q/ﬁuﬁdvghmmfw§/|fﬁdvgeﬁ/ﬁfﬁdm
D

D D,

and Ou = f in D in the distribution sense. Theorem 4.3.4 is proved.

Theorem 4.3.5. Let D be a pseudoconvex domain in C". For every f € L?pyq)(D,
loc), where 0 < p <mn, 1< q<mn with df =0, one can find u € L%p,qq)(D’ loc)
such that Ou = f.

Proof. Since D is pseudoconvex, from Definition 3.4.9, there exists a C'>° strictly
plurisubharmonic exhaustion function ¢ for D. For any f € L(p q)(D, loc), we can

choose a rapidly increasing convex function 7n(t), ¢t € R such that n(t) = 0 when
t<0and f € L%p_’q)(Dﬂ’](O')). Let D, = {z € D| 0(z) < v}, then

)
D= UD,,
v=1

where each D, is a bounded pseudoconvex domain with C*° boundary and D, C
D1 C D for each v. Since 7(c) is plurisubharmonic, the function ¢ = n(o) + |2|?
is strictly plurisubharmonic with

n
Z azk z)ajay > laf?

g k=1

for all (a1, - ,a,) € C™ and all z € D. Applying Proposition 4.3.3 to each D, we
have for any g € Dom(d) N Dom(8¢)

a9, < / >3 S T €Y
j7 ]

<1 dg ||¢(D,) + |l 8¢9 ||¢(Du) :

Repeating the same argument as in Theorem 4.3.4, there exists a u, € L(p — 1)(D
#) such that Ou, = f in D, and

q/\uu|26_d’dV§ /|f|26_¢dV§/|f\26_¢dV<oo.
D, D, D

Taking a weak limit u of u,, as v — 0o, we have shown that there exists u such that
Ou = fin D and
q/ lu|?e=?dV < / |f|?e=?dV.
D D

This proves the theorem.
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4.4 L? Existence Theorems for the -Neumann Operator

We shall use the L? existence theorems for d in Section 4.3 to establish the exis-
tence theorem for the 9-Neumann operator on any bounded pseudoconvex domain
D in C". Using Proposition 4.2.3, the operator U, ;) is closed and self-adjoint.
Thus, the kernel of O, ;), denoted by Ker(O(, ), is closed. From the Hilbert
space theory, we have the following weak Hodge decomposition

(4.4.1) L(p @ (D) = R(D(p)q)) b Ker(qu)),

where R(0(,,q)) denotes the range of O, o). We shall show that R(0, 4)) is closed
and Ker(O,,4)) = {0}. We claim that

(4.4.2) Ker(d(, ) = Ker(9) NKer(9*) = {0} for ¢ > 1.
For any a € Ker(O, 4)), we have a € Dom(d) N Dom(0*) and
(@, Opgya) = [l0a® + [|0"al* = 0

Thus, Ker(Oy, 4)) C Ker(9) NKer(0*). On the other hand, if a € Ker(9) NKer(9*),
then a € Dom(, 4)) and O, 5ya = 0. Thus, Ker(d, 4)) D Ker(9) N Ker(9*) and
the first equality in (4.4.2) is proved. To see that Ker(9) N Ker(a*) {0}, we note
that if a € Ker(9), from Theorem 4.3.4, there exists u € L(pq 1)( ) such that

a = du. If o is also in Ker(9*), we have
= (0*0u,u) = ||0u|?
and o = 0. This proves (4.4.2).

We shall show that R(0(,,q)) is closed and the following L? existence theorem
holds for the O-Neumann operator.
Theorem 4.4.1. Let D be a bounded pseudoconver domain in C™, n > 2. For each
0<p<n, 1< q<n, there erists a bounded operator N, 4y : L (D) — L% (D)
such that

(1) R(N(p,g)) € Dom(Up,q)),
Nep,g)Up.g) = D(p q)N(p q) = I on Dom(D(p q))

2
(p,q) (p,q)

ONp.q) = Np, q+1)8 on Dom(a) 1 < g<n-1.

O*Np.g) = Nipg—1)0* on Dom(0*), 2 < g < n.

Let & be the diameter of D. The following estimates hold for any f €
L?

eé?
H N(p,q)f ” < 7 H f Ha

_ 652
| ONp.o f |l < e A1

= €d?
10" Nipgf Il < e IfI-
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Proof. Using Theorem 4.3.4, for any f € L(p q)(D)7 g > 0 with 0f = 0, there exists
u € L%p 4—1)(D) such that Ou = f and u satisfies the estimate (4.3.15). Thus, R(9)

is closed in every degree and is equal to Ker(0). Tt follows from Lemma 4.1.1 that
R(9*) is closed also for every ¢, and we have the following orthogonal decomposition:

(4.4.3) LY, (D) = Ker(d) @ R(9*) = R(9) @ R(I").
For every f € Dom(d) N Dom(9*), we have

f=hHof

where fi € R(9) and f, € R(9*). Also, we have fi, fo € Dom(d) N Dom(d*),
Of =0f2, 0°f =0"f1.

Using Theorem 4.3.4 and (4.1.3) and (4.1.4) in Lemma 4.1.1, we have the follow-
ing estimates:

(4.4.4) L% < eqll0” fl?
and
(4.4.5) 12l < cqiallOfa1?,

where the constant ¢, = e6%/q. Combining (4.4.4), (4.4.5) we have

(4.4.6) £ = A2 + D201 < cq(NOFI7 + 1107 £11%)

for every f € Dom(d) N Dom(0*). Thus for any f € Dom(C, ), we have

IF1I* < cql(DF,0.) + (97 F,0" f)]

[
e (001, + (001,
= ( (r,q) fv )
< cgllOp,a FILIL
Hence,
(4.4.8) 111 < €| Op.g) f1I-

It follows from Lemma 4.1.1 (since O, 4y is a closed operator from Proposition
4.2.3) that the range of O, is closed. We have the strong Hodge decomposition

L%p’q) (D) = R(D(p’q)) = 55*(D0m(|](p7q))) (&) 5*5(Dom(|j(pﬁq))).

Also, from (4.4.8), O, 4) is one to one and the range of O, 4y is the whole space

L}, (D). There exists a unique inverse N, 4 : L, (D) — Dom(Up,q)) such that

Np,pO = ON(p,q) = I. Using (4.4.8), N(,q) is bounded. The assertions (1) and
(2) in Theorem 4.4.1 have been established.
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To show that ON(, ¢ = N(pg+1)0 on Dom(), we note that from (2), 9f =
99*ONp ) f for f € Dom(9). It follows that

Np.q+1)9F = Nip.g41)00" 0N ) f
= N(p7q+1)(88* + 8*3)8]\7(;,7(1)]"
=ONpgf-
If 2 < ¢ < n, one can prove N(p’q,l)é* = 5*N(p’q) on Dom(0*) similarly.
To prove (5), we see from (4.4.8) that

ed>
| Npoyf Il < e I £ for feLf,, (D)

(p,9)
Using (2), we have
(SN(WI)f7 5N(pyq)f) + (5*‘7\[(@,(1)]07 5*N(p,q)f)
= ((90" + 6*5)N(p,q)fv Np.a)f)
=(/;iNp.agf)
1IN, f

ed?
—IfI1%
q
This proves (5). The proof of Theorem 4.4.1 is complete.

Corollary 4.4.2. Let D and N, be the same as in Theorem 4.4.1, where 0 <
p<n, 1<qg<n. For any a € L%p_q)(D) such that O = 0, the (p,q — 1)-form

(4.4.9) u = 0"Np g

satisfies the equation Ou = o and the estimate

IN

IN

52
> < E=[laf?.
q

The solution w is called the canonical solution to the equation (4.0.1) and it is

the unique solution which is orthogonal to Ker(D).
Proof. We have from (2) of Theorem 4.4.1,

a=00"Ng, pa+ 0 ON, o a.
Using (3) in Theorem 4.4.1, we have

5N(p,q)o‘ = Np,g+1)0a =0,

since Do = 0. Thus we have a = 99* N(;, 4. The estimate of u follows from (5) in
Theorem 4.4.1. If v is another solution orthogonal to Ker(9), then u— v € Ker(d) N
Ker(0*) = 0. This proves the uniqueness of the canonical solution. Corollary 4.4.2

is proved.

The existence of the 9-Neumann operator for ¢ = 0, Np,0), is also important.

Let Op,0) = 0*0 on L?p’o)(D). We define

Hp,0)(D) = {f € L{, 0)(D)| 9f = 0}.
Hp,0)(D) is a closed subspace of L%p,o) since 0 is a closed operator. Let Hp0)
denote the projection from L? )(D) onto the set H ;o) (D). We have the following

p,0
theorem.
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Theorem 4.4.3. Let D be a bounded pseudoconvexr domain in C™, n > 2. There
exists an operator N, o) : L%p 0)(D) — L? (D) such that

(p,0)
(1) R(Np,0)) € Dom(Tp,0)),
N0y Bip,0) = B0y Np,o) = L = Hp,o)-
(2) For every f € L%p,o)(D), [ =0"0Np,0f ® Hpof
(3) (?N(p,O) = N(p)1)87 on Dom(@)L
O*Np) = N(p,O)Q* on Dom (0%).
Npoy = 0" N2, 1,0

(5) Let § be the diameter of D. For any f € L%p,o)

—
=~
N

(D),
H N(p,O)f || < 662 || f ||>
1 ONGo f Il <Ves | f1 -

Proof. Note that H,0)(D) = Hp,0) = Ker(O,)). We first show that O, o) is
bounded away from zero on (H(p,o))L. Since 0 has closed range in every degree,
0* also has closed range by Lemma 4.1.1. If f € Dom (0, 0)) N (H(,D’O))L7 we have
f L Ker(0) and f € R(0%).

Let o = Jf, then o € L%p,1)(D) since f € Dom(O, ). Using (4) in Theorem
4.4.1, we have that ¢ = 0*N(, 1)a is the unique solution satisfying 9¢ = o and

¢ L Ker(0). Thus, ¢ = f. Applying Corollary 4.4.2, we have

I£1? < cllal® = cllof1* = (@0 f, £) < clOpo I,

where ¢ = ed?. This implies that
I£1l < ed®|00) fIl - for £ € Dom(DO0)) N (Hip,0)) -

Using Lemma 4.1.1, we see that [, o) has closed range. From (4.1.1), the following
strong Hodge decomposition holds:

L, 0)(D) = R(Op.0)) ® Hpo) = 9*(Dom(Tyy.0))) © Hp,0)-

For any a € R(0(,,0)), there is a unique N, gyar L H,, 0y such that O, 0y Ny oy =
a. Extending N, o) to L%@O)(D) by requiring N(p,o)H(plo) = Ol Np,0) satisfies (1)
and (2) in Theorem 4.4.3. That N,y commutes with 9 and 9* is proved exactly

as before, and we omit the details. If f € Dom(0), it follows that

(4410) N(p,O)f = (I - H(p,()))N(p,O)f = N(p,()) (5*5)N(p,())f = 5*N(2p’1)éf.

Thus, (4) holds on Dom(9). In fact, we can show that (4.4.10) holds on all of

L%p 0y(D). From (5) in Theorem 4.4.1, we have

I N,y || < ed?|la.
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We obtain, for any f € Cfy (D),

||N(p,0)fH2 = (55*N(2p,1)5f7 N(2p,1)5f)
= (N(pxl)gf’ N(zpyl)gf)
< [Ny OFIING, 1 Of |
< e8%|| N, Of 1.

(4.4.11)

On the other hand, we have
(N(pvl)gf7 N(nl)gf) = (N(Qp,l)gfﬂ af)
(4.4.12) = (0N, 1y01, f)
< INwoy FIILFI-

Combining (4.4.11) and (4.4.12), we have proved that

ING,o Il < eI f].

Thus, N, 0) defined by (4.4.10) is bounded on all smooth (p, 0)-forms and it can be
extended to L%p 0)(D) as a bounded operator. This proves (4). It follows from (1)
that

[ONp.0) f1I? = (0"ON(p,0).f, Np,0).f)
((I = Hep,0) f, Nw,oy f)

< INNo) fIl < e8| F11%.
Theorem 4.4.3 is proved.

Corollary 4.4.4. Let D be a bounded pseudoconvexr domain in C™. For any f €

L%p o) (D), we have

(4.4.13) Ho)f = [ =" Np1ydf.

Proof. For any f € Dom(0), this follows from (2) in Theorem 4.4.3, since
H(p,o) = I - 5*5N(p70) = I - 5*N(p71)5.

From (3) in Theorem 4.4.3, 5*N(p71)5 = 5*5N(p,0) = I — H,p) is a bounded
operator on Dom(d), it can be extended to any f € L%p)o)(D) by continuity. This
proves the corollary.

Corollary 4.4.4 is especially important when p = 0, so we state it below as a
theorem. Let P denote the projection onto the closed subspace of holomorphic
square integrable functions

H(D) = {f € L*(D)| 9f = 0}.

P is called the Bergman projection and H(D) is called the Bergman space.
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Theorem 4.4.5 (Bergman projection). Let D be a bounded pseudoconvex do-
main in C*. For any f € L?(D), the Bergman projection Pf is given by

(4.4.14) Pf=f—8*Nodf.

4.5 Pseudoconvexity and the Levi Problem

In this section we show that pseudoconvex domains are domains of holomorphy.
We first examine the solvability of 0 in the C°°(D) category.

Theorem 4.5.1. Let D be a pseudoconver domain in C™. For every f € CE’; 9 (D),
where 0 < p<n, 1 <q<n withdf =0, one can find u € C>® (D) such that

= (P,a—1)
Ju = f.

Proof. Let f € C’&iq)(D). From Theorem 4.3.5, there exists a strictly plurisub-
harmonic function ¢ € C°°(D) such that f is in L%p oD, ¢) and there exists
v E L%pﬂ_l)(D, @) with v = f and

folle <1 fllo-

Repeating the same arguments as in Section 4.4, there exists a weighted O-

Neumann operator Ny such that for any f € L%pyq)(D, @), we have

f=00;Ngf + 040N, f.

Since df = 0, we have that f = 55;;N¢f. Setting u = 5;N¢f, we shall show that
u € C’E’;’q_l)(D). Since 5;‘;u = Yu + Apu = 0 for some zeroth order operator Ay, we
{ ou=f,
Ju = —Agu € L*(D,loc).

However, 0 @ 9 is an elliptic system. By this we mean that for any a € C&f q)(b)

such that « has compact support in D, the following inequality holds:
(4.5.1) Falls <€ da || + [ Yo || + [ o [)-

Inequality (4.5.1) is called Garding’s inequality. To prove (4.5.1), we use Proposition
4.2.4 and (4.2.8) to get

(4.5.2) A([l 9o | + | Yo |*) = 40, a) = (L, a) = || Va %,

where A is the real Laplacian and V is the gradient, both act on o componentwise.
When ¢ = 0, (4.5.2) also holds since [J = 90 is also equal to —3A. Thus (4.5.1)
holds for any compactly supported smooth form «. Let @ = (u where ¢ € C§°(D)
and define u = @ * x. where y and x. are the same as in Lemma 4.3.2. It follows
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that || ue || < || @ ||, Oue = 01 * x. and Yu, = D * x.. Substituting u. into (4.5.1),
we have

lue llr < C(1l Oue || + || Jue || + || ue 1)

(4.5.3) - . .
<cC(laul +I[lval + [l al)-

Thus, u. converges in W!(D) to @, and we have u € W'(D,loc). Continuing
this process to D*@ where D* is any kth order differential operator with constant
coefficients, we conclude by induction that u € W**1(D,loc) for any k € N. The
theorem follows from the Sobolev embedding theorem (see Theorem A.7 in the
Appendix).

The following theorem unifies domains of holomorphy, pseudoconvexity and ex-
istence theorems for the Cauchy-Riemann equations:

Theorem 4.5.2. Let D be a domain in C*, n > 1. Then the following conditions
are equivalent:

(1) D is pseudoconver.
(2) D is a domain of holomorphy.

3) For every f € O (D), where 0 <p<mn, 1<q<n withdf =0, one can
(p;9)

find we CF (D) such that Ou=f.
Proof. We have already proved in Theorem 3.5.5 that (2) implies (1). That (1)
implies (3) follows from Theorem 4.5.1.

To prove that (3) implies (2), we use an induction argument. This is obviously
true for n = 1, since any open set in C is a domain of holomorphy. We shall show
that if (3) implies (2) for n — 1, then it is true for n.

To prove this, for any zy € bD, we need to construct a holomorphic function in
D which cannot be extended holomorphically across any neighborhood containing
zgp. It suffices to prove this in a dense subset of bD.

Let zg be a boundary point such that there exists a complex (n — 1)-dimensional
hyperplane ¥ and zg € b(X N D). Such boundary points are dense in bD. To see
this, we note that for almost every boundary point 2y, one can find a ball B C D
such that zg € (BN D). At such a zg, we obviously can find a complex hyperplane
Y passing through the center of the ball and zg. It is easy to see that zy € b(XN D).
By a linear transformation, we may assume that zo = 0 and X9 = DN {z, =0} is
nonempty.

We shall show that on %, (3) is fulfilled. Let f be a smooth J-closed (p, q)-form
on X, where 0 <p<n—1, 1 <q¢<n-—1. Weclaim that f can be extended to be a
smooth d-closed form in D. We first extend f to f in D such that f € C> (D) and
f(2) = f(z1,--- ,2n) = f(#,0) in an open neighborhood of 3. This can be done
as follows: Let 7 : D — C"~! be the projection such that m(z) = (21, , 2,—1,0).
Then the set Dy = D\ 7~1(2g) is a closed subset of D. Since ¥ and Dy are closed
(with respect to D) disjoint subsets of D, using Urysohn’s lemma, we see that there
exists a function 7 € C*°(D) such that 7 = 1 in a neighborhood of ¥y and n = 0
in a neighborhood of Dy. Then we can choose our f = nr* f(2'), where 7* is the
pull-back of the form f. Let
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where u(z) is chosen such that
(4.5.4) ou(z) = —.

We note that the right-hand side of (4.5.4) is 0-closed and is in CE’;qH)(D), since

f is B-closed in a neighborhood of %y. Thus, from (3), there exists u € C€;7q)(D)

satisfying the Equation (4.5.4). This implies that F is O-closed on D and F = f on
Y. Thus, any O-closed form f on Yy can be extended to a 0 closed form F on D.
This is also true for ¢ = 0.

From (3), we can find U(z) € C7; (D) such that OU = F in D. Restricting
U to X, we have shown that (3) is fulfilled on 3.

By the induction hypothesis, ¥ is a domain of holomorphy. Hence, there exists
a holomorphic function f(z') = f(z1,+--,2,—1) such that f is singular at 0. Since
J0f = 0 in X, repeating the same argument above for ¢ = 0, there exists F' in D
such that OF = 0in D and F = f on ¥y. F(z) is holomorphic in D and is equal to
f(2,0) on Xy. Thus, it is a holomorphic function in D which cannot be extended
across 0. This shows that D is a domain of holomorphy. Thus, (3) implies (2) and
the theorem is proved.

Theorem 4.5.2 solves the Levi problem on pseudoconvex domains in C™.

NOTES

The 0-Neumann problem was suggested by P. R. Garabedian and D. C. Spencer
[GaSp 1] to study the Cauchy-Riemann equations. This approach generalizes the
Hodge-de Rham theorem from compact manifolds to complex manifolds with bound-
aries. The basic a priori estimates were first proved for (0, 1)-forms by C. B. Morrey
[Mor 1]. J. J. Kohn [Koh 1] has derived the general estimates and has proved the
boundary regularity for the O-Neumann operator on strongly pseudoconvex mani-
folds. This latter result is actually required in Kohn’s approach to the O-Neumann
problem which will be discussed in Chapter 5. The use of weighted L? estimates
which depend on a parameter, combined with the basic estimates of Morrey and
Kohn, to study the overdetermined system was introduced by L. Hérmander [Hor
3] in order to bypass the boundary regularity problem. Related arguments are used
in A. Andreotti and E. Vesentini [AnVe 1].

Lemma, 4.1.1 and much of the material on L? existence theorems presented in
Section 4.3 are taken from the paper of L. Hormander [Hor 3]. Theorem 4.3.4 is a
special case of Theorem 2.2.3 in [Hor 3] where the precise bounds are given. The
density lemma 4.3.2 was also proved in [Hor 3] in a much more general setting. Using
three different weight functions which are singular near the boundary, L. Héormander
[Hor 9] gives another approach to L? existence theorems. The canonical solution
formula given by (4.4.9) and the Bergman projection formula (4.4.14) are due to
J. J. Kohn [Koh 1]. The proof of Theorem 4.5.2 is due to K. Oka [Oka 2] and H.
Bremermann [Bre 1], and F. Norguet [Nor 1] and our presentation follows that of
Section 4.2 in [Hor 9].
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CHAPTER 5

THE 0-NEUMANN PROBLEM
ON STRONGLY PSEUDOCONVEX MANIFOLDS

In this chapter we study boundary regularity for the d-Neumann problem on
a strongly pseudoconvex domain 2. Let p be a C? defining function for 2. The
0-Neumann problem for (p, q)-forms, 0 < p < n, 1 < ¢ < n, in Q is the boundary
value problem:

Ou=f in Q,
(5.0.1) OpVu=0 on b,
OpVOou=0 on b,

where u, f are (p, q)-forms, 0 = 99 + 99, V denotes the interior product of forms.
On any bounded pseudoconvex domain 2 in C", we have derived the following
estimates: for any f € Dom(9) N Dom(9*),

(5.0.2) £ 1 < — U Of g + 10" f 118,

ed?

q
where ¢ is the diameter of € (see (4.4.6)). It follows from Theorem 4.4.1 that the
0-Neumann operator Np,q) exists in €, which solves (5.0.1) in the Hilbert space
sense.

The O operator is elliptic in the interior, but the boundary conditions are not
coercive except when ¢ = n. It only satisfies Garding’s inequality in the interior, but
not near the boundary. However, under the assumption of strong pseudoconvexity,
we will show that it satisfies subelliptic 1/2-estimates near the boundary.

In Section 5.1, we prove that the following subelliptic 1/2-estimate holds on a
strongly pseudoconvex domain € in C": for any f € Dom(d) N Dom(9*),

(5.0.3) 171y < CULOF IR+ 15 13),

where || ||1(q) is the Sobolev norm in the Sobolev space W(lp/ i)(Q).

The regularity of the -Neumann operator in other Sobolev spaces when the
boundary b is C'*° is discussed in Section 5.2. In Section 5.3, we discus the
existence and regularity of the 9-Neumann operator in an open subset of a complex
manifold with a Hermitian metric. In particular, a solution to the Levi problem
on strongly pseudoconvex manifolds is obtained using the 0-Neumann operator.
Finally, the Newlander-Nirenberg theorem is proved by using the solution for 0 on
an almost complex manifold in the last section.
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5.1 Subelliptic Estimates for the 9-Neumann Operator

In this section we shall derive the subelliptic 1/2-estimate for the d-Neumann
operator when  is strongly pseudoconvex with C? boundary. We shall use N
instead of N, 4) to simplify the notation. We also use L?(Q2), W*(Q2) and W*(£2, loc)
to denote the spaces L?]D’q)(Q)7 W, () and WE, 1 (€,1oc) respectively, where

W#(£2) is the Sobolev space, s € R. (See Appendix A for its definition and basic
properties.) The norm in W* is denoted by || ||5(q)-
We first observe that the first order system

0®9: 05 = CFamy(@) @ CFe-n) (@)
is elliptic in the interior. This means that we have Garding’s inequality in the

interior.

Proposition 5.1.1. Let Q be a bounded domain in C"* and n € CO (Q). For any
(p, q)-form f € L(p q)( ) such that Of € L(p qul)( ) and Of € L(pq 1)(9), where
0<p<nand0 < g <n, we have the following estimates:

(5.1.1) Inf i) < CULOS NG + 19 1% + I £ 115,

where C' is a constant depending only on n but not on f.

Proof. Using the basic estimates proved in Proposition 4.3.1, when ¢ = 0, we have
for any n € C§°(Q2 )andfeC(pq( ),0<p<nand1<gq<n,

512) > ZII "f” 13 = (1 d@nf) 13 + || 9nf) |13)
.. 1,J

< C(Imdf 1& + 19 f 1& + 1| £ 1I)-
(5.1.2) also holds trivially for ¢ = 0 (in this case, 9f = 0). But

onfr.r) onfr.r)

1. = || L2l
(5.13) | SR = | =

from integration by parts. We have for any smooth f,

I nf 20 < C Z > ”f” ||Q+Z > ”f” I

< (]l nf)f 8 + 110 f 1+ 1 f IIQ)-

We note that one can also use (4.5.2) to prove the above a priori estimates. Estimate
(5.1.1) follows from regularization similar to (4.5.3) and we omit the details.

If f € Dom(d)NDom(9*), then f € W(Q,loc). The difficulty for the 3-Neumann
problem is only on the boundary. The following subelliptic 1/2-estimates for a
strongly pseudoconvex domain are of fundamental importance:
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Theorem 5.1.2. Let ) be a bounded strongly pseudoconvex domain in C* with C?
boundary. The following estimate holds: for any 0 < p <n and1 < q <n—1,
there exists C' > 0 such that for any f € Dom(9) N Dom(9*),

(5.1.4) 113 @ < CULOf NG + 11 07 112),

where C' is independent of f.

Theorem 5.1.3. Let ) be a bounded strongly pseudoconver domain in C™ with C?
boundary. For any 0 < p < n and 1 < q < n — 1, the -Neumann operator N
satisfies the estimates:

(5.1.5) INF oy CIT sy f € LY@,

where C' is independent of f. N can be extended as a bounded operator from
W(;,lq/)Q(Q) into W(lp/j)(Q). In particular, N is a compact operator on L%p’q)(Q).

We divide the proof of Theorem 5. 1 2 into several lemmas. From Lemma 4.3.2,

we have that C(l q)( ) N Dom(0*) = (p g 18 dense in Dom(d) N Dom(9*) in the

graph norm. We only need to prove (5.1.4) for C! smooth forms f. The starting
point is the following basic a priori estimate of Morrey-Kohn:

Lemma 5.1.4. Let Q be a bounded strongly pseudoconvex domain in C™ with C?
boundary bS). There exists a constant C > 0, such that for any f € C'(p q)( n

Dom(0*) =

(p,q)
(5.1.6) / 1rPds <1 0f I + 1101 1)

where dS is the surface element on bQ) and C' is independent of f.

Proof. Let f = Zillzp,lleq fr.dzt Adz7, where I = (i1, ,ip) and J = (ji,-- -,
Jjq) are increasing multiindices. Let p be a C? defining function for Q normalized

such that |dp| =1 on bQ). Following Proposition 4.3.1 with ¢ = 0, we have for each
fe C’(p q)( ) N Dom(9*),

oS 116 + 1l 0f 118

(5.1.7) 72 Z I afIJ 13 +>" Z/ 6218, ———frix f1,jKdS,

I,K ,5=1

where K is an increasing multiindex and |K| = ¢ — 1.
Since bS2 is strongly pseudoconvex with C? boundary, there exists Cy > 0 such
that for any z € b,

n

" 9% 9 . ap
1. E —a,a; > , f E ; —
(5.1.8) 2 Eja a; > Colal i i 1a ~

7
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Since f € Dom(9*) N C} (), we have from Lemma 4.2.1,

(p,q)

Zf]_ﬂ(@zo on HS for each I, K.
= ’ 82’]‘

Substituting (5.1.8) into (5.1.7), we have

_ of
1OF IR+ 10518 =D D1 52"+ a Co /Q |£12ds.
1,J k

This proves the lemma.

Lemma 5.1.5. Let Q be a bounded domain in C" with C? boundary bQ) and let p
be a Czjeﬁning function for Q). There exists a constant C' > 0 such that for any
fecxQ)

2 2 2 r
519 [ 1] dvsc( [ iseas+ [ 1n dv> w1 [ plangav,

where dS is the surface element on bS) and C' > 0 is independent of f.

Proof. By Green’s theorem, for any u,v € C?(Q),

(5.1.10) / (v — vA)AY = ( v 6“) ds,
Q b2

“on " on

where 0/0n is the directional derivative along the outward normal. Let u = —p
and v = | f|?/2, then Av = Re(fAf) + |V f|>. We have from (5.1.10)

2 - Fis [ UfPop
(5.1.11) /Q—p\Vf\ v + Re/ﬂ—p(Af)deJr/QTApdvf/bQT%dS.

Since p is in C?(Q), there exists C' > 0 such that |[Ap| < C in Q and |9p/On| < C
on b). This implies that

a12)  [1lvspav <o ([ \spas+ [ (rpav) +re [ pangav

where C' is independent of f. This proves the Lemma.

Lemma 5.1.6. Let Q be a bounded domain in C" with C? boundary bS). There
exists a constant C' > 0 such that for any f € C(lp q)(Q),

(5.1.13) 1/ 3 <C ( / 7P| OF I+ 1191 13 + 1 1 ||é> ,

where C' is independent of f.
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Proof. When f € C(Qp q)(ﬁ), one sees from Proposition 4.2.4 that Of = —1Af,

where 00 = 99 + 90 and A is defined componentwise. Applying Lemma 5.1.5 to
each component of f, we get

L1y [ iR <c ( [ ispas | f|2dv) 460, Flal.

Since f € C’(lp,q) (Q), we have

(5.1.15) 15 By <€ ([ 109 s2av+ [ (spav).

(5.1.15) follows from Theorem C.2 in the Appendix applied to each component of

I
Now integration by parts gives that

| (pOF, Ha | < 10If), Ha |+ ([0,p10f, o |
+ 1 (W(pdf), Pa |+ | ([9,00f, fla |
(5.1.16) <[ (pf,9f)a | + | (p0f.0f)a |
+sup| Vol(I1 0f o+ 1197 lla) 11 / llo

<CUAf NG+ IOf 1+ 1 f 112)-

Combining (5.1.14)-(5.1.16), we see that (5.1.13) holds for any f € C?p,q)(Q) An
approximation argument shows that (5.1.13) holds for any f € C{, ) () since C?(€2)
is dense in C1(Q).

Proof of Theorem 5.1.2. From the assumption of strong pseudoconvexity and Lem-

ma 5.1.4, we have for any f € C(lpyq) () N Dom(9*),

(5.1.17) /ﬂ S < C(1Of 13+ 11 0F I2).

Using (4.4.6), we also get

ed? | -
(5.1.18) £ 1% < - s 18 + 190 11%)-
Thus, Lemmas 5.1.4 and 5.1.6 show that (5.1.4) holds for all forms f € C’(lp o QN
Dom(9*) = D(lp)q). Since D(lp’q) is dense in Dom(d) N Dom(9*) in the graph norm

| Of lla + || 9°f |l from Lemma 4.3.2, Theorem 5.1.2 is proved.

Proof of Theorem 5.1.3. By the definition of the space W~/2(Q) (see Appendix
A), we have

(5.1.19) [(h.g)el < B llyoll g ll-1 )
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for any h € W'/2(Q) and g € W~1/2(Q). There exists a constant C' > 0 such that

for any f € L%pﬁq)(Q) NDom(0),0<p<mnand1<g<n-1,

I f ||2%(Q) <C(af I+ 110 1IB)
(5.1.20) =C03f, NHa
<O -yl f Iy @)

where C' is independent of f. Substituting N f into (5.1.20), we have
[ Nflli <CIONfl_1@ =Cll fll-1@ -

Thus, N can be extended as a bounded operator from W~/2(Q) to W'/2(Q). Using
the Rellich lemma (see Theorem A.8 in the Appendix), N is a compact operator on

W=2(Q) and L%p’q)(Q). This proves Theorem 5.1.3.

Corollary 5.1.7. Let Q and f be as in Theorem 5.1.2. Then 0*N and ON are
compact operators on L? )(Q) Moreover, the following estimates hold: there exists

(pq
a C > 0 such that for any f € L%pﬁq)(ﬂ),
(5.1.21) [O*Nfllyey <Cl flle, 1<a<m,
(5.1.22) [ONflli <Cll fllo, 0<g<n-—1,

where C' is independent of f.

Proof. Estimate (5.1.22) follows easily from (5.1.4). Since ONf is in Dom(9) N
Dom(0*) when 0 < g < n — 1, substituting ON f into (5.1.4), we have

FONF I3 () < CUIOON NG+ 1 0ONFIIE) <C I f G-

When ¢ > 1, (5.1.21) can be proved similarly since in this case, we also have 9* N f
is in Dom(9) N Dom(9*). When ¢ = 1, *Nf is a (p,0)-form and (5.1.4) does not
hold for ¢ = 0. The proof of (5.1.21) for ¢ = 1 is much more involved, and will be
postponed. A more general result will be proved in the next section (see Theorem
5.2.6).

Remark. When ¢ = n, the 0-Neumann problem is the classical Dirichlet problem

Ou=f inQ,
u=20 on bS),

where u and f are (p,n)-forms. In this case, we have Garding’s inequality in place
of (5.1.4): i ]
I f e <C I3, f € Dom(9"),

where C is independent of f. Since for any f € L%pyn)(Q), Nf € Dom(9*) and we

obtain

INF 30 SCIONF I3 =C@OFNf,Nfa=C(f.Nf)a
<Cl flla@l Nf lho -
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N(p.n) can be extended as a bounded operator from W~(Q) into Wy (Q2) (see Ap-
pendix A for its definition) for any bounded domain with C? boundary.

5.2 Boundary Regularity for N and 0* N

In this section, we assume that  is strongly pseudoconvex and its boundary
b is C°; i.e., there exists a C*° defining function p. We normalize p such that
|dp| = 1 on bQ2. First we derive estimates for the 9-Neumann operator N in Sobolev
spaces for s > 0. As observed in Proposition 5.1.1, the system 0 @ 9 is elliptic in
the interior. The interior regularity follows from the usual elliptic theory (see e.g.
Lions-Magenes [LiMa 1], Bers-John-Schechter [BJS 1] or Treves [Tre 1]). Based on
Garding’s inequality (5.1.1), we have for every n € C§°(£2) and s > 0,

nNfe W(S;;)(QL for any f e Wp, ().
The main result in this section is to prove the following estimates on boundary
regularity for N.

Theorem 5.2.1. Let Q@ C C" be a bounded strongly pseudoconvexr domain with
C® boundary. The 0-Neumann operator N is a bounded operator from W, q)(Q)

to W(S;ql)(Q) where s > _%7 0<p<nandl < qg<n-1, and N satisfies the

estimate: there exists a constant Cy such that for any f € W(Sp q)(Q),

(5.2.1) INS 1) <Ol f 13g),

where Cy is independent of f.

In order to obtain the boundary regularity, we shall distinguish the tangential
derivatives from the normal derivatives. Restricting to a small neighborhood U
near a boundary point, we shall choose special boundary coordinates tq,--- ,t2,_1,p
such that t1,--- 2,1 restricted to b{) are coordinates for b§). Let Dy, = 0/0t;,
j=1--,2n—1, and D, = 9/9p. Thus Dy,’s are the tangential derivatives
on b2, and D, is the normal derivative. For a multiindex o = (o, , 22n—1),
where each «; is a nonnegative integer, Di* denotes the product of D;,’s with order
la] = a1 + -+ agp_1, ie.,

DF = Df - DE

For any u € C§°(U N ), we define the tangential Fourier transform for u in a

special boundary chart by

i) = [ ettt

where 7 = (71, ,72p—1) and (t,7) = t171 + -+ + ton_172n—1. For each fixed
—e < 0, we define I'. = {z € Q| p(z) = —¢} and set

lu(, =€) I3, = (1 +|7[*)*|a(r, —e)[Pdr.
R2n—1
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We define the tangential Sobolev norms ||| |||s by

0
Nl = [ [ Pyt p)Papr
0
= [ Wt e,y do

As usual, tangential norms for forms are defined as the sum of the norms of the
components. The operator Aj for any s € R is given by

Multp) = o> [ SN ) pydr

R2n—1

Using this notation and Plancherel’s theorem (see Theorem A.5 in the Appendix),
we have
ullls = I Afw |l -
The tangential norms have the following properties:

Properties for the tangential norms. Let Wy denote the completion of u €
C§°(U N Q) under the ||| |||s norm. Then the following hold:

(1) When s is a nonnegative integer, we have

(5.2.2 1) Nullls = Y | Dfwll,

0<lal<s

where = means that the two norms are equivalent.

(2) For any s € R, there exists a constant C such that
(5.2.2 i) D fllls < Clllf ks for |af =k,

where C' is independent of f.
(3) The Schwarz inequality holds; for any s >0, f € W and g € W, °, we have

(5.2.2 iii) I(fs @)l < ClIAs gl s

where C' = (2m)1=2".

(4) Given two spaces Wt and W2, where s1 and so are real numbers, s1 > $a, the
interpolation space (W, W;2]g = Wtsl(l_a)+s2a for any 0 <60 < 1.

Properties (1) and (2) are easily checked from Plancherel’s Theorem (see Theorem
A5 in the Appendix). (3) follows immediately from the definition. The proof of (4)
is the same as that for the usual Sobolev spaces (see Appendix B). The following
simple fact will also play a crucial rule in proving the boundary regularity.
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Commutator of two operators. For any smooth differential operators A and B
of order k1 and ko, k1 and ke are nonnegative integers, the commutator [A, B] =
AB — BA is an operator of order ky + ko — 1.

The proof follows directly from the definition. We shall denote Aju = Ayu and
define for any real s,

1Dulll2 = IDpulllZ + [[[Avull|2 = HDpullZ + [[ulllZ1-

The norm |||Dul||s is stronger than the norm |||u|||s+1 in general, since the normal
derivatives are not controlled in the tangential norms.

By fixing a partition of unity, we can also define ||| [||sq,) for some tubular
neighborhood Q5 = {z € Q| =§ < p(z) < 0}. Let U;, i = 1,2,--- , K, be boundary
coordinate patches such that each U; N Q) # 0, UfilUi covers {)s and there exists a
special boundary chart on each U; N €. We choose n; € C°(U;), i = 1,--- , K, such
that

K
2771‘2 =1 1in Qs.
i=1

For each fixed ¢, the norm || [|5,) is defined by a partition of unity.
We set

0
el = [ 1uCe) i, o

We choose a special boundary frame such that w!,--- ,w" is an orthonormal basis
for (1,0)-forms with w™ = 9p in a boundary patch U as before. Written in this
basis, a smooth (p, ¢)-form supported in U N can be expressed as

f= > frow Aw’,

[T|=p,|J|=q

where I = (i1, ,ip) and J = (j1,--- ,7j,) are increasing multiindices and w! =
wir A Aw'r ) w! = wIt Ao Awde. From Lemma 4.2.1 and (4.2.6”), it follows
that

J €D(pq ifand only if fr ;=0 on b2, whenever n € J,

where D, 4 = CF (2)NDom(0*). Thus, the tangential derivatives preserve D, )
in the following sense:

Lemma 5.2.2. Let f € D, . Assume that f is supported in U NQ and f is
expressed in the special boundary frame. LetT" be a first order tangential differential
operator with smooth coefficients acting componentwise. Then T'f € Dy, o).

In order to obtain estimates for the d-Neumann operator on the boundary, our
first observation is that when f satisfies an elliptic system, then there is no distinc-
tion between the tangential Sobolev norms and the Sobolev norms. We have the
following lemma:
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Lemma 5.2.3. Let Q be a bounded domain with C*° boundary and let U be a
special boundary patch. Let f € Dom(d) N Dom(0*) where the support of f lies in
UnNQ. The following conditions are equivalent:

(a) || ”%(Q) < 0.

() £l @) < oo

(c) [IDSI]] - 1 () < oo

(d) || fllzzpa) < oo.

Proof. 1t is obvious from the definition that (a) implies (b).

From the density lemma 4.3.2, we can assume f € C1(UNQ) and the other cases
follow by approximation. To show that (b) implies (c), we note that @4 is elliptic.
We can express D,f by the sum of the components of Of, Uf and the tangential
derivatives of f. Thus

DIy < CAUBANI_y + ANy + A1)
C(l Af Il + 197 1| + 11111ly)-

To see that (c) implies (d), we use

0
| F(r0) | / D, | (r.p) |2 dp = Re / 2D, f(r. ) F(rs p)dp

<A/ 2 dp + / | Dof(7,p) * dp,

for any A > 0. Choosing A = (1 + |7]?)"/? and integrating over R?"~!, we have
from Plancherel’s theorem,

1 2n—1 ~
1 = (55) [ 1m0 Far
T % T, 2 =
<C</Rgn1/ (L+ 7%= | f( P)Idpd>
2)-3 F(r 2 -
+C(/wnl/_m(l+lﬂ> | Dy f(7.p) | dpd)

<cC |||Df|||2_%(9)~

Finally, (d) implies (a) follows from Lemma 5.1.6 and Lemma 4.3.2, since we

have for any f € Dom(d) N Dom(9*),

I 713 <C (/ 1S+ 1| 0F 13+ 195 I3 + 1 £ ||a) .

We remark that (c) implies (d) can be viewed as a version of the trace theorem
for Sobolev spaces. In general, a function satisfying (a) does not necessarily satisfy
(d) (see Theorem A.9 in the Appendix).

To prove Theorem 5.2.1, we first prove a priori estimates; i.e., we assume that
N f is smooth up to the boundary.
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Lemma 5.2.4. Let Q be a bounded pseudoconver domain with C°° boundary and
let p be a C*° defining function. Choose § > 0, such that the tangential norms are
defined on the fived tubular neighborhood Qs = {z € Q | p(z) > —d}. Then there
exists a constant Cy, k = 1,2,--- such that for any f € Dom(d) N C(D;,q) (Q),

(5.2.3) I f k) < Celll OFf llk—12) + lf1llks))

where C, is independent of f.

Proof. We use induction on k for £k =1,2,---. Since

k
> DRl 11 s

m=0

(5.2.3) is proved if we can show

k
(5.2.4) STDE k= < Coelll OF =1 + IFII1)-

m=0

We first prove (5.2.4) under the assumption that f is supported in Q N U where U
is a special coordinate chart near the boundary.

When k£ = 1, we use the same argument as in Lemma 5.2.2 to express D, f by
the components of Of, ¥f and the tangential derivatives of f. We have

2n—1
I D,fIIP<C <|| Of IP+119f 1P+ D I De f ||2>

=1
<c (@t hH+ AR
<o of 17+ D).

This proves (5.2.4) for kK = 1. Assuming the lemma holds for k — 1, we shall show
that (5.2.4) holds for k. If m = 1, again we get

2n—1

1D fIlIE-1 < CCHOFNE-y + OAIIR -1+ D IDe S

i=1

< CCNOA R + SR + A11E)-

[y

(5.2.5)

Notice that

HOFNE-y + OfIIRy = | AFT1Of |17 + | AF1Of |7

<c| > ADrariP+ > I Drof?

0<|a|<k—1 0<a|<k—1

For any nonnegative integer k, let T denote any tangential differential operator of
the form D§, where |a| = k. Using Lemma 5.2.2, we find that T*f € D(p,q) and
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Tk f € Dy g11) since f € Dom(0). We see that

(Tk_laf, Tk_lgf)—i-(Tk_l’ﬁf, Tk_lﬁf)
= (OT*'f, T*of) + ([T%1, 9] f, T '0f)
+ @OTF N, TR ) + ([T57, 9] f, TR f)
= (T 'f, 9710 f) + ([T"', 9] f, TF'Of)
(5.2.6) +(TF2f, OT 19 f) + ([TF1, 9] f, T '9f)
= (T 'f, TF'90f) + ([T"', 9] f, TF'of)
+ (TN, TRO9f) + ([T 9] f, T o)
—|—(Tk_1f, [19, Tk—l} 5f)+ (Tle—lf7 [5, Tk—l] ﬂf)
= (T, 70N + R+ O £ k-1 (O lk—1 + 9 F1l1k-1)),
where
R=(T"'f, [0, T 0f) + (T f, [0, T* '] 0F).
The term (T*=1f, [9, T*"'] 8f) in R can be estimated by

(Tk—lﬂ [ Tk—l} 5f)
= (T f, 0 [90, T* ' )+ (T, [[9, T, 9] f)
(5.2.7) =T f, [0, T ) + (@ f, [[9, T, 0] f)
= (T*Yf, [0, T f)+([9, TF £, [9, TF71 f)
+(T*Lf, [[9, T, 9] f).

Similarly, one can estimate the term (T*~1f, [9, T"*~!] ¥f) in R. Thus |R| can be
estimated by

(5.2.8) CUL S =t NOF =1 + I f De—r O F =1 + I f 7).

If we apply (5.2.6), (5.2.7) to each term of the form 71! = D¢, where 0 < |a| < k—1,
we can conclude that

> (I DpofII? + || Dgof |I?)

0<|a|<k—1

<C(AT IO+ I le—1 UHOF k=1 + MO F k=) + 11 £ l7=)-
Using the inequality that ab < ea® + (1/¢€)b? for any € > 0, we see from (5.2.5) that
1B —s + 11—
SC( AT AT DS |

A f o=t (NOf M=t + 19F1lk=1) + I £ 17-1)
< CIF = 1OF (k-1 + eCOFNR-y + OFIE-1) + Ce I £ 1171 -
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Choosing € sufficiently small, the induction hypothesis yields

(5.2.9) 10f 11 + O < CUBF iy + NANIE-)-

Substituting (5.2.9) back into (5.2.5), we have proved (5.2.4) when m = 1. For
m > 2, we shall repeat the procedure and use induction on 1 < m < k.

Since [0 is a constant multiple of the Laplacian operator on each component, we
can express D% f by the sum of the components of terms of the form

Df? Dthjf7 DtiDtjfa i7j:17"'72n_17

and lower order terms. If m > 2, differentiation shows that one can express D} f
by the sum of terms of the form

D;n72|]f7 D:;nilDtjfa D:)nithi,Dtjfa Z7] = 17 7277’717

and lower order terms. Assuming that (5.2.4) holds for 1,--- ,m — 1, we use the
induction hypothesis to show that

2n—1
11D flllk—m < CCNDE 2O f llle—m + D D5 Dey flllk—m
=1
2n—1
+ 3 WDy 2D, D, flllke—m + I £ le-1)
(5.2.10) =1

< C(1Bf lle—2 + D" flllk-m+1

+ 1D 2 flllk—m+2 + || f k-1
< C(10f k=2 + 110 lle—1 + LAk + 1 f -1
< CUIOS lle—1 + I£1lk)-

Thus, (5.2.4) holds for all m < k. This finishes the proof of Lemma 5.2.4 when f has
compact support in a coordinate patch. The general case follows from a partition of
unity. We shall do this in detail for the case when k = 1. Letting n € C*°(Q N U),
we have that

Inf 1IF < CCIomf) I1* + 1 9(f) 17 + Ay )
<CCmof I+ 1Imof 12 +11F 12+ 1R o) )
< C(0rP0f, Ha+ el 00f) 17 + 11 9(f) 1I1°)

+Ce | 17+ AR )

If we choose € sufficiently small, then the term

e(l 0nf) 12 + 1 9f) I1?) < ellnf |12
can be absorbed by the left-hand side. It follows that
I nf (17 < CUnOf MEnf L+ 1F 12+ A @)
<O aBf 12+ 11 F 12+ 11 )
< C(1OF 1P + 1A111Eq,))-
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In the last inequality above, we have used || f || < C || Of || which was proved in
Theorem 4.4.1 under the assumption of pseudoconvexity.
If no € C3°(£2), using Proposition 5.1.1, one sees that

[nof If <CIOf I,

Summing over a partition of unity n;, ¢ = 0,--- , K such that ny € C§°(Q2), each n;
is supported in a boundary coordinate patch and ZiK:O n? = 1, we have proved

£ 1E < U af I+ £l q,)-

The lemma is proved when k£ = 1. The other cases are proved similarly by using a
partition of unity and induction.

Proposition 5.2.5. Let Q@ CC C" be a bounded strongly pseudoconvexr domain with
C*® defining function. Choose § > 0, such that the tangential norms are defined on
the fized tubular neighborhood Qs = {z € Q| p(z) > —6}. For each k =0,1,2,---,

there exists a constant Cy, such that for any f € Dom(d) N C&?’q)(ﬁ),

(5.2.11) AR 0 < Cr Il OF 17300

where C, is independent of f.

Proof. We shall prove the proposition by induction on & = 0,1,---. When k£ = 0,
this is already proved in Theorem 5.1.3. Thus we have

(5.2.12) £y <clnfly.

(We even have the actual estimates instead of just a priori estimates.) Assume that
(5.2.11) holds for k — 1. Let U be a special coordinate patch. We first assume that
f is supported in QN U and written in the special frame as before. Let T* be a kth
order tangential differential operator of the form Df* where |o| = k. From Lemma
5.2.2, we know that T*f € D, ;). Substituting 7% f into the estimate (5.1.4), we
see that

(5.2.13) IT*F I3 < CU T f I + [ 9T*F |I?).
Using arguments similar to those in (5.2.6) and (5.2.7), it follows that
IOT*f |1* + | oT* f |I°
(5-2.14) = | T50f |I* + I T9F II” + O(ll £ %)
= (T"f, T*OF) + O f e 10F !k + 11 £ Wl HOL e + [ 5 17)-
Applying the inequality ab < ea? + 1b% again and (5.2.2 ii), (5.2.2 iii), we obtain
|(T*f, T*OF) [ < ClNIT Il IT*OF -y
(5.2.15) < COfIG -y +elIT*FIIR
< CAIBAIE +€llIE, ;-
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Now since
WOk + HOfIIle <C > (I DFOS || + || DEOS )
|a <k
<C Y (10D f 1+ 19D 1)+ Ol f llw),

|l <k
it follows from from (5.2.14) that
(5:216) 3 (18D¢F P + | 9D8F IP) < c( S (0gf, DROR) 41 |z).
la|<k la| <k

Combining (5.2.13)-(5.2.16) and summing up all the tangential derivatives of the
form DY, where |a| < k, we deduce that

AIE,y < c(z 1Dg Il IDEOfINy + 1 ||i)

lal<k
< elll By +ClIDAIE_, +C 1 £ 1}

(5.2.17)

Using the interpolation inequality for Sobolev spaces (see Theorem B.2 in the Ap-
pendix), for any € > 0 there exists a C.s such that

(5.2.18) 1l < €Ny g + Celll ANl
Applying Lemma 5.2.4, we observe that

I £ le < CCNAN + 11 OF )
< CE Ny + Colllf Il + 1 OF ).

Choosing first € and then €’ sufficiently small, using (5.2.17) and (5.2.18), one obtains
A2,y <CUDS 2y + 1 £ 12):

From (5.2.12), we have established

(5.2.19) IAIE,, <C IS Iy,

when f is supported in a special coordinate patch.
The general case will be derived from a partition of unity. Let n, n' € C§°(U)
and ' = 1 on the support of 7. We have

T n 1 < O™ £ + i FIB_y)
< O aT*f 1> + | 9T 17 + 11 FIIE_y)-

Repeating the previous argument with 77" substituted for 7%, we see that

lnfIB g < ellln'FlliZ, 5 +ClIOANE_, +C I £ 1}
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Now for any g € C§°(2), we already know that

Imof vz <CIOS lle-s -

Summing over a partition of unity n;, ¢ = 1,--- , K for the tubular neighborhood
s, yields that for some ny € C§°(Q),

I, 3 0p S CUDS IE_y +mf D) <C DL IZ, .

This proves the proposition.

Proof of Theorem 5.2.1. Using Theorem 5.1.3, we already know that Theorem 5.2.1
holds when s = —1/2 and

_1
(5.2.20) I N lyoy SC I F I3y foramy f € W% (@),

We shall prove the theorem for s = k when k € N. Since C7 (©) is dense in
W(,.0)(82), it suffices to prove the following estimates:

(5.2.21) I Nfllsxz) SCIfllsmr, forany f e CF ().

When s is a nonnegative integer, (5.2.21) has already been established in Proposition
5.2.5 and Lemma 5.2.4 assuming that N f is smooth up to the boundary. To pass
from a priori estimates to the real estimates, we can use the following elliptic
regularization method:

Let @ be defined by

Q(g.9) =10g]* + 10*g|>, g € Dom(8) N Dom(5*).
We define -
Q(9, 9)=Qlg, 9)+ellVg I, geD,

where D° is the completion of D(p,q) under the Q° norm. From inequality (4.4.6),
we see that

(5.2.22) Q(g, 9)=C gl forevery geD,

where C' > 0 is independent of € (C' can be chosen as ed?/q where § is the diameter

of ). Thus, for any f € L%p,q)(ﬂ)7 g € D, we can deduce that

(5.2.23) (f, 91 <C7% || £1l Q9. 9)%.

This implies that the map from g — (f, g) is a bounded conjugate linear functional
on D" By the Riesz representation theorem, there exists an element N€f € D°
such that

(f. 9)=Q°(N“f, g)  forevery g€ D".
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Moreover, we have

[NfI<CIfIL

where C is the same constant as in (5.2.22). Note that Q¢ satisfies Garding’s
inequality o
Q(f.f)yzell fIf forevery feD.

Thus, the bilinear form Q¢ is elliptic on D° and we can use the theory for elliptic

boundary value problems on a smooth domain to conclude that N“f € C77 (Q) if

fe C(O;q)(Q). Applying the a priori estimates (5.2.11) to the form N€f, we get

(5.2.24) NN Flller 100y < Cr Il f o130

where C}, is independent of €. The interpolation theorem for the operator N€ on
Sobolev spaces W?*(€2) and tangential Sobolev spaces W7 (s) (see Theorem B.3 in
the Appendix) gives

N flllks) SC N fllk-1) fork=1,2,---.
Repeating the argument of Lemma 5.2.4, we obtain
| Nflley SC N f lle—1y fork=1,2,---.

Thus, a subsequence of N°f converges weakly in W(’;’ o (€2) to some element § €
W(’;q) (©). We claim that 5 = Nf.
For any g € Dy, q),
(f; 9) = Q(NS, g9) = Q°(Nf, 9).

It follows from the definition of Q¢ that for any g € D, ),

QN =Nf, gl <el | Nf Il g llh <eC |l fllll g llhi—0

as € — 0. Since Dy, is dense in Dom(9) N Dom(9*) = D from Lemma 4.3.2, we
see that B
QN‘f=Nf, g0 —0 for every g € D.

Thus, N€f converges to N f weakly in the @Q-norm. But (a subsequence of) N°f — 3
weakly in the W* norm. Therefore, we must have

Nf=p

and
| Nflle <lUminf [[ Nf [[x <C f k=1,  k=1,2,---.

Thus (5.2.21) is proved for s =0 and s = % +k, k=0,1,2,--- . Using the interpo-
lation theorem for operators on Sobolev spaces again, we have for any s > —%7

[Nfllst1 SCsll flls, € WG g ().

This proves Theorem 5.2.1.
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Theorem 5.2.6. Let QQ CC C" be a bounded strongly pseudoconvex domain with

C> boundary. Then O*N and ON are bounded operators from W(Sp)q)(ﬂ) into

W(S;;_/i)(ﬂ) and W(Spfqlﬁ)(ﬁ) respectively, where s > —1/2, 0 < p < n and 1 <

q <n— 1. There exists a constant Cy such that for any f € W(27q)(Q),
(5.2.25) |8 NF 12, 3@ + 1| ONF 12,30y < Co I £ I,

where Cy is independent of f.
Proof. When s = —1/2, we have shown in Theorem 5.1.3 that

| O*NFI>+ | ONF > = (00"Nf, Nf)+ (9*ONf, Nf)=(f, Nf)
SHFIsINFlly <CUFI2,

We shall prove by induction that

(5.2.26) [O*Nf Iz + 11N Ik < Cu Il f I}

2

for k = 1,2,---. Let n be a cut-off function. If 5 is supported in a boundary
coordinate patch, let T* denote the same kth order tangential differential operator
of the form Dy, |a| = k. Observe that

(T*O*Nf, T*O*Nf) + (T*ONf, T*ON f)

= (T*O*Nf, O*T*Nf)+ (T*ONf, OT*Nf)
+(T*O*Nf, [T*,0*INf)+ (T*ONf, [T*,OINf)

<C((T"0*Nf, T*Nf)+ (T*0*ONf, T*Nf) + E)

(5.2.27) < C(T*ONf, T*Nf) + E)
< C(IT* L IIT*Nf|l|1 + E)
< CUIMr=2 NN flllggr + E)
< C(IFIG-1 + B),

where E denotes terms which can be bounded by

C (I NF Ik (0N flIlx + [ON fllle) + | Nf %)

(5.2.28) T ,
< €([|0"Nfllle + ONfIIi) + Ce | Nf | -

Using a partition of unity and summing up all the tangential derivatives up to order
k in (5.2.27), we obtain, using (5.2.28), that

NN AR+ ION AR < CULF Iy + NI,

if € in (5.2.28) is chosen sufficiently small.

Again, using the fact 9 @ ¢ is an elliptic system, the normal derivative can be
expressed as the linear combination of terms which have been estimated before.
The interior regularity is easier. This proves the inequality (5.2.26). The theorem
follows from interpolation.
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Corollary 5.2.7. Let Q CC C™ be a bounded strongly pseudoconver domain with

C> boundary and 0 < p < n and 0 < g < n-—1. Then N maps C&iq)(Q) into
C(";q)(ﬁ). In particular, the Bergman projection P maps C*(Q) into C>(Q2). Also
if feChy (Q) and Of =0, the canonical solution v = O*N f € Co Q).

p,q—1)

Proof. The corollary is an easy consequence from the Sobolev embedding theorem
for ¢ > 1. For ¢ = 0, we use (4) in Theorem 4.4.3. The regularity of the Bergman
projection follows from the formula Pf = f — 0*NOf = f — 9NOf.

In Chapter 6, we prove a more precise result for the Bergman projection. In fact,
P preserve W#(Q) for all s > 0 (see Theorem 6.2.2).

5.3 Function Theory on Manifolds

Let M be a complex manifold of dimension n (For the definition of complex
manifolds, see Chapter 1). The decomposition of differential forms into forms
of type (p,q), the definition of the @ operator and the definition of plurisubhar-
monic functions for domains in C" can immediately be extended to forms and
functions on the complex manifold M. In order to study the operator 0 with
Hilbert space techniques, we must equip M with a Hermitian metric such that
CT(M) = TH(M) & TOY (M) and THO(M) L T%1(M). A Hermitian metric in
local coordinates z1,-- - , z, is of the form

n
Z h”dZZ X déj,
i,7=1

where h;; is a positive definite Hermitian matrix with C'*° coefficients. The existence
of a Hermitian metric is trivial locally and is proved globally by a partition of unity.
We fix a Hermitian metric in all that follows. This induces an inner product in
C(O;q)(M) for each p e M. If ¢, ¢ € C’&f’q)(M), this inner product is denoted by

(¢,1). We have the following definition:

Definition 5.3.1. Let p € M and ¢ € C*(M). If L € T,°(M), the complex
Hessian of ¢ at p is defined to be the Hermitian form

L (99¢),(L AT).

The function ¢ is called plurisubharmonic at p if the complex Hessian is positive
semi-definite. ¢ is called strictly plurisubharmonic at p if the complex Hessian is
positive definite.

Let Q be an open subset in M whose closure is compact in M, i.e., § is relatively
compact in M and denoted by Q@ CC M. € is called a complex manifold with
C* boundary b2 if there exists a neighborhood V of Q and a real-valued function
p€CF(V)suchthat Q = {2z €V |p<0},p>0inV\Qand |dp| # 0 on bQ2. Let
CT,(b2) be the complexified tangent bundle of b2 at p.
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Definition 5.3.2. Let Q be a complex manifold with C? boundary and p be a C?
defining function. Q is called pseudoconvex (strictly pseudoconvex) if for each p €
b, the restriction of the complex Hessian of p to Ty °(M) N CT,(bS2) is positive
semi-definite (positive definite).

In local coordinates, by the usual Gram-Schmidt orthogonalization process we
can choose an orthonormal basis w?!, - -+, w™ for (1,0)-forms locally on a sufficiently
small neighborhood U such that (w?, w*) = &, 4,k = 1,---,n. Then written in

this basis, for any u € C1(U), we can write

n

" du
du =
b P

=1 =1

where the first order linear differential operators 9/0w’ and 9/0w* are duals of w’
and W’ respectively. Then we have

= " Ou
ou = 81Diw'

i=1

If fis a (p,q)-form on U, then we can write f as

(5.3.1) f= > frow Aw’,
[1=p,|J|=q
where I = (il, -+ yip)and J = (ji,- -, j,) are multiindices and w! = w A Aw',
w! = wt A - wﬂq If u € C?(U), we set u;; to be the coefficients of 9u, i.e.,
(5.3.2) 00u = Z wijw' A
i,J

Let cé-k be the smooth functions such that

ow' = g cz»kwj Awk.
5k

Then u;; can be calculated as follows:

Joy — Ou g\ _ i Ak
68u_6<k8wkw>_z<8w18wk Zaz )w Aw".

J.k

From the fact that 90 + 00 = 0, we have
0°u ou
(5:3.3) k= Jawk Z P~ Barows — G
A function ¢ € C? is plurisubharmonic (strictly plurisubharmonic) if the form

n
Z d)jka’jdk’ a= (al"" aan) € (Cnv

Jik=1
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is positive semi-definite (positive definite).

We shall normalize p such that |dp| = 1 on bQ. Q is pseudoconvex at a point
z on bY if there exists a neighborhood U of z and a local (1,0) orthonormal frame
wt, -+, w™ such that

n n
(5.3.4) Z pjka;ar > 0 if Zaj 8w3
J.k=1
Here a = (a1, ,ay) is a vector in C". If the Hermitian form is strictly positive

for all such a # 0, the boundary is strongly pseudoconvex at z.

Note that these definitions are independent of the choice of the defining function
p and are independent of the choice of w',--- ,w™. If we choose a special boundary
chart such that w™ = dp, then /0w, i = 1,--- ,n — 1 are tangential operators.
We have, substituting p for w in (5.3.3),

(5.3.5) 00p = own = ijkwj A",
j.k

where (pji) = (C ]k) (ck;) is the Levi matrix. In this case, b{2 is pseudoconvex if
and only if (ng)j ;:1 is positive semi-definite.

We shall use the same Hilbert space theory as that in Chapter 4 to study the
function theory on pseudoconvex manifolds. We fix a function ¢ € C%(Q). Let
d: L(p o 9) — L%p 0+1)(§2, @) be the cl?sure of the Cauchy-Riemann operator
and we define the Hilbert space adjoint for 8;‘, as before. Let zg € b2 be a boundary
point and U be an open neighborhood of zy. We shall fix a special orthonormal
boundary frame w!,---  w"™ = dp. Writing L; = 9/0w’, then Ly,--- , L, are dual

to the (1,0)-forms w?,--- ,w™ and we have
(5.3.6) Li(p) =0, whenzebQNU, i=1,---,n—1,
L,(p)=1, whenzebQNU.

We compute 0f and 9f in this special coordinate chart. We can write any f €
Cpq)(QﬂU) as f =" 11=p,|7j=¢ 1,50’ AN @7. Then

fecgE@nu)n Dom(éfg)

5.3.7
( ) if and only if fr ; = 0 whenever n € J,

where C5°(U N Q) denotes the space of functions in C'°°(Q) which are supported in
Unq.

We denote the space C7 | ( n Dom(@ ) by D(p,q) and C7
¢ € N, as before. It follows that

(©) N Dom(d7) by

(p,9)

(p q)’

ow’

(5.3.8) gf:Z’Zafii’i]wj/\wf/\@-7+...:14f+...’
J
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and
(5.3.9) 19¢f:(_1)17*1 / Z5;?)f17ij[/\@K+...:Bf+...’
ILK
where 5;% = e?L;(e”%u) and dots indicate terms where no derivatives of fr

occur and which do not involve ¢. The second equalities in (5.3.8) and (5.3.9) are
definitions of A and B which are first order differential operators.
Thus, we have

19£12 + 106fl15= D" > el (@i(fr.0): Le(fr.))e
I1,J,L. 4/t

+ 37N 02 frixs 0f Frex)s + R(F),

LK 4k

(5.3.10)

where R(f) involves terms that can be controlled by O((|| Af [l + || Bf [l¢) || f [l¢)
and e% is defined as before. Rearranging the terms in (5.3.10), we have

1DFI3 + 19615 = D" > ILifrs
g
(5.3.11) =" (Tafrjxs Lifrax)s

I,K .k

+ ZI Z (‘ﬁfIJK» 60 frri)e + R(S).

LK jk

‘ 2
é

We apply integration by parts to the terms ((5;?f1,j1<, (5,‘ff1,kK)¢. For each u, v €
CH(2NU), Green’s formula gives

(5.3.12) (u, 6?1})45 = —(Lju, v)g+ (oju, v)y —|—/ (L;p)uve=?dS,
bQ

where dS is the surface element on b2 and o; is in C*(2NU). The boundary term
in (5.3.12) will vanish if j < n from (5.3.6). If f € D, 4), when we apply (5.3.12)

to the terms (5?f1,j;(, 5,ff1,kK)¢, no boundary terms arise since

(5.3.13) fro=0 onbQ ifnel,

and if j <n and n € J,

(5.3.14) Lj(p) = L;j(p) = Lj(f1.7) = Lj(fr,7) =0 on b

In order to calculate the commutator [5;?, L], we use (5.3.2) and (5.3.3),

[5f, fk] u = [Lj — Lj(9), fk]u = [Lja Zk]u +kaj(¢)U
= ciLi(u) =Y & Li(u) + LiL;(¢)u
= bty ot =Y &Liw).

i i

(5.3.15)
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Using (5.3.12)-(5.3.15), for each fixed I, K, j, k, we have
(6jd‘)fl,jK7 5;ff1,kK)¢
= (*fk(;?fl,jK, fre)e + (5j)f1,jK, Ok frri)p
= (Lifrjx, Lifrrx)e + ([5j), Lilfrjx. fre)e
— (Lifrjk, ojf10K)e + (5ff1,jK, Ok frrE) g

(5.3.16)

In the above calculation, no boundary terms arise since f € Dy, 4y and by (5.3.13)
and (5.3.14). Introducing the notation

IZANZ =D "> N Tifra 15+ 1 £13
I,J j

and applying integration by parts to the last terms of (5.3.16), we see from (5.3.13),
(5.3.14) that

(5.3.17) |(5?fl,jK75'kfI,kK)¢| S CLf llgll £ llgs

where C is a constant independent of ¢. We shall use O(|| Lf |4 || f |l¢) to denote
terms which are bounded by C || Lf ||4| f ||s where C is a constant independent
of ¢. Thus, (5.3.16) reads

(5ff1,jK, ¢ f1.ux)
= (Lifrir, Lifra)e+ (167, Telfrir, frax)s
+O(I Lf lloll £ llg)
= (Lifrjx, Lifrex)e + (Pjefrir, frix)e

" (Z 688 1k fl,kK) OUTS Nl £ 1),
¢

i

(5.3.18)

If ¢« < n, integration by parts gives
|(ch;0F frjres frux)ol < CIIF gl f 1l -
If i = n, we get, using (5.3.5),
(k08 frxc, frei)e

(5..19) = [ dstiandineas+ O T ol £ 11)
n

— [ pdrinfraxe*dS + O(ITf 1 £ o)
bNU
Combining (5.3.11), (5.3.18) and (5.3.19), we obtain

19F13 + 196.£15

:Z/ Z ||ijI,J||?J+Z/ Z (i frjr: fre)e
17 %

(5.3.20) J I,K

+ Z/ Z /me pirfr i friexe ?dS + R(f) + E(f),

I,K 4k
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where |E(f)] < C(| Lf ||l f |l¢). Also for any € > 0, there exists a C. > 0 such
that

(5.3.21) [RONI < e(l0F15 + 1196 £115) + Cell F1I5,

where C¢ is independent of ¢. Thus combining (5.3.20) and (5.3.21), we have proved
the following proposition (notice only three derivatives of p are required).

Proposition 5.3.3. Let Q CC M be a complex manifold with C® boundary and p
be a C? defining function for Q. For any f € D(Qp 9 such that f vanishes outside a

coordinate patch U near a boundary point in b2 and ¢ € C*(Q), we have
1o£1I5 + ||19¢f||3s

(1—¢) Z Z (Dinfrir, friK)e

jkl

(1-¢) Z, Z / pirf1 i frrxe ?dS
I,.K j,k=

3

(5.3.22)

(=) D" > WTfrallz + OO LS lloll £ llo)s

I,J =1

where € > 0 can be chosen arbitrarily small and O(e)(|| Lf |||l f |l4) denotes terms
which can be bounded by C. || Lf |4 f ||ls for some constant C. independent of ¢.

Let A be the smallest eigenvalue of the Hermitian symmetric form

(5323) Z zj)jkajdk, a = (al, cee ,an) e C™.

7,k=1

Let p be the smallest eigenvalue of the Levi form

n n a
(5.3.24) Z Pika; G, where Zai &Z)i =0.
7,k=1 i=1
Note that A and p are independent of the choice of the basis w!,---, w™. We have

the following global a prior: estimates:

Proposition 5.3.4. Let Q2 CC M be a complex manifold with C? boundary b8 and
¢ € C*(Q). We have the following estimates: for every f € D, g,

112 2 1 _ 2 —¢ 2,—¢ )
325 B2 + Wafl2 > 5 [ Clsieeav s [ uigpeeas),

where X is the smallest eigenvalue of the form (5.3.23), p is the smallest eigenvalue
of the Levi form (5.8.24) and C is a constant independent of ¢.
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Proof. Let {n;}X, be a partition of unity such that ny € C§° (©2) and each 7,
1 < i < N, is supported in a coordinate patch U;, n; € C§°(U;), @ € QU (U Uy),
K3

and
N

an‘z =1 on Q.
i=0
Since frn,x = 0 on bQ), we have, for 1 <i < N,

Z/ Z/ ijfl,ijI,kKe’¢’dS z/ ,uni2|f|26*¢d5.
LE  jk /000U bQNU;

Ui

Applying Proposition 5.3.3 to each n; f, choosing e sufficiently small, we have

/ 2| f|2e=%dS +/ A | fPe?dv

< 2| df I3+ I mdof 13)+Ci [ |eav
N

The constant C; depends only on 7; but not on ¢. Summing up over i, the propo-
sition is proved.

From (5.3.25), we can repeat the same argument as in Chapter 4 to prove the

following Liexistence theorem for O if there exists a strictly plurisubharmonic
function on €.

Theorem 5.3.5. Let Q CC M be a pseudoconvex manifold witth’s boundary bS)
such that there exists a strictly plurisubharmonic function ¢ on Q. Then for any
fer? (Q) with f =0, there exists u € L? )(Q) such that Ou = f.

(p,9) (pg—1
Proof. From pseudoconvexity, i > 0 on b§2 where p is the smallest eigenvalue of
the Levi form. We have that the last term in (5.3.25) is nonnegative. Since ¢ is
strictly plurisubharmonic in 2 which is relatively compact in M, it follows that
A > 0 where X is the smallest eigenvalue of the form (5.3.23). If we choose t > 0
such that tA > C + 2, where C is as in (5.3.25), we see that for any g € D(Qpﬂ)7
(5.3.27) gl < 19975 + 19759117

Using the same arguments as in the proof of the density lemma, Lemma 4.3.2, we

can show that D(Qp q) 1s dense in Dom(d) N Dom(ét*d)) in the graph norm ||g||:s +

10g]|te+ ||5§¢g|\t¢ and (5.3.27) holds for any g € Dom(é)ﬂDom(éjd)). Using Lemma
4.1.1, this implies that R(9) and R(é;‘(ﬁ) are closed. To show that R(J) = ker(9),
we repeat the arguments of the proof of Theorem 4.3.4. For any g € L%p,q)(ﬂ) N

Dom(9;,), one has

(5.3.28) [ (f,9)eo | <N f leoll 9 lles < IS llesll 0759 lleo -

Thus, there exists u € L, () such that du = f in Q and

,q—1)

[ lles <11 f g -
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This proves the theorem.

We note that if M = C", one can take ¢ = |2|?. However, on a general complex
manifold, there does not always exist a plurisubharmonic function on M.

Let O, ) = 00* + %0 on Dom (0, 4)) and Dom(0,4)) be defined as in Defini-
tion 4.2.2. The arguments of the proof of Proposition 4.2.3 can be applied to show

that [, o) is a linear, closed, densely defined self-adjoint operator on L?pﬂ)(Q). Us-

ing the 92 existence theorem 5.3.5, we can obtain the following existence theorem
for the 9-Neumann operator on pseudoconvex manifolds.

Theorem 5.3.6. Let 2 CC M be a pseudoconvex Hermitian manifold with C’:’
boundary b§2 such that there exists a strictly plurisubharmonic function ¢ on €.

For each p, q such that 0 < p < n,1 < q < n, there exists a bounded operator

Nipg) : L{, 0 (2) — LT, () such that

(1) R(Np,q)) € Dom(Dp,q)),
Nep,pUw.g) = UpgNpg =1 on Dom(D(g,ql)'

(2) For any f € L%p’q)(Q), f=00"Np.qf ©®0*ONp.q f-
(3) ON@pg) = Np,g+1)0 on Dom(9), 1 < g <n—1.

(4) 0*N(p,q) = Nip,q—1)0* on Dom(0*), 2 < g <n.

(5) Forany f € L%p,q)(Q) such that Of =0, f = 55*N(p7q)f.

The proof is exactly the same as the proof for Theorem 4.4.1. One can also show
the existence of N, gy for ¢ = 0 following the same arguments as in Theorem 4.4.3
and we omit the details.

If b is strongly pseudoconvex, there exists a ¢ > 0 such that the smallest
eigenvalue of the Levi form p > ¢ > 0 on b2, and we have from (5.3.25) (setting

¢ =0),

C

(53.29) B + oA = 5 [ 1 - clsl,
b2

When b0 is a strongly pseudoconvex manifold with C>° boundary, we can also
use the boundary term in the estimates (5.3.29) to obtain the existence and the
regularity for the 0-Neumann operator. By using a partition of unity, the Sobolev
spaces W*(2) can be defined on a manifold Q for any s € R (see Appendix A). Using
the same arguments as in Section 5.2, we have the following subelliptic estimates.

Theorem 5.3.7. Let 2 CC M be a strongly pseudoconver Hermitian manifold with
c3 boundary bS). There exists a constant C' > 0 such that for any f € Dom(9) N
Dom(0*),0<p<nandl<g<n-1,

(5.3.30) £ 1B <CUING+TF G+ 1 f15),

where C' is independent of f.

The proof is similar to Theorem 5.1.2. We note that in each coordinate patch
with a special frame, the operators d and 9 given by (5.3.8) and (5.3.9) differ from
(4.2.1) and (4.2.3) only by lower order terms. Thus, the arguments used in proving
Theorem 5.1.2 can be easily modified to prove (5.3.30). We omit the details.
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We can use (5.3.30) to prove that there exists a 0-Neumann operator which
inverts U, o). Let

Hepg () ={f € L%p’q)(Q) N Dom(9) N Dom(9*)| f = 0" f = 0}
= Ker(d) N Ker(9*)
= Ker(qu)).

The last equality can be verified in the same way as in the proof of (4.4.2). However,
on a strongly pseudoconvex complex manifold, H, 4)(€2) = Hp,q) is not always triv-
ial for ¢ > 1. The following theorem shows that H, ,) is always finite dimensional
when ¢ > 1.

Theorem 5.3.8. Let Q CC M be a strongly pseudoconver Hermitian manifold with
a C3 boundary bY. For any 0 < p < n and 1 < q < n, the space Hp,q) is finite
dimensional. Furthermore, the following estimate holds: for any f € Dom(d) N

O 1
Dom(0") NHE, )

(5-3.31) IF1E < CUaf I + 107 f 18-

Proof. We have from (5.3.30),
(5.3.32) 1B <CIflR  f€Hpg-

Since W/ is compact in L?(Q2) by the Rellich lemma (see Theorem A.8 in the
Appendix), we have that the unit sphere in H(, 4 is compact. Thus, H, ) is finite
dimensional.

If (5.3.31) does not hold, there exists a sequence f,, such that f, € Dom(d) N
Dom(9*) N'HE

(p,q)°

I fo & = n(] 9fa I + 11 0% fu 1)-
Let 0, = fu/|l fn llo- Then || 96, ||o + || 0%6, |l — 0 and || 6, ||o = 1. From
(5.3.30) we have || 6y, [|1(q) < C. Using the Rellich lemma, there exists a subsequence
of 6,, which converges to some element 6 € L%p,q) N Hé‘o’q). However, 00 = 0" = 0
and || 0 || = 1, giving a contradiction. This proves (5.3.31).

Let H(, ) denote the projection onto the subspace H, 4 where 0 < p < n and
0 < g < n. We note that when ¢ = 0, H(, ) is the projection onto L? holomorphic
forms, i.e., forms with L? holomorphic coefficients. The following theorem gives the
existence and regularity of the 9-Neumann operator on any strongly pseudoconvex
Hermitian manifold.

Theorem 5.3.9. Let ) CC M be a strongly pseudoconvexr Hermitian manifold with
C™ boundary bS). For each p, q such that 0 < p < n, 0 < q < n, there exists a
compact operator N, q) : LY, () — L2, () such that

(1) R(Np,q)) € Dom(Dy.q)),

No.oBw.e = OwaNwae = 1= Hep,g on Dom(D,q))-

(2) For any f € L%p7q)(Q), f= 55*N(p7q)f D é*gN(p,q)f D H(p7q)f.
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(3) ?N(p’q) = N(p’qﬂ)g_on Dom(é)._
(4) 9" Nip.q) = Nip.g-1)0" on Dom(9").
(5) Npoy(Cly(2) C CF 1 (82), ¢ 2 0.

Hp ) (Chp (1) € CF (), ¢ 2 0.

Proof. We first prove that R((J(, q)) is closed for any 1 < ¢ < n. From (5.3.31), we
know that for any f € Dom(C(, 4)) N 'H(an),

I FI&<CUOf NG +110%F 1)
= C(D(p,q)f7 f)Q
<C | Bupof lall f o -

Now applying Lemma 4.1.1, we see that R(0, q)) is closed and

L%;D,q)(Q) =R(Uw.g) ®Ker(Ugp.g) = R(Uw.g) © Hp.g)-
Let N(p,q) to be the bounded inverse operator of O, ) on R(0, 4)). We extend
Np,q) to LE, ,,(Q) by setting N, g Hpq) = 0. One can easily show that (1) and

(2) hold. Using (5.3.30), we observe that for any f € L?pm(Q),

” N(p,q)f ”2%(9) < C(H D(PH)N(p,q)f H?Z + H N(p,q)f H?l)

(5.3.33)
<CI -

The Rellich lemma implies that N is a compact operator. (3) and (4) can be verified
by repeating the proofs of (3) and (4) in Theorem 4.4.1. We can establish (5) using
the same arguments in the proof of Theorem 5.2.1. From the proof of Theorem
4.4.3, one can show that N, o) exists and can be expressed as

(5.3.34) N0y = ING, 1)0.
Also, Ny, 0 is bounded. The compactness of N, o) follows since YN, 1) is compact

and N(;,1)0 is bounded (see (4.4.12)).

Using the same arguments as the proof of Theorems 5.2.1 and 5.2.6, we have the
following more precise estimates.

Theorem 5.3.10. Let Q@ CC M be a strongly pseudoconvexr Hermitian manifold
with C°° boundary b). For g > 1 and each k =0,1,2,--- | there exists a constant
Cy. > 0 such that for any f € W(l; q)(Q),

(5.3.35) Np,g) fllk+1 < Ckll fllk,

(5.3.36) 10" Np,g) flles 2 + 10N fllis s < Crllflle.
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Corollary 5.3.11. Let Q2 CC M be a strongly pseudoconver Hermitian manifold
with C*° boundary b). For any f € W(];q)(Q), q>1and k >0, such that 0f =0

in Q and H, o f =0, we have u = O*Nf is a solution of Ou = f in Q and
[ullets < ClIS ks

where C' is a constant independent of f. In particular, if f € C’&iq) (), 0f =0 and

Hpq)f =0, there exists a solution u € CF (Q) such that Ou = f in Q.

(p.q—1)

The solution w is called the canonical solution (or Kohn’s solution) to the equation
Ou = f and it is the unique solution which is orthogonal to Ker(3).

An important consequence of Corollary 5.3.11 is the solution to the Levi problem
on a strongly pseudoconvex manifold with smooth boundary. A complex manifold
Q with smooth boundary 02 is called a domain of holomorphy if for every p €
bQ) there is a holomorphic function on €2 which is singular at p (c.f. Definition
3.5.1). In Theorem 4.5.2, we have already proved that pseudoconvex domains in C"
are domains of holomorphy. The next theorem shows that strongly pseudoconvex
domains in complex manifolds are domains of holomorphy.

Theorem 5.3.12. Let Q@ CC M be a strongly pseudoconver manifold with C'°
boundary bS). Then Q is a domain of holomorphy.

Proof. For each boundary point p € b(2, we will construct a function h(z) such that
h e C>*(Q\ {p}), h is holomorphic in Q and

lim h(z) = 0.

z—p

Since €2 is strongly pseudoconvex with C'*° boundary b€}, one can construct a
local holomorphic function f on QN U where U is an open neighborhood of p such
that f is singular at p. To do this, let z1,---, 2, be a coordinate system in the
neighborhood U of p with origin at p. Let r» be a smooth defining function for 2
such that r is strictly plurisubharmonic near p. That such a defining function exists
follows from the same arguments as before (see Theorem 3.4.4). Let

n

Pz) =2 Z 821 Z 8zzazj 7%

=1 Z]—

P(z) is holomorphic in U. Using Taylor’s expansion at 0, there exists a sufficiently
small neighborhood V C U of 0 and C' > 0 such that for any z € QN V,

- 3 2
ReP(z) ]Zl 821 0)ziz; + O(|z|°) > C|z|*.
Thus, P(z) # 0 when 2 € QN V \ {0}. Setting

1
f_ﬁv
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it is easily seen that f is locally a holomorphic function which cannot be extended
holomorphically across 0.

Let x be a cut-off function such that xy € C§°(V) and x = 1 in a neighborhood
of 0. We extend x to be 0 on Q\ V. Let g be the (0, 1)-form defined by

g=0xf)=0x)f Q.

vaiously g can be extended smoothly up to the boundary. Thus, g € C(O(il) () and
dg = 01in Q. To show that Hy1)g = 0, notice that when n > 3, x f € L*(Q). Thus,
g € R(D) = Ker(9*)* and g L H(g,1). When n = 2, we approximate f by f. = 5

_ /¢ P+e
for e \, 0. Then xf. € C>®(Q) and d(xf.) — ¢ in L?. However, each d(xfe) is

in the R(0) which is closed from Theorem 5.3.9. This implies that g € R(9) and
H,1yg = 0 for n = 2 also. We define

u = é*N((),l)g.

It follows from Corollary 5.3.11 that v € C°*°(Q2) and Ou = g in Q. Let h be defined
by

h=xf—u.
Then, h is holomorphic in , h € C=(Q\ {p}) and h is singular at p. This proves
the theorem.

Thus, the Levi problem for strongly pseudoconvex manifolds with smooth bound-
aries is solved.

5.4 Almost Complex Structures

In Chapter 2 we study when a complex vector field in R? is actually a Cauchy-
Riemann equation in other coordinates. In this section we study the n-dimensional
analog of this problem.

Definition 5.4.1. Let M be a real C* manifold of dimension 2n. An almost
complex structure TH°(M) is a subbundle of the complexified tangent bundle CT (M)
such that

(1) CT(M) =T"O(M) + T (M),

(2) T (M) N TN (M) = {0},

where TOY (M) = T1O(M). M is called an almost complex manifold with an almost
complex structure T1(M).

When M is a complex manifold, there is a canonical T1° defined on M, namely,
the holomorphic vector bundle. In local holomorphic coordinates z1,--- ,z,, in a
neighborhood U, we have that

0 0
5.4.1 TOMNU) = (o—, = ),
(5.4.1) (rn0) = ()
where the right-hand side denotes the linear span by vector fields 9/9z1, -+ ,0/0zy.
Let C°°(T1%(M)) denote the smooth sections of T1:°(M). If M is a complex man-
ifold, we have

(5.4.2) [L,L'] € C>=(T*°(M)), forany L, L' € C°°(T"°(M)).
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Definition 5.4.2. An almost complex structure TH°(M) is called integrable if
(5.4.2) is satisfied.

A complex manifold is an integrable almost complex manifold. The Newlander-
Nirenberg theorem states that the converse is also true. Before we state and prove
the theorem, we first note that on an almost complex manifold, there is a notion of
the Cauchy-Riemann equations and the 0 operator.

Let II; 0,1y denote the projection from CT'(M) onto TH°(M) and T (M)
respectively. Then, one has

Mo +1lpy =1, IIipllp; =0, and Ilg; =IIp.

The last equation means that Ily ¢ = Hl)of, for ¢ € CT(M). Thus there is a
natural splitting of the differential 1-forms A'(M) into (1,0)-forms, AL°(M), and
(0,1)-forms, A%1(M), which are defined to be the dual of TH%(M) and T (M)
respectively. We shall still use II; 9, o to denote the projection from Al(M)
onto AM0(M) and A% (M) respectively. For any smooth function u, we have du =
IT; pdu + Iy 1du. On an almost complex manifold, one can define the Cauchy-
Riemann equation by

ou = Ilp,1du  and Ou = II; odu,

where u is any smooth function on M. We can also extend this definition to (p, q)-
forms and define 9 and 0 on (p, q)-forms f to be the projection of the exterior
derivative df into the space of (p+ 1, ¢)-forms and (p, ¢+ 1)-forms respectively. The
integrability condition guarantees that 0 is a complex.

Lemma 5.4.3. If an almost complex structure is integrable, then d = 0 + 0 and

9*=00+00=0"=0.

Proof. If one can show that d = 9 + 0, then 9% = 99 4+ 00 = 9 = 0 follows easily
from degree consideration. It is obvious that d = 940 on functions. For 1-forms, we
have AL(M) = ALO(M)+ A% (M). To verify for 1-forms, it suffices to prove for each
(0,1)-form and each (1,0)-form. If f is a (0,1)-form, for any L, L' € C>(T*°(M)),

we have

(L L) = 5 (DU = D, 1) = (1L, 1)) = 0

since TH0(M) is integrable. This shows that df has no component of (2,0)-forms.
Similarly, if f is a (1,0)-form, df has no component of (0,2)-forms. In each case,
df = Of + 0f. The general case follows from the fact that each (p, ¢)-form can be
written as linear combination of forms of the type

h:fl/\"'/\f[)/\gl/\"'/\gqy
where f;’s are (1,0)-forms and g;’s are (0,1)-forms. Since dh is a sum of a type

(p+ 1,q)-form and a type (p,q + 1)-form, we have dh = Oh + Oh. This proves the
lemma.
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Theorem 5.4.4 (Newlander-Nirenberg). An integrable almost complex mani-
fold is a complex manifold.

Proof. This problem is purely local and we shall assume that M is a small neighbor-
hood of 0 in R?". Let Ly,--- , L, be a local basis for smooth sections of TH9(M).

If we can find complex-valued functions (i, -, {, such that
(5.4.3) Li¢;=0, i,j=1,---,n,
where d(y,- - ,d(, are linearly independent, then the theorem will be proved since
0 0
(5.4.4) (L1, ,L,) = <3C1’ ,8<”>,
where (Lq,- -+, Ly,,) denotes the linear span of Ly, -+, L, over C.
Let x1,--- , 2, be the real coordinates for M and we write z; = x; +i%,4;. We

can, after a quadratic change of coordinates, assume that

0 = 0 )
(5.4.5) L= 57 +Zai-j87,zj’ i=1,---,n,
Jj=1
where the a;;’s are smooth functions and a;;(0) = 0 for all ¢,j = 1,--- ,n. At the

origin, L; is the constant coefficient operator 9/9z;. We shall show that (5.4.4) can
be solved in a small neighborhood of 0. Let

0 = 0
(5 6) (2 821 + = a’bj (6.7}) azj I 1 I ) ’I’L7

where € > 0 is small. Then

T6071 = <Liv"' 7L;>
defines an almost complex structure that is integrable for each € < ¢y for some
sufficiently small ¢y > 0.

From Lemma 5.4.3, there is a Cauchy-Riemann complex, denoted by 0., associ-
ated with each almost complex structure 7', We shall equip the almost complex
structure with a Hermitian metric. Then the existence and regularity theory devel-
oped for J in the previous section on any complex manifold can be applied to M
with O substituted by 0. Let ¢ = > i, |2i|> = |z|?, then at 0 we see that

n n
Z QSjkajdk = Z |ai|2.
jk=1 i=1
Thus, ¢ is a strictly plurisubharmonic function near 0. If we set

Q={zecM||z|*<d}
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for some small § > 0, then  is strongly pseudoconvex with respect to the almost
complex structure T (M). Using Corollary 5.3.11, there exists a solution u$ on
such that

(5.4.7) S = Oz
and
(5.4.8) [ ug [[s < Cs | Bezi s,

where C5 can be chosen uniformly for € < ¢y. Since
e ~
Lizj = aij(ex),

we have -
D*0.z; = O(e)

for any D® = (9/0x1)** - - - (0/0x2,)*?*", where the «;’s are nonnegative integers.
This implies that

(5.4.9) | Oczi ||ls — 0 if e—0.
Let
(5.4.10) (F =z — ug.

The Sobolev embedding theorem (see Theorem A.7 in the Appendix) shows that if
we choose s > n + 1, then

|duf(0)] < [ uf |5 < Cs [ dezi [|ls — 0 if e — 0.

We have from (5.4.7) that 9.¢f = 0 in Q and also d(f(0) = dz; — du$(0) are linearly
independent if € is sufficiently small. If we pull back (f to eQ by setting ¢; = (f(z/€),
then we have that 0¢; = 0 and d(; are linearly independent in €2 provided we choose
e sufficiently small. This proves the theorem.

NOTES

The subelliptic 1/2-estimates and boundary regularity for the 9-Neumann oper-
ator on strongly pseudoconvex manifolds were proved in J. J. Kohn [Koh 1]. Much
of the material concerning strong pseudoconvex domains in this chapter was ob-
tained there. The use of a special boundary frame was due to M. E. Ash [Ash 1]. A
simplification of the proof of the boundary regularity for subelliptic operators using
pseudodifferential operators was given in J. J. Kohn and L. Nirenberg [KoNi 1]
where the method of elliptic regularization was used in order to pass from a priori
estimates to actual estimates. In [KoNi 1], a systematic treatment of the subel-
liptic boundary value problem with any subellipticity 0 < € < 1/2 was discussed.
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Pseudodifferential operators and subelliptic estimates will be discussed in Chapter
8.

The proof of subelliptic 1/2-estimates in Theorem 5.1.2 follows the approach of J.
Michel and M.-C. Shaw [MiSh 1]. The proof of the boundary regularity discussed in
5.2 is a variation of the proof used in [KoNi 1] since only commutators of differential
operators are used but not pseudodifferential operators. The discussion of function
theory on manifolds mainly follows that of L. Hérmander [Hor 3]. Global strictly
plurisubharmonic functions do not always exists on general complex manifolds. If
M is a Stein manifold, then there exists a strictly plurisubharmonic exhaustion
function for M. Thus Theorem 5.3.5 can be applied to any relatively compact
pseudoconvex manifold 2 which lies in a Stein manifold. For a detailed discussion
of function theory on Stein manifolds, see Chapter 5 in L. Hérmander [Hor 9].

The Levi problem on a strongly pseudoconvex manifold (Theorem 5.3.12) was
first solved by H. Grauert [Gra 1] using sheaf theory. The proof of Theorem 5.3.12
using the existence and the regularity of the 9-Neumann operator was due to J. J.
Kohn [Koh 1]. Since a pseudoconvex domain in C™ by definition can be exhausted by
strongly pseudoconvex domains, using a result of H. Behnke and K. Stein (see [BeSt
1] or [GuRo 1], one can deduce that any pseudoconvex domain in C" is a domain
of holomorphy (c.f. Theorem 4.5.2). This needs not be true for pseudoconvex
domains in complex manifolds (see J. E. Fornaess [For 1]). More discussions on the
Levi problem on pseudoconvex manifolds can be found in [For 3], [Siu 2].

Theorem 5.4.4 was first proved by A. Newlander and L. Nirenberg [NeNi 1].
B. Malgrange has given a totally different proof (see B. Malgrange [Mal 2] or L.
Nirenberg [Nir 3]). There is yet another proof, due to S. Webster [Web 1], using
integral kernel methods. Our proof was essentially given in J. J. Kohn [Koh 1] as
an application of the 9-Neumann problem.

There is a considerable amount of literature on the d-Neumann operator, the
canonical solution and the Bergman projection on strongly pseudoconvex domains
in other function spaces, including Holder and L? spaces (See R. Beals, P. C. Greiner
and N. Stanton [BGS 1], R. Harvey and J. Polking [HaPo 3,4], I. Lieb and R. M.
Range [LiRa 2,3,4], A. Nagel and E. M. Stein [NaSt 1], D. H. Phong and E. M.
Stein [PhSt 1], R. M. Range [Ran 5] and the references therein). We also refer the
reader to the article by M. Beals, C. Fefferman and R. Grossman [BFG 1] for more
discussions on strongly pseudoconvex domains.



120 The 8-Neumann Problem on Strongly Pseudoconvex Manifolds

CHAPTER 6

BOUNDARY REGULARITY FOR 0
ON PSEUDOCONVEX DOMAINS

Let D be a bounded pseudoconvex domain in C"™ with smooth boundary bD. In
this chapter, we study the global regularity of the equation

(6.0.1) Ou=f on D,

where f € CE’;q) (D) with 0 <p<mn,1<qg<nand fis d-closed.
The existence theorems for 9 and the d-Neumann operator N on any bounded

pseudoconvex domain have been proved in Chapter 4 in L? spaces. In this chapter
we are interested in the following questions:

(1) Can one solve equation (6.0.1) with a smooth solution u € C’E’;qfl)(ﬁ) if f
is in 2, (D)? By

(2) Does the canonical solution & N f belong to W¢, 1 (D) if fisin Weo

(3) Does the Bergman projection P preserve C*°(D) or W*(D)?

3
(4) Under what conditions can a biholomorphic mapping between two smooth
bounded domains be extended smoothly up to the boundaries?

(D)?

From the results in Chapter 5, both N and 9'N are regular in Sobolev spaces
or the C*° category if we assume that bD is smooth and strongly pseudoconvex.
In fact, the canonical solution has a “gain” of 1/2 derivative in the Sobolev spaces.
Here, we study the global boundary regularity for 0 and the -Neumann operator
N on a smooth bounded weakly pseudoconvex domain in C™.

In Section 6.1, we prove that the first question can be answered affirmatively.
This result is proved using the weighted 9-Neumann problem. However, the smooth
solution might not be the canonical solution. In Section 6.2, we study the global
regularity for NV when the domain has either a smooth plurisubharmonic defining
function or certain transverse symmetry. We establish the Sobolev estimates for
the -Neumann operator and the regularity of the canonical solution on such do-
mains. This result implies the regularity of the Bergman projection and is used
to prove the boundary regularity of biholomorphic mappings between pseudocon-
vex domains. In general, a smooth pseudoconvex domain does not necessarily have
a plurisubharmonic defining function or transverse symmetry. A counterexample,
known as the worm domain, is constructed in Section 6.4. Finally, we prove in
Section 6.5 that, for any s > 0, there is a smooth bounded pseudoconvex domain
on which the 9-Neumann operator fails to be regular in any Sobolev spaces W for
k> s.
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6.1 Global Regularity for 0 on Pseudoconvex Domains with Smooth
Boundaries

The main result in the section is the following theorem:

Theorem 6.1.1. Let D be a smooth bounded pseudoconvexr domain in C™ with

n > 2. For every f € CE’;’q)(D), where 0 < p <n, 1<q<mn withdf =0, one can
findue CF (D) such that Ou = f.

We will prove the theorem using the weighted 9-Neumann operator with respect
to the weighted L? norm L?(D, ¢;) introduced in Section 4.2, where ¢, = t|z|* for
some t > 0. Theorem 6.1.1 will be proved at the end of this section. We note that
L?*(D,¢;) = L*(D). The existence for the weighted d-Neumann operator on any
pseudoconvex domain with smooth boundary follows from the discussion in Chapter
4. We briefly describe below.

From Proposition 4.3.3, we have for any (p, q)-form f € Dom(d) N Dom(a’;t)7

9?1 - _ = =+
[ 3 e frnTan e v < (37, + 13,0 12,
D Tk ', 0z;0%),
Using the notation || || = || ||¢, and 9, = 5;, we see that for any f € Dom(d) N
Dom(3;),
(6.1.1) tall £y < I10F I3y + 1195 17, -

Let O; = %: + 5:5. If f € Dom(;), from (6.1.1), we have that

tq |l f H(t) | of ||(t) +0; f ”(t)
(6'1'2) - (Dtﬁ f) t)
<G Nl ey -

Applying Lemma 4.1.1, (6.1.2) implies that the range of [J; is closed and [J; is one-
to-one. Thus, O, has a bounded inverse Ny, the d-Neumann operator with weight
¢¢. We can also show the following existence theorem of the weighted J-Neumann
operator on any bounded pseudoconvex domain by repeating the same argument
as in Theorem 4.4.1:

Theorem 6.1.2. Let D be a bounded pseudoconver domain in C™, n > 2. For each
0<p<n,1<qg<nandt >0, there exists a bounded operator Nt :L? (D) —

L%p’q) (D), such that
( ) Rcmge(Nt) (- Dom(l]t) NtDt = DtNt =1 on Dom(Dt)
(2) For any f € L(p’q)( ), f=00,N¢f ®0,0ON:f.
(3) ON; = N;d on Dom(9), 1 < q<n—1,
9, N, = N9, on Dom(d,), 2 < q < n.
(4) The following estimates hold: For any f € L?

(p,9)

(p,a) (D),

tq | Nef Iy < 11 f lloys
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IA

Vg | ONeSf Ny < 11 f llwys

VIO Nef ey < 1 f Dy -
5) If f € L2 (D) and f = 0 in D, then for eacht > 0, there exists a solution
(p.9)
U = ngtf satisfying Ou; = f and the estimate

t [l ue Gy < 1 F G -

In Chapter 4, we have chosen t = 6‘3, where § is the diameter of D, to obtain
the best constant for the bound of the 0-Neumann operator without weights. Our
next theorem gives the regularity for NV; in the Sobolev spaces when ¢ is large.

Theorem 6.1.3. Let D be a smooth bounded pseudoconvex domain in C", n >
2. For every nonnegative integer k, there exists a constant Sy > 0 such that the
weighted 0-Neumann operator Ny, maps W(I;%q) (D) boundedly into itself whenever
t> Sk, where 0 <p<n,1<qg<n.

Proof. We first prove the a priori estimates for V; when t is large. Let ¢; be the
formal adjoint of 0 with respect to the weighted norm L?(D, ¢;). Note that for any
f € C&iq) (D)7

Oif =e® (e f) = If +tAof

for some zeroth order operator Ao. Hence, we have that for any f € C7 q)(D) with
compact support in D,

QUE N =10f 15y + 1 9ef 117
— 1
> | of IIf,) + 5 I19f 1% = Ce Il f I
> fll=Coll £ 13,

where || f [lx= Eoga\gk 1D f -

Thus the Garding inequality holds for compactly supported forms and the esti-
mates in the interior are the same as before. We only need to estimate the solution
near the boundary. In the following, C' and C} will always denote a constant inde-
pendent of t.

Since the normal differentiation is controlled by 0, 9" and the tangential deriva-
tives, we shall only consider the action of tangential differentiations. Let U be a
special boundary chart near the boundary and wq, - - - , w, = 9dr be a special bound-
ary frame as before, where r is a defining function normalized such that |dr| =1
on bD. We let T* be a tangential operator of order k and n € C§°(U) as defined in
Proposition 5.2.5. We use induction on k to prove the following estimate:

(6.1.3) IR <Cru 1T 7, f € Dom(Ty) N CEy (D).

When k = 0, (6.1.3) holds for any ¢ > 0 by (6.1.2). We assume that (6.1.3) is
true for k — 1 where £ > 1.
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From the same argument as in Lemma 5.2.2, writing f in the special frame, we

see that if f € Dom(9;) N C’E’;q)(ﬁ), then nT*f € Dom(9) N Dom(d, ). We obtain
from (6.1.1) that

(6.1.4) T f (G < (1 OWT ) I + Il 9T  f) II2y))-

We note that the commutator [0, nT*] = Ay + At |, where Ay is a kth order
differential operator independent of ¢ and A} _, is of order k — 1. Thus, using
arguments similar to (5.2.6) and (5.2.7), keeping track of the dependence on ¢, we
have

18T ) [IEy + 1| @enT* f) It
< C(| 9T S Gy + | nT™0f I8y + 11 £ 117)
(6.1.5) +Cr | f 17
< Co(|nT* f, nT*Cef )| + 1| £ 117) + Cre || £ 7=s
< Cell nT* f Nl nT 0 f ey + I £17) + Cre | f 7y -

Combining (6.1.4) and (6.1.5), we get

(6.1.6) I aT*F Ity < Okl Bef NIk + 1 £ IR + Cre | f 71

where the constant C}, is independent of ¢.
Repeating the arguments of Lemma 5.2.4, we observe that

£ 117 < Coll Bef Moy + AR + Cra Il f 17 -

Summing up all the tangential derivatives of the form #T* in (6.1.6) and using a
partition of unity {n;}2,, such that Zivzl n? =1 on D, there exists a constant C,
such that

I F IR < Celll Ouf I1E + 11 f 17

(6.1.7) 2
+ Crt [| Ocf Iy + Chot

[ fllRes

Choosing t > Cj + 1, it follows, using the induction hypothesis, that

IFIE < Ce 1O IR + Cr || Ouf iy + Cr 1 £ lza
< Cr | 5ef k-

This proves the a priori estimates (6.1.3) for the weighted 9-Neumann operators N;
when ¢ is sufficiently large. Using the elliptic regularization method as in the proof
of Theorem 5.2.1, one can pass from the a priori estimates to actual estimates and
the theorem is proved.

Arguing as in Theorem 4.4.3, we can prove that the weighted d-Neumann opera-
tor Ny (p,0) also exists for ¢ = 0. Let P (, o) denote the weighted Bergman projection

from L%p,O)(‘D) onto the closed subspace H,0)(D) = {f € L(2p70)(D) | 0f = 0} with
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respect to the weighted norm L?(D, ¢¢). We have Ny 0y : L, 5)(D) — L, (D)
such that
Ot,0.0) Nt p0) = L = Prp,0)
and
Ni (po) = OFNE (,1y0.
As in the proof of Corollary 4.4.4, the weighted Bergman projection is given by
Py p0) =1 = 07 Ne,(p,1)0-

An operator is called exactly regular on W(’; q)(D)7 k > 0, if it maps the Sobolev

space W(’; (D) continuously into forms with W¥(D) coefficients. The following
theorem shows that all the related operators of N, are also exactly regular if V; is
exactly regular.

Theorem 6.1.4. Let D be a smooth bounded pseudoconvex domain in C™, n > 2.
For every nonnegative integer k, there exists a constant Sy > 0 such that for every
t > S}, the operators ONy, 5:Nt, %:Nt and 5:5Nt are exactly reqular on W(’;’q) (D),
where 0 < p <n, 1 <q <n. Furthermore, there exists a constant S,’c > 0 such that
fort > S}, the weighted Bergman projection Py, oy maps W(’;,O)(D) boundedly into
itself.

Proof. Let Sy be as in Theorem 6.1.3 and ¢t > Si. From Theorem 6.1.3, N; is a
bounded map from W(’; 7q)(D) into itself. We shall prove that ON; and 5: N, are

exactly regular simultaneously. As before, since 9 & 0, is elliptic, we only need to
prove a priori estimates for the tangential derivatives of 0N, f and 9 N.f for any

f el (D). Let g and T be as in Theorem 6.1.3 and let Oy(]| f ||) denote terms

which can be bounded by Cy || f ||. We have
| nT*ONLf 17 + | nI*a, N, f 1%
= (nT*ON,f, ONT N, f) () + (nT*0; N f, 5:nTkZth)(t)
+ Ou((| nT* NS ||y + | nT* O N f lly) | Nef Ilw)
= (nT"0;ONuf, nT*Nof)o) + (1T 00, Nof, nT* Nif) o
+Ou((| T NS Ny + || nT*B Nef Ny) | Nef Il + 1| Nef [17)
= (MT*TNf, nT*Nof) )
+ O nT NS Nl + | nT*O Nef 16) | Nef [l + Il Nef 1I7)
SO llell Nef lle
+ Co((| nT*ONS Nty + | 0T 0, Nef Nlk) || Nef Il + | Nef 117)-

Using small and large constants in ab < ea® 4+ 1b?, it follows from (6.1.3) that
I nT NS Ml + I 0T, Nef Nty < Cret |1 f s -

By a partition of unity and arguments as before, we obtain the desired a priori
estimates

FONS Ik + 11 D¢ Nef Ik < Cre I f Nl -
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For the operators %;Nt and 5:5Nt, 1 < q <n, we have

| nT*8, 0N, f 17 + | nI*99, N, f 1%
= (NT*9, 0N, f, nT’@Z‘?Ntf)(t) + (nT*80; N, f, nTk%:Ntf)(t)
= (TN f, nTFONf) )
— (nT*99, N f, nT"'52‘5Ntf)<t> — (nT"0, 0N f, UTk%:Ntf)(t)
= (T*f, nT* )ty = (19, nT*)BO; Nif, nT*ONf)r)
— ([0, nTMD;ONf, nT D, Nef)) + E
= (nT*f, nT* )ty = ([0, nT*|0, Nif, nT*3, 0N f)r)
—((0;, nT"ONf, nT*30; Nef)) + E,

where the error term E can be estimated by

(I nT 39, Nof Iy + | 1T 0, N |ty (| ONeSf NIk + || D Nef [1x)
+ | ONS I + | e Nef 17 -

Since ON; and 5: N; are already known to be exactly regular on W("Z’) Aq)(D), we
obtain using small and large constants that

I nT* 30N f I3y + || nT 99, Nof |3y < Crot Il £ 117 -
Summing over a partition of unity, we have proved

| D ONLf |7 + | DO, Nof 17 < Crt || £ 117

when t > Sg. - B
It remains to prove the exact regularity for P, 0) = I — 0f Ny (,1)0. We use

induction on k to prove the a priori estimates for 9, Ny, (p,1)0- The case when k =0
is obvious. Denoting Ny (, 1) by N¢, we have

| nT*0; NiDf |,

= (nT*9, N9, WTkg;thgf)(t)

= (T* N Df, T 0, N.:0f )ty + O(| NeDf ||| O, NiDf ||1)

= (T*NOf,nT*0f) 1y + O(|| Nidf ||x]| 9, N:DS |Ix)

= (IT*0; Nydf,nT* )y + Ol NS |l (Il f Il + 1 B NeDf ||x))-

Summing over a partition of unity and using the fact that 9 @ ¥, is elliptic, the
small and large constants technique gives

(6.1.8) 19, NS |7 < Cilll £ 117 + | NDS [17)-
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Using estimate (6.1.1) to nT*N;3f, we obtain
(6.1.9) t | nT* NS |1}y < || InT*NDS I + | 9ynT* NS I3y -

Since [0, nT*] + [0¢,nT*] = By, + B! _, where By, is a kth order differential operator
independent of ¢ and Bj,_, is a differential operator of order k — 1, it follows that

90T  NDF [Ty + || 9T NS |

< Ce( | O, NOf |12 + || NeDS 112) + Cror || NOS |31 -

We see, using induction, that 07 N0 is bounded on W*~1(D). The above argument
implies that N;0 is also bounded on W*~1(D). Thus, after summing over a partition
of unity, if ¢ is chosen to be sufficiently large in (6.1.9), we obtain that

(6.1.10) I NoOf 17 < € | 9 Nedf |7 + Croe || f l71s

for some small € > 0. Letting € be sufficiently small, (6.1.8) and (6.1.10) together
show o
| 9, NS I < Che

£k -

This proves the a priori estimate for 5: N,0 and Theorem 6.1.4.

We remark that the positive number S; in Theorem 6.1.4 can be chosen to be
the same as in Theorem 6.1.3.

Corollary 6.1.5. Let D be a smooth bounded pseudoconver domain in C", n > 2.
If f e W(’; q)(D), k > 0, such that 0f =0, where 0 < p <n and 1 < q < n, then

there exists u € W(kp,qq)(D) such that Ou = f on D.

Proof. Since Of = 0, using Theorem 6.1.2u = E:Ntf is a solution to the J equation
for any ¢ > 0. If ¢ is sufficiently large, 9; N; is bounded on W(’; q)(D) by Theorem
6.1.4. This proves the corollary.

Proof of Theorem 6.1.1. From Corollary 6.1.5, there is u € W(’; a—1)

Ouy, = f for each positive integer k. We shall modify uy, to generate a new sequence
that converges to a smooth solution. _

We claim that W (D) N Ker(9) is dense in W¢, (D) N Ker(9) for any m >
s> 0.

Let g, € C&j’q)(ﬁ) be any sequence such that g, — g in W§, q)(D). Using
Theorem 6.1.4, for sufficiently large ¢, the Bergman projection with weight P, =
P, (p,q) is bounded on W(’;q)(D). Since dg = 0, we have g — P,g = 9 N;0g = 0.
Thus, Pgn = g, € W (D), dgl, = 0 and g, — g in Wi, (D) since Py is also
bounded on W, (D). This proves the claim.

Since ug — Ugy1 i in W(];,qq)(D) N Ker(9), there exists a vy € W(];El_l)(D) N

(D) satistying

Ker(0) such that

| up — ups1 —vpsr I <27F, k=1,2,---.
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Setting @g11 = Ukr1 + Vgr1, then gy € W(];Jr;_l)(D) and Oiig,1 = f. Inductively,

we can choose a new sequence 4y, € W(’; 4—1)(D) such that Oty = f and

H ak+1_ﬂk Hk §2_k7 k:1,27

Set -
Uoo =N + Y (g1 — k), N €N
k=N
Then uo, is well defined and is in W(]Z,q_l)(D) for every N. Thus us € C’(O;q_l)(ﬁ)

from the Sobolev embedding theorem and dus, = f. This proves Theorem 6.1.1.
We also obtain the following result in the proof:

Corollary 6.1.6. Let D be a smooth bounded pseudoconvex domain in C™, n > 2.

Then C3 (D) N Ker(0) is dense in W§, (D) N K«:r(@) in the W, (D) norm,
where 0 < p < n and 0 < g < n. In particular, C*(D) N O(D) is dense in H(D)
in L?>(D), where H(D) is the space of all square integrable holomorphic functions.

6.2 Sobolev Estimates for the 9-Neumann Operator

In this section, using the vector field method we shall give a sufficient condi-
tion for verifying global regularity of the -Neumann problem on a certain class of
smooth bounded pseudoconvex domains. In particular, this method can be applied
to convex domains and circular domains with transverse symmetries.

Let D C C",n > 2, be a smooth bounded pseudoconvex domain, and let r be a
smooth defining function for D. Set

4 “or 0
”_|v7~|2j§::133] 0z,
if [Vr| # 0, and
L or 9 or 9 for 1 <j<k<n.

k= 6Zj 6zk 8zk 82’]'7
We have L,r =1 in a neighborhood of the boundary and the L;;’s are tangent to
the level sets of . Also, the Lj;’s span the space of tangential type (1,0) vector
fields at every boundary point of D.

Denote by X,, = (|Vr|/v/2)L,, the globally defined type (1,0) vector field which
is transversal to the boundary everywhere. Obviously, we have || X,, || = 1
in some open neighborhood of the boundary. Thus, near every boundary point
p € bD, we may choose tangential type (1,0) vector fields X1, -, X,,_1 so that
Xy, -+, Xn_1 together with X,, form an orthonormal basis of the space of type
(1,0) vector fields in some open neighborhood of p. We shall also denote by
w1, ,wy the orthonormal frame of (1,0)-forms dual to X5,---, X, near p. Note
that w, = (v2/|Vr|) > 5=1(0r/0z;)dz; is a globally defined (1,0)-form in some open
neighborhood of the boundary.

The main idea of this method is to construct a real tangential vector field 7" on
some open neighborhood of the boundary such that the commutators of T" with
X1, ,Xpn, X1, -+, X, have small modulus in X,, direction on the boundary. We
formulate the required properties of 7" in the following condition:
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Condition (T). For any given € > 0 there exists a smooth real vector field T =T,
depending on €, defined in some open neighborhood of D and tangent to the boundary
with the following properties:

(1) On the boundary, T can be expressed as
T =ac(2)(Ln, — L,), mod (T*°(bD) & T*'(bD)),

for some smooth function ac(z) with |ac(z)] > 6 > 0 for all z € bD, where §
is a positive constant independent of . B

(2) If S is any one of the vector fields L, Ly, Lj, and L, 1 < j <k <mn,
then

[T,S]|yp = As(2)Lyn, mod (T*°(bD) @ T**(bD), L,,),

for some smooth function Ag(z) with sup|As(z)| < e.
bD

Here is a simple observation: Near a boundary point p, we have, say, 9r/9z,(p) #
0. Thus, for each j =1,--- ,n — 1, we may write

n—1

X; = cixLin,
k=1

for some smooth functions c;;. It follows that if condition (7') holds on D, then
property (2) of condition (7)) is still valid with S being taken to be X;’s or X ;’s for
j=1,---,n—1, where X;’s are defined as above in some small open neighborhood
of p.

Now we are in a position to prove the main theorem of this section.

Theorem 6.2.1. Let D be a smooth bounded pseudoconvex domain in C™, n > 2,
with a smooth defining function r. Suppose that condition (T) holds on D. Then
the 0-Neumann operator N maps W(Sp’q)(D), 0<p<n, 1<q<n, boundedly into
itself for each nonnegative real s.

Proof. We shall prove the theorem only for nonnegative integers. For any nonneg-
ative real s, the assertion will follow immediately from interpolation (see Theorem
B.3 in the Appendix).

In view of the elliptic regularization method employed in Chapter 5, it suffices
to prove a priori estimates for the 9-Neumann operator. The proof will be done by
induction on the order of differentiation. Let us assume that the given (p, ¢)-form
fe C’&f’q)(ﬁ) and the solution u = N, f to the equation Ou = (99" +8 0)u = f is
also in C7 ) (D).

The initial step s = 0 is obvious, since N is a bounded operator by Theorem
4.4.1. To illustrate the idea, we prove the case s = 1 in detail. First, we choose
boundary coordinate charts {U,}7_; such that {U,}7, and Uy = D form an open
cover of D. We shall assume that |[Vr| > ¢ > 0 on U"_,U, for some positive
constant c¢. Let {(,}7, be a fixed partition of unity subordinate to {U,}7_,. On

each Uy, 1 < a<m, let war, k=1, ,n be an orthonormal frame of (1,0)-forms
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dual to Xak, K = 1,--- ,n. We note that wy, = wy, @ = 1,--- ,m, is a globally
defined (1,0)-form dual to X,, = (|Vr|/v/2)L,,. Similarly, Xo, = X, a = 1,--- ,m,
is also a globally defined type (1,0) vector field.

On each boundary chart U,, a« = 1,--- ,m, we may write

u=u E uIJw"I/\w

where w®!

= Wai; N+ Awag, and o) = Wajy N+ ANWaj,. Let T be the smooth
real vector field on D satisfying the hypothesis of condition (T). For each s € N, we

define

m

(6.2.1) Tu = T°((ou) + ZZ (Cauf ;) w™ Aw™!
a=1 I1,J

Thus, T%u € Dy, q4) using Lemma 5.2.2.

Set
| Xu | = Z Z k(Cauf ) |17,
a=1 I,J k=1
and

|
—

n
!/

IX =33 I Xar(Cauf 5) -
1.7

a=1

e
Il
—_

From estimate (4.3.1), with ¢ = 0, and (4.4.6) we obtain, using Theorem 4.4.1,

(6.2.2) I Xw |+ lu* S Oul® + 0 u|?
=[ONfIP+ 1O NFIPSIFIP
Since, by integration by parts, for 1 <a<mand 1 <k <n-—1,

I Xar(Catf 5) I? = | Xar(Cauf o) 17 + O Xull + [ Tu || + [l wll) ||
using small and large constants, we have
(6.2.3) X | Sl X+ w1+ (se) || Tu |
Here (sc) denotes a small constant that can be made as small as we wish. Esti-
mates (6.2.2) and (6.2.3) together with the interior estimate indicate that if one
can control || Tu ||, then || u ||; can be estimated. For this reason we shall call

Xotr s Xan-1:Xat, Xan—1 and Xan, 1 < a < m, “good” directions.
Our aim thus becomes to estimate || Tw ||. First, the basic estimate shows

I Tul® S 0Tulf® + (10 Tu |
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We estimate the right-hand side as follows.

| 0Tw ||? = (0T u,0Tu)

= (Tu,0Tu) + ([0, T|u, 0T u)

= (Ou, —0T?u) + (Ou, [0, T)Tu) + ([0, T|u, 0Tu)
+ O 3Tu ||| Fu |)

= (Ou, —0T*u) + (9u, [[0, T), T|u) + (—=Tu, [0, T]u) + ([0, T]u, dTw)
+O(( 07w || + [l w 1) | 9w )

= (0" Ou, —T?u) + (9u, [[0, T, T)u) + (=0T, [0, T|u)
+ 1110, TIu |* + ([0, T]u, 0Tw) + O((| 9Tw || + || w [[1) || 9w ||).

Note that
Re{(=0Tu, [0, T)u) + ([0,T|u,0Tu)} = 0.

With similar estimates for || & Tu ||, we obtain

1T w|? + 110" Tu > S I £ 1T + (se) | Tu |I® + (se) [ w3
+ 0. Thu I + 1107, Thu |-

In order to estimate the crucial commutator terms || [0, T]u || and || [0, T]u |,
we shall use the hypothesis on T'. First, from our observation right before Theorem
6.2.1, it is easy to see that on each boundary coordinate chart the commutators
between T and X1, -+, X,,_1, X1, -+ , Xn_1 can be controlled using the hypothesis
on T. Thus, we need to consider the commutator between T'and X, (or X,,) which
occurs, when commuting 7' with @ (or @), only for those multiindices (I, J) with
n ¢ J (orn € J). Such terms can be handled as follows:

(X0, T)(Caud ) = [(IV7]/V2) Lo, T)(Casf )

(IVr/V2) L, T)(Cari? ) = (T(IV7|/V2) L (Carf )
(IVr/V2) L, TN(Caud ) = (T(VT)/ V)X n (Catif ),

for « =1,--- ;m. Using the basic estimate, we obtain
ZZ T(Vr)/IVr)Xa(Caug ) 12 SN 0w+ 110w 2 S I FI?-
a=1ngJ

The remaining commutator terms can be estimated directly using the hypothesis
on T. Thus,

10, Tu|? < ZZ || T(Cauf ) 1P+ 1 Xu >+ | X u|? + | £17
< (&Y | Tl 4+ || Xu >+ | X >+ £ 7
SAE: u U U i
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For || [0, T)u || we commute T with X, if n € J. Hence,

(X, T)(Gatuf s) = (IVr1/V2)[Ln, TV(Gats§ 5) — (T(IVr]) /1Y) X (Cad ),

fora=1,---,m. Observe that £X,(C,uf ;) appears in the coefficient of wo I A H
with {n} UH = J in 8 u. Meanwhile, all the other terms in the coefficient of
wI ANG¥H are differentiated by Xi,---, X,_1 only. Thus we have

ZZI @AV /IVr) X (Gau ) 1P S 187w+ 1 X'u P+ 1] £ 3,

a=1neJ

and get the estimates as before. Here we use || f || to control the interior term.
Now we first choose (sc) to be small enough, and then e to be sufficiently small.
From (6.2.3) we obtain

10, Tl |2+ 1107, Thu |I* S 1V X |1+ 1 £ 15+ | Tu |,

where v > 0 is a constant that can be made as small as we wish. Combining these
estimates, if we let v be small enough, we get

I Tull® < 0T |+ (10 Tu | S fIF + (so) [l

This implies
[ulle <CF s

for some constant C' > 0 independent of f, and the proof for s = 1 is thus complete.
Assume that the d-Neumann operator N is bounded on W(SZ;;)(D) for some
integer s > 2, i.e.,
[ wlls—1 < Cs—1 || £ lls=1,

where Cs_1 > 0 is a constant independent of f. The strategy here is the same as
before. Using basic estimate and the induction hypothesis, we first establish the
following a priori estimate

624 | 7% 2 S 97 |2+ 37T |
SIFIE+ (so) lulls

The next step is to consider the action of an arbitrary tangential differential op-
erator of order s. Using (6.2.4), it suffices to consider the estimate near a boundary
point p. Let U be a boundary coordinate chart near p, and let wy, -+ ,w, be an
orthonormal basis for (1,0)-forms on U dual to Xy, -, X,, defined as before. De-
note by Op(s,j), 1 < j < s, a tangential differential operator of order s formed out
of X1, ,Xn_1,X1,+,X,_1 and T with precisely s — j factors of 7. Let ¢ be
a cut-off function supported in U such that ( = 1 in some open neighborhood of p.
We claim that

(6.2.5) 10p(s, )Cu I* S I F 112+ (se) [l ]2,
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for all 0 < j < s. Estimate (6.2.5) will be proved by induction on j. The initial
step j = 0 is done by (6.2.4). Hence we assume Estimate (6.2.5) holds up to j — 1
for some 1 < j < s. We need to show that (6.2.5) is also true for j. Denote by X;
any one of the vector fields X1, -+, X,_;. Then, by commuting one X; or X; to
the left and applying integration by parts, it is easily seen that

[ Op(s,)¢ul* S FI2 + Il X¢eOp(s — 1,5 — 1)¢u ||* + || Op(s,j — 1)Cu ||

Thus, (6.2.5) is proved inductively for all 0 < j <'s.

Estimate (6.2.5) shows that all the tangential derivatives of order s can be con-
trolled. Finally, using the noncharacteristic nature of the 9-Neumann problem, we
also control the differentiation in the normal direction. Therefore, a partition of
unity argument gives

[ulls SUFlls + (se) [l ulls

which implies, by choosing (sc) sufficiently small,

Fulls S ls -

Hence, by an induction argument the proof of Theorem 6.2.1 is now complete.

Theorem 6.2.1 provides us with a method for verifying the regularity of the 0-
Neumann operator N. Once the regularity of N is known, we may also obtain the
regularity of other operators related to the d-Neumann operator N as shown in the
next theorem.

Theorem 6.2.2. Let D be a smooth bounded pseudoconvexr domain in C", n > 2.
If the 0-Neumann operator N is exactly reqular on W(Sp q)(D) for 0 < p < n,

1 <qg<mnands >0, then so are the operators ON, g*N,%*N, 9 ON and the
Bergman projection P, o).

Proof. The exact regularity of the operators 0N, N , 99°N and 9 ON can be
proved as in Theorem 6.1.4.

For the regularity of the Bergman projections P, ), we may assume p = 0.
Denote as before by P the Bergman projection on functions and by P; the weighted
Bergman projection. Let ®; be the multiplication operator by the weight etz
Then for any square integrable holomorphic function g and any square integrable

function f, we have
(Pfa g) = (fa g) = ((I)—tf7g)t = (Ptq)—tfag)t = ((I)tpt(q)—tf)ag)'

Hence, we get P = P®;P,®_;. Recall that P = I—3 N9 on smooth bounded pseu-
doconvex domains (Theorem 4.4.5). Thus, the Bergman projection P on functions
can be expressed as

P=&P®_ -0 N ((0D)Pd_,).

Since it has been proved that & N; preserves W 1)(D) for each nonnegative real

s, if we choose t to be sufficiently large, Theorem 6.1.4 implies that P maps W*(D)
boundedly into itself. This proves the theorem.
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Now, we will construct the vector field T when the domain D has a plurisub-
harmonic defining function or transverse circular symmetry. We say that a smooth
bounded domain D has a plurisubharmonic defining function if there exists some
smooth defining function r(z) for D satisfying

0%r

(6.2.6) ———(2)tjt, >0 for z € bD and t € C".
j%z:l 020z

Note that (6.2.6) is required to hold only on the boundary, and not in a neighbor-
hood of the boundary. Also, (6.2.6) implies D must be pseudoconvex.

Theorem 6.2.3. Let D C C",n > 2, be a smooth bounded pseudoconvexr domain
admitting a plurisubharmonic defining function r(z). Then the 0-Neumann operator

N is exactly reqular on (Sp’q)(D) for0<p<n,1<q<n and all real s > 0.

Proof. The proof is based on the observation that if (z) is a defining function for D
that is plurisubharmonic on the boundary, then for each j, derivatives of (0r/0z;) of
type (0, 1) in directions that lie in the null space of the Levi form must vanish. For
instance, if coordinates are chosen so that (9/9z1)(p) lies in the null space of the Levi
form at p € bD, then (8?r/9210z1)(p) = 0. Since r(z) is plurisubharmonic on the
boundary, applying the complex Hessian ((0?r/9z; 8Ek)(p));{k:1 to (@, 1,0,---,0) €
C™ for any a € C, we obtain

8%r 8%r
2 B >
Re (a D507, (p)) + 022075 (p) 20,

which forces (02r/0220z1)(p) = 0. Similarly, we get (8%r/9z;0z1)(p) = 0 for 1 <
7 < n.

Fix a point p in the boundary, then (0r/0z;)(p) # 0 for some 1 < j < n.
Choose such a j and set X, = (9r/0z;)~(8/0z;) in a neighborhood of p. Let
Ly, -+, L,_1 be alocal basis for the space of type (1,0) tangential vector fields near
p. We may assume that Lq,---,L,_1 are tangent to the level sets of r and that
the Levi form is diagonal at p in this basis, namely, ([Ly, L;], L,)(p) is a diagonal
(n — 1) x (n — 1) matrix, where { , ) is the standard Hermitian inner product.
Now if the kth eigenvalue is zero, then by the above observation L annihilates the
coefficients of X, at p. It follows that the system of linear equations

n—1
Z<[Zk’Lj]an>(p)aj = <[Zk7X;D]’Ln>(p)7 1<k<n—-1,
j=1

is solvable for a1, -+ ,a,_1 € C. This implies that

(|- jzllaij,Lk],Ln>(p) ~0

for k = 1,--- ,n — 1. On the other hand, since X,(r) = 1 = L,(r), there exist
scalars by, ,b,_1 such that

n—1 n—1
Ln=Y biLj=X,— Y a;L;.
j=1 j=1
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Therefore, given ¢ > 0, it is easily verified by using a partition of unity {¢;}7™,
with small support that one may patch L,, — Z;:ll b; L; together to form a globally

defined type (1,0) vector field X = L, — Y, where Y = ", Q(Z;L;ll bjL;) is a
globally defined tangential type (1,0) vector field, such that

(6.2.7) sup [([X, L], Ln)| < e,
bD

for1 <k <mn-—1. Since X — X is a purely imaginary tangential vector field, the
commutator [X — X, L], 1 <k <n—1, is also a tangential vector field. Thus, we
may write

(X - X, L] = ax(L, — L), mod (T*°(bD) ® T (bD)),
for 1 <k <n-—1. By (6.2.7), we have |ay| < € on the boundary. It follows that

(6.2.8) sup [([X — X, 8], Ln)| <,
bD

when S is any one of the tangential vector fields Ly,--+,Ly_1, L1, -, Lp_1. In
particular, we may achieve that

(6.2.9) sup [([X — X, Y = Y], L,)| <e¢,
bD

where e might be different from that in (6.2.8). Since L,r = 1 in a neighborhood
of the boundary, we have

(X — X, Ln)r = (X = X)L (r) — Ln(X — X)r =0,

which implies the vector field [X — X, L,,] is tangent to the level sets of r. It follows
that [X — X, ReL,] is also a tangential vector field and we can write

(6.2.10) [X — X,ReL,] = B(L, — L,), mod (T*°(bD) @ T**(bD)),

where 3 is a real-valued function defined in some neighborhood of the boundary.
Now, we set

(6.2.11) T=eP(X-X).

Obviously, T depends on € and satisfies property (1) of condition (T) on the bound-
ary. If S is any one of the vector fields Ly, -+, L,,—1, L1,-+ , L,_1, we have

<[Ta S]a Ln>|bD = <[X - Y7 S]y L7L>‘bD-
For L, using (6.2.10) we get

([T, Ln], Ln) oo = ([e"(X — X),ReLy], L) |op
1

+ 5 ([ (X = X), Ln = L), L) op

=04+ (X - X,Y =Y, L))o

N =
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Similarly, we obtain
_ 1 _ .
([T,Ln],LngD:*§<[X*X,Y* |, L) |op-

Thus, by (6.2.8) and (6.2.9) we see that the vector field T satisfies all the hypotheses
of condition (T). Hence, by Theorem 6.2.1, we have proved Theorem 6.2.3.

Theorem 6.2.3 gives a sufficient condition for verifying the exact regularity of the
O-Neumann operator. However, this condition in general is not satisfied by every
smooth bounded pseudoconvex domain. For instance, by Theorem 6.4.2, the worm
domain constructed in Section 6.4 does not enjoy this property. Next, we show that
this condition indeed holds on any smooth bounded convex domain. Hence, the
O-Neumann problem is exactly regular on any convex domain.

Let D C RN, N > 2, be a smooth bounded convex domain, and let the origin be
contained in D. For any x € RY, the Minkowski functional y(x) is defined by

(6.2.12) w(z) = inf{\ > 0| z € AD},

where AD = {\y| y € D}. Since the boundary of D is smooth, u(z) is smooth on
RN \ {0}. If  # 0, then the ray oz will intersect the boundary bD at exactly one
point, named 2’. It is easy to see that the Minkowski functional p(z) is equal to
the ratio between d(0,2) and d(0,z’), where d(p,q) = dist(p,q). Hence, we have
x = p(z)x.
Lemma 6.2.4. Let D be a smooth bounded convexr domain in RN containing the
origin, and let the Minkowski functional p(x) be defined as in (6.2.12). Then u(x)
is a smooth, real-valued function on RN \ {0} satisfying the following properties:
(1) w(x) is a defining function for D, i.e., p(x) =1 and Vu(z) # 0 for x € bD,
(2) (e +y) < p(x) +ply) for v,y € RY,
(3) plax) = ap(x) for x € RN and a > 0.

Proof. Obviously, u(x) is a smooth, real-valued function on RY \ {0}. (1) and (3)
are also clear. To prove (2), let 2,y # 0 be two points in RY, and let 2’,3’ be the

intersections with the boundary of the rays oz and o_y) respectively. Then we have
p(@ +y) = p(p(@)a’ + uly)y')

o ) wy)
= (u(z) + p(y)p (,u(x) + u(y) * w(x) (y)y>
< () + u(y).

Here we have used the fact that D is convex so that the point z = (u(x)/(p(z) +
wy))z" + (u(y)/(p(z) + p(y)))y’ lies in the closure of D. Hence, pu(z) < 1. This
proves the lemma.

It follows from (2) and (3) of Lemma 6.2.4 that u(z) is convex. Consequently,

N

(6.2.13)

for € RN \ {0} and any a = (a1,--- ,ay) € RY. In particular, we have proved
the following theorem:



136 Boundary Regularity for & on Pseudoconvex Domains

Theorem 6.2.5. Let D be a smooth bounded convex domain in C",n > 2. Then
the 0-Neumann problem is exactly regular on W(gp ?) (D) for0<p<mn,1<q¢g<mn
and s > 0.

Another important class of pseudoconvex domains that satisfy the hypotheses of
condition (T) are circular domains with transverse symmetries. A domain D in C”

is called circular if e - z = (e¥2,--- , ¢%2,) € D forany 2 € D and § € R. D is
called Reinhardt if (€1 zy,--- e 2,) € D for any z € D and 6;,--- ,0, € R, and
D is called complete Reinhardt if z = (21, - ,2,) € D implies (wy, -+ ,w,) € D

for all |w;| < |z;],1 < j < n. Thus, a Reinhardt domain is automatically circular.
Let D be a smooth bounded circular domain in C™,n > 2, and let (z) be defined
as follows

(6.2.14) r(z) = { d(z,bD),  for z ¢ D

—d(z,bD), for z € D,

where d(z,bD) denotes the distance from z to the boundary bD. Then it is easy to
see that 7 is a defining function for D such that 7(z) = r(e? - 2) and that |[Vr| =1
on the boundary. Denote by A the map of the S'-action on D from S* x D to D
defined by

A:8'xD—D

6 6 0

(€,2) = e 2= (&2, ,€?2,).
For each fixed 6, A is an automorphism of D and A can be extended smoothly to
a map from S' x D to D. Hence, for each fixed z € D, we consider the orbit of z,

namely, the map

7.:S'—=D
€lai—>619'z.

Then, 7, induces a vector field T on D, in fact on C", by

~ 0 ~~_ 0
=1 Zi—— — 1 25—,
0_0> ]2 J@Zj ; jazj

o
(6.2.15) T, =7, (39

where 7, , is the differential map induced by m,. Note that T is tangent to the level
sets of r. In particular, T is tangent to the boundary of D.

Definition 6.2.6. Let K be a compact subset of the boundary of a smooth bounded
circular domain D. D is said to have transverse circular symmetry on K if for each
point z € K the vector field T defined in (6.2.15) is not contained in T}°(bD) &
T9Y(bD).

It is obvious from (6.2.15) and Definition 6.2.6 that D has transverse circular
symmetry on the whole boundary if and only if 22‘;1 2j(0r/0z;)(z) # 0 on bD.
Then, we prove
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Theorem 6.2.7. Let D C C™,n > 2, be a smooth bounded circular pseudoconvex
domain and let v be defined by (6.2.14). Suppose that Z?Zl zj(0r/0z;)(z) # 0 on

the boundary. Then the O-Neumann problem is exactly regular on W(Spyq)(D) for
0<p<n,1<qg<nands>0.

Proof. Let T be the vector field defined in (6.2.15). By assumption 7' is transversal
to T10(bD) ® T%1(bD) everywhere on the boundary. Let L/, = (|Vr|?/4)L,, and

or 0 or

0
— for1 <j<k<
8zj 8Zk 3zk aZJ or j -

ik =

It is easy to verify that [T',0/0%;] = i0/0%z; and [T,0/0z;] = —i0/Jz;. Then, we
have

[T, L T, —
3] zj 3zk azk 8zj]

(a ) ([ aiD
(az D)

(O 0 _or 0
0zj Oz, Oz 0%

= —QZLJk,

or 0
-7 (azk> 623 Oz {T’ 82]}

8z] 8zk

0z,
oo
0z; azk 823

forall 1 <j <k <mn,since Tr =0, and

>

0z
or 0 or 0
T(a)a a[TaD

;or 9, 0r 9
87 0z Zj %j 8zj

[T,L] =

—
\)

Il
NgE B

Jj=1

I
M:

1

I
)

Similarly, we have [T, f;] = 0. Since L, = (4/|Vr[*)L!, and |Vr| =1 on bD, it is
easily seen that
[T, Lnllop = [T, Ln][ep = 0.

Hence, condition (T) holds on D. By Theorem 6.2.1 this proves Theorem 6.2.7.

The next result shows that a complete Reinhardt domain always enjoys transverse
circular symmetry.
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Theorem 6.2.8. Let D C C",n > 2, be a smooth bounded complete Reinhardt
pseudoconver domain with a smooth defining function r(z) = r(e1zy,--- e z,)
for all 01,---,0, € R. Then, we have Z?:1 zj(0r/0z;) # 0 on bD. In particular,
the &-Neumann problem is exactly reqular on W(‘(’p ?) (D) for0<p<mn,1<qg<n
and s > 0.

Proof. Let T be defined by (6.2.15). Put L = 37, 2;(9/dz;). Then, by our
construction, we have
Tr=—-2ImL(r) =0

on the boundary. Hence, it suffices to show that ReL(r) # 0 on the boundary.
This is, in turn, equivalent to showing that the real vector field >, (z;(9/9x;) +
y;(0/0y;)) is transversal to the boundary everywhere.

Suppose now that for some point p € bD we have

This implies that the point p = (z1(p),y1(p), -, Tn(p), yn(p)) is perpendicular
to the normal (9r/dxy, Or/0y1, -+, Or/0x,, Or/Oy,)(p). We may assume, by
rotation, that z;(p) > 0 and y,;(p) > 0 for 1 < j < n. Hence, by elementary
tangent approximation, there exists a point ¢ € D such that |z;(¢)| > |z;(p)| and
lyi(q)| > ly;(p)| for 1 < j < n which in turn shows |z;(p)| < |z;(¢)| for 1 < j < n.
Since D is a complete Reinhardt domain, we must have p € D. This contradicts the
fact that p is a boundary point. In view of Theorem 6.2.7, the proof of Theorem
6.2.8 is now complete.

6.3 The Bergman Projection and Boundary Regularity of Biholomorphic
Maps

As an application of the regularity theorem proved earlier for the d-Neumann
operator, we shall investigate the boundary regularity of a biholomorphic map in
this section. Recall that a holomorphic map f between two domains D; and Do
is called biholomorphic if f is one-to-one, onto and the inverse map f~' is also
holomorphic.

Let D be a domain in C". we denote by H(D) the space of square integrable
holomorphic functions on D as before. Obviously, H(D) is a closed subspace of
L?(D), and hence is itself a Hilbert space. If D = C", then H(C") = {0}. Thus,
we are interested in the case when H(D) is nontrivial, in particular, when D is
bounded. For any w € D, it is easily verified that the point evaluation map

Ay H(D)—C

by Cauchy’s estimate, satisfies

(6.3.1) |f(w)] < cd(w)™" || f llL2(p)
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where d(w) is the distance from w to the complement of D, and the constant ¢
depends only on the space dimension n. Hence, by the Riesz representation theorem,
there is a unique element, denoted by Kp (-, w), in H(D) such that

fw) = A(f) = (F, Kp (- w)) = /D f()Ep(zw)dV.,

for all f € H(D). The function Kp(z,w) thus defined is called the Bergman kernel
function for D. By (6.3.1) the Bergman kernel function clearly satisfies

(6.3.2) | Kp(w) |22y < cd(w) ™",

for any w € D.
Next we verify a fundamental symmetry property of Kp(z,w). We shall some-
times omit the subscript D if there is no ambiguity.

Lemma 6.3.1. The Bergman kernel function K(z,w) satisfies
K(z,w)=K(w,z), forallzwéeD,
and hence K(z,w) is anti-holomorphic in w.

Proof. For each w € D, K(-,w) € H(D). Hence, by the reproducing property of
the kernel function, we obtain

K(va) = (K( >w)3K("Z))
= (K(7Z),K( 7w))
= K(w, 2)

This proves the lemma.

Since H(D) is a separable Hilbert space, the Bergman kernel function can also
be represented in terms of any orthonormal basis for H(D).

Theorem 6.3.2. Let {¢;(2)}32, be an orthonormal basis for H(D). Then
(6.3.3) K(z,w) =Y ¢;(2)é;(w), for (z,w) € D x D,
j=1

where the series (6.3.3) converges uniformly on any compact subset of D x D. In
particular, K(z,w) is holomorphic in (z,w) € D x D*, where D* = {w | w € D},
and hence K(z,w) € C*°(D x D).

Proof. For any fixed w € D, from general Hilbert space theory we have

K(zw) =Y (K(,w),6;(-)$;(2)

J

I
-

(@5 (), K(-,w))p;(2)

<
I
—

j(w)d)j (Z)v

<.
I
—
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where the series converges in the L? norm, and

(6.3.4) | KCow) 2y =D (K w), ¢ (NP =D 8 (w)]?
j=1 j=1

Since pointwise convergence is dominated by L? convergence in H(D), we obtain the
pointwise convergence of (6.3.3). Therefore, to finish the proof, it suffices to show
by a normal family argument that | Z L1 0(2)¢j(w)|, for any m € N, is uniformly
bounded on any compact subset of D x D. Thus, letting M be a compact subset
of D, for any (z,w) € M x M, then (6.3.4) together with (6.3.2) shows

\ Zm 2)l165(w)]

N
Nl=

<D I (2P > lg(w)?
=1 =1
S CM»

for some constant Cj; > 0 independent of m. This completes the proof of the
theorem.

The Bergman kernel function in general is not computable except for special
domains. When D is the unit ball B, in C", we shall apply Theorem 6.3.2 to
obtain an explicit formula for the Bergman kernel function on B,,. Obviously, {2}
is an orthogonal basis for H(B,,), where the index o = (1, - , ;) runs over the
multiindices. We shall normalize it using the fact, for s,t € Nand 0 < a < 1,

Ve L2\t ) !
/ m28+1 <1 _ > d.’L' — 5(1 _ a2)3+1/ ys(l _ y)t+1dy
0

1
= 5(1 —a®)* "' B(s +1,t +2)

= 1(1 _ a2)s+1w
2 I'(s+t+3) ~’



6.3 The Bergman Projection 141

where B(-,-) is the Beta function and I'(+) is the Gamma function. Hence

2 ey = [ [l e,

n

s
= m/ |Z1|20t1 . ‘anl‘Qan—l(l — |Zl|2 . — |zn71|2>a"+1dVQn,2
n Bn—l
™
= m/ |Zl|2a1 ‘Zn_Q‘Zan_z(l — |21|2 . |Zn_2|2)0‘”+1
n B,_1
nt1
T C J2n-al” T
" 1—|21|2_"'_|Zn_2‘2 n—

_ s Wr(anfl + 1)F(Cvn + 2) / |Zl|2a1 . |Z 2|2an,2
(an+1)  T(an+an-1+3) s "

(1= a1 = = fzpa )T AV
_ ™ ml(an—1+DI'(an +2)  7l(ar + DI(on + -+ + az +n)
(o, + 1) Iay, + ap—1 +3) oy +---+a1+n+1)
" aql e ag!

- (Oén+"'+a1 +n)'.
It follows that the Bergman kernel function on the unit ball B, is given by

!
K(z,w) = Z (On+- F on 4 n)! 2w

n., ... |
= s Q! (o7 %)
o0
1 (n+---F+a1+n)
_722 ar! el =W
T o)
k=0 || =k ! "

Z?lni (k—|—n)(k—|—n—1)---(k:—|—1)(2’1E1—|—-~-—|—zn@n)k

l1a /1
T dtn \1—+¢
B n! 1

T (1—z-w)nr

where z - W = z1W1 + -+ + 2, Wy,

t=z1W1++2,Wn

Theorem 6.3.3. The Bergman kernel function on the unit ball B,, is given by

(6.3.5) K(z,w) = KI;

where z - W = z1W1 + * - + 2, Wy, .

For any f € L2(D), one may write f = fi + fo, where f; € H(D) and
fo € H(D)*. Tt follows now from the reproducing property of the Bergman kernel
function that one has

Pf(z) = fi(z) = (f(), K(,2))
= (fl()?K(vz)) + (f2()7K(7Z))
= (f()aK(7Z))

This proves the following theorem:
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Theorem 6.3.4. The Bergman projection Pp : L?(D) — H(D) is represented by
(6.3.6) Ppf(z) = / K (2, 0) f(w)dVi,

D
for all f € L*(D) and z € D.

The following result shows how the Bergman kernel function behaves under a
biholomorphic map:
Theorem 6.3.5. Let f : Dy — Dy be a biholomorphic map between two domains
Dy and Dy in C™. Then
(6.3.7) Kp, (2,w) = detf'(2)Kp, ((), f(w))detf (w)
for all z,w € Dy, where f'(z) is the complex Jacobian of f.

Proof. From an elementary calculation, we observe that
detJr f(2) = |detf'(2)|?,
where Jg f(z) is the real Jacobian of f via the standard identification between C”

and R?". Hence, a change of variables shows h + (ho f)detf’ is an isometry
between L?(Dy) and L?(D;). Thus, for each w € Dy, we have

det f'(-)Kp, (f(-), f(w))det f'(w) € H(D),
and for any h € H(D1), using the reproducing property of Kp,, we obtain

(h, det f'(-) Kp, (f(-), f(w))det f'(w))p, = h(w).

Therefore, from the uniqueness of the kernel function, we must have

KDl (Za ’LU) = detfl(z)KD2 (f(z)a f(w))detf,(w)
This proves the theorem.
Corollary 6.3.6. Let f: Di — D5 be a biholomorphic map between two domains
D;1 and D4 in C™, and let Py, Py be the Bergman projection operator on D1, Do
respectively. Then

(6.3.8) Pi(u-(gof)) =u-(Pg)of)

for all g € L*(D3), where u = det(f'(z)) is the determinant of the complex Jacobian
of f.

Proof. The proof follows directly from the transformation law of the Bergman kernel
functions. For g € L?(Ds), u- (go f) € L*(D;). Hence, from Theorem 6.3.5,

Pi(u-(gof)) = i Kp, (2, w)det(f'(w))g(f(w)) dVa

- /D w(2) Ky (F(2), f(w))lu(w) Pg(f(w)) Vi,

=u(z) | Kp,(f(2),m)g(n) dV,

Do
= u(2) - (P2(g) o f).
This proves the corollary.
Now we introduce a condition concerning the regularity of the Bergman projec-

tion operator which is useful in proving the regularity of a biholomorphic map near
the boundary.
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Definition 6.3.7. A smooth bounded domain D in C" is said to satisfy condition
R if the Bergman projection P associated with D maps C*° (D) into O (D)NO(D).

Denote by W (D) the closure of C§°(D) in W#(D), and by H*(D) = W*(D)nN
O(D). The next theorem gives various conditions equivalent to condition R.

Theorem 6.3.8. Let D be a smooth bounded domain in C™ with Bergman projec-
tion P and Bergman kernel function K(z,w). The following conditions are equiva-
lent:
(1) D satisfies condition R.
(2) For each positive integer s, there is a nonnegative integer m = myg such that
P is bounded from W3T™ (D) to H*(D).
(3) For each multiindex «, there are constants ¢ = co and m = my, such that

(03

sup 782:0‘

z€D

K(z,w)' <cd(w)™™,
where d(w) is the distance from the point w to the boundary bD.

Before proving Theorem 6.3.8, we shall first prove the following lemma:

Lemma 6.3.9. Let D be a smooth bounded domain in C™. Then, for each s € N,
there is a linear differential operator ®* of order ng = s(s+1)/2 with coefficients in
C>(D) such that ®5 maps W*t"=(D) boundedly into Wi (D) and that P®* = P.

In other words, for each g gcw(ﬁ) and s € N, Lemma 6.3.9 allows us to
construct a h = g — ®°g € C°°(D) such that Ph = 0 and that h agrees with g up
to order s — 1 on the boundary.

Proof. Let p be a smooth defining function for D, and let § > 0 be so small that
Vp #0on Us = {z] |p(z)| < §}. Choose a partition of unity {¢;}!", and, for each
i, a complex coordinate z; in some neighborhood of the support of ¢; such that

(1) >, ¢ =1 on U, for some € < 4§,

(2) suppe; C Us and suppe; NbD # (), and

(3) 0p/0z; # 0 on suppe;.

To define the operator ®* inductively on s, we need the fact that if g is in C>°(D)
and vanishes up to order s — 1 on the boundary, then g € Wi (D). For the initial
step s = 1, if h € C°°(D), define

Sh=h—-Y — (¢
;8%( op)7

where 0} = (¢;h)(0p/dz;)~ L. Tt is easy to see that ®*h = 0 on bD, and hence
o'h € Wi (D).
Suppose 6, - -+ ,0%_; have been chosen so that

s 0 = i k+1
®ih = gih— 5 <Zekp

k=0
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vanishes to order s — 1 on the boundary. We define

m s—1
®°h=h— 2; a%- (kz 9;@’““) .
i= =0

Since p vanishes on the boundary, it is easily verified by integration by parts that
POy %( *~ 4 0L pFt1) is orthogonal to H(D). Hence ®h € W§(D) and P®*h =
Ph. Put 8/0v = Vp-V/|Vp|?, the normal differentiation, such that dp/dv = 1.
Let

o ren

T (s+1)IEE

Then the functions
0
8zi

vanish to order s on the boundary, so does the function

@ = Bfh— (0

m D) ‘
(I)s+1h _ (I)Sh _ 9% s+1
; 55 0™
:h_i 5} (ieipkﬂ)_
= 0% \( )

Hence, ®*t'h € Wit (D) and P®5+! = P. This completes the induction.
It is also easily verified by a simple induction argument that ®*h can be written
as

®h= > barp*D,

lal<k<n,

where ns = s(s+ 1)/2 and the b, s are in C*°(D) and D® is the real differential
operator of order |a| associated to the multiindex o = (a1, a9, - ,@2,). This
proves the lemma.

We also need negative Sobolev norms for holomorphic functions. For g € O(D)
and s a positive integer, we define
/ gcb',
D

where the supremum is taken over all ¢ € C§°(D) with || ¢ ||s = 1.

(6.3.9) Igll-s = sup

Lemma 6.3.10. Let D be a smooth bounded domain in C*, n > 2. For g € O(D)
and any positive integer s, we have

(1) sup |g(2)|d(z)"™" <1 ]| g |-
z€D

(2) | g ll—s—n-1 < c2 sup |g(2)|d(z)
zeD

S
9
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for some constants ¢1 and co independent of g.

Proof. Let x be a smooth, nonnegative, radially symmetric function supported in
the unit ball B, in C" with [, x(w)dV,, = 1. For z € D, let x.(w) = ¢ *"x((z —
w)/e), where € = d(z). Clearly,

Iz [l < e(k)d(z) ="+,

for some constant ¢(k) > 0 depending on k. Then, using polar coordinates and the
mean value property of g € O(D), we obtain, for | > n,

19(2)] = ' [ stwpc(w) avi

<N l-ttnll Xz lien
<erll g ll-ten dz)7".
Setting | = s + n, this proves (1).

For (2), notice that if ¢ € C5°(D), then by Taylor’s expansion and the Sobolev
embedding theorem, we have

[¢(2)] < ¢l ¢ lstntr d(2)°.

Hence,

|| g ||7sfn71 = sup

/ 9oV,
¢peCse (D) D
llls4nt1=1

< ¢z sup [g(2)ld(z)".
zeD

This completes the proof of Lemma 6.3.10.

Proof of Theorem 6.3.8. If D satisfies condition R, from the topology on C*°(D),
for each positive integer s there is a nonnegative integer m = mg such that P maps
Wst™(D) boundedly into H*(D). In particular, (1) implies (2).

Te see that (2) implies (1), by assumption, for each s € N, there is a nonnegative
integer m = my such that P is a bounded operator from W31 (D) into H*(D). For
this fixed s+ms, Lemma 6.3.9 shows that there exists a positive integer n!, = ngm,,
such that ®*+7s maps W5+ (D) boundedly into Wg*™ (D). Tt follows that,
for each g € W*+m=+7%(D), we have

I Pglls = | P g lls S 1 2779 lls4m, S G lstm.ny, -

Hence, (2) implies (1).
Next, we prove the equivalence of (1) and (3). Suppose (3) holds. Then, for each
multiindex « and each z € D, we have by Lemma 6.3.10

(0%

o 0 m
. < —_— > <
| ) e < o sup | k)™ <
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where s = s, = m,+n+1. Hence, by using the operator ®° constructed in Lemma
6.3.9, for g € W*t"=(D) and z € D, we have

804
aZan(z)’ [“)z"/ K(z,w)®°g(w)dV,

80(
| /D & Kz w)@gw)av,

< —K N =sll ®%q || s
< | LK G el 2|
<C H g Hs+ns .

The differentiation under the integral sign is justified, since

Dz 0z

<G| g s,

K(z, w)@sg(w)‘ <C

aa S Mea
aK(z,uo\ | 9% |l d(w)

for some constant Cy > 0 independent of z and w. Thus, condition R holds on D.
On the other hand, if condition R holds on D, then by the Sobolev embedding
theorem, for each nonnegative integer s there is an integer k(s) such that

o
—Pf(2)

sup

<O f ks
zeD

for all multiindices o with |«| < s. Therefore,

a()é
I 5B (z) -k = sup / G?K z,w)p(w)dVy,

pECS (D)
lolli(sy=1
aa
= sup |5—-P9¢(z2)
pecg (D) | 027
Ik s)=1
<C,

uniformly as z ranges over D. Hence, by (1) of Lemma 6.3.10, condition (3) holds.
This completes the proof of Theorem 6.3.8.

Here are some consequences of condition R.

Corollary 6.3.11. Let D be a smooth bounded domain in C™, n > 2. Suppose that
condition R holds on D. Then K(-,w) € C*°(D) for each w € D.

Proof. For each fixed w € D, let ¢,,(z) € C§°(D) be a smooth real-valued function
such that ¢, (z) is radially symmetric with respect to the center w and [}, ¢w(2) dVs
= 1. Since ¢,, is constant on the sphere centered at w, applying polar coordinates
and using the mean value property of K(z,-), we have

K(z,w) = /D K(zn)du(n) 4V,

Hence, K (-,w) € C>(D) by condition R on D.
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Corollary 6.3.12. Let D be a smooth bounded domain in C", n > 2. Suppose
that condition R holds on D. Then the linear span of {K(-,w)| w € D} is dense in
H>(D) in C* topology.

Proof. First, for each positive integer s and g € H>(D), Lemma 6.3.9 shows that
g= Pg= Pd%g.

Hence, we have H>(D) C P(Wg(D)) for all real s > 0.

Let A be the set of functions ¢ € C§°(D) which are radially symmetric about
some point in D with [, ¢dV = 1. Thus, PA = {K(-,w)| w € D}. We claim that
the linear span of A is dense in W (D) for each s > 0. Let f € C§°(D). Choose
a smooth nonnegative function x from C§°(C™) which is radially symmetric about
the origin with support contained in the unit ball and satisfying an x(2)dV, = 1.
For € > 0, set xc(2) = € 2"x(z/¢). Then f. = f * x. will converge to f in W (D).
Since

e = [ (22) av

can be approximated by finite Riemann sums, this yields the density of span{A} in
W§ (D).

Now, condition R implies the H*(D) closure of the span of {K(-,w)| w € D}
contains H*(D) for every s > 0. Hence, by the Sobolev embedding theorem,
span{ K (-,w)| w € D} is dense in H>°(D) in the C* topology. This proves the
corollary.

To end this section, we prove the following important consequence of condition
R concerning the boundary regularity of a biholomorphic map between two smooth
bounded pseudoconvex domains in C™.

Theorem 6.3.13. Let Dy and D5 be two smooth bounded pseudoconver domains
in C", n > 2, and let f be a biholomorphic map from D1 onto Dy. Suppose that
condition R holds on both D1 and D, then f extends smoothly to the boundary.

We note from Theorem 1.7.1 that an analog of the Riemann mapping theorem
in the complex plane does not hold in C™ for n > 2. Theorem 6.3.13 provides an
important approach to the classification of domains in higher dimensional spaces.
Therefore, given a domain D, it is fundamental to verify whether condition R holds
on D or not. When D is a smooth bounded pseudoconvex domain, the Bergman
projection P can be expressed in terms of the 9-Neumann operator N by the formula
(4.4.14), P = I —8 N9. We know from previous discussions that condition R holds
on the following classes of smooth bounded domains:

(1) D is strongly pseudoconvex (Theorem 5.2.1 and Corollary 5.2.7).

(2) D admits a plurisubharmonic defining function. In particular, if D is convex
(Theorems 6.2.3 and 6.2.5).

(3) D is a circular pseudoconvex domain with transverse circular symmetry
(Theorem 6.2.7).

In fact, the Bergman projection P is exactly regular on all of the above three classes
of pseudoconvex domains.
Theorem 6.3.13 will be proved later. We first prove the following theorem:
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Theorem 6.3.14. Let f : D1 — Dy be a biholomorphic map between two smooth
bounded pseudoconvex domains Dy and Do in C™. Then there is a positive integer
m such that

d(z,bD1)"™ S d(f(2),bD2) S d(z,bDy)

~

for all z € D;.

Proof. By Theorem 3.4.12, there are continuous functions p; : D; — R, j = 1,2,
satisfying
(1) pj is smooth and plurisubharmonic on D;,
(2) pj <0on Dj and p, 2vauaishes on bDj,
(3) (—pj)™ = —rje” K2 is smooth on D; for some positive integer m, where
r; is a smooth defining function for D;.

Property (3) immediately implies that
|pJ(Z)‘Sd(ZabD])#7 fOI‘ZGDj.

Since f : Dy — Do is a biholomorphic map, both ps o f and p; o f~! satisfy (1)
and (2). Thus, an application of the classical Hopf lemma (see [GiTr 1]) shows that

d(2,bD1) < |p2 o f(2)| S d(f(2),bD2)™

and
d(w = f(2),bD2) < |pro f~H(w)| S d(z = f~(w),bDy) 7.

~

This proves the theorem.

Lemma 6.3.15. Let f : D — D5 be a biholomorphic map between two smooth
bounded pseudoconvexr domains Dy and Do in C". Let u(z) = det(f'(z)) be the
determinant of the complex Jacobian of f. Then, for any positive integer s, there
is an integer j = j(s) such that the mapping ¢ — u - (¢ o f) is bounded from
Wt (Dy) to W (Dy).

Proof. Tt suffices to show the estimate
lu- (60 1) gy < C 1l 6 s

for all ¢ € C§°(D3). Write f = (f1,---, fn). For any multiindex o with |a| < s, we
have

D*(u-(¢pof) =Y Duw-DV¢(f)-D%fi,--- D f; ,

where 1 < i1,---,i, < n, and f3,7,01,---,0p are multiindices with |5] < |a],
7] < lal = 18] and 327, 16;] = o — |B]-
Since f is a map between two bounded domains D; and D5 in C", the Cauchy
estimate implies that
‘8[311

@(Z) < Cgdy (2)~1AHD),

and

‘ 0% fi,

()] £ ),
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where the constant Cz (C;) depends on Dy and the multiindex 5 (4;), and dy(z) =
d(z,bD1). Hence, for z € Dy,

|D5u . D‘Slfil ~-D5Pfip (z)] < Cdl(z)f(la\ﬂ).

Also, for any ¢ € C§°(D2) and every k € N, it follows from Taylor’s expansion and
the Sobolev embedding theorem that

Do) < Cl| ¢ [l r4ns da(w)”.

Thus, combining the preceding inequalities with Theorem 6.3.14, we obtain

1D%(u-(¢0 )] S di(z)" 1MV & ey jag i -da(f(2)"
14k

S lkstntr -di(z) ™7,
It is now clear by taking k = m(s+ 1) that the mapping ¢ +— u- (¢ o f) is bounded
from W) (Dy) to W (Dy) with j(s) = m(s+1)+n+ 1. This proves the lemma.

We now return to the proof of Theorem 6.3.13.

Proof of Theorem 6.3.13. Let f be a biholomorphic map from D; onto Ds. From
Corollary 6.3.6 we obtain

(6.3.10) Pi(u-(gof))=u-(Pyg)of),

for all g € L?(D3), where u = det(f'(2)) is the determinant of the complex Jacobian
of f and P,, v = 1,2, is the Bergman projection on D,,.

Since condition R holds on D;, for each positive integer s, there is an integer
m(s) such that Py maps W™ (D) boundedly into H*(D;). On the other hand,
by condition R on Dy we may choose a g € W§+m(s)+3(s)(D2), as in the proof of
Corollary 6.3.12, such that Pyg = 1, where j(s) is determined in Lemma 6.3.15 for
the integer s +m(s). Now, Lemma 6.3.15 implies u- (go f) € W) (Dy). Hence,
from (6.3.10) and condition R on Dy,

u=Pi(u-(gof))

is in H*(Dy). This shows that u € C°° (D).

Similarly, the determinant U(w) of the complex Jacobian of f~! is also in
C>(Dy). It follows that u(z) is nonvanishing on Dj.

Repeating the above arguments, for each s € N, choose gi € WOSij(S)H(S)(Dg)7
for k =1,---  n, such that Pogr = wg, the kth coordinate function on Dy. Hence,

u- fr=Pi(u-(grof))

is in H*(D;), where f = (f1, -+, fu). Since u does not vanish on D, this implies
fr € C®(Dy) for k = 1,--- ,n. It follows that f € C°°(D;). Similarly, we have
f~1 € C>=(D3). The proof of Theorem 6.3.13 is now complete.
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6.4 Worm Domains

In this section we shall construct the so-called worm domains. Such domains
possess many pathological properties in complex analysis. We shall prove that such
domains do not always have plurisubharmonic defining functions on the boundaries
nor do they always have pseudoconvex neighborhood bases.

A Hartogs domain in C? is a domain which is invariant under rotation in one of
the coordinates. Let Dg be the unbounded worm domain defined by

—ilog|za|? ™
D = {(21, 22) € C?| Re(zre”™#1%21") > 0, Jlog|z|?| < 8 — 5},

for 8 > w/2. Clearly, Dg is a Hartogs domain. Geometrically, if we use Rez;, Imz;
and | 22| as axes, then Dg can be visualized in R? as an open half space in 21 revolving
along the |z2]-axis when |z3| ranges from exp(—3/2 + 7/4) to exp(8/2 — 7 /4).

To see that Dy is pseudoconvex, we note that locally, we can substitute the
inequality Re(zpe~°8l=21") > 0 by

Re<zle—ilog|z2|2+argzg) _ Re<zle—ilogz§) > 0.

Since 21 e—ilog=3 ig locally holomorphic, its real part is a pluriharmonic function, with
vanishing complex Hessian. Dg is the intersection of two pseudoconvex domains.
Thus, it is pseudoconvex. As log|zz| changes by a length of 7, we see that the half
plane Re(zle*i1°g|z2|2) rotates by an angle of 2.

To construct a bounded worm domain we shall rotate discs instead of half planes.
We define

U = {(21,22) € C2 |1 + ™8P < 1, Jlog|zaf’| < 5= T},

Since 2 is defined by |21|% + 2Re(zle_“°g|22|2) < 0, locally, we can view
as defined by |21 [2e™% + 2Re(z1¢7198%) < 0. Since the function |z [2e™&% =
eloglz1”+argz] g plurisubharmonic, it is easy to see that QIB is pseudoconvex and
bounded. But it is not smooth at [log|z2|?| = 5—%. For each fixed [log|z2|?| < -3,
i is a disc of radius 1 centered at —elosl=2* and (0, 29) € b2y

To construct a smooth worm domain, we have to modify Q,’B Let n: R — R be
a fixed smooth function with the following properties:

(1) n(z) >0, n is even and convex.

(2) n71(0) = I3_r/2, where Ig_r /5 = -8+ 7/2,8—7/2].

(3) there exists an a > 0 such that n(z) > 1 if < —a or > a.

(4) n'(z) # 0 if n(z) = 1.
We note that (4) follows from (1) and (2). The existence of such a function is
obvious. For each > 7/2, define

(6.4.1) Q5 = {(21,22) € C?| |21 + 1981221 |2 < 1 — p(log|z|?)}.

Then, we have:
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Proposition 6.4.1. For each fized 8 > 7/2, Qg is a smooth bounded pseudoconvex
domain in C2.

Proof. Clearly, by (3), Qg is bounded. For the smoothness of g, we need to show
that Vp(z) # 0 at every boundary point z, where p(z) = |z; + elloglz2l"|2 — 1 4
n(log|z2|?) is the defining function for Qg. If (9p/dz1)(z) = 0 at some boundary
point z, we get
Ip
(92’1

Since p(z) = 0, it follows that n(log|z2|?) = 1 whenever (9p/dz1)(z) = 0 at a
boundary point z. Now it is easy to see that (0p/0z2)(z) # 0 by (4) at such points.
This proves the smoothness of (3.

To see that {23 is pseudoconvex, we write

(2) =71+ efﬂogm‘2 =0.

p(z) = a1 + 2Re(z1e”"8%) 4 (log|z ?).
Again locally, Qg can be defined by
|21|26"“g23 + 2Re(zlefilogz'§) + n(log|22|2)earg25 < 0.

The first two terms are plurisubharmonic as before. We only need to show that the
2
last term n(log(|22|?)e®®%2 is plurisubharmonic. A direct calculation shows that

A(n(log|z|)e#%) = (An(log|za|?)) e + p(log|z2|*) e > 0,

since 7 is convex and nonnegative from (1). Qg is defined locally by a plurisubhar-
monic function. Thus it is pseudoconvex with smooth boundary.

The following result shows that for each fixed 3 > 7/2 there is no C? global
defining function which is plurisubharmonic on the boundary of 3.

Theorem 6.4.2. For any 8 > m/2, there is no C? defining function p(z) for Qg
such that p(z) is plurisubharmonic on the boundary of Qg.

Proof. Let p(z) be such a C? defining function for Qs that is plurisubharmonic
on the boundary bQs. Then there is a C' positive function h defined in some
neighborhood of bQg such that 5(z) = hp. Let A = {(0,22) € C?| [log|22|?| <
8 —m/2}. A direct calculation shows that the complex Hessian of 5(z) acting on
any (o, ) € C? for any point p € A C bS5 is given by

Lz (p; (o, B)) = 2Re [aﬁ (Zh + ah) eilogz22:|

Z9 82’2

+ [h + 2Re <§Zheilog222) ] af?.
1

Since, by assumption, (6.4.2) is always nonnegative, we must have

(ih + oh )eiloglz22 =0

V) 622

(6.4.2)
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on A, or equivalently,
0 : 2
—~ (h —ilog|z2|"y = 0
822( e )
on A. Consequently,
9(22) — h(O, Zz)e—iloglzzp

is a holomorphic function on the annulus A. It follows that
g(22)e™ 55 = h(0, zp)e 8% = ¢,

is also locally a holomorphic function on A, and hence it must be a constant ¢, since
the right hand side is real. This implies that

(0, z5) = ce* &=

is a well defined, C! positive function on A, which is impossible. This proves
Theorem 6.4.2.

In particular, Theorem 6.2.3 cannot be applied to worm domains. In fact we
will prove in the next section that the Bergman projection is not regular on worm
domains.

Another peculiar phenomenon about worm domains is that they do not have
pseudoconvex neighborhood bases if 3 is sufficiently large. To illustrate this, we
first examine the Hartogs triangle

G ={(21,22) | [21] <|z2| < 1}.

By Cauchy’s integral formula, any function holomorphic in a neighborhood of G
extends holomorphically to the bidisc D? = {(21,22) | |21] < 1, |22] < 1}. Thus if Q
is any pseudoconvex domain containing G, then ) contains the larger set D? since
pseudoconvex domains are domains of holomorphy. This implies that we cannot
approximate G by a sequence of pseudoconvex domains {QF} such that G C QF
and G = N Q*. However, the Hartogs triangle is not smooth.

We next show that {23 does not have a pseudoconvex neighborhood base if 3 >
3m/2. When 8 > 3m/2, Q5 contains the set

K ={(0,2) | —7 < log|z|* < 7}
U{(21,20) | log|za|?* = 7 or —m and |z; — 1] < 1}.

Any holomorphic function in a neighborhood of K extends holomorphically to the
set

K ={(z1,2) | =7 <log|z|> <7 and |z — 1] < 1}.

Thus any holomorphic function in a neighborhood of Q5 extends holomorphlcally
to Qﬁ UK. This implies that any pseudoconvex domain containing Qﬁ contains K.
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Theorem 6.4.3. For 3 > Eﬂ'/Q, there does not exist a sequence {OF} of pseudo-
convex domains in C* with Qg C QF and Q5 = NLOF.

Thus pseudoconvex domains do not always have a pseudoconvex neighborhood
base. We note that any pseudoconvex domain can always be exhausted by pseudo-
convex domains from inside.

6.5 Irregularity of the Bergman Projection on Worm Domains

The purpose of this section is to prove that the Bergman projection P is irregular
on the worm domain {23 in the Sobolev spaces. We first study the Bergman kernel
function K (z,w) on the unbounded worm domain Dg where Dg is defined in 6.4.
For each fixed z; variable, the domain is a union of annuli in z5. Any holomorphic
function in Dy admits a Laurent expansion in z,. Using Fourier expansion, for any
f € H(Dg), we write

2
flz) = %Z/o f(z1,€%25)e% ap.

JET
Let f]f’j(Zl, 2) = 5 2 (21, €% 25)e~% df. Then f; is holomorphic and fj(z;, e¥25)
= €9 f;(21,22). Such f; are necessarily of the form f;(z1,22) = g(21, |22|)23, where
g(z1, |22]) is holomorphic in Dg and locally constant in |z;]. The Bergman space
H(Dg) admits an orthogonal decomposition

H(Dg) = jEGBZHj(Dﬁ)~

Any f in ‘H;(Dg) satisfies f(z1,e22) = €% f(21, 22). Denote by P; the orthogonal
projection from L?(Dg) onto H;(Dg). It follows that if f € H(Dg), we have

1 27 . .
f(z1, ewzz)eﬂje do,

Pif(2) = fi(2)

= % )

and the Bergman kernel function Kp,(z,w) associated with Dg satisfies
Kp,(z,w) = Z K;(z,w),

JEL

where K(z,w) is the reproducing kernel for H;(Dg). Each K;(z,w) is locally of

the form K;(z,w) = k; (21, w1) 25w}, Tt turns out that for the unbounded worm

domain, the kernel K_; can be computed explicitly.
To facilitate the calculation, we introduce the following domain:

D’ﬁ = {(21, 20) € C?| |Imz; — log|z|?| < 7/2, |log|z|?| < B — 7/2}.

For each fixed z9, DZ; is an infinite strip in z;. Thus, D’ﬂ is biholomorphically
equivalent to Dg via the mapping

Y D/B — Dy

(Zl, 2’2) = (ezl,Zg).
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Also from the transformation formula (6.3.3) for the Bergman kernel functions, we

have
1

Z1W1

Kp,(z,w) = Kp,(¢7(2), 7" (w)).

Since ¢ commutes with rotation in the zo-variable, we have an analogous transfor-
mation law on each component

1

21 W1

(6.5.1) Kj(z,w) = Ki(¢™(2), 07 (),

where K ]’ is the reproducing kernel for the square integrable holomorphic functions
H on Dj satisfying H (21, €92y) = €9 H(zy, 29). The kernel K’ ; can be calculated
explicitly as follows: ‘

For any H € H;(D}), we may write H(21,22) = h(z1)23, where h(z1) is holo-
morphic in z;. For each 3 > 0, let Sg be the strip on the complex plane defined
by

Sg={z=z+1iy € C| |y < 6}

It follows that

| H 1320

= / |h(21)|2|22\2j dzdy1dzodys
DI

B

= 27r/ / |h(20)|>r¥ T daydyydr
[2logr|<p—3% J|y1—2logr|<%

= 7r/ / \h(z1)2eU DS daydyds
[s|<B=3% Jly1—s|<F

7r/ / |h(21)|26(j+1)s)(g(y1 — s)Xg,%(s) dxidyds
—oo J S

(6.5.2)

/ h(2)2A;(y) dady,
Sp

where \;(y) = m(eU D x5_z)xxz(y), B > 7/2 and x, is the characteristic function
on I, = (—a, ). Let A(y) be a continuous positive bounded function on the interval
Is = {y € R| |y| < B}. Denote by H(Sg,A) the weighted Bergman space on Sg
defined by

H(Sa, ) = {1 € OSa)| 1715 = [ 1£(:)PA) dady < oc).

Sp

To compute the kernel K’ , it suffices to compute the Bergman kernel in one
variable on a strip Sz with weight A = mxg_z * xz (y) and the kernel K’ (z,w)
is given by K’ = Kx(#1,w1)/22w2. The next lemma allows us to compute the
weighted Bergman kernel function K (z,w) on Sg.
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Lemma 6.5.1. For each 8> 0, let A(y) be a continuous positive bounded function
on the interval Ig = {y € R | |y| < B}. Then the weighted Bergman kernel function
K)\(z,w) on Sg is given by

(653) Katw) = o [ S g
J. Z’w = — _— s
g 2m Jr A(—2¢&i)
where \ is the Fourier transform of X\ if A(y) is viewed as a function on R that
vanishes outside Ig.

Proof. For f € H(Sg, A) we define the partial Fourier transform f of f with respect
to = by

fl&y) = /Rf(x +iy)e ¢ da.

It is easily verified by Cauchy’s theorem that f(f,y) = e*yﬁfo(g), where fo(é) =

f(&,0). Thus from Plancherel’s theorem,

112 = @2m) / e | o(€) 2 My)dédy
(6.5.4) Rxls

— (2m)! /R | fol€) 2 A(~2ie)de.

For f € H(Sg,\) and z € Sg, we have
[ Foe)e g = 2ms (2

=2r g fw)Kx(w, 2)A(y) dzdy

/6 ~ —_
- /_5 /R e M fo(E)KA((€,0), 2)A(y) dédy,

where w = x + iy. It follows that
_ ~ B )
= Ra(60).7) [ ) dy

and _
67225

A(—2¢i)

Finally, by the Fourier inversion formula, we obtain

% 1 ei(z—ﬁ){ J
Az, w) = 27T/R§\(—2§i) <.

Here we note that A(—2¢i) is real. This proves the lemma.

I?A((ga 0)72) =

We next apply Lemma 6.5.1 to the piecewise linear weight

Ay) = mxp—z * Xz (Y)-
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Lemma 6.5.2. For 3> %, if M(y) = mxp—z * Xz (y), then

wsinh((26 — m)¢) sinh(m€)
& ’

A(—2¢i) =

and
1 5261'(2—@)5

(6:5.5) BAE W) = 523 |, Sinh((26 = 7)8) sinh(we)

de.

Proof. If A(y) = Xa(y) for some a > 0, then
5\(_252) = /a e_iz(_QEi)dqj = /a 6_2I£d$ = M
—a a ¢

Hence, for the piecewise linear weight A(y) = mxs—z * xz (y), we have

ﬂsinh((Zﬁ — 7r)§)sinh(7r§)
& ’

A(—2¢i) =

and (6.5.5) now follows from Lemma 6.5.1.

We observe that £2/ sinh((?ﬁ —m)€ ) sinh7¢ has poles at nonzero integer multiples
of mi/(20—m) and i. Let us first assume that 8 > 7, and set v = /(20 —m) so that
vg < 1. Then, via a standard contour integration, one can obtain the asymptotic
expansion of the weighted Bergman kernel function K (z,w) and see that it is in
fact dominated by the residue of g(¢) = ¢2e!*=™)¢ /sinh((28 — 7)¢)sinh(n€) at the
first pole vai.

Lemma 6.5.3. Let > m and My) = nxp—z * Xz (y). Then
(6.5.6) K (z,w) = cge™ 8= L O(e 18 (z-0))
for Re(z —w) > 0 and

(6.5.7) Kx(z,w) = _cﬁe’/B(Z—’lT’) + O(euﬁ(z—m))

for Re(z —w) < 0, where cg = v/ (n?sinvgn) and pg = min(2vs, 1). Furthermore,
given any small positive €, the expansion in (6.5.6) or (6.5.7) is uniform for any
z,w € Sg_.

Proof. Fix h > 0 so that hi is the midpoint between the second and third poles of
g(€). Denote by T'y the rectangular contour with vertices +N and +£N + ih. Let
us first assume that 2vg < 1. Then, we have 2v3 < h < 1 and

N 526 (z—w)¢
[N sinh((203 — m)¢)sinh(r¢) €+ Iv + In+ Iy

= 2mi(Res g(§) at vgi and 2vgi),
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where Res g(¢) denotes the residues of ¢g(§) and

. h (N + iy)Qei(z—E)(N—i-iy) J
/0 sinh (( 4

In =i 26 — m)(N + iy))sinhm (N + iy)

(7N + Z‘y)Qei(zfﬁ)(fNJriy)

h
I y=—i d
N Z/O sinh((268 — m)(=N + iy))sinhm (=N + iy) v
and N ih)2ei(z—0) (z+ih)
JN:f/ (w4 ih)eT R —
_ sinh((28 — m)(x + ih))sinhnm (z + ih)
A direct calculation shows that
3,—vg(z—w)
vgoe "8
R =
52522' 9(8) imsin(vgm)
and 5 (o)
—4pgie” AT
Res =
5:2?231' 9(8) imsin(2vm)

For any z,w € Sg_., we write z — W = u + v with v > 0. Hence, we have
|[v]| <2(8 —¢€) and

h 2 2\ ,—vN—uy 2
| < (N*+y?)e dy < N —i—l.
~ 02BN N T 2N

It follows that Iy converges to zero uniformly for any z, w € Sg_ such that Re(z —
w) > 0. Similarly, we get the uniform convergence to zero for I_py. For Jy, we
have

1 N (,.2 h2 —vz—uh
x5 [ @ metaoy [ W e
—1 1
-1 2 2\ ,—vx—uh
(x* 4+ h*)e
+ /_N ey dx

N 2 2
Se—2u5u <1+/ X :—h dx)
1 e2ex

It follows by letting N tend to infinity that

oo é-Qei(z—E)f J
/_Oo sinh((23 — m)&)sinh(r¢) ¢

—vg(z—w)

8Vﬂ3e—2u5(z—ﬁ)

_ 2ug3e
sinvgm sin(2vgm)
o (.%‘ 4 Z-h)2ei(z—w)(x+ih)
* /_Oo sinh((28 — m)(x + ih))sinhm (z + ih
2v53

)dx

efu,g(zfﬁ) + 0(6721/5(27@)).
sinvgm
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Clearly, the estimate is uniform for all z,w € Sg_. with Re(z —w) > 0. This proves
the case for 2vg < 1.

For cases 2vg = 1 and 2vg > 1, a similar argument applies.

If Re(z — w) < 0, we take the rectangular contour I'y on the lower half space
with vertices +N, and £N —ih, and (6.5.7) can be proved similarly. This completes
the proof of the lemma.

From (6.5.2), the kernel K’ (z,w) is given by
K’ (2,w) = Kx(21,w1) /22032,

where K (z1,w;) is calculated in Lemma 6.5.3. If 5 > =, then (6.5.7) shows that

K/ 1(2; fw) = _CﬁM +O(eﬂﬂ(zlfﬁl))
7 22W3
for Re(z; —w;) < 0. Hence
1p
vg—1__—vg—1 11 1 z1
(6.5.8) K_o1(z,w) = —cpz,” W, " 2y Wy + zlwlO((wl) )

for |z1] < |wi|. The expansion in (6.5.7) is uniform on Sg_, for any small positive
€. Thus, for fixed w, we have for any m € N,

m
|Re(zle_“°g|22|2)|s(£> K_i(z,w) ¢ L*(Dg), for s <m — v.
1
It follows that
. o\"
(6.5.9) |Re<zleﬂog“'2>l‘“(azl ) Kp,(2,w) ¢ L3(Dp),

for s < m —wvg. Estimate (6.5.9) also holds for 7/2 < § < 7. When 7/2 <
8 < m, (6.5.9) can be obtained by examining higher order terms in the asymptotic
expansion of K.

When 3 = 7, we compute the residue at the double pole —i of (6.5.5) to obtain

Kx(z1,w1) = 7 2(—z1 4wy — 2)el5177) 4 O(e2(31701))
for Re(z; — w1) < 0 and
K_i(z,w) = 7 %(—log(z1 /1) — 2)w; 22y "oyt + O((21/w1)?)
for |z1| < |wi|. Thus (6.5.9) holds for 8 = 7 also. Estimate (6.5.9) is crucial in
proving the irregularity of the Bergman projection P measured in the Sobolev norm

on the worm domain. For our purpose we need the following fact (See Lemma C.4
in the Appendix).
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Lemma 6.5.4. Let D be a smooth bounded domain in RN with a smooth defining
function p(x). Then, for each s > 0, the W—° norm of a harmonic function f is
equivalent to the L? norm of |p|*f on D.

We first observe the following result for the Bergman projection on the un-
bounded worm domain Dyg.

Proposition 6.5.5. For each 8 > /2, condition R does not hold on Dg. Fur-
thermore, the Bergman projection Ps, on Dg does not map C§°(Dg) into W¥*(Dg)
when k > /(20 — ).

Proof. Let w € Dg. We choose a real-valued function f € C§°(Dg) such that f
depends on |z —w| and fDa f = 1. Using the same argument as in Corollary 6.3.11,
we obtain

Poof = KDﬁ(~7U)).

Since Kp, (-,w) ¢ C>(Dg), condition R fails on Dg.
Let Ty = {z € C" | |z| < A} be a large ball for A > 0. From (6.5.9), we have

(6.5.10) poc((f) Puf ¢ L3(Dy AT )

for s < m —vg, where po = Re(ze~osl2l*) If P_f € W*(Dg NT4), choose a
positive integer m > k and let s = m — k < m — vg. Using Lemma 6.5.4, we have
|poo|*V™ Pa f € L*(Dg N T 4), a contradiction. Thus Pa f ¢ W*(DsNT4) and the
proposition is proved.

We prove the main result of this section on the irregularity of the Bergman
projection for the smooth worm domain $2g.

Theorem 6.5.6. For each 8 > m/2, the Bergman projection P on Qg does not
map Wk (Qg) into W*(Qg) when k > /(28 — ).

Proof. Assume on the contrary that the Bergman projection P maps W’“(QB) into
W*(Qg) with the estimate

(6.5.11) I Pfllwes < Crll £ llwes

for f € Wk(Qp) and k > /(28 — 7) = vs.
For any p > 1, let 7, be the dilation defined by
m: C — C?
(21, 22) = (121, 22).

Denote by Q5 = 7,(23), Q0 , = 7.(23) where Q7 is defined in Section 6.4. Then
'Q’ﬁ’“ C Qg and Qp /" Dg. Let T, be the pullback of the L? functions on Qg ,,
ie.,

T+ L*(Qp,) — L2(Qp)

f = for,.
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A direct calculation shows that

ANEAY T EANEAY
1(52) (55) 2t e =m0 (52) () S oo

where @ = (a1, @2) and v = (y1,72) are multindices. Thus we have

(6.5.12) I Tt lwicsy < 6701 F lwig,s

when [ is a nonnegative integer. Then, by interpolation, it holds for all real [ > 0.
Let P, be the Bergman projection associated with Qg ,. Then

(6.5.13) P, =T,'PT,.

From the definition (6.4.1) of Q3 we see that the defining function p(z) coincides

with [21]% + 2Re(zle_i1°g‘z’4“2) when log|z|> € Is_z. Let pu(z) = ppo (1,)"" so

that p, — poc = 2Re(zle*“°g|z2|2) as |1 — 00, where p, is a defining function for

Dg. Write k = m — s, where m is an integer and s > 0. For any f € Cg°(Q’ﬁ7u) C

C3°(Qp,), we have using (6.5.11)-(6.5.13) and Lemma 6.5.4,

S a "
Il 1oyl <8z1> Puf llLzs.,)

A
1o (5 ) G PTS laoca

a m
_ . s—m+1 s
=M | [o] () PT,.f HL2(Q )
(6.5.14) 0z g ’

_ a\"
<OouptF | ((921) PT,f llw-+(ap)

<O || PTuf llweay)
S Cp | Tuf llwk )
<O fllwr@p,
where the constant C is independent of u. We claim that
P.f = Pof  weakly in L*(C?),

where P, f is the Bergman projection of f on Dg, Psf = 0 outside D and we
have set P, f = 0 outside Q3 ,,. Assuming the claim, It follows from (6.5.14) that

S a "
(6:5.15) ol (o) Pt Ny < €1 S lnco

for any f € C§°(Dg). This contradicts (6.5.10) and the theorem is proved.
Thus, it remains to prove the claim. Since

| Puf a2y < I £ llz2c2),
there exists a subsequence of P, f that converges weakly to h € L?(C?). Since
Q’ﬂ u /" Dp, h is holomorphic in Dg. Also h vanishes outside Dg since every
compact subset outside Dg is outside ﬁﬁ,u for sufficiently large . To prove that
h = P f, we need to show that f—h L H(Dg). Choose M > 1 so that Qg , C Dy
for all . Obviously f — P,f L H(Dwp). Therefore, by passing to the limit, we

obtain that f —h L H(Dap). The claim will be proved by the following density
result:
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Lemma 6.5.7. For each M > 1, the space H(Dwg) is dense in H(Dg).

Proof. It suffices to show that each H;(Dap) is dense in H,;(Dg), or equivalently,
H;(D}yp) is dense in H;(Dj). From (6.5.2) and (6.5.4) we have for any f € H;(Dj),

17 By = (2m)° / | Fo(©) [2 55 (~2i6)de,

where fo(€) is the partial Fourier transform of f evaluated at y = 0 and \;(y) =
w(e(”l)(')xﬂ_%) * xz (y). Thus, the space H;(Dj) is isometric via the Fourier
transform to the space of functions on R which are square integrable with respect
to the weight

msinh (26 — 7) (¢ — (L 5
(- ()

Since C§°(R) is dense in the latter space for any value of 3, the lemma follows.

))] sinh(7¢) .

Nj(—2¢0) =

Using Theorem 6.2.2 and Theorem 6.5.6, we also obtain that the 9-Neumann
operator is irregular on the worm domain.

Corollary 6.5.8. For each 3 > /2, the O-Neumann operator on Qg does not map
Wi 1)(Qg) into W 1, (Qp) when k > 7/(28 — ).

NOTES

The existence of a smooth solution up to the boundary, using the weighted 0-
Neumann problem, for the 0 equation was proved by J. J. Kohn in [Koh 6]. The
equivalence between the Bergman projections and the d-Neumann operators was
proved by H. P. Boas and E. J. Straube in [BoSt 2]. Theorem 6.2.1 provides a suffi-
cient condition for verifying the exact regularity of the d-Neumann operators, and
the idea has been used in [Che 4] and [BoSt 3,4,5]. The use of a smooth plurisubhar-
monic defining function (Theorem 6.2.3), based on an observation by A. Noell [Noe
1], was originated in [BoSt 3] where they treated directly the exact regularity of the
Bergman projections under the existence of such a defining function. For a convex
domain in dimension two, a different proof, using related ideas, was obtained inde-
pendently in [Che 5]. The use of transverse symmetries for verifying the regularity
of the Bergman projection was first initiated by D. Barrett [Bar 1]. The regularity
of the 9-Neumann problem on circular domains with symmetry (Theorems 6.2.7
and 6.2.8) was proved by S.-C. Chen [Che 3]. See also [BCS 1]. Another sufficient
condition related to the De Rham cohomology on the set of infinite type points for
the regularity of the 9-Neumann operators was also introduced by H. P. Boas and
E. J. Straube in [BoSt 5].

Another important class of smooth bounded pseudoconvex domains which is
beyond the scope of this book is the class of domains of finite type. The concept
of finite type on a pseudoconvex domain in C2, using the Lie brackets of complex
tangential vector fields, was first introduced by J. J. Kohn [Koh 4]. Subsequently,
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J. J. Kohn introduced subelliptic multipliers and finite ideal type in [Koh 8] and he
proved that finite ideal type condition is sufficient for the subelliptic estimates of the
O-Neumann operators. By measuring the order of contact of complex varieties with
a hypersurface at the reference point, J. D’Angelo [DAn 1,2] proposed a definition
of finite type in C™. The necessity of finite order of contact of complex varieties for
the subelliptic estimates was proved by D. Catlin in [Cat 1].

When the boundary is real analytic near a boundary point, Kohn’s theory of
ideals of subelliptic multipliers [Koh 8], together with a theorem of Diederich and
Fornaess [DiFo 3], showed that a subelliptic estimate on (p,q)-forms for the O-
Neumann problem is equivalent to the absence of germs of ¢ dimensional complex
varieties in the boundary near the point. In particular, subelliptic estimates always
hold on any bounded pseudoconvex domain with real analytic boundary.

D. Catlin also defined in [Cat 4] his own notion of finite type. His theory of mul-
titypes developed in [Cat 2] leads to the construction of a family of smooth bounded
plurisubharmonic functions with large Hessian on the boundary. This property is
now known as property (P) (see [Cat 3]). Property (P) implies the existence of a
compactness estimate for the 9-Neumann problem. Therefore, together with a the-
orem of Kohn and Nirenberg [KoNi 1], global regularity of the -Neumann problem
will follow from property (P). See also the papers by N. Sibony [Sib 2,3] and S. Fu
and E. J. Straube [FuSt 1] for related results.

When a smooth bounded pseudoconvex domain has real analytic boundary, it is
also important to know the real analytic regularity of the O-Neumann operator near
the boundary. Real analytic regularity of a holomorphic function near the boundary
is equivalent to holomorphic extension of the function across the boundary. For
strongly pseudoconvex domains, an affirmative result of global analytic regularity
of the &-Neumann problem had been obtained by M. Derridj and D. S. Tartakoff
[DeTa 1] and G. Komatsu [Kom 1]. Local analytic hypoellipticity of the 9-Neumann
problem on strongly pseudoconvex domains was proved by D. S. Tartakoff [Tar 1,2]
and F. Treves [Tre 2]. When the domains are weakly pseudoconvex of special type,
some positive results concerning global analytic hypoellipticity of the d-Neumann
problem are also available by S.-C. Chen [Che 1,2,6] and M. Derridj [Der 1] using
the vector field technique. For local analytic regularity of the 9-Neumann problem
on certain weakly pseudoconvex domains, see [DeTa 2,3].

For introductory materials on the Bergman kernel function, the reader may con-
sult the survey paper by S. Bell [Bel 4] or the texts by S. G. Krantz [Kra 2] and R.
M. Range [Ran 6]. See also the papers by S. Bell [Bel 3], H. P. Boas [Boa 3|, S.-C.
Chen [Che 7] and N. Kerzman [Ker 2] for the differentiability of the Bergman kernel
function near the boundaries of the domains. Theorem 6.3.7 on various equivalent
statements of condition R can be found in [BeBo 1]. The operator ®° in Lemma
6.3.8 was first constructed by S. Bell in [Bel 2]. Corollary 6.3.12 is the density
lemma due to S. Bell [Bel 1]. The smooth extension of a biholomorphic mapping
between two smooth bounded domains in C™,n > 2, was first achieved by C. Fef-
ferman in his paper [Fef 1] when the domains are strongly pseudoconvex. Later,
condition R was proposed by S. Bell and E. Ligocka in [BeLi 1]. They showed using
condition R that, near a boundary point, one may choose special holomorphic local
coordinates resulting from the Bergman kernel functions so that any biholomorphic
map between these two smooth bounded domains becomes linear (Theorem 6.3.13).
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Hence, the biholomorphism extends smoothly up to the boundaries. The present
proof of Theorem 6.3.13 was adopted from [Bel 2]. A smooth bounded nonpseudo-
convex domain in C? which does not satisfy condition R was discovered in [Bar 2].
In contrast to Barrett’s counterexample, H. P. Boas and E. J. Straube showed in
[BoSt 1] that condition R always holds on any smooth bounded complete Hartogs
domain in C? regardless of whether it is pseudoconvex or not. Theorem 6.3.14 was
proved by R. M. Range [Ran 2].

The construction of worm domains is due to K. Diederich and J. E. Fornaess
in [DiFo 1] where Theorem 6.4.3 is proved (see also [FoSte 1]). Our exposition
follows that of C. O. Kiselman [Kis 1]. Most of the Section 6.5 is based on [Bar 3].
Recently, based on D. Barrett’s result, it was proved by M. Christ in [Chr 2] that
condition R does not hold for the Bergman projection on the worm domain. For
more about the regularity of the 9-Neumann problem and its related questions, the
reader may consult the survey paper by H. P. Boas and E. J. Straube [BoSt 6]. We
also refer the reader to the book by J. E. Fornaess and B. Stensgnes [FoSte 1] for
counterexamples on pseudoconvex domains. For recent results on the -Neumann
problem on Lipschitz pseudoconvex domains, see the papers by Bonami-Charpentier
[BoCh 1], Henkin-Iordan [Helo 1], Henkin-Tordan-Kohn [HIK 1], Michel-Shaw [MiSh
1] and Straube [Str 2]. Hélder and LP estimates of the d-Neumann problem on
pseudoconvex domains of finite type in C2 have been discussed in Chang-Nagel-
Stein [CNS 1], Fefferman-Kohn [FeKo 1]. Holder or L estimates for the 9-Neumann
problem on finite type pseudoconvex domains in C™ for n > 3 are still unknown.
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CHAPTER 7

CAUCHY-RIEMANN MANIFOLDS
AND THE TANGENTIAL CAUCHY-RIEMANN COMPLEX

Let M be a smooth hypersurface in a complex manifold. The restriction of the
O complex to M naturally induces a new differential complex. This complex is
called the tangential Cauchy-Riemann complex or the ), complex. The tangential
Cauchy-Riemann complex, unlike the de Rham or the d complex, is not elliptic. In
general, it is an overdetermined system with variable coefficients.

We have seen in Chapter 3 that the tangential Cauchy-Riemann equations are
closely related to the holomorphic extension of a C R function on the hypersurface.
The 0; complex is also important in its own right in the theory of partial differen-
tial equations. The tangential Cauchy-Riemann equation associated with a strongly
pseudoconvex hypersurface in C? provides a nonsolvable first order partial differen-
tial equation with variable coefficients. It also serves as a prototype of subelliptic
operators.

In the next few chapters, we shall study the solvability and regularity of the 0y,
complex. First, in Chapters 8 and 9 the subellipticity and the closed range property
of ), will be investigated using L? method. Then, in Chapter 10 we construct an
explicit fundamental solution for [J, on the Heisenberg group. Next, the integral
representation is used to construct a solution operator for the B operator on a
strictly convex hypersurface in Chapter 11. The C'R embedding problem will be
discussed in Chapter 12.

In this chapter, we shall first define Cauchy-Riemann manifolds and the tangen-
tial Cauchy-Riemann complex both extrinsically and intrinsically. The Levi form of
a Cauchy-Riemann manifold is introduced. In Section 7.3, we present the famous
nonsolvable Lewy operator. In contrast with the Lewy operator, we prove that
any linear partial differential operator with constant coefficients is always locally
solvable.

7.1 C R Manifolds

Let M be a real smooth manifold of dimension 2n — 1 for n > 2, and let T'(M)
be the tangent bundle associated with M. Let CT(M) = T(M) ®g C be the
complexified tangent bundle over M. A CR structure on M is defined as follows.
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Definition 7.1.1. Let M be a real smooth manifold of dimension 2n —1, n > 2,
and let TYO(M) be a subbundle of CT(M). We say that (M, T*°(M)) is a Cauchy-
Riemann manifold, abbreviated as CR manifold, with the Cauchy-Riemann structure
TYO(M) if the following conditions are satisfied:
(1) dimeT (M) =n—1,
(2) THO(M)N T (M) = {0}, where TO = TLO(M),
(3) (Integrability condition) For any X1, Xs € (U, T*O(M)), the Lie bracket
[X1, X2] is still in T(U, TH°(M)), where U is any open subset of M and
(U, T9(M)) denotes the space of all smooth sections of TY°(M) over U.

Here T19(M) in (2) means the complex conjugation of T1:°(M). Note also that
condition (3) in Definition 7.1.1 is void when n = 2. The most natural C' R manifolds
are those defined by smooth hypersurfaces in C".

Example 7.1.2. Let p: C" — R be a real-valued smooth function. Suppose that
the differential dp does not vanish on the hypersurface M = {z € C" | p(z) = 0}.
Then M is a smooth manifold with dimg M = 2n — 1. Define a subbundle T*°(M)
of CT(M) by THO(M) = T1O(C") N CT(M). It is easily seen that (M,TV(M))
is a C'R manifold with the CR structure TH°(M) induced from the ambient space
cn.

Hence, it is natural to ask whether a given abstract CR structure (M, T40(M))
on M can be CR embedded into some C¥ so that the given C'R structure coincides
with the induced C'R structure from the ambient space. The embedding problem
of an abstract C'R structure will make up the main course of Chapter 12.

Let (M, T%%(M)) and (N,TY°(N)) be two CR manifolds. A smooth mapping
from M to N is called a C R mapping if . L is a smooth section of TH°(N) for any
smooth section L in TH°(M). Furthermore, if ¢ has a smooth C'R inverse mapping
¢~ 1, then we say that (M, T"°(M)) is CR diffeomorphic to (N, T1(N)).

We have the following lemma:

Lemma 7.1.3. Let (M, T°(M)) be a CR manifold, and let N be a manifold.
Suppose that M is diffeomorphic to N via a mapping ¢. Then ¢ induces a CR
structure on N, namely, . TH°(M), so that ¢ becomes a CR diffeomorphism from
(M, TH°(M)) onto (N, . TH0 (M)), where @, is the differential map induced by .

Proof. We need to check the integrability condition on ¢, T*%(M). However, this
follows immediately from the integrability condition on T%%(M) and the fact that
[0« X1, 0 Xa] = [ X7, Xo] for any smooth vector fields X7, Xo defined on M.

Definition 7.1.4. A smooth function g defined on a CR manifold (M, T"°(M))
is called a CR function if Lg = 0 for any smooth section L in T%1(M).

When M is the boundary of a smooth domain in C", this definition coincides
with Definition 3.0.1. If, in Definition 7.1.4, g is just a distribution, then Lg should
be interpreted in the sense of distribution.
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7.2 The Tangential Cauchy-Riemann Complex

Let M be a hypersurface in a complex manifold. The 9 complex restricted to M
induces the tangential Cauchy-Riemann complex, or the 9, complex. In fact, the
tangential Cauchy-Riemann complex can be formulated on any C'R manifold. There
are two different approaches in this setting. One way is to define the tangential
Cauchy-Riemann complex intrinsically on any abstract C'R manifold itself without
referring to the ambient space. On the other hand, if the C R manifold is sitting in
C™, or more generally, a complex manifold, the tangential Cauchy-Riemann complex
can also be defined extrinsically via the ambient complex structure.

First, we assume that M is a smooth hypersurface in C™, and let r be a defining
function for M. In some open neighborhood U of M, let 1”9, 0 < p,q < n, be the
ideal in AP9(C™) such that at each point z € U the fiber 1?7 is generated by r and
Or, namely, each element in the fiber 1?9 can be expressed in the form

rHy + 0r A Ha,

where H;j is a smooth (p, ¢)-form and Hs is a smooth (p,q — 1)-form. Denote by
AP-94(C™)|pr and IP9| )y the restriction of AP2(C™) and IP9 respectively to M. Then,
we define

AP9(M) = {the orthogonal complement of I”9|5; in AP9(C")|p}.

We denote by £P+? the space of smooth sections of AP4(M) over M, i.e., EPL(M) =
T'(M,AP9(M)). Let 7 denote the following map

(7.2.1) 7: API(C") — APY(M),

where 7 is obtained by first restricting a (p, ¢)-form ¢ in C™ to M, then projecting
the restriction to AP»*?(M). One should note that AP*?(M) is not intrinsic to M,
i.e., AP2(M) is not a subspace of the exterior algebra generated by the complexified
cotangent bundle of M. This is due to the fact that dr is not orthogonal to the
cotangent bundle of M. Note also that P = 0.

The tangential Cauchy-Riemann operator

Oy : EPI(M) — EPTTH(M)
is now defined as follows: For any ¢ € EP9(M), pick a smooth (p,q)-form ¢; in
C" that satisfies 7¢)y = ¢. Then, dy¢ is defined to be 79¢; in EPITL(M). If ¢q is
another (p, ¢)-form in C™ such that 7¢2 = ¢, then
b1 — o =1rg+0Or Ah,
for some (p, q)-form g and (p,q — 1)-form h. It follows that
d(p1 — ¢2) =709+ Or A g — Or A Oh,

and hence,

TO(¢1 — ¢2) = 0.
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Thus, the definition of Jj is independent of the choice of ¢1. Since 7 = 0, we have
55 = 0 and the following boundary complex

0 — eror) 2 gri(a) 2 D el o,

For the intrinsic approach, we will assume that (M, T1°(M)) is an orientable CR
manifold of real dimension 2n—1 with n > 2. A real smooth manifold M is said to be
orientable if there exists a nonvanishing top degree form on M. We shall assume that
M is equipped with a Hermitian metric on CT'(M) so that T*9(M) is orthogonal
to TOY(M). Denote by n(M) the orthogonal complement of T+°(M) & T%(M).
It is easily seen that n(M) is a line bundle over M. Now denote by T*"°(M) and
T*%Y(M) the dual bundles of TH0(M) and T%'(M) respectively. By definition it
means that forms in 7*"°(M) annihilate vectors in 7% (M) @ n(M) and forms in
T*% (M) annihilate vectors in T"0(M) @ n(M). Define the vector bundle AP4(M),
0<pg<n-1,by

AP9(M) = APT*HO (M) @ AIT*O (M),

This can be identified with a subbundle of APTICT*(M). It follows that AP:9(M)
defined in this way is intrinsic to M. Denote by £P-? the space of smooth sections
of AP9(M) over M, i.e., EP9(M) =T (M,AP9(M)). We define the operator

O : EPIUM) — Ep’q+1(M)
as follows: If ¢ € EP0, Jy¢) is defined by
(O, (Vi A+ AV,) QL) = L{(p, Vi A+ A V)

for all sections Vi, ,V, of THO(M) and L of T%'(M). Then 9, is extended to
EP9(M) for ¢ > 0 as a derivation. Namely, if ¢ € EP1(M), we define

<55¢7 (Vl/\ e /\Vp) & (Zl/\ cee /\Zq+1)>

TR e _ =
A VT 6. A AV @ Bince LA ALy
j=1

+3 (1), (ViA--- AVy) @ (i, TIATIA - ALiA- - ALA - - /\Lq+1)>}.

1<j

Here by L we mean that the term L is omitted from the expression. If we let m, 4
be the projection from APT4CT*(M) onto AP9(M), then 9 = mp 441 © d, where d
is the exterior derivative on M.

One should note how the integrability condition of the CR structure T%(M)
comes into play in the definition of 9y, and it is standard to see that the following
sequernce

0 — &rOM) 2 griar) 2o o Dy grnmlag) )
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forms a complex, i.e., 55 =0.

Notice that p plays no role in the formulation of the tangential Cauchy-Riemann
operators. Thus, it suffices to consider the action of 3, on type (0,q)-forms,
0 < ¢ <n-—1. When the CR manifold (M, T*%(M)) is embedded as a smooth
hypersurface in C" with the C'R structure T1°(M) induced from the ambient space,
the tangential Cauchy-Riemann complex on M can be defined either extrinsically or
intrinsically. These two complexes are different, but one can easily show that they
are isomorphic. Thus, if the C' R manifold is embedded, we shall not distinguish
the extrinsic or intrinsic definitions of the tangential Cauchy-Riemann complex.
The operator 9y is a first order differential operator, and one may consider the
inhomogeneous 9, equation

(7.2.2) Opu = f,

where f is a (0, ¢)-form on M. Equation (7.2.2) is overdetermined when 0 < g <

n — 1. Since 52 = 0, for equation (7.2.2) to be solvable, it is necessary that
(7.2.3) Opf =0.

Condition (7.2.3) is called the compatibility condition for the d, equation. We shall
discuss the solvability and regularity of the J; operator in detail in the next few
chapters.

Let Ly,- -, L,_1 be alocal basis for smooth sections of T1:°(M) over some open
subset U C M, so Ly, ,L,_1 is a local basis for T"!(M) over U. Next we

choose a local section T of CT'(M) such that Ly, - ,Lp—1,L1,--+ ,Lp—1 and T
span CT (M) over U. We may assume that T is purely imaginary.

Definition 7.2.1. The Hermitian matriz (cl])zj_:ll defined by
(724) [LZ,ZJ] = CijT, mod (TI’O(U) S To’l(U))

is called the Levi form associated with the given CR structure.

The Levi matrix (¢;;) clearly depends on the choices of Lq,---, L,—1 and T.
However, the number of nonzero eigenvalues and the absolute value of the signature
of (¢;5) at each point are independent of the choices of Lq,-- -, L,,—; and T'. Hence,
after changing T to —T', it makes sense to consider positive definiteness of the matrix

(cij)-

Definition 7.2.2. The C'R structure is called pseudoconvex at p € M if the matriz
(cij(p)) is positive semidefinite after an appropriate choice of T'. It is called strictly
pseudoconver at p € M if the matriz (c;j(p)) is positive definite. If the CR struc-
ture is (strictly) pseudoconvex at every point of M, then M is called a (strictly)
pseudoconver C'R manifold. If the Levi form vanishes completely on an open set
UcCM,ie,ci;=0o0nUforl<ij<n-—1, M is called Levi flat.
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Theorem 7.2.3. Let D C C", n > 2, be a bounded domain with C*° boundary.
Then D is (strictly) pseudoconvez if and only if M = bD is a (strictly) pseudoconvex
CR manifold.

Proof. Let r be a C* defining function for D, and let p € bD. We may assume
that (9r/0z,)(p) # 0. Hence,

or 0 or 0
L = - f :1 AR _1
k Ozy, Oz, Oz 0z or k SR A

form a local basis for the tangential type (1,0) vector fields near p on the boundary.
If L =377, a;(0/0z;) is a tangential type (1,0) vector field near p, then we have

> i—1aj(9r/dz;) = 0 on bD and L = (9r/0z,) " Z;L;ll a;L; on bD. Hence, if we

let 7 = Or — Or, we obtain

n—1 n—1
> cjaia; =Y (0, [Li, Lj))aid;
ij=1 ij=1

n—1

(]

(Li<777 LJ> - Zj <777 L’L> - 2<d777 Li A zj>)a'iaj

ij=1
n—1
= Z 4<857“, L; /\fj>aiaj
ij=1
or|* — —
=4|— LAL
B (00r, L A L)
_ o O o
= %oz, 02,07, "

which gives the desired equivalence between these two definitions. This proves the
theorem.

We note that, locally, a C'R manifold in C" is pseudoconvex if and only if it is
the boundary of a smooth pseudoconvex domain from one side.

Lemma 7.2.4. Any compact strongly pseudoconvex CR manifold (M, T+°(M)) is
orientable.

Proof. Locally, let n,w1, -+ ,w,—1 be the one forms dual to T, Ly, - - -, L,—1 which
are defined as above. The vector field T is chosen so that the Levi form is positive
definite. Then we consider the following 2n — 1 form

(7.2.5) NAWLADL A Awp_1 AWyp_1.

It is not hard to see that the 2n —1 form (7.2.5) generated by other bases will differ
from (7.2.5) only by a positive function. Hence, a partition of unity argument will
give the desired nowhere vanishing 2n — 1 form on M, and the lemma is proved.
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7.3 Lewy’s Equation

In this section, we shall present a partial differential operator of order one with
variable coefficients that, in general, does not possess a solution for a given smooth
function. This discovery destroys all hope for the existence of solutions to a rea-
sonably smooth partial differential operator. Since this operator arises from the
tangential Cauchy-Riemann operator on the boundary of a strongly pseudocon-
vex domain, this discovery also inspires an intensive investigation of the tangential
Cauchy-Riemann operator.

Let 2, be the Siegel upper half space defined by

(7.3.1) Q= {(', 20) € C"| Tmz,, > |2']2},

where 2’ = (21, ,2,_1) and |2/|> = |21 + -+ + |2n_1]?>. When n = 1, Qy is
reduced to the upper half space of the complex plane which is conformally equivalent
to the unit disc. For n > 1, the Cayley transform also maps the unit ball B,
biholomorphically onto the Siegel upper half space €,,, i.e.,

®:B,— Q,

z —w=®(2)
(e, +z 121 12n—1 .1+ 2z,
1 — )
11—z, 11—z, ‘1=z, 1—2,/)"
where e, = (0,---,0,1).

For n > 2, a simple calculation shows

(7.3.2)

(7.3.3) LkzaiZk—FZizk% fork=1,---,n—1,

forms a global basis for the space of tangential (1,0) vector fields on the boundary

b, and

— . 0
[Lj, L] = —225jk§7

where 2z, = t + is and d;; is the Kronecker delta. It follows that if we choose
T = —2i(0/0t), the Levi matrix (c;;) is the identity matrix which implies that
Q,, is a strongly pseudoconvex domain. Furthermore, the boundary bf2, can be
identified with H,, = C*~! x R via the map

7 (2t +ilZ)?) — (Z,1).

Therefore, a C'R structure can be induced via 7w on H,, by

0 _ 0

fork=1,--- ,n—1. Thus, if f = Z;:ll fiw; is a dp-closed (0, Q—form on H,,, where
wj is the (1,0)-form dual to Z;, the solvability of the equation Jyu = f is equivalent
to the existence of a function u satisfying the following system of equations:

7ku:fk, 1§k§n71
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When n = 2, the Siegel upper half space is given by
2 2 1
{(z,w) € C7 | [2]° = o (w —w) <O}

Hence, the tangential Cauchy-Riemann operator is generated by

- 0 0
7.3.5 L=——2iz—
( ) oz “Cow
with w = t+is, and the corresponding operator, denoted by Z, via the identification
on H is

- 0 0
7.3.6 Z=——iz=,
(7.36) 0z ot
where (z,t) with 2z = x + iy are the coordinates on Hy = C x R. The coefficients of
the operator Z defined in (7.3.6) are real analytic. Hence, for a given real analytic
function f, the equation

(7.3.7) Zu=f

always has a real analytic solution u locally as is guaranteed by the Cauchy-
Kowalevski theorem. However, the next theorem shows that equation (7.3.7) does
not possess a solution in general even when f is smooth.

Theorem 7.3.1 (Lewy). Let f be a continuous real-valued function depending
only on t. If there is a C' solution u(w,y,t) to the equation (7.3.7), then f must
be real analytic in some neighborhood of t = 0.

Proof. Locally, near the origin any point can be expressed in terms of the polar
coordinates as
(z,y.t) = (re”, 1)

with 7 < R and |t| < R for some R > 0. Set s = r2. Consider the function V (s, t)
defined by
Vs, t) :/ u(z,t) dz.
{lz|=r}

Then, by Stokes’ theorem we have

Vs, t) = / — dz/\dz
{l= \<T}
= // f+ Ou dz Ndz
= iz —— m z Ndz
{lzl<r}

27
= 2mir? f —2—/ / peu(pe® t)pdpdh.
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Hence,
8—V(st)—2if(t)— /%/ e u(pe® ) pdpdd
gs Y T 2r8r P pap
o 190 0
= 2mif(t) ;a/o re'u(re® t)rdf
=2mif(t )+Z%V(8,t>.
Set

Fw=Ade

<§t + zi) (V(s,t) +2nF(t)) =0,
which implies that the function U(s,t) = V(s,t) + 2xF(¢) is holomorphic on the
set {t +is € C| |t| < R,0 < s < R?}, and U(s,t) is continuous up to the real
axis {s = 0} with real-valued boundary value 27 F(t). Hence, by the Schwarz
reflection principle, U(s,t) can be extended holomorphically across the boundary
to the domain {t + is € C||t| < R,|s| < R?}. In particular, F(¢), and hence f(t),
must be real analytic on (—R, R). This proves Theorem 7.3.1.

Then, we obtain

In Section 10.3 we shall give a complete characterization of the local solvability
of the Lewy operator (7.3.6).

7.4 Linear Partial Differential Operators with Constant Coefficients

In contrast to the nonsolvable operator (7.3.6), we shall present in this section
a fundamental positive result in the theory of partial differential equations which
asserts the existence of a distribution fundamental solution to any linear partial
differential operator with constant coefficients. It follows by convolution that every
partial differential operator with constant coefficients is locally solvable.

Theorem 7.4.1 (Malgrange, Ehrenpreis). Let

L= a.Dg

lal<k

be a partial differential operator with constant coefficients on R™, where DY =
(0/0x1)* - -+ (0/0xy)* for any multiindex oo = (a1,---, an) with nonnegative
integer components. If f € C§°(R™), then there exists a C* function h(z) satisfying
Lh = f on R"™.

Proof. The proof will be done via the Fourier transform. For any g € L*(R"), the
Fourier transform §(¢) of g is defined by

i€ = [ e gla) da,
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where x - £ = z1§ + -+ + xp&,. Note first that, via a rotation of coordinates
and multiplying L by a constant, we may assume that the corresponding Fourier
transform p(&) of the operator L is

k—1
p(&) =&+ a;(€)E,
j=0

where £ = (£/,&,) with & € R"™!, and a;(¢’) is a polynomial in &' for 0 < j < k — 1.

Next, we complexify p(§); namely, we view £ as a variable in C™. Hence, for each
¢ e R p(€&,) is a polynomial of degree k in &,. Let Ai(&), -, Au(£) be its
zeros, arranged so that if ¢ < j, ImA;(¢') < ImA;(¢'), and ReA;(§') < Re),; (&) if
ImA;(¢') =ImA;(¢’). One sees easily that these k functions ImA;(§’) are continuous
in &

We then need to construct a measurable function
¢ R = [~k —1,k+1]
such that for all ¢ € R"~!, we have
min{|6(€') — ImA;(¢))] : 1< j <k} > 1.
Set up(¢') = —k — 1 and ug1(&’) =k + 1. For 1 < j <k, define
uy(€) = max{min{Im, (¢'), k + 1}, & — 1},
The functions u;(£’) are continuous in &', so the sets
Vi ={& 1 uj1(&) —u;(¢) > 2},

for j =0,--- , k, are measurable. It is clear that U;?:OVJ- is a covering of R®~!. Thus,
we can construct disjoint measurable subsets W; C V; which still cover R*~!. Define

1
$(&) = (w1 (&) + u;(€)),
if ¢ € W;. This completes the construction of ¢(¢’).
We define h(z) by

e 1 pinE f© '
) (2m)™ /Rnl/{lmgnz¢(§/)} (Mf)) ndl.

The key is to observe that, as |Re§| — oo, f (&) is rapidly decreasing whereas Im¢&
remains bounded, and to see that the line Im&,, = ¢(¢’) in the &,-plane has distance
at least one from any zero of p(§) and at most k 4 1 from the real axis. Hence, the
integrand is bounded and rapidly decreasing at infinity, so the integral is absolutely
convergent. The same reasoning shows that we can differentiate under the integral
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sign as often as we please. It follows that h(z) is smooth. Finally, we apply L to
h(zx) and get

1 e ; ,
o d¢,dg' .
B o o € de

The integrand on the right-hand side is an entire function which is rapidly decreasing
as |Re¢,| — oo. Therefore, by Cauchy’s theorem, the contour of integration can
be deformed back to the real axis. By invoking the inverse Fourier transform we
obtain Lh = f. The proof is now complete.

Lh(z) =

As an easy consequence of Theorem 7.4.1, if L is a linear partial differential
operator with constant coeflicients, then for any given function f(x) which is smooth
near some point xg, we can find locally a smooth solution h(z) such that Lh = f
near xg.

We now return to the solvability of the 0; equation in a very special case. Let
the CR manifold (M, TY°(M)) of real dimension 2n — 1, n > 2, be Levi flat in a
neighborhood U of the reference point p, then we can apply the Frobenius theorem
(Theorem 1.6.1) to ReLy,ImL4,--- ,ReL,,—1,ImL, 1, where Ly,--- , L,,_1 is alocal
basis of T*9(M) near p. Thus there exist local coordinates (x1,- - , 2, 2,t) such
that the vector fields ReLq,ImL,---, ReL,,_1,ImL,_1 span the tangent space of
each leaf {t = ¢} for some constant c¢. Therefore, on each leaf we may apply Theorem
2.3.1, for n = 2, or the Newlander-Nirenberg theorem (Theorem 5.4.4), for n > 3,
to show that M is locally foliated by complex submanifolds of complex dimension
n—1. In this case, the local solvability of the tangential Cauchy-Riemann equation,
Oyu = f, where f is a p-closed (0, 1)-form, can be reduced to a d problem with a
parameter. In the next few chapters, the global and local solvability of 9, will be
discussed in detail.

NOTES

The tangential Cauchy-Riemann complex was first introduced by J. J. Kohn and
H. Rossi [KoRo 1]. See also the books by A. Boggess [Bog 1], G. B. Folland and
J. J. Kohn [FoKo 1] and H. Jacobowitz [Jac 1]. The nonsolvability theorem for the
operator (7.3.6) was proved by H. Lewy [Lew 2]. A more general theorem due to L.
Hormander [Hor 1,7] states that the tangential Cauchy-Riemann equation on a real
three dimensional C'R manifold is not locally solvable if it is not Levi flat. For a
proof of the Cauchy-Kowalevski theorem, the reader is referred to [Joh 1]. Theorem
7.4.1 was originally proved by B. Malgrange [Mal 1] and L. Ehrenpreis [Ehr 1]. The
proof we present here is due to L. Nirenberg [Nir 2].
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CHAPTER 8

SUBELLIPTIC ESTIMATES FOR
SECOND ORDER DIFFERENTIAL EQUATIONS AND [,

In this chapter, we study subelliptic operators which are not elliptic. We analyze
two types of operators in detail. One is a real second order differential equation
which is a sum of squares of vector fields. The other is the J;-Laplacian on a CR
manifold. We use pseudodifferential operators to study both operators.

For this purpose, we shall briefly review the definitions and basic properties
of the simplest pseudodifferential operators. Using pseudodifferential operators,
Hormander’s theorem on the hypoellipticity of sums of squares of vector fields will
be discussed in Section 8.2.

The Op-Laplacian, [0y, is not elliptic. There is a one-dimensional characteristic
set. However, under certain conditions, one is able to establish the 1/2-estimate for
the [, operator via potential-theoretic methods and pseudodifferential operators. In
the last two sections of this chapter, the 1/2-estimate for the O, operator on compact
strongly pseudoconvex C'R manifolds is proved, which leads to the existence and
regularity theorems of the 9; equation. Global existence theorems for d;, on the
boundary of a pseudoconvex domain in C™ will be discussed in Chapter 9.

8.1 Pseudodifferential Operators

We first introduce some simple pseudodifferential operators. Let S be the Schwar-
tz space in R™. For the definitions of the space S and the Sobolev space W*(R™),
the reader is referred to the Appendix A. We begin this section with the following
definition:

Definition 8.1.1. A linear operator T : S — S is said to be of order m if for each
s € R we have
| Tu ||ls < Cs || wllstm, foralluesS,

with the constant Cs independent of u.

We note that, by definition, any linear operator of order m from S into itself
extends to a bounded linear operator from W**™(R"™) to W#(R") for every s € R.
It is obvious that any differential operator D® with |a| = m is of order m, where
a= (a1, - ,a,) and D* = Dgl--- D3~

For any s € R, we define A* : § — S by

1
(2m)"

Au(z) = /R e (14 [€) 2 a(e) de
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where 4 is the Fourier transform of u. Here, 0(A%) = (1+|¢[?)2 is called the symbol
of A*. Obviously, the operator A® is of order s. A® is called a pseudodifferential op-
erator of order s. We should think of A® as a generalization of differential operators
to fractional and negative order.

The purpose of this section is to prove some basic properties of the commutators
between A® and functions in S. We need the following lemma:

Lemma 8.1.2. ((1+ |z[?)/(1+ |y|2))S <211 + |z — y2)! for all 2,y € R™ and
every s € R.

Proof. From the triangle inequality |z| < |z — y|+ |y|, we obtain |z|? < 2(|x — y|?> +
ly|?) and hence 1+ |z|? < 2(1 + |z — y|?)(1 + |y|?). Thus, if s > 0, the lemma is
proved. For s < 0, the same arguments can be applied with = and y reversed and
s replaced by —s. This proves the lemma.

We employ Plancherel’s theorem to study the commutators of A® and functions
in §. We first show that multiplication by a function in S is of order zero.

Lemma 8.1.3. Foranyg € S ands €R, || gu ||s S || u ||s uniformly for allu € S.

Proof. By the Fourier transform formula for convolution, we obtain

205 ey 1 1+ ¢ %A EON
1+ 165006 = o [ (1) o€ mi+ ) ki) do

Now we view ((1+[€/2)/(1+ %)) 4(€ — 1) as a kernel K (€,7) and set £(n) =
(1 + |n>)*/?a(n). Lemma 8.1.2 shows that

s/2

Is]

K& )] S @+1E—n*)=[g(&—n)l.

Since g € S, it follows that § € S and that the hypotheses of Theorem B.10 in the
Appendix are satisfied by this kernel. Therefore, we have

lgulls S A= 1ulls-

This proves the lemma.

Theorem 8.1.4. If g.h € S, then for any r,s € R, we have
(1) [A®, 9] is of order s — 1,
(2) [A",[A%,9]] is of order r + s — 2,
(3) [[A®,g],h] is of order s — 2.

Proof. The proof of the theorem will proceed exactly as in Lemma 8.1.3. For (1) it
suffices to show that A"[A®, g]A1="=% is of order zero for any 7 € R. Let u € S, and
set f = A"[A%, g]A*"""%u. A direct calculation shows that

(271r)n /K(E,n)ﬁ(n) dn,

fe) =

where ) -
HEEE (14 16y — (@t InP)3) e — ).

K(fﬂ?)zm
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From the mean value theorem, we have

(+1e®) 7 + @+ m2)=)

[(L+ €)= 1+ In)2| S

for all £&,7 € R™, hence, by Lemma 8.1.2 we obtain

2\ 5 2\ 2
IK(E,n)I,SI&—nI(GHf]'P) +(ij|'§'|2)>|g<f—n>|

Sle—al (W+lg=nP)= 5 + a+lg =07 ) la€ - ml.

Since g € S, so is g € §. Therefore, by Theorem B.10 in the Appendix, (1) is
proved.
To prove (2), for u € S, a similar calculation shows

(A7 8, J0) () = gz [ K€mito) doy

where

s

K(&n) = (4177 —Q+nP)2) (L+ €))7 — @+ m*)?2) g€ —n).

Here ([A", [As,g]]u)A(i) denotes the Fourier transform of [A”,[A%, g]Ju. It follows
now from the same estimates as in (1) that

[K(&n) S 16— 7]|2 ((1 + |§|2)%1 +(1+ |77|2)TT71)
((1+|§| Y7+ (14 pH) T )|g(§ -

which implies easily that [A",[A®, ¢]] is of order r + s — 2. This proves (2).
For (3), let u € S. It is easy to get from Taylor’s expansion that

(18, 600) (€) = oy / (L €)% = L+ %)) g€ — matn) d

-3 &

=1

<.

(27
1

+

= Tyu + Thu,

where O(€,7) can be estimated by

7).

OE IS 16—l ((1+ 167 + 1+ )=
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Now, as in (1), it is easily seen that the operator Ts is of order s — 2. Thus, to
finish the proof of (3), it suffices to show that [T}, h] is of order s — 2. Write

k(&) =Y (& —m) 35 L+1€%)2g(¢ —n)
j=1 J
=53 &(& —n)A+ e T g(e —n).
j=1

Thus, from a direct calculation we obtain

([T 10) (€)= s [ K(Em)itn) dn

where

=) = k(G mh(E ~ ©)) dC

k(&€ +n—¢) — k(¢ m)) dC.

Since

5(&, €+ — €)= k()|
Sle=clic—nl (1 +1e

+(L+[¢®) ) 13 = ),

we can estimate K (&,n) as follows,

K §n|</\§ ClIC = l(1+ 1€2) T2 e — ONIa(C — )] dC
h(€ = Ollg(¢ —n)l d¢

+/I£fCHC777I(1+ICI )7
<1+ ) (/|<||h IE — 1 — ClIgE —n— )] d

/|<| (14 1¢2) T2 RONIE =1 — Cllg(e —n - O] dc)

< Cn1+1E2) 7 1+l —n)

for any m € N, where (), is a constant depending on m. Here we have used the
fact that both A and g are in §. Choosing m to be sufficiently large and applying
arguments similar to those used in the proof of (1), (3) is proved. This completes
the proof of Theorem 8.1.4.

Theorem 8.1.5. Let P and @ be two differential operators of order k and m
respectively with coefficients in S. Then [A®, P] is of order s +k — 1, [A",[A%, P]]
is of order r + s+ k — 2, and [[A®, P],Q)] is of order s +k+m — 2.
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Proof. Write

with a,(z) € §. Since D* commutes with A®, the commutator of A® with P is
reduced to commutators of A® with a,(z), composed with D®. This proves the
theorem.

We shall use operators of the form generated by A®, D and multiplication by
functions in S plus their Lie brackets. All these are pseudodifferential operators
and the computation of their orders is similar to that for differential operators.

8.2 Hypoellipticity of Sum of Squares of Vector Fields

Let © be an open neighborhood of the origin in R”. Let X; = 2?11 a;;(0/0x;),
0 <4 < k with k < n, be vector fields with smooth real-valued coefficients a;; (x)
on 2. Define the second order partial differential operator
k
(8.2.1) P=> X7+ Xo+b(z),
i=1
where b(x) is a smooth real-valued function on €.
Denote by £; the collection of the X;’s, 0 < ¢ < k. Then, inductively for an
integer m > 2 we define L,,, to be the collection of £,,_1 and the vector fields of
the form [X,Y] with X € £y and Y € L.

Definition 8.2.1. The partial differential operator P defined as in (8.2.1) is said
to be of finite type at point p € Q) if there exists an m such that L,, spans the whole
tangent space at p.

Definition 8.2.2. A partial differential operator P is said to be hypoelliptic in
if it satisfies the following property: let u and f be distributions satisfying Pu = f
in §Q, then u is smooth on U if f is smooth on U for any open subset U of €2

The task of this section is to prove the following main theorem:

Theorem 8.2.3. Let P be the partial differential operator defined as in (8.2.1).
Suppose that P is of finite type at every point in Q. Then P is hypoelliptic in Q.

The heat operator on R?*! defined by

P = i 2+...+ i 279
-\ 0ry ox, ot

is a typical example of such an operator, where the coordinates in R"*! are denoted
by (x,t) = (z1, -+ ,2n,t). Another simple example with variable coefficients is the
Grushin operator on R? defined by

According to Theorem 8.2.3, both operators are hypoelliptic.

To prove Theorem 8.2.3, we begin with the following a priori estimate. By
shrinking the domain €, if necessary, we may assume that a;;(x) and b(z) are in
C>(Q) for all 4, ;.
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Lemma 8.2.4. Let P be defined as in (8.2.1). There exists C > 0 such that

k
(8.2.2) Sl Xouw|? < C((Pu,u)| + [ ul?), ue Q).

=1

Proof. Let X} be the adjoint operator for X;. Then X} = —X; + h;, where h; =
- 2?21 (Oa;j/0x;). Integration by parts shows

—(X7u,u) = || Xiu ||* + O] Xou ||| w )
and
(Xou,u) = —(u, Xou) + O(]| u ||).

It follows that
Re(Xou, u) = O([| u [|*).

Adding up these estimates, we obtain

k k
Sl e |2 = ~Re(Puu) +0( 3 | Kol ]+ 1 )
=1

i=1

Using small and large constants, this gives the desired estimate (8.2.2), and the
proof is complete.

We first prove the following general theorem.

Theorem 8.2.5. If L, spans the tangent space of £ for some m € N, then there
exist € > 0 and C > 0 such that

k
(8.2.3) lul? < C(Z | X | + | ||2), we Q).

i=0
Here we may take e = 217™.

Proof. We shall denote an element in £; by Z;. By the hypotheses of the theorem,
we get

n

Tull2 S I Du 2+ lulP S D N ZuulZoy + ul?
j=1 Zm€Lm

where the last summation is a finite sum and D; = (9/0x;).

Therefore, to prove the theorem, it suffices to bound each term || Z,u ||c—1 by
the right hand side of (8.2.3) for some ¢ > 0. If m = 1, clearly we can take e = 1.
For m > 2, let € < 1/2 for the time being. We shall make the choice of € later. We
may also assume that Z,, = XZ,,_1 — Z,,_1 X with X € £;. Thus, we see that

| Zmu 121 = (Zmu, A*7*Z )

8.2.4
(8.24) = (X Zp-1u, N*72Zu) — (Zin—1 Xu, N> 2 Z,u).
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Using Theorem 8.1.5, we have

|(XZm—1ua AZE?QZmuM
= (Zm—1u, > Z, Xu)| + O(|| w (|| Zin—1t ||2¢-1)
<O Xu |? + || Zm—rw 3e—r + | u [1?).

Also

|(Zm—1 Xu, N> 72 Z )| = (Xt Zin s A7 Zyw) | + O] w ||| X )
SO Xul? + | Zm-1u 3y + [ [).

Hence, substituting the above into (8.2.4), by induction, we get

k

I ZmullZ—y < C<Z I Xiw | + | Zon—rw3ey + || w ||2>
=0
k

< c(Z (Il Xew IP + ) Kot [Bomroy) + ||2>.

=0

Now, for m > 2, if we take € < 2'™™, we obtain

k
| Zwu Iy < G(Z | X |2 + ] w ||2).

i=0
This proves the theorem.
For our purpose, we shall modify the proof of Theorem 8.2.5 to obtain:
Theorem 8.2.6. Under the hypotheses of Theorem 8.2.3, there exist € > 0 and
C > 0 such that

(8.2.5) Full? <CUlPull*+ [ uwl?), ue Q).

Proof. As in the proof of Theorem 8.2.5, it suffices to control each term
(8.2.6) | Zmu |12 1= (X Zp—1u, N> 2 Zpu) — (Zpy—1 Xu, A2 Z,,u)

by the right-hand side of (8.2.5) for some € > 0.

Let @° be some pseudodifferential operator of order s of the type discussed in
Section 8.1. To estimate (8.2.6), we shall distinguish X from the other vector fields
Xla e an~

Case (). X = X; with 1 < ¢ < k. By Lemma 8.2.4 and the proof of Theorem
8.2.5, we get

(8.2.7) I Zmw 22y < CU Pul? + || Zm-1u 13—y + [ w [?).
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Case (ii). X = Xo. We first write Xy = —P* + Zle X2+ Zle ci(x)X; + g(z)
with ¢;(z),1 <i <k, and g(x) belonging to C*°(Q). Hence, we have

(X0 Zm—1u, N* "2 Z,,u)

k
= —(P*Zp_1u, N* 2 Zu) + Z (X2 Zm1u, N* 2 Z,,u)
(8.2.8) P
k
+ Z (€iXi Zm 1, N** 2 Zpu) + (9 Zm—1u, N> 2 Z,u).
i=1

Obviously, the last two terms in (8.2.8) are bounded by the right-hand side of
(8.2.7). Since

(P*Zpp_1u, A* 2 Z0) = (Zm—1u, PQ** ')
k
(

= (Zn-1u, Q* 'Pu) + > (Zm11, Q%' Xju) + (Zim—1u, Q% ),

=1

we conclude that the first term on the right-hand side in (8.2.8) is also bounded by
the right-hand side of (8.2.7). The second term on the right-hand side of (8.2.8)
can be estimated as follows:

(X2 Zpm_1u, A*72Z,,u)
= —(XiZm—1u, X;Q* 'u) + O(|| Pu|* + || Zm—ru 51 + | w [1?)
= —(X:Q* ' Zpru, Xiu) + O(|| Pu|? + || Zn—ru |5y + || w [*).

It follows from Lemma 8.2.4 that

(X2 Zpm1u, A2 Z,u)|
< XiQ*  Ziau | + O Pu|* + || Zop—ru [3e—y + || w [[?)
S C|(PQ2€71Zm71ua Q2Eilmelu)|
+O(| Pu |* + || Zn—ru [3e—1 + 1w |?)

k
< O(|(Pu, Q" Z—aw)| + ) |(Xiw, Q* Zy )]

i=1
+1(u, @ Zn 1)) + O Pul® + || Zin—rw I3y + [ w[I*)
<O Pull® + 1l Zm—1w lliey + w1

(8.2.9)

This completes the estimate of the first term on the right-hand side of (8.2.6).
For the second term on the right-hand side of (8.2.6), we write

k
Xo=P-> X7 —b(x).

i=1
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Thus, we have

(Zp—1 Xou, N* 2 Z,u)

k
(8.2.10) = (Zim 1 Pu, N’ Zu) = > (Zyn 1 X7, A2 Z )
=1

— (Zpp—1bu, A*72Z,u).
The first term on the right-hand side of (8.2.10) can be written as

(Zm—1Pu, N* 2 Zu)
= —(Pu, Zm,lQ%*lu) + (Pu,ng%*lu)
= —(Pu,Q* ' Zp_1u) — (Pu, [Zm—1,Q* ' u) + (Pu, gmQ* u),

for some g, € C*(). Also
(Zun-1bts A% Zyt) = (670110, Q%) + ([Zon-1, b}, %),

Hence, if € < 1/2, the first and third terms of (8.2.10) can be estimated by the
right-hand side of (8.2.7).
To deal with the second term on the right-hand side of (8.2.10), we have
(Zm—1 X }u, N> Zpu)
= (Xmeflu’ Q2e—1u) + ([mel, Xﬂu’ QQe—lu)
= (XmefuL, Q26—1u) + ([mel, Xi]XiU, Q2671u)
+ (X[ Zm—1, X;u, Q> 'u)
= (X2 Zp_1u, Q* 'u) + (ZmXiu, Q> 'u) + (XiZmu, Q% ).

Note that Zm is a commutator of Z,,_; with X; for some 1 < ¢ < k. Thus, one
may apply the proof of Case (i) and (8.2.9) to get

|(Zm—1 X Pu, A2 Zu)
SO Pull? + | Zim—ru oy + 1w P + 1| Zinu [3.21)
<C(| Pul® + || Zm-1u llie—y + parallelu ||?).

This completes the estimate of the second term in (8.2.6).
Consequently, by induction, we obtain

| Zmw 220 < CUI P | + 1 Zin—yu 5y + 1w %)
k
SO Pul® +) 7 | Xiwlfn-aeey + [l
=0

Thus, if we take € < 2-47™, we see that

I Zow |21 < C( Pul* + 1| Xou |2, + [ u ).
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Since

H Xo'LL ||27% = (Xou A_IX(]’U,)

k
(Pu, Q") Z X2u, Q) — (bu, Q)
i=1
<O(| Pu*+ | ul),
the proof of Theorem 8.2.6 is now complete.

The next result shows that estimate (8.2.5) is localizable:

Theorem 8.2.7. Let (, (1 € C§°(Q2) be two real-valued cut-off functions with (; = 1
on the support of (. Then there is a constant C > 0 such that

(8.2.11) [ Culle <Ol GuPu || + || Gru ),

for all u € C>= ().

Proof. From (8.2.5) it suffices to estimate || [P,{Ju || by the right-hand side of
(8.2.11). Since

k
PC]U_2Z vaXu+Z iy Xzag u+[X0a<] u,

we have

k
| Pl |12 < C(Z | XiCu P + | G ||2>.

i=1

Now, as in the proof of Lemma 8.2.4, we get
k
> I XiGtu |I? = —(P¢iu, (Fu) + Re(Xo(Tu, ¢Tu)

k
+0 (Z | XiCZu ||| Gu || + || Gu ||2)

k
= —(CFPu, GFu) — 2> ([X:, ¢ Xiu, CRu) + Re(XoCHu, (Fu)
i=1
k
+0 (Z I Xi¢Ru ([l G || + 1 Gaw ||2)
=1

k
—(CEPu, GFu) + 4 ([Xi, Qi) Gru, XiCTu) + Re(XoGTu, CFu)
i=1

k
+0 (Z | X:Gu || Gu |l + || Gu ||2> :

i=1
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Hence, using small and large constants, we obtain

k
S XiGull* <O GPul® + || Gu [?).

i=1
This proves the theorem.

The next step is to iterate the estimate (8.2.5) to obtain the following “bootstrap”
a priort estimate:

Theorem 8.2.8. For any s € R and m > 0, there exists a constant Cs ,, such that
(8.2.12) [ l[s+e < Com(ll Pulls + [l ull-m),

for allu € C§°(Q).

Proof. Let u € C§°(€2). We wish to apply (8.2.5) to A°u. Hence, we shall assume
that estimate (8.2.5) holds for smooth functions that are supported in a fixed open
neighborhood U of Q. Let n(x) and g(z) be two smooth cut-off functions supported
in U such that 7 = 1 on the support of g and that ¢ = 1 on Q. We claim that the
operator (1 —n)A®g acting on S, s € R, is of negative infinite order, namely, it is a
smoothing operator and for any m > 0 there is a constant Cf ,, such that

(8.2.13) 1A =mAgu | < Com [l wll-m,

for any w € S. We first prove the claim (8.2.13). Observe first that (1 —n)g = 0.
Hence, we have

1

(8.2.14) P / (1 () p€) DEYIE) de =0,

for any polynomial p(§) and any multiindex «. A direct calculation shows

(1= Ngu(o) = oo [ K@ ©)ile) de,

where
1

K(e.6) = oy [ (1= ata)e =1+ [P ac — ) .

Thus, to prove the claim it suffices to show that for any a,b € R, the kernel

£215) K@= [ @-n@)em< 1 0P 9 - €) de

satisfies the hypotheses of Theorem B.10 in the Appendix. Using (8.2.14), Lemma
8.1.2 and Taylor’s expansion of (1 + [¢|?)® at &, for any ¢ € R, we obtain

K(x,9)|
S

[ le+ ot - 9Py elc - €10+ ePYlace - )] dg

S / U HC= O A ) TEUC = €+ 1) 19(¢ - €] e,
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where 0 < t < 1. Thus, if we choose ¢ to be large enough so that a +b—c <0, it
is easily verified by integration by parts that the kernel K (z,€) defined in (8.2.15)
satisfies R

2°K (2,6)| < Caps

uniformly in x and &, where ¢§ is a multiindex. It follows that all the hypotheses of
Theorem B.10 are satisfied by the kernel K (x, ). This proves the claim.
Now we return to the estimate of A*u for u € C5°(£2). Since nA®u is supported
in U, we may apply estimate (8.2.5) to get
[ fls+e = A%u |l

< ndu e + 11 (1 —n)A°gu [l

SO P || + [ nA%u || + [J w [[—m)

SO PN Tu [+ 1] Pulls + 1w lls + [T [|-m)-

To handle the term || [P, nA®|u || we write

k
[PA] = QiXi + Qhpy-

i=1
Thus,
k
| [PnA°]u | < C (Z | Xiw|[s + [ w ||s> :
i=1
Lemma 8.2.4 then shows that
I X |12 = ] A*Xu |
< O(l nA* Xpu | + || (1 = mA°gXiu ||?)
< O(| XnA%u [I* + 1| A%, XaJu [ + [ w [12,,)
< C([(PnAu, nAw)| + | w2 + [ w [[2,,)
< C(([P A" Ju, A w) | + || Pu (|2 + w2 + [ [12,)
k
<O wlls (Z | Xgu )+ 11 Pulls + [ w2+ [l w ||2_m> :
i=1
Using small and large constants, we obtain

[ ullste <O Pulls + [ wlls + [ wll-m)-

Finally, observe that for any § > 0, using the interpolation inequality for Sobolev
spaces (Theorem B.2 in the Appendix), there is a constant Cj s, such that

lwlls <6 ullste + Cs,6,m | —m,

for all w € C§°(Q2). Therefore, letting § be sufficiently small, Theorem 8.2.8 is
proved.

Estimate (8.2.12) can be localized as before to get the following theorem.
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Theorem 8.2.9. Let (,(1 be two smooth real-valued cut-off functions supported in
Q with (1 = 1 on the support of (. For any s € R and m > 0 there is a constant
Cs,m such that

(8.2.16) I Cu llste < Csm(ll GLPu s + || Crul[—m),
for all u € C>=().

We are now ready to prove the main result of this section.

Proof of Theorem 8.2.3. Suppose that v is a distribution with Pu = f, where P
given by (8.2.1) is of finite type, and that f is smooth on Q. We wish to show that
u is also smooth on 2. Without loss of generality, we shall show that u is smooth
in some open neighborhood V' of the origin.

Since u is a distribution, we may assume that locally near the origin v is in W*
for some s = —m with m > 0. Let ¢ and (i, k € N, be a sequence of smooth
real-valued cut-off functions supported in some open neighborhood of V' such that
Gue W™, (, =1 onsupp Cit1, (j=1onsupp ¢ forall jand (=1on V.

Let ¢ be a smooth nonnegative real-valued function supported in the unit open
ball of R™ such that p(z) = ¢(|z]), 0 < ¢ <1 and [, pdx = 1. For any ¢ > 0, set

ps(x) =6 "p(x/d) and
SsCuule) = Cyu p5(z) = / Ceu(y)es(a — ) dy.

Clearly, Ss5Cru is a smooth function supported in some neighborhood of V. Hence,
we obtain from (8.2.16) with s = —m that

IS5Cru | —mte < Cnlll PSsCrte | -m + [| SsChtt [|-m)-

To finish the proof we need the following two key observations. For any s € R,

(1) Cpu € W* with || Gou ||s < Cy if and only if || Ss¢ru [|s < Cy for all small
6 > 0.
(2) If pu is in W*, then

| [SsCk, Xa]u ||ls = || [SsChs Xi]Ch—1u [|s < Ch || Ch—1u ||,

where the constant C}, is independent of 4.

These two facts can be verified directly, so we omit the proofs.
Now, using (1) and (2), by commuting P with Ss;¢ and applying arguments
similar to those above, we obtain

I S5Ct [|-mte < Crom(ll SsCuf l-m + || SsCuuu [|-m)

with C1 ,, independent of 4. This implies (u € W~ €. Inductively, for any k € N,
we obtain

| SsCrr1t [[—mike < Crom(ll SsChf | —mak—1)e + | S6Ckt || —mt(k—1)e)-
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Choosing k to be sufficiently large, we have (u € W*(V) for all s > 0. Hence,
u € C*°(V). This completes the proof of Theorem 8.2.3.

8.3 Subelliptic Estimates for the Tangential Cauchy-Riemann Complex

Let (M, T%°(M)) be a compact orientable C'R manifold of real dimension 2n — 1
with n > 3. Let AP4(M), 0 < p, ¢ <n — 1, denote the subbundle of APTICT*(M)
such that AP9(M) = APT*0(M) @ AIT*O1(M). Let EP9(M) be the space of
smooth sections of AP*?(M) over M. Then, we define the tangential Cauchy-
Riemann operator d; as in Section 7.2, and form the tangential Cauchy-Riemann
complex

(8.3.1) 0 - er0(ar)y 2o griar) 2. 2 grnmi gy o,
For any xg € M, let Lq,---, L,_1 be a local basis for (1,0) vector fields near xg,

and choose a globally defined vector field T" which may be assumed to be purely
imaginary. This is first done locally, then by restriction to those coordinate trans-
formations which preserve T1:°(M) and orientation, a local choice of sign in the
direction of T will extend T to a global one. Fix a Hermitian metric on CT'(M) so
that THO(M), T%Y (M) and T are mutually orthogonal. We may then assume that
Li,---,Ly,_1,L1, -+ ,L,_1 and T is an orthonormal basis in some neighborhood of
a reference point xg € M. Let w!,--- ,w" ™! be an orthonormal basis for (1,0)-forms
which is dual to the basis Ly, -, Ly_1.

Denote by W(Sp_q)(M) the Sobolev space of order s, s € R, for (p, ¢)-forms on
M. Extend 9, to L?p oM) = W(Op o (M) in the sense of distribution. Thus, the
domain of 9y, denoted by Dom(d), will consist of all ¢ € L%p o (M) such that
o € L%p ¢+1)(M), and we have the complex

(8.3.2) 0— L2, 0(M) 25 12 | (M) 2o 22 () — 0.

Therefore, 9, is a linear, closed, densely defined operator on the Hilbert space
L? (M).

(p.q)
Now one can define the adjoint operator 5; of J in the standard way. A (p, q)-

form ¢ is in Dom(d,) if there exists a (p,q — 1)-form g € L%p g—1)(M) such that
(¢, 0p%0) = (g,%) for every (p,q — 1)-form 1 € Dom(d). In this case we define
5:¢ =g. Let

(8.3.3) Ly = 51,52 + 5:517,
be the dy-Laplacian defined on

Dom(,) = {a € L, ,y(M)| @ € Dom(8,) N Dom(3,),
dya € Dom(d,) and 9, € Dom(dy)}.
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It follows from the same arguments as in Proposition 4.2.3 that [Jy is a linear, closed,
densely defined self-adjoint operator from L%p o (M) into itself. Define a Hermitian
form @ on EP1(M) by

(8.3.4) Qb(6, %) = D0, ) + (T, F00) + (6,4) = (Oy + 1), ¥),

for ¢, € EPI(M).

Locally on a coordinate neighborhood U, we can express a smooth (p, ¢)-form ¢

as
/
(8.3.5) b= > drsw rw,
[I|=p,|J|=q
where I = (i1, -+ ,ip) and J = (j1,--- ,Jj,) are multiindices, w! = w™ A --- A w'r,

w? =@/ A--- AwIe and the prime means that we sum over only increasing multi-
indices. Here ¢ ;’s are defined for arbitrary I and J so that they are antisymmetric.
Then, a direct computation and integration by parts yield

(8.3.6) Oy = Z/ Z Li(¢1.7) @ Aw! A@X + terms of order zero,
LJ

and

(837)  Fyo= (=133 Ly(ér,x) @ AT + terms of order zero.
K j

We shall use (8.3.6) and (8.3.7) to obtain the desired estimates. We also abbreviate
Serg N Lxdr s P+ 110112 by [| ¢ 17, and 35, ;5 | Lidr,s 17+ 1| & 117 by || ¢ |[%

The main effort of this section is to derive the subelliptic 1/2-estimate of the form
Qp. Before proceeding to do so, we shall digress for the moment to the regularity
theorem for the @ operator. Suppose now that M is the boundary of a smooth
bounded strongly pseudoconvex domain D in C",n > 2. In Chapter 5 (Theorem
5.1.2 and Theorem 5.3.7), we prove the following subelliptic estimates

1S 13 p2epy < CUBS P+ 1017+ 1 £ 17),

for f € Dom(9) N Dom@*), on a smooth bounded strongly pseudoconvex domain
D. The proof is based on the a priori estimate

(8.3.8) /bD f1PAS < CUTf I+ 11D 17 + 11 £ 17) = CQUf. f),

—k

for f € D(lp’q) = C(lp’q) (D) N Dom(d ).

In fact, to prove (8.3.8) for a fixed ¢, 1 < ¢ < n— 1, one actually does not
need strong pseudoconvexity of the domain. The main ingredient is the so-called
condition Z(q) defined as follows:
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Definition 8.3.1. Let D be a relatively compact subset with C* boundary in a
complexr Hermitian manifold of complexr dimension n > 2. D is said to satisfy
condition Z(q), 1 < g <n —1, if the Levi form associated with D has at least n — q
positive eigenvalues or at least ¢ + 1 negative eigenvalues at every boundary point.

Obviously, condition Z(q) is satisfied for all ¢ with 1 < ¢ < n — 1 on any strongly
pseudoconvex domain.

Let zg € M be a boundary point and let U be an open neighborhood of zq. For
any f € Dy, q) with support in U, the proof of Proposition 5.3.3 shows (with ¢ = 0)

that
QLN =Y"S I Tutrs P+ 3] / pivfrixFine dS
1,J k bDNU

LK j.k

FO(AF I+ 1 FIDIFN+1F Izl 5 1.

We may assume that the Levi form is diagonal at zg, namely, pjr(x) = A;0;5+b;x(2)
for 1 < j, kK <n —1, where the A;’s are the eigenvalues of the Levi form at zq, ;4
denotes the Kronecker delta and bji(zo) = 0. It follows that

! —
SIS pdunTra ds
bDNU

LK jk
!/ /!
=> <Z)\k>/ |f1.1° dS+60<Z / \f1.01? d5>7
1,0 “keJ bD 1,5 7bD

where § > 0 can be made arbitrarily small if U is chosen sufficiently small. Integra-
tion by parts also shows

| Zefr.s |I?
= —([Li, L) fr,0, fr.0) + | Lifr,o 112+ O £ 1IEl £ 1)

zw/ Fol? ds—6/ Fral? dS+ O £ Izl £ 1+ 11 £ 1P)-
bD bD

Hence, if condition Z(q) holds on bD, then for each fixed J either there is a k; € J
with Ag, > 0 or there is a ko ¢ J with Ay, < 0. For the former case and any € > 0,
we have

QLN 2SS I Tufr 2+62'( > Ak> / \f1.4]* dS
I,J k bD

1,0 “EEJA,<O

/
+) ()\kl/ |f1.1° dS) —5/ |f1.0” dS
I, bD bD

FOWBf I+ 1B FIDIFN+ NS I+ 111

For the latter case, we see that

WDz T P+ (X ) [ i as
1,0 k bD

I,J “keJ X <0

+(1- E)Z/(_)‘kz) /bD fr.s? dS — 5/bD \fr.s* s

1,J

FOWBS I+ 1B FIDIFN+N LI £+ 1 1P
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Thus, choosing €, § to be small enough and using small and large constants, we
obtain (8.3.8). Now, by a partition of unity argument, the next theorem follows
immediately from Theorem 5.1.2.

Theorem 8.3.2. Let D be a relatively compact subset with C*° boundary in a
complexr Hermitian manifold of complex dimension n > 2. Suppose that condition
Z(q) holds for some q,1 < q<mn—1. Then we have

/bD [f7dS < C(|Bf 1P+ 110 F 1P+ 11 £ 117),
for f € Dp.q)- Furthermore, we have

(8.3.9) Il <CUBFI+1DfI+1 £
for f € Dom(d) N Dom(g*), where the constant C' > 0 is independent of f.

With Theorem 8.3.2 on hand, we now return to the subelliptic estimate for [, on
(p, q)-forms on M. If the C R manifold M is embedded as the boundary of a complex
manifold D, topologically one can not distinguish whether M is the boundary of
D or M is the boundary of the complement of D. Thus, in order to obtain a
similar subelliptic estimate for (p, ¢)-forms on M, we shall assume that condition
Z(q) holds on both D and its complement D¢ as motivated by Theorem 8.3.2. Note
that condition Z(q) on D¢ is equivalent to condition Z(n —q —1) on D. M is said
to satisfy condition Y'(¢), 1 < ¢ <n — 1, if both conditions Z(q) and Z(n —q — 1)
are satisfied on D.

In terms of the eigenvalues of the Levi form condition Y(¢) means that the
Levi form has at least either max(n — ¢q,q + 1) eigenvalues of the same sign or
min(n — ¢,q + 1) pairs of eigenvalues of opposite signs at every point on M. Since
condition Y (g) will be used extensively in what follows, we now make a formal
definition for any C'R manifold.

Definition 8.3.3. Let M be an oriented CR manifold of real dimension 2n — 1
withn > 2. M is said to satisfy condition Y (q), 1 < q¢ < n — 1, if the Levi form has
at least either max(n — q,q + 1) eigenvalues of the same sign or min(n — q,q + 1)
pairs of eigenvalues of opposite signs at every point on M.

It follows that condition Y (¢) for 1 < ¢ < n — 2 holds on any strongly pseudocon-
vex C' R manifold M of real dimension 2n — 1 with n > 3. Also, it should be pointed
out that condition Y (n — 1) is violated on any pseudoconvex C'R manifold M of
real dimension 2n — 1 with n > 2. In particular, condition Y'(1) is not satisfied on
any strongly pseudoconvex C'R manifold of real dimension three. This phenomenon
is related to the nonsolvable Lewy operator which we have discussed in Section 7.3.
Another example of a noncompact C'R manifold satisfying condition Y (¢) will be
given in Section 10.1.

Theorem 8.3.4. Suppose that condition Y (q), for some q with 1 < ¢ < n—1,
holds on a compact, oriented, CR manifold (M, T °(M)) of real dimension 2n — 1
with n > 3. Then we have

(8.:3.10) 1613 < Qul@.6).
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uniformly for all ¢ € EPI(M).

Proof. Let Ly, ,L,_1 be an orthonormal basis for T1:°(M) locally. Since con-
dition Y (¢) implies that the vector fields Ly, -+, L,_1,L1, -+ ,Ln_1 and their Lie
brackets span the whole complex tangent space, using a partition of unity, the proof
is an easy consequence of Theorem 8.2.5 when m = 2, and the following theorem:

Theorem 8.3.5. Under the same hypotheses as in Theorem 8.3.4, for any xo € M,
there is a neighborhood Vy, of xo such that

(8.3.11) lolz +1el% +Z |Re(T'¢1,5,¢1,.0)| S Qu(9,9),

uniformly for all ¢ € EP (M) with support contained in Vy,.
Proof. We start with (8.3.6) to obtain

1 ove II* = Z > I Liors P+ Z Y i (Lidrs, Ligrr) + Ol ¢ Izl ¢ 1),

1,J j¢J IJL j1
where €/ = O unless j ¢ J,1 ¢ Land {j}UJ = {I}UL, in which case ef‘L] is the sign

of permutation (j L] ). Using the fact that ¢; ; is antisymmetric in J, we rearrange
the terms in the above estimate to get

199 ||* = Z S Lidra I1? - Z/Z(fj¢l,kKafk¢I,jK) +O(l ¢zl o)
i

LK j.k

Using integration by parts, we have

(Ljori, Lidrjx) = (—LiLidr i, d1x) + O ¢ |Z]l ¢ |)
= (Lyorrr, Liorjx) + ([Lj, Lelér ki, ¢1,5K)
+O((lellz+ ol ol

Hence, from (8.3.7) we obtain

| B |1” = Z Z 1 Zions 1P — 1356 I +3 S (1Ly, Lelérre, dr.irc)

I,K j,k

+0((|I ¢lle+ 1ol Il -

To handle the commutator term, we may assume that the Levi form is diagonal
at zp and that c11(xo) # 0, since condition Y (q) holds. It follows that |ci1(x)| >
1/C > 0 for x € V,, if V,, is chosen to be small enough. For any smooth function
f with f(z¢) =0 on M, we have

[Re(T 1.5, forn)| < ’Re (;[L17L1}¢1,J7f¢1,L>‘ +O(l o llzll ¢ 1D
< C(suplf)(l ¢ 7 + 1 ¢ 113 +0 ¢ lIZll ¢ ).

=0
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Thus, if we denote the eigenvalues of the Levi form at xg by A1, -, Ap—1, we obtain
!/ — !
Qu(6,0) =D 3 I Lidra I+ Y NRe(Tdr.5,61.5)
(8.3.12) IJ g 1,] jeJ

+30(1 ¢ 17 + ¢ 1) + Ol ¢ Izl ¢ 1D,

where § > 0 can be made arbitrarily small, if necessary, by shrinking V.

To finish the proof, we need to control the second term on the right-hand side of
(8.3.12). This will be done by using a fraction of the first term on the right-hand
side of (8.3.12). Thus, we first use integration by parts to get

I Lior.a IIP = | Ligrs | =NjRe(Té1,4,61.7)
+80(l ¢ IIL + el +Ool ol + 1 olz) Iel).
Next, for each multiindex pair (1, J), set
o(l,J)={j| N\; < 0if Re(T'¢r,5,01,7) > 0o0r \; <0 if Re(Tér,5,0r1,5) < 0}.
It follows that, for any small € > 0, we have
lolz=cllol2+1-9% > I Lirs
1,J jeo(I,J)

> ol2— -9 S ARe(Térsér.)

I,J jeo(I,J)
—d(lelL +lel) —Clol*.
Substituting the above into (8.3.12) we obtain

Qo) zelldl2— 1= 3 NRe(Tors, 1)

1,J jeo(I,J)
£ S A R(Tor61.0) — 61 6 1 + 1| 6 12)
1,0 jeJ
8.3.13
(8.3.13) — 0016 Il 6 1)
e 612+ ar sRe(Tor s, 61.) — 51 61+ 1 6 |2)
1,7

— 0l ¢ Izl 6 1.

where

ar.j= Z /\j—(l—e) Z )\j +€ Z )\j

jeI\a(I,J) jea(I,\J jeJne(I,J)

Since condition Y (¢) holds at g, for each multiindex J with |J| = ¢, one of the
following three cases must hold:
(1) If the Levi form has max(n — ¢,q + 1) eigenvalues of the same sign, then
there exists a j € J and a k ¢ J so that \; and )\, are of the same sign
which may be assumed to be positive, if necessary, by replacing T by —T'.
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(2) If the Levi form has min(n — g, ¢ + 1) pairs of eigenvalues of opposite signs,
then there are j,k ¢ J so that A\; > 0 and Ay < 0.

(3) Under the same hypothesis as in (2), there are j, k € J so that A; > 0 and
A < 0.

Then it is not hard to verify that by choosing ¢ > 0 to be small enough we can
achieve ay y > 0 if Re(T'¢r. s, ¢1.7) > 0, and ar y < 0 if Re(T'¢r 1, ¢1,7) < 0. Since
the second term on the right-hand side of (8.3.13) is a finite sum, by letting § > 0
be sufficiently small, we get

Qu(6,¢) 2 | 6112+ Re(Tor.s, dr.0)| = (se) | ¢ 117 —e) | ¢ * -
1,0

Since

I Li¢rs P S I Lidr,s II? + [Re(Tbr,s, ¢1.0)
+50(lo 17+ 1 ¢ 12 +0 ¢zl ¢ 1),

where d; > 0 can be made arbitrarily small, by choosing §; and (sc) to be sufficiently
small, we obtain

Io 17+ 116 11%+> IRe(Tdr.0,61.) S Qu(e,0).

I,J

This completes the proof of the theorem.

Corollary 8.3.6. Q) is compact with respect to L%p q)(M),

Proof. Using Friedrichs’ lemma (see Appendix D) and Theorem 8.3.4, we obtain
Q(#,0) 2 C |63, for ¢ € Dom(d,) N Dom(Ty).

In particular, Q) is compact with respect to L?p q)(M ).

It is easy to see that (O, + 1)~ " is injective on Lf, ,(M). Corollary 8.3.6 implies

that (O, + 1)~ is compact using Rellich’s lemma. We will discuss this in detail in
the next section.

The a priori estimate obtained in Theorem 8.3.4 is the main ingredient for han-
dling the local regularity problem of the operator [, on compact strongly pseudo-
convex C'R manifolds of real dimension 2n — 1 with n > 3. It is Estimate (8.3.10)
that enables us to deduce the existence and regularity theorems for the 9, complex.

8.4 Local Regularity and the Hodge Theorem for [J,

The main task of this section is to prove the local regularity theorem for the
operator [J, and its related consequences. This will be done by first proving a
priori estimates for the operator [, + I on a local coordinate neighborhood U.
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Lemma 8.4.1. Under the same hypotheses as in Theorem 8.3.4, let U be a local
coordinate neighborhood, and let {(x}32, be a sequence of real smooth functions
supported in U such that (, = 1 on the support of (41 for all k. Then, for each
positive integer k, we have

1o 1% S 1 GO+ D iz + 1| (@ + Do |

uniformly for all ¢ € EP9(M) supported in U.

Proof. The lemma will be proved by induction. For k = 1, by Theorem 8.3.4, we
have

166 135 Qu(¢ie C1o) = [ B6Cid [P + 1 3,616 I1° + 1| g |17 -

We estimate the right-hand side as follows:

| 96¢16 ||* = (BC16, (1)
= (C10v9, OpC19) + ([00, C1] B, DpC10)
= (b9, OpCi®) + (Ov, [C1, Ob)C10) + ([Oh, C1], DpCa )
= (9,049, (19) + (061, [C1, D))
+ ([¢1, Bb), [C1, Ob]9) + ([Db, C1] b, DeC16).

Note that
Re ((0v¢19, [C1,05)9) + ([0b, C1]0, OpC100)) = 0.

A similar argument holds for || 8,¢,¢ ||2. Thus, we get

[RSTA YN (STNET)
S Re((@y + 19, (Fo) + Ol ¢ [1%)
SI@+Delll¢ll+0 ¢ 1)
SI@+ D%

since || ¢ || < || (Op + I)¢ ||. This establishes the initial step.

Let us assume that the assertion is true for all integers up to k — 1 for some
k > 1, then we prove it for k. For simplicity we write the standard pseudodifferential
operator AT = Ay, for short, and denote (3 Ax(x by Pr. Then, we have

| ko ||2§ S || Aelro HQ% = || AxCilro ||2%
S G ARG ||2% + || [Ak, C1]ChCr—19 HQ%
S Qo(Prd, Ped) + || Ce—10 H%%z .

Let P be the adjoint operator of Py, then the first term can be estimated as
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follows:

Qv(Py, Pro)

= | OPiCh16 |I* + || 9y PeCr1¢ II” + || PrGe16 |1?

= (OpCr—10, P 0p PeCi-16) + By G160, Py 0y PiCio10) + (Coo16, P PiCoe19)

+ Ol Go-10 liz1 (| DoPiCer | + 1| Ty Prcr-16 )

= (ObC-16, 06 Pyt PeCi—10) + Dy Com16, 0y Pyt PiCio16) + (Ge-16, Py PiCro—10)
+ O(|| C-10 H2 + | G160 lesa (I 96 PiCi-100 || + | Dy PiCro16 )

= (9v, Oy Py PrC— 1¢) (046, 0y Py PeCi19) + (6, P PrGi—16) + O(- - )

(By + 1o, Py Prop) + O(- - +)

= (PeC1(Op + 1)¢, Prop) + O(- - +)

|

(le

| Péa (@ + D |3 |l Prd |3 + OC---)
o) 1@ + Do iz + (s0) | G 1% + (o) || a5
+ (s0) ([ Do PiuCrr@ |I” + || Ty Prce—10 [1%).

S
S

Hence, by choosing (sc) small enough and using the induction hypothesis, we
obtain

Ik IIE < I G0+ D iz + 1| G117
SIG@+0e iz + 1 GO+ D¢ [is + || (@b + D |
S HGa@s + 1o ||¥ + @+ Do |

This completes the proof of the lemma.

Theorem 8.4.2. Under the same hypotheses as in Theorem 8.53.4, given a €
L?p M), let ¢ € Dom(Ly) be the unique solution of (Lp + I)¢ = a. If U is
a subregion of M and o|y € EPI(U), then ¢ly € EPI1(U). Moreover, if ¢ and (y
are two cut-off functions supported in U such that (1 = 1 on the support of (, then

for each integer s > 0, there is a constant Cs such that

(8.4.1) 1¢o 1121 < Cslll Cua 12+ [ e [2).

Proof. If ¢|y is smooth, then the estimate (8.4.1) follows immediately from Lemma
8.4.1. Therefore, it remains only to show that ¢|y € EP4(U). Since the Hermitian
form @y is not elliptic, namely, Garding’s type inequality does not hold for @, we
shall apply the technique of elliptic regularization to Q.

The elliptic regularization method has been used in the proof of Theorem 5.2.1
to deduce the regularity of the d-Neumann operator on strongly pseudoconvex
domains. Thus, we shall only sketch the idea here and omit the details. Let
{(Ui, v:i)}™; be an open covering of M formed out of the local coordinate neigh-
borhood systems with local coordinates x;’s on U;, and let {n; }7, be a partition of
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unity subordinate to {U;}/",. Define the form @, for each € with 0 < e << 1, by

m 2n—1

Q5(6,0) = Qu(d,¥) +€>_ > (Dymis, Dymin))

i=1 j=1

for all ¢,¢ € EP4(M), where D; = 0/0x;. Denote by W(;q)(M) the completion of
EP9(M) under Q.
Let ¢6€W(€p7q)(M ) be the unique solution to the equation

Qg(éeaw):(O‘?w)v fO“?Equ)( )-

Then, we have

(8.4.2) 1o I3 S I Gally + el

and the estimate is uniform for all € with 0 < ¢ << 1. Also, as in the proof of
Theorem 5.2.1, {¢°} converges to ¢ in L%p o (M).

The sequence {(¢}, by (8.4.2), is uniformly bounded in W(ser;)(M ) for each s.
Hence, by Rellich’s lemma we can extract a subsequence {(¢% } that converges in
W, (M) as €j — 0. Since {¢°} converges to ¢ in L%pyq)(M), {¢¢ } must converge
to (¢ in W(ép a0 (M) for each s. Finally, by invoking the Sobolev embedding theorem,
we have (¢ € EP4(M). This completes the proof of the theorem.

A few consequences now follow immediately from Theorem 8.4.2.

Theorem 8.4.3. Let o, ¢, U, ( and (1 be as in Theorem 8.4.2. If a|y € W,

for some s > 0, then (¢ € W(?ql)( ) and

1¢o I2n S I e llS + eI

) (U)

(pq

Proof. Let {y be a cut-off function supported in U such that {5 = 1 on the support
of 1. Choose sequences of smooth (p,q)-forms {f,} and {v,} with supp{s,} C

supp{(o} and supp{v,} C supp{(1 — o)} such that 8, — Goa in W, (M) and
— (1={p)ain L(p o M).
Hence Qp = Bp + Y — ain L% )(M) and (o, — Gain W(S )(M) Let
on € Dom(y) be the solution to (O + I)¢y, = auy, S0 ¢y — ¢ in L(p q)( ). Then,
Theorem 8.4.2 shows

1 €(@n = bm) [ls41 S I Clam — aum) lls + || an = am || -

It follows that (¢, is Cauchy in W(‘:r;)( ), and lim (¢, = (¢ is in W(S;ql)(M)

Hence, we have
1€ s+ SN G lls + [l e ] -

This proves the theorem.
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Theorem 8.4.4. Let a, ¢,U,( and (1 be as in Theorem 8.4.2. If (1a € W(‘;’q)(M)

for some s > 0, and if ¢ satisfies (Op + M\ )¢p = « for some constant X, then

Cop e W(S;;)(M). In other words, Oy + A\I is hypoelliptic for every A. Moreover, all

the eigenforms of O, are smooth.

Proof. Let o/ = a+ (1 —\)¢, then (Op + I)¢ = o’. The assertion now follows from
Theorem 8.4.3 and an induction argument. This proves the theorem.

If we patch up the local estimates, we obtain the following global estimate:

Theorem 8.4.5. Let M be a compact, oriented, C' R manifold satisfying condition
Y(q). Let ¢ € Dom(lDy). If (Op + I)¢ = o with o € W¢, (M), s > 0, then
@€ W(Spfql)(M) and

[ @ lls41 <C | ells,

where the constant C' is independent of .

Here are some important consequences:

Corollary 8.4.6. Let M be as in Theorem 8.4.5. The operator (O, + I)~! is
compact.

Proof. Since (O, + I)~! is a bounded operator from L%p’q)(M) into W(lp’q)(M)7 the
assertion follows from Rellich’s lemma (see Theorem A.8 in the Appendix).

Corollary 8.4.7. Let M be as in Theorem 8.4.5. The operator (I, + I has a
discrete spectrum with no finite limit point, and each eigenvalue occurs with finite
multiplicity. All eigenfunctions are smooth. In particular, Ker(Op) is of finite
dimension and consists of smooth forms.

Proof. By Corollary 8.4.6 (O, + I)~! is a compact operator from L%p q)(M) into

itself. Hence the spectrum of (O, + I)~! is compact and countable with zero as its
only possible limit point. Since (O, + I)~! is injective, zero is not an eigenvalue
of (O, + I)~!. Each eigenvalue of (O, + I)~! has finite multiplicity. Also X is an
eigenvalue of (J, + I if and only if A™! is an eigenvalue of ({0, + I)~!. This proves
the corollary.

Proposition 8.4.8. Let M be as in Theorem 8.4.5. Oy is hypoelliptic. Moreover,
if Opp = o with o € W, (M), s > 0, we have

lo 3 sCUalz+1el),
where the constant C' > 0 is independent of .

Proof. We show the estimate by an induction on s. If s = 0, Theorem 8.4.5 implies
FToIR S @o+Do P SNl + 1ol

In general, if we assume the assertion holds up to step s—1, we have ¢ € W(Sp ?) (M).
For the case s, we apply Theorem 8.4.5 again and get

[ ¢ 120 S @+ 1o |12
SO 12+ 11 o2
Slhal2+ 1ol
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where the final step is accomplished by the induction hypothesis. This proves the
proposition.
Let H(p q)( ) denote the space of harmonic forms on M, i.e., pr’q)(M) =

Ker(Op). Thus H(p ¢ (M) consists of smooth harmonic (p, g)-forms and is of finite
dimension. Using Corollary 8.4.7, [, is bounded away from zero on the orthogonal
complement (H{, (M))*, namely,

(8.4.3) T | = A1l ¢l

for all ¢ € Dom([Jy) N (H(p oM )+, where \; is the smallest positive eigenvalue

of Oy. It follows from Estimate (8.4.3) and Lemma 4.1.1 that the range of O, is
closed. Also, the following strong Hodge type decomposition holds on L%p’q)(M ):

Proposition 8.4.9. Let M be as in Theorem 8.4.5. L%p q)(M) admits the strong
orthogonal decomposition,

L) (M) = R(Dh) & H(y, (M)
5},5; (Domdy) @ gng(Dome) S¥ Hl()pﬂ) (M),

where R(Op) denotes the range of [y.
Proof. Since R(0p)= (H(p oM DL and R(8,0;) L R(8,0), the decomposition

follows.

We can thus define the boundary operator, IV, : L(p o M) — Dom(0,), as
follows: If o € H ( ), set Npa = 0. If a € R(0dy), define Ny = ¢, where ¢ is
the unique solutlon of Oy = a with ¢ L H(p q)( ), and we extend N, by linearity.

It is easily seen that N, is a bounded operator.

Let H(bp’q) denote the orthogonal projection from L? ) (M) onto H’(’p,q)(M).

(p,q
Next, we prove the main result of this section.

Theorem 8.4.10. Suppose that condition Y (q), for some q with 1 < ¢ < n—1,
holds on a compact, oriented, CR manifold (M, T*°(M)) with n > 3. Then there
exists an operator
Ny« Ly 4 (M) = L, 4 (M)
such that:
(1) Ny is a compact operator,
(2) for any a € L%@q)(M), a = 9,0, Nya + 8,0 Nyr + Hbax,
(3) NyH® = H'N, = 0.
NbDb DbNb = I Hb on Dom(Db)
(4) If Ny is also defined on L(p qul)( ), then NyOp = Oy Ny, on Dom(3y).
If Ny is also defined on L( pg—1) (M), then N0y, = 0, Ny, on Dom(Dy,).
(5) Np(EPU(M)) C EP9(M), and for each positive integer s, the estimate

(8.4.4) [ Noo [ls41 S [l e lls

holds uniformly for all o € W, .\ (M).
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Proof. (1) follows from Proposition 8.4.8 and the Rellich lemma. (2) is just a
restatement of Proposition 8.4.9. The assertions in (3) follow immediately from the
definition of Np. For (4), if & € Dom(0y), then

Nbgba = Nbgbgngl\@a
= NbDbngboz
= ngbOz.

A similar equation holds for 8. For (5), if & € £P9(M), then o — Hbav € EP9(M),
we have

OyNpa = o — Hav.

Since O, is hypoelliptic by Theorem 8.4.4, Nya € EP9(M). Estimate (8.4.4) now
follows from Proposition 8.4.8 since

I Noat [[s41 S Il DoNoe [|s + || Nopex |
Slals+ 1 Hoalls + [ al
Slhalls-

Here we have used the fact that H?p (M) is of finite dimension to conclude the

estimate: || H%a ||s < C || Ha || < C, || « || for some constant Cy. This proves
the theorem.

Corollary 8.4.11. Let M be as in Theorem 8.4.10. The range of O, on Dom(dy) N

L%p g—1)(M) is closed.

Proof. Since R(8,) L Ker(dy), we have R(dy) = 9,0, (DomJy).
Definition 8.4.12. Let M be a compact orientable C R manifold. The Szegé pro-

jection S on M is defined to be the orthogonal projection S = H(bo,o) from L*(M)

onto H®(M) = ngo,o)(M)'

If condition Y (1) holds on M, according to Theorem 8.4.10, there exists an
operator N, on L%O 1)(M ). Then it is easy to obtain the following formula for the
Szego projection.

Theorem 8.4.13. Let M be a compact orientable CR manifold. Suppose that M
satisfies condition Y (1). Then the Szego projection S on M is given by

S =1—38,N,0.

Theorem 8.4.10 gives the following solvability and regularity theorem for the 9y,
equation.
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Theorem 8.4.14. Under the same hypotheses as in Theorem 8.4.10, for any o €
L%p 9 (M) with Oyae = 0 and HP« = 0, there is a unique solution ¢ of Op¢ = o with
¢ L Ker(0y). If a € EP9(M), then ¢ € EP9~Y(M). Furthermore, for each s > 0, if

s s—‘,-l
aeWp, (M), then ¢ € W(p’qil)(M) and

(8.4.5) 60y S ol

Proof. By (2) of Theorem 8.4.10, clearly we have a = 5;,5:]\71,@. We simply take
¢ = EZNZ,CL and ¢ is unique by the condition ¢ | Ker(d;). The smoothness of ¢
follows from (5) of Theorem 8.4.10. For the estimate (8.4.5), let {U;}, be an open
cover of M formed by the coordinate charts {U;}7,, and let {¢;}, be a partition
of unity subordinate to {U;}2,. Then we have

161,y = 15N |2,
< 9y Noer |2, 1 + [ Do Noex |12,

<) (B, Ny, A2H18, CGiNp) + (3¢ Nper, A2+ 8¢, Nyar) )

IE

&
Il
-

(3, Ny, ;A 18, ¢ Nya) + (D Ny, GAZH18,¢; Nya)) + O(|| Ny 1741)

I
NE

.
Il
_

((Fy Nor, By ;AT Ny) + (B Npev, 9p A2 TG Np)) + O(|| Ny 12,1

|
.MS

N
Il
-

(0, GA* TG Npar) + O(|| Noex [1211)

M-

1

—
Il

o

S [sll Noax [ls41 + || Npar ||§+1-

By (5) of Theorem 8.4.10, we thus obtain

16 llsy Sl

This completes the proof of Theorem 8.4.14.

A final remark is in order. If D is a relatively compact complex manifold with
boundary bD satisfying condition Z(q), 1 < ¢ < n, analogous results to Theorems
8.4.10 and 8.4.14 can be obtained for the J-Neumann operator. In particular,
0 = 00* + 0*0 is hypoelliptic on D.

NOTES

Pseudodifferential operators were introduced by J. J. Kohn and L. Nirenberg
[KoNi 2] and L. Hérmander [Hor 4] as a generalization of singular integral operators
developed by A. P. Calderén and A. Zygmund [CaZy 1]. These operators have
played an important role in the study of linear partial differential equations. We
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refer the reader to the books by Hormander [Hor 8], Nagel-Stein [NaSt 1] and Treves
[Tre 3] for detailed discussions and applications of pseudodifferential operators. The
pseudodifferential operators used in section 8.1 are of the simplest kind.

Theorem 8.2.3 and Theorem 8.2.6 were first proved by L. Hérmander in [Hor
6] where the argument is based on careful analysis of the one-parameter groups
generated by the given vector fields. Hérmander’s original proof gives very precise
€ in Theorem 8.2.6. He also showed that finite type condition is necessary for
subellipticity of the sum of squares operator. L. P. Rothschild and E. M. Stein
[RoSt 1] showed that sharp estimates in LP spaces and Lipschitz spaces can be
achieved. The proof of Theorem 8.2.3 using pseudodifferential operators that we
present in Section 8.2 follows the paper by J. J. Kohn [Koh 3] (see also Oleinik-
Radkevi¢ [OlRa 1]).

However, it is well known that the finite type condition is not necessary for the
hypoellipticity of a sum of squares operator. In [OlRa 1], Theorem 2.5.3, Oleinik and
Radkevi¢ showed hypoellipticity when the finite type condition fails on a compact
set which is contained in a finite union of hypersurfaces. In [KuSt 1] Kusuoka and
Strook showed, by using probabilistic methods, that the operator

AN A 9\?
P, == — t)—
(&) (&) +(03)
is hypoelliptic in R? if and only if lims o tloga(t) = 0, where a € C*°(R) is even,
real-valued with derivatives of all orders bounded, non-decreasing on [0,0c0), and
vanishing to infinite order at ¢ = 0. For instance, such an a is given by a(t) =
e~ (/11") "0 < p < 1. The new interesting phenomenon in this example is that

hypoellipticity depends on the exponential order of vanishing of a at zero. V. S.
Fedii [Fed 1] has shown that the operator

9\’ 9\?
P, = (8t> + (b(t)ax)
is hypoelliptic in R? for any real-valued b € C°°(R) with b(t) # 0, for ¢ # 0. Unlike
the previous example, b may vanish at 0 to any exponential order and still P, is
hypoelliptic (see also recent related results in [Koh 12]).

It follows from the work of C. Fefferman and D. H. Phong [FePh 1] that both
operators P, and P,, when a and b are vanishing to infinite order at ¢ = 0, do not
satisfy local subelliptic estimates near t = 0. The proof of their hypoellipticity does
not use such estimates in contrast to the classical proof of Hérmander’s Theorem
which is based on local subelliptic estimates. The formulation of a necessary and
sufficient condition for the hypoellipticity of a sum of squares operator is an open
problem.

The materials presented in Sections 8.3 and 8.4 are developed by J. J. Kohn
[Koh 2] where condition Y'(q) was first introduced. See also [FoKo 1]. Theorem
8.3.2 shows that condition Z(q) is sufficient for the subelliptic 1/2-estimate for the
d-Neumann operator on (p,q)-forms. The characterization of when the Morrey-
Kohn estimate, (8.3.8), holds was proved by L. Hérmander in [Hor 2]. This lead to
a new proof of existence results for d by A. Andreotti and H. Grauert [AnGr 1] where
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condition Z(g) was first introduced. The techniques from subelliptic e-estimate to
regularity of the solution were treated along the lines of Kohn and Nirenberg [KoNi
1].

There is a vast amount of works concerning the 9, complex or [J, on strongly
pseudoconvex C'R manifolds (or C'R manifolds satisfying condition Y (¢q)). We refer
the reader to the papers by Folland-Stein [FoSt 1], Rothschild-Stein [RoSt 1], Beals-
Greiner-Stanton [BGS 1] and Boutet de Monvel-Sjéstrand [BdSj 1] as well as the
books by Beals-Greiner [BeGr 1], Stein [Ste 4] and Treves [Tre 3].
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CHAPTER 9

THE TANGENTIAL
CAUCHY-RIEMANN COMPLEX
ON PSEUDOCONVEX (CR MANIFOLDS

We study existence theorems for the tangential Cauchy-Riemann complex on
a smooth pseudoconvex C'R manifold M in this chapter. When M is a strongly
pseudoconvex C'R manifold, L? existence theorems and subelliptic estimates for 0,
and [0, have been proved in Chapter 8 using pseudodifferential operators. We shall
establish here the existence theorems for d;, in the C* and L? categories when M is
the boundary of a smooth bounded pseudoconvex domain €2 in C". One purpose of
this chapter is to study the relationship between 0 and 9. To solve 9y, we construct
O-closed extensions of forms from M to € and use the solvability for 0 in . The
extension problem can be converted into a d-Cauchy problem, which is to solve 0
with prescribed support.

The Cauchy problem for a bounded pseudoconvex domain in C" is formulated
and solved in the L? sense in Section 9.1. In Section 9.2 we discuss C> extensions
of smooth forms from the boundary and obtain the C* solvability for d), on pseu-
doconvex boundaries. L? existence theorems for 9 and estimates in Sobolev spaces
are proved in Section 9.3. The closed-range property of [J, and the strong Hodge
decomposition theorem for 0, are proved in Section 9.4.

9.1 The L? Cauchy Problem for 0

Let Q be a bounded pseudoconvex domain in C", n > 2, not necessarily with
smooth boundary. We study the question of solving 0 with prescribed support. The
L2 or C* Cauchy problem is the following question:

Given a O-closed (p,q)-form f with L2 (or C™) coefficients in C" such that f

is supported in €, can one find u € L%p)qfl)((C”) (or uw € CF ,_1)(C")) such that

Ou = f in C" and u is supported in Q?

When ¢ = 1, it has been proved in Theorem 3.1.1 that one can solve d with com-
pact support for smooth (0, 1)-forms as long as C™ \ © has no compact components.
There are no other restrictions on the boundary of 2. When ¢ > 1, we shall use
the duality of the d-Neumann problem to solve the Cauchy problem on bounded
pseudoconvex domains.

Let «: CF ) Q) —» C> (Q) be the Hodge star operator defined by

(n—p,n—q)

(9, )dV = ¢ Axy,



9.1 The L? Cauchy Problem for & 207

where ¢, 1) € CE’; 2 () and dV = i"dz; Adz; A -+ A dzy, A dz, denotes the volume
element in C" as before. We can extend * from Lf () to L7, (92)ina
natural way. This is an algebraic operator given explicitly as follows: if we write

!
b= ZLJZZJI,JdZI Adz7,

then , R X
*) = ZI Jin€]J¢I7JdZ[I] A\ dz[‘]],

where [I] denotes the increasing (n — p)-tuple consisting of elements in {1,--- ,n}\ T
and €7y is the sign of the permutation from (I, J, [I],[J]) to (1,1,--- ,n,n’).

Lemma 9.1.1. For every ¢ € C7 (), we have

(9.1.1) x* ¢ = (—1)PT1¢,
and
(9.1.2) Y = —* Ox,

where ¥ and O are viewed as differential operators.

Proof. (9.1.1) is easy to check. To prove (9.1.2), we have, for any ¢ € C§7q_1)(ﬁ)

and n € CF q)(Q) such that 7 has compact support in €,

(5w,n)=/95w*n=(—1)p+Q/QwA5*n+/Qd(wA*n)~

Since [, d(1) A xn) = 0, using (9.1.1),

(O, ) = */QwA**é*n: — (¥, %0 *n) = (¥, ).

This proves (9.1.2).

Theorem 9.1.2. Let Q be a bounded pseudoconvex domain with C' boundary in

C", n>2. Let 6§ = sup |z — 2| be the diameter of Q. For every f € L%p »(C"),
z,2'€Q ’

where 0 < p < n and 1 < q¢ < n — 1, with Of = 0 in the distribution sense in

C" and f supported in Q, one can find u € L%p q_l)((C") such that Ou = f in the

distribution sense in C™ with v supported in Q and

(n—Q)/|u\2dV§e52/\f|2dV.
Q

Q

Proof. From Theorem 4.4.1, the d-Neumann operator of degree (n —p,n —q) in Q,
denoted by N(,_p n—q), exists. We define

(9.1.3) U= —*IN(_pn—g*f,
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then u € L(p “— 1)(Q) and *u € Dom(0*).
Extending u to C" by defining u = 0 in C" \ ©, we claim that Ju = f in the
distribution sense in C". First we prove that u = f in the distribution sense in €.
From (9.1.1) and (9.1.2),

Ou=—0*ON(y_pn_qg * |
= (=1)PT %% 0% ON(y—pn—q) * |
= (—1)P %ION(—p ) * |
— (—1)p+q*5*5N(n,p’n,q) * f,

(9.1.4)

where ¢ acts in the distribution sense in 2. On the other hand, for any ¢ €

C?Ti*p,n*qfl)(g)’

(86, %/)a = (~1) W/Q%Af: (—D”*%M**%

= (-

( 1>p+q(f7 *g¢)ﬂ = (f?ﬁ*¢)ﬂ
= (0f, *d)cn
0

(9.1.5)

since supp f C Q and 9f = 0 in the distribution sense in C™. If 2 has C'* boundary,
using the first part of the proof of Lemma 4.3.2, the set C (n—pn—q— 1)((2) is dense in

Domga) in the graph norm. It follows from the definition of 9* that xf € Dom(9*)
and 0*(xf) = 0. Using Theorem 4.4.1 when 1 < ¢ < n—1 and Theorem 4.4.3 when
qg =n—1, we have

(9.1.6) 6*N(nfp,n7q) * f = N(nfp,nqul)é* (*f) =0.
Combining (9.1.4) and (9.1.6)7

(=1)PT9 % 0" ON(y—pn—q) * [

= (=1)P*% (8°0 + 00" )N(n—pn—q * |
( 1)p+q **f

=f

in the distribution sense in (2. Furthermore, we note that xu € Dom(9*) and this
additional condition implies that Ou = f in the distribution sense in C". Using

O (%u) = 0% u = (=1)PT9 % Ju = (=1)PT9« f,
where 9 % u is taken in the distribution sense in €2, we have for any ¢ € C7 (Ccm),

(u, 9)cn = (¥, *u)q
DPFUD *1p, u)q

=
= (=
(=1)PF(x), 0" (xu))a
= (x¢
= (

(9.1.7)
*, *f)a
f7 )C”



9.1 The L? Cauchy Problem for & 209

where the third equality holds since xu € Dom(9*). Thus du = f in the distribution
sense in C". The estimate for u follows from Theorem 4.4.1. Theorem 9.1.2 is
proved.

The assumption that 2 has C' boundary is used to show that Og‘;_p_n_q_l)(ﬁ)
is dense in Dom(9) in the graph norm so that (9.1.6) holds. Using the proof of
Lemma 4.3.2, Theorem 9.1.2 also holds when the domain is star-shaped or locally
star-shaped.

When g < n, including the top degree case, we also have the following result.

Theorem 9.1.3. Let 2 be a bounded pseudoconvexr domain in C™, n > 2. For any

fe L?p’q)(cn); 0<p<mn,1<q<mn, such that f is supported in ) and

(9.1.8) /Qf ANg=0 for every g€ L%nfp,nfq)(Q) N Ker(0),
one can find u € L%p)qfl)((C") such that Ou = f in the distribution sense in C™ with

u supported in Q and
[rupav<es [1spav
Q Q

where § = sup |z — 2’| is the diameter of Q.
z,2' €Q

If Q is a bounded pseudoconver domain with smooth boundary, (9.1.8) can be
replaced by the condition

(9.1.9) /Q fAg=0 for every g € C?fl)fp,nfq)(ﬁ) N Ker(9),

and the same conclusion holds.

Proof. Using Theorem 4.4.1 and Theorem 4.4.3, the 9-Neumann operator Nep.g
exists for any 0 < p <n and 0 < g <n. When ¢ = 0, we have

(9.1.10) N0y = 0*N{, 110

For every 0 < ¢ < n, the Bergman projection operator P, ;) is given by
(9.1.11) I*ON(p.g) =1 — Py g)-

We define u by

(9.1.12) u=—%*ON(—pn_g*f.

Using Lemma 9.1.1, we have from (9.1.11),

Ou = (=1)P*9%9*ON(—pn—q) * [

(9.1.13)
= f - (71)p+q*P(n—p,n—q) * f



210 The Tangential Cauchy-Riemann Complex

From (9.1.8), we get for any g € L? () NKer(9),

(n—p,n—q
(9.1.14) (xf,g9) = (—1)p+q/ gANf=0.
Q

Thus P,—pn—g)(xf) =0 and u = f in Q from (9.1.13).

Using *u € Dom(0*) and extending u to be zero outside (2, we can repeat the
arguments of (9.1.7) to show that du = f in C™ in the distribution sense. The
estimate holds from Theorems 4.4.1 and 4.4.3. Thus, the proposition is proved
when f satisfies (9.1.8).

When b2 is smooth, we have CG_ |~ (€2)NKer(9) is dense in H,—p n—q) (2) =
Ly, (@) NKer(9) in the L?(2) norm, using Corollary 6.1.6. Thus if f satisfies

condition (9.1.9), it also satisfies condition (9.1.8). Theorem 9.1.3 is proved.

Remark: When ¢ < n, condition (9.1.9) implies that J0f = 0 in the distribution
sense in C". To see this, we take g = 9 % v for some v € CF ,)(C") in (9.1.9).
Then we have

(f,ﬂv)(cn:/Df/\ﬂ%:(—1)p+’1+1/Df/\5*v:O

for any v € C’E’;_qﬂ)((C”). This implies that df = 0 in the distribution sense
in C". From the proof of Theorem 9.1.2, the two conditions are equivalent if

C(C;(Lj—p,n—q—l)(ﬁ) is dense in Dom(d) in the graph norm.

9.2 §-Closed Extensions of Forms and O™ Solvability of O

Let € be a bounded pseudoconvex domain in C™ with smooth boundary M = b}
and p be a smooth defining function for  such that |dp| = 1 on M. We use &9 (M)
to denote the smooth (p, ¢)-forms on M, where 0 < p <n, 0 < g <n—1. Here the
extrinsic definition for £ (M) is used.

We consider the following two kinds of 0-closed extension problems:

Given a € EPD (M),

(1) can one find an extension & of a such that 7& = a on M and d& = 0
in 27 (We recall that 7 is the projection of smooth (p, ¢)-forms in C" to
(p, q¢)-forms on M which are pointwise orthogonal to the ideal generated by
9p.)
(2) can one find an extension & of a such that & = o on M and da = 0 in Q7
When ¢ < n — 1, it is necessary that 0o = 0 on M in order to have a O-closed
extension. When « is a function (p = ¢ = 0), this is the question of holomorphic
extension of C'R functions. In this case problems (1) and (2) are the same. It
was proved in Theorem 3.2.2 that any CR function of class C' on the boundary
of a C* bounded domain 2 has a holomorphic extension as long as C™ \ {2 has no
bounded component. When « is a (p, ¢)-form with ¢ > 1, (2) seems to be a stronger
problem than (1). It will be shown in the next two theorems that these two kinds
of extension problems are equivalent for smooth forms also.
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Theorem 9.2.1. Let Q be a bounded pseudoconvex domain in C" with smooth
boundary M. Let o € EPY(M), where 0 < p <n and 1 < g <n—1. Then there

ezists & € C&f’q)(ﬂ) such that T& = o on M and 0& = 0 in Q if and only if

(9.2.1) /M aNYy=0 forevery € Cé’ﬁfp,nqul)(ﬁ) N Ker(0).

Furthermore, when 1 < g <n—1, (9.2.1) holds if and only if

(9.2.2) Oy =0 on M.

Theorem 9.2.2. Let M and « be the same as in Theorem 9.2.1. There exists &
such that & € CF 1 (Q), & = o on M and 0c = 0 in Q if and only if (9.2.1) (for
1<q¢<n—1)or (9.2.2) (for 1 <q<n—1) holds.

Proof of Theorem 9.2.1. 1t is easy to see that (9.2.1) and (9.2.2) are necessary
conditions for the existence of J-closed extensions. We assume that « satisfies
(9.2.1).

Let o be ~a smooth extension of o by extending a componentwise from the
boundary to Q. Thus o € C&f’q)(Q) and o/ = aon M. We set f = da’ in , then
fe CE’;’qH)(ﬁ) and f A Op = Oya Adp =0 on M. Using (9.2.1), we have for any
d-closed ¢ € C (Q),

(n—p,n—gq—1)

/Qf/\¢=/95(o//\z/}):/Ma/\¢:0.

Thus, f satisfies condition (9.1.9) in Theorem 9.1.3. We first assume that the 0-
Neumann operator N(,,_p, n—q—1) for (n —p,n —q—1)-forms on Q is C*° regular up
to the boundary and define

(9.2.3) u = —*ON(n_pn—g-—1)*f-

Then u € Cz’;q)(ﬁ). As in Theorem 9.1.3, it follows that du = f in Q and *u €

Dom(9*). Since the boundary is smooth and u is smooth up to the boundary, we
can write u = 7u + vu. Using Lemma 4.2.1, we have

v(xu) =0 on M.
However, this is equivalent to
Tu=0 on M.
Setting & = o — u, we have 0& = 0 in Q and 7& = 7o/ = a on M. This proves the
theorem assuming that N,_, ,_q_1) is C* regular.

In general, instead of (9.2.3), we define

U = 7*5N(tn—p7n—q—1)*f’
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where N(tnfp,nqul)
6.1.2 with weight function ¢; = t|2|?, ¢ > 0 and * is taken with respect to the
metric L?(D, ¢;). Choosing t sufficiently large, from the proof of Theorem 6.1.4
and Corollary 6.1.5, for each large integer k > n + 2, there exists a solution u such

that uy, € W(’;’q)(Q) CCln(@), Ouy, = fin Q, Tu, = 0 on M and

is the weighted O-Neumann operator introduced in Theorem

I uk k@) < Cr |l f ke -

To construct a solution u € C(O;q) (ﬁ), we set hy = up — up+1. Bach hy is O-closed

and 7hy = 0 on M. This implies that Ohr, = 0 in C™ in the distribution sense.
Using Friedrichs’ lemma and the arguments in the proof of Lemma 4.3.2, we can
find a sequence hf € co q)(Q) such that k¥ has compact support in Q, kX — hy in

W(’;’q) (Q) and OhE — 0 in W(’;’qﬂ)(Q). For each arbitrarily large m € N, one can
find v, € Wi () with T, = 0 on M and vy, = Ohy; in Q. Setting hE = Bk — ok,
we have OhE = 0 in Q, b — hy in W(’;yq)(Q) with b € Wi (€2) and ThE =0 on
M. This implies that inductively one can construct a new sequence uj, € W(’;, @ (Q)
such that Ouj, = f in Q, Ty}, =0 on M and

| g, — gy ey <1/2%, keN.

Writing

oo
/ ! /
U= uy + E (up — ug_1),
E=N-+1

we have u € C’E’;q)(ﬁ) such that Ou = f in Q, 7u = 0 on M. Setting & = o/ — u,
the first part of the theorem is proved.

When 1 < ¢ < n — 1, setting 1 = du for some u € Clrpn—q—2) (Q) in (9.2.1),
we have
(9.2.4) / anNy= [ aAdu=(—1)Prit! / Oy Au = 0.
M M M

Thus, (9.2.1) implies (9.2.2). We see from (9.2.4) that (9.2.2) also implies (9.2.1),
since any O-closed form % in C(O:;—p,n—q—l)(ﬁ) can be written as v = Ju for some

ueCr_, n7q72)(§) using Theorem 6.1.1. Thus, (9.2.1) and (9.2.2) are equivalent

when ¢ < n — 1. The proof of Theorem 9.2.1 is complete.
In order to prove Theorem 9.2.2, we need the following lemma:

Lemma 9.2.3. Let Q) be a bounded domain in C™ with smooth boundary M and let
p be a smooth defining function for Q. If a € EP9(M) and Opya = 0 on M, where
0<p<mn, 0<q<n-—1, then there exists Esa such that Eoa € C’E);”q)((C”),
FEooa=aoa on M and

OE o= O(p*) at M for every positive integer k.
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Proof. We first extend o componentwise and smoothly from M to Fa in C". We
claim that for every positive integer k, there exist smooth (p, q)-forms ay, -, ay
and (p, g+ 1)-forms 7y, -,y such that

2 k

(9.2.5 a) Epa = BEa — poy — %QQ S %ak’
and

_ 1.
(9.2.5 b) OFja = p* (fyk - kaak> = 0(p").

Since dya =0 on M, OFEa A Op =0 on M. We can find o; and v; such that
OEa = 0p A ay + py1 = 9(pay) + p(y1 — Oay).

Setting Fyoe = FEa — pay, it follows that 0F1a = p(y1 — day1) = O(p) at M. This
proves (9.2.5 a) and (9.2.5 b) for k¥ = 1. We also note that «; is obtained from the
first order derivatives of Fa and -, is obtained from the second derivatives of Fa.

Assuming (9.2.5 a) and (9.2.5 b) have been proved for some k € N, we apply 0
to both sides of (9.2.5 b) to obtain

_ _ 1_ _
0= 0%Era=kp* 1op A <7k — k@ozk> + p" 0.

Hence dp A (’yk - (1/k)5‘ak> =0 on M. Thus, we can find a (p, ¢)-form ay41 and
a (p,q + 1)-form ;41 such that v, — (1/k)0cs, = Op A g1 + pyrs1. We define

0? o k+1
E,. = Ea — S PV Y (A
k410X o — pag 5 (&%) L (&7 i+ 1ak+1
E+1
= E B —
kO k+1ak+1a
then
3 kiy 3 Pk+1
OB 100= p"(0p A a1 + pyk+1) — 5’<k+104k+1>
1 -
= phtl -—9 = O(pFth).
P (%H Pl ak+1) (")

This proves (9.2.5 a) and (9.2.5 b) for k + 1. Using induction, (9.2.5 a) and (9.2.5
b) hold for any positive integer k.

To find an extension E,,a such that Fooao = a on M and 0E..a = O(p*) at
M for every positive integer k, we modify the construction as follows: Let Q5 =
{z € Q] =0 < p(z) <} be a small tubular neighborhood of M and 7n(z) be a
cut-off function such that n € C§°(€2s) and n = 1 on Qs/5. Let 7(2) denote the
projection from Q5 onto M along the normal direction and n(z) denote the unit

outward normal at z € M. We define 7, (2) = n(7(z) + %ﬂz)n(ﬂ'(z))) and

> J

Ejoa=FEa-— E ﬁej(z)p—_aj,
: J
Jj=1
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where ¢; is chosen to be sufficiently small and €; ™\, 0. One can choose ¢; so small
(depending on «;) such that, for each multiindex m = (mq,--- ,ma,), we have

J 1
)Dm <f7€j(z)p,aj> ‘ < Chy i€ < 2 for every m with |m| <j—1.
J

The series converges in C* for every k € N to some element E. .« € e q)(C”) and
Foa = aon M. Furthermore, we have

k J oo 5
O0Eoa =0 Ea— Zﬁei (z)p—,aj -9 Z Tle, (z)ﬁ,aj
=1 J j=kt1 J

=0(p*) at M,
for every positive integer k. This proves the lemma.

Proof of Theorem 9.2.2. Let o’ = Ea where Exa is as in Lemma 9.2.3. Using
the proof of Theorem 9.2.1, there exists u € C77 q)(Q) such that du = 9a/ in Q and
Tu =0 on M. Setting Fya = u, we have

(9.2.6 a) 0Fya = da’ in Q,

(9.2.6 b) Foa NOp=0 on M.

We shall prove that for any nonnegative integer k, there exist (p,q — 1)-forms
Bos B1,- -+ » B and (p, g)-form 7y such that

1

Foa = 0(pfo) + %5(/)251) o g 0By
(9.2.7) » o
+p (nk - M&m) .

From (9.2.6 a) and (9.2.6 b), we can write Foa = pABy+pno = 9(pBo)+p(1n0—0900)
for some (p,q — 1)-form By and (p, ¢)-form 7g. This proves (9.2.7) for k = 0.
Assuming (9.2.7) is proved for k > 0, from (9.2.6 a),

_ _ 1 - _ _

OFoa = (k+1)p*0p A (Uk - M@ﬁk) + P on, = 0d/.
Since 0o’ vanishes to arbitrarily high order at the boundary M, we have Op A (i, —
1/(k +1)0Bk) = 0 on M and there exist a (p,q — 1)-form By and a (p, ¢)-form
Ng+1 such that ny —1/(k4+1)08k = IpABrt1+ pnk+1. Substituting this into (9.2.7),
we obtain

Foar = 9(pfo) + %5(9251) +ot %Hé(pk“gk)

+ Pk+1(5l) A Brt1 + plk+1)

_5 1 o T - Ty L 5 k2
= J(pPo) + 23(0 Br) + -+ i 15(0 Br) + k+28(0 Bry1)
1 .
k2 1
+p <77k+1 k+23ﬁk+1)-
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Thus, (9.2.7) holds for k+1 and by induction, for any nonnegative integer k. Setting

k
1 - .
(9.2.8) Fk+10é = F()Oz — Z it 16(p1+16i)>
i=0
we have
(9.2.9a) OFy 10 = 0d’ in Q,
(9.2.9b) Friia=0(p*1)  at M.

Also each f3; is obtained by taking i-th derivatives of the components of Fya. Thus
each 3; is smooth and Fra € CFy ) (€2).

Let n(z) and 7, (z) be the same as in Lemma 9.2.3, we define

oo

1 - .

9.2.10 Foa=Foa—Y ——0(i, (2)p™ ).

( ) a = Fou ;i—&-l (71e; (2)p" " 5s)

As in the proof of Lemma 9.2.3, we can choose ¢; sufficiently small such that the
series converges in every C* norm to some element Foa. Faoa satisfies 0F oo = 0o/
in Q and Foa = O(pk)_at M for every k =1,2,---. Setting & = Foa — Foa, we
have & = a on M and 0& = 0 in €. This proves the theorem.

The extension result proved in Theorem 9.2.1 can be used to study the global
solvability of the equation

(9.2.11) Ohu = on M,

where « is a (p, ¢)-form with smooth coefficients, 0 <p<nand 1 <qg<n-—1. it
is easy to see that if (9.2.11) is solvable, then « must satisfy

(9.2.12) Oy = 0, when 1<¢g<n-—1.

Also using Stokes’ theorem, it is easy to see that if (9.2.11) is solvable for some
u € EPIL(M), then o must satisfy

(9.2.12 ) / NG =0, ¢eEPP(M) A Ker(d,)
M

where 1 < ¢ < n — 1. We note that using Theorem 9.2.1, we can substitute ¢ in

(9212 a) by ¢ € O3y, 1) (©) NKer(D).
When 1 < ¢ < n — 1, condition (9.2.12 a) always implies condition (9.2.12)
(regardless of pseudoconvexity). This can be seen easily if we take ¢ in (9.2.12 a)

to be of the form 0, f, where f is any smooth (n — p,n — q — 2)-form on M.
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Theorem 9.2.4. Let Q be a bounded pseudoconvex domain in C" with smooth
boundary M. For any a € EPI(M), where 0 < p <n and 1 < q < n —1, there
exists u € EPI71(M) satisfying Opu = o on M if and only if the following conditions
hold:

Oy =0 on M, whenl<qg<n-—1,

and
/a/\'(p:()’ ¢ € EPOM) N Ker(0y), when q=n — 1.
M

Proof. From Theorem 9.2.1, we can extend « to & such that & € C’&f o (Q),
0& =0, in Q

and - -
aNop=aAldp, on M.

Using Theorem 6.1.1, we can find a @ € C’E’;’yqfl)(Q) such that

o =& in Q.

Denoting the restriction of @ to M by u, we have i A dp = & A dp on M, or
equivalently Oyu = o on M. This proves the theorem.

We conclude this chapter with the following theorem:

Theorem 9.2.5. Let Q be a bounded pseudoconvex domain in C™ with smooth
boundary M. For any a € EP1(M), where 0 < p < n and1 < q < n—1, the
following conditions are equivalent:

(1) There exists u € EP9~Y (M) satisfying Opu = o on M.

(2) There exists & € Cf:,q)(ﬁ) with 7& = a (or & = ) on M and d& = 0 in Q.

(3) [jyany =0, ¢e& P (M)N Ker(0y).

When 1 < q <n —1, the above conditions are equivalent to
(4) Opae =0 on M.

9.3 L2 Existence Theorems and Sobolev Estimates for 9,

Let M be the boundary of a smooth domain € in C”. We impose the induced
metric from C® on M and denote square integrable functions on M by L?(M).
The set of (p,q)-forms on M with L? coefficients, denoted by L%p’q)(M), is the

completion of £E7:4(M) under the sum of L? norms of the coefficients. We define the

space of (p, q)-forms with C*(M) coefficients by Cg“p o (M). In particular, EP4(M) =

C(O; q)(M ). By using a partition of unity and the tangential Fourier transform, we
can define the Sobolev space W*(M) for any real number s. Let W, (M) be the
subspace of L%p’q) (M) with W# (M) coefficients for s > 0 and the norm in W(Sp’q)(M)

is denoted by || |[s(ar). It is clear that W((;),q)(M) = L?p,q)(M) and || [locany=Il llar-
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The L? closure of Oy, still denoted by 0, is a linear, closed, densely defined operator
such that

(9.3.1) O : LY, 41y (M) — L7, (M).
An element u € L%p 4—1)(M) belongs to Dom(dy) if and only if dyu, defined in the
distribution sense, is in L7,  (M).

Our main result in this section is the following theorem.

Theorem 9.3.1. Let Q be a bounded pseudoconvex domain in C" with smooth
boundary M. For every o € W(Sp q)(M), where 0 <p<n, 1<g<n—-2andsisa
nonnegative integer, such that

(9.3.2) Opa =0 on M,
there exists u € W(Sp’q_l)(M) satisfying Opu = a on M.

Wheng=n—1, a € L?pm_l)(M) and « satisfies

(9.3.3) / aNg=0, ¢€CG_,nM)N Ker(0y),
M

there exists u € L%p n—2) (M) satisfying Oyu = o on M.

Corollary 9.3.2. Let Q2 be a bounded pseudoconver domain in C" with smooth
boundary M. Then 0Oy : L%p,qq)(M) — L%p’q)(M), 0<p<n,1<qg<n-—1, has
closed range in L2.

It is easy to see that (9.3.2) and (9.3.3) are necessary conditions for J; to be
solvable in L?. To prove Theorem 9.3.1, we shall first assume that « is smooth. We
then show that there exists a constant Cs independent of « such that

(9.3.4) Il ullsary < Cs |l allsary -

Using Theorem 9.2.4, we can find a solution for any smooth « satisfying (9.3.2)
or (9.3.3). However, it is not easy to obtain estimates from this construction. We
shall use a different method to solve « by exploiting the relationship between the
norms on the boundary M and the tangential Sobolev norms. We also introduce
the weighted tangential Sobolev norms.

Let p be a defining function for 2. Let Q be a large ball such that Q cc Q. We
set

QF=0\0, QO =qQ

For a small § > 0, we set
Qy ={z€Q | =6 <p(z) <0},
Qf ={2€07| 0<p(z) <6},
Qs ={2€Q| =6 <p(z) <6},
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and
I.={ze€C"|p(z) =€}

The special tangential norms in a tubular neighborhood €25, ng and s are defined,
as in Section 5.2, by

)
112 = / e, .

0 §
1B sy = [ 1 Bde WA Gy, = [ 161w, o

For each m € N, s € R, we set

(9.3.5) 1D flllss) = > DEFIsmr(ss)s
0<k<m

where D, = 0/0p. We also define the weighted tangential Sobolev norms by

0™ flllscs) = P D™ flllss)

Z |||me§f| | ‘s+m—k(95)7
0<k<m

(9.3.6)

and similarly

106" fllqy = 3 WDO" Dy flltm-ss)
0<k<m

Thus © can be viewed as a first order differential operator weighted with p. Cor-
responding norms are also defined on €25 and Q}’ similarly. We always assume
that § > 0 to be sufficiently small without specifying so explicitly in the following
lemmas.

The next lemma on the extension of smooth functions from the boundary is the
key to the proof of (9.3.4).

Lemma 9.3.3. Let M be the boundary of a smooth domain € in C™. For arbitrary
smooth functions u;j on M, j =0,1,--- ko, there exists a function Eu € C5°(8s)
such that DzEu =u; on M, j=0,1,--- , ko. Furthermore, for every real number s
and nonnegative integer m, there exists a positive constant C' depending on m and
s but independent of the u;’s such that

ko
(9.3.71) D™ Bullly— s 105 < C Y lujllazjan),
=0
ko
(9.3.7 i) 110" Eullls1 105 < C D llugllazjan-

Jj=0
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Proof. Using a partition of unity, it suffices to prove the lemma assuming that u;
is supported in a small neighborhood U N M, where U C C™ and that there exists
a special boundary coordinate chart on U with coordinates ¢1,- - ,ta,_1, p.

The Fourier transform for u in the special boundary chart is defined by

a(r) = / e BT u(t)dt,
RQn—l

where T = (7’1, B ,Tgn_l) and <t, T> = tlTl —+ -4 t2n—17'2n—1-
Let ¢ be a function in C§°(R) which is equal to 1 in a neighborhood of 0 and let
the partial Fourier transform of Fu be

ko j
(9.3.8) (BuJ (1,p) = ¥(Ap) Zajm%

Jj=0

where A = (14 |7|?)1/2. Tt is easy to see that DiEu = u; on M.
To prove (9.3.7 i) and (9.3.7 ii), we note that for every nonnegative integer i, by
a change of variables, there exists some C' > 0 such that

> 7 1\ |2 _\2(i—j5)—1 > 7 712 2(i—j)—1
| IDswn = 320 [ D)) Fap < x0T,
Thus we have

2 o k 2
H|DmEu|Hsfm+%(Qs) - Z |||DpEuH|sfk+%(Q(§)
0<k<m

ko
< CZ/ A2 (r) Pdr
j=0"R

2n—1

ko
< CZ ||Uj||§—j(M),
3=0
which proves (9.3.7 i). Since

/ PP DE ((Ap) p?) Bl = AZi=I—m)=1 / P27 D3 ()" Pdlp

—00 — 00

< CAZ(i_j_m)_l

)

we see that

O™ BulllZ 300 = D 0" DpBUlZ i 30
0<k<m

2n—1

ko
< CZ/ N2 i, () Pdr
j=0’R

ko
<CY NwslZ_jony:

Jj=0
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This proves (9.3.7 ii) and the lemma.

Estimate (9.3.7 i) shows that when one extends a function from a smooth bound-
ary, one can have a “gain” of one half derivative. Estimate (9.3.7 ii) shows that the
operator pD for any first order derivative D should be treated as an operator of
order zero in view of extension of functions from the boundary. This fact is crucial
in the proof of Theorem 9.3.1. We also remark that Lemma 9.3.3 also holds for
ko = oo using arguments similar to Lemma 9.2.3.

Lemma 9.3.4. Let M be the boundary of a smooth bounded domain Q in C".
Let a € C’&j’q)(M), 0<p<n, 1<qg<n-1, and Opa = 0 on M. For every
positive integer k, there exists a smooth extension Epa with support in a tubular

neighborhood Qs such that Epa € C(C’;q)(Q(;), Eroao=a on M and

(9.3.9) dEpa = O(p*) at M.

Furthermore, for every real number s and nonnegative integer m, there exists a
positive constant Cy depending on m and s but independent of o such that

(9.3.10 i) D™ Exed[|s—m+1 (s < Crllallson,
(9.3.10 ii) |\|@mEka|||s+%(QJ) < Crllasary-
Proof. Using Lemma 9.3.3 with ky = 0, we first extend o componentwise and

smoothly from M to Fa in C™ such that Ea has compact support in Q5 and
satisfies the estimates

(9.3.11°1) D™ Eallls—m+ 104 < Cllallsan,

(9.3.11 i) O™ Ealllst 105 < Cllellsan,

where C' depends on m and s but is independent of a. Using Lemma 9.2.3, for every
positive integer k, there exist smooth (p,q)-forms ay,--- ,ar and (p,q + 1)-forms
Y1, Yk such that

2 k
(9.3.12 a) Epa = Ea — pay — %QQ e %%
and
_ 1-
(9.3.12 b) OEpa = pk (% — kaak> =0(p") at M.

From the proof of Lemma 9.2.3, each component of «; is a linear combination of
the i-th derivatives of Fa. To show that Ej« satisfies the estimates, it suffices to
estimate each p'c;. Using (9.3.11 i) and (9.3.11 ii), we have for any s € R,

Ekalllas ) < NEalllasyan + 3o Mo'aullls )
1<i<k

<0 Y 10 Eall,; 10
0<i<k
< Cllallsan-
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Again using (9.3.11 i) and (9.3.11 ii), we have for any s € R, m € N,

110" Exallley s, < C Y 07 Eallley 1y < Crllallsan,

0<i<k
and )
10" Exallls—msy 0 < C D 10D B[l sy )
0<i<k
< Cellallsan,

where we have used (9.3.7 i) and (9.3.7 ii). This proves Lemma 9.3.4.

The following decomposition of Op-closed forms on M as the difference between
two O-closed forms is an analog of the jump formula for C'R functions discussed in
Theorem 2.2.3.

Lemma 9.3.5. Let M be the boundary of a smooth bounded domain € in C". Let
a € CE’;’q)(M) with Opa =0, 0 <p<n, 0<qg<n-—1. For each positive integer k,

there exist a™ € C(’“pvq)(ﬁ—k) and o~ € C(kp 2 (Q) such that dat =0 in QF, da= =0
in Q and the following decomposition holds:

(9.3.13) at—a =« on M.

Furthermore, we have the following estimates: for every integer 0 < s < k —1,
0<m<s,

(9.3.14 1) IID™ ™[]y 3 0p) < Cllelsn,

(9-3.14 ii) D™ sy 1a;) < Clledlsa,

where the constant C' depends only on m, s, but is independent of «.

Proof. Let ko be a positive integer to be determined later. Using Lemma 9.3.4, we
extend a from M to Ej o in C™ smoothly such that Ey o = o on M, Ej o has
compact support in Q5 and Fy,« satisfies (9.3.9) and (9.3.10) with k& = ko.

We define a (p, g + 1)-form 0k0 in Q by

—0Ey,a, if z€eQ7,
Uy, =< 0, if z € M,
OEy, a, if ze Q.

From (9.3.9), we have Uy, € C*~1(Q) and U, = 0 in Q (in the distribution
sense if kg = 1). It follows from (9.3.10 i) that for any nonnegative integer m,
0 S m S ko — ].,

D™ Uk [l s—n—1

2

s < CIID™ Byl 3(0)

(9.3.15)
< Clledlsa).-
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We define Vi, = 5‘*N&q+1)0k0. It follows from Theorem 4.4.1 that 5Vk0 = ﬁko

in Q. Since O(p,q+1) is elliptic in the interior of the domain Q, 5*N(Sz a+1) gains
one derivative in the interior. Since Uko has compact support in 5, we get from

(9.3.15) that

|HDkao|||s—m+l(Qg) < C‘|‘Dm+1E1€oa|Hs—m—l(Q(g)
2 2

(9.3.16)
< Cllallsa,
for some C' > 0 independent of a.
Setting
1 _
at = §(Ekoa — Vi), z€QF,
1 _
a” = _i(Ekoa"‘ Vio), 2€9,
we see that

+

a=FEpa=(" —a”) on M.

We also have
_ 1 _ _ 1 _ -
dat = 5(3Ek0a — Vi) = 5(3Ek0a —Uk)=0 in QF,
and 1 1
da” = =5 0Bk, +0Vi,) = —5 (0B, + Uk) =0 in Q.

If we choose kg sufficiently large (ko > n+ k + 1), then at € Cé“p’q)(Q'*‘ U M) and
a” € C’(kpﬂ) () by the Sobolev embedding theorem. The estimates (9.3.14 i) and
(9.3.14 ii) follow easily from (9.3.16) and (9.3.10). Since this is true for an arbitrarily
large ball Q, the lemma is proved.

Using the weighted 9-Neumann operator on 0, we can solve ou™ =a  in Q~
with good estimates up to the boundary. To solve 0 for a™ in OF, we use the
following lemma to extend a™ to be d-closed in  with good estimates.

Lemma 9.3.6. Let (2 be a bounded pseudoconver domain in C" with C*° boundary
M. Let o € C’&j’q)(M) such that Opa = 0, where 0 < p <n, 0 <qg<n-—1. For

every nonnegative integer ky, there exists &t in C’(kp1 q)(Q) and o~ € Cé;l o (Q) such
that 9a+t =0 in Q, da~ =0 in Q= and &+ —a~ = « on M. Furthermore, for

every 0 < s < kq, there exists a constant C' depending only on s but independent of
a such that

(9.3.17 1) Ia™ i1 < Clledlson-

(9.3.17 i) o™ lls+ 1) < Cllellsan-

Wheng=n—1, a € Cﬁ;}n_l)(M) and « satisfies

(9.3.18) / ahd=0, ¢€CE_,q(M)NKer(dy),
M
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the same conclusion holds.

Proof. Let k be an integer with k > 2(k1+n) and let o™, o~ be defined as in Lemma
9.3.5. For any s > 0 and 0 < m < s, using arguments similar to those in the proof
of Lemma 5.2.3, the norm |||Dmoz_|||s_m+%(9;) is equivalent to || a~ HS_A,_%(Q;).
Thus (9.3.17 ii) follows immediately from (9.3.14 ii).

We next extend at to Q. By the trace theorem for Sobolev spaces and inequality
(9.3.14 1), we have for any integer 0 < j <s—1,0<s <k,

IDJa* ls—jary < CIDI | _j_ 1ty < Cllellsan-

Using the proof of Lemma 9.3.3, we can extend ot from QF to o in Q such that
o € C*(Q), do/ = 0 in QF and the following estimates hold: for any integer
0<s<k—-1,0<m<s,

(9.3.19 ) D™ iy a;) < Clladson,
(9.3.19 ii) 0™l o4 107 < Cllallsan-
We define

Fo' = —xON{,_, . 4 10’ inQ,
where N!

(n—p,n—q—1)
Using Theorem 6.1.4, we can choose t sufficiently large such that Fo/ € W(]z;ql) Q) cC
C(Q;“;‘)H(ﬁ). We set Fo = 0 outside .

When ¢ = n — 1, using the definition of at, for every O-closed form ¢ €
Cln_poy(Q)

( 9

n—p,0)

is the weighted 0-Neumann operator on (n—p,n—q— 1)-forms.

by (9.3.18). Thus Ja’ satisfies condition (9.1.9). Using Theorem 9.1.2 (1 < ¢ <
n — 2) and Theorem 9.1.3 (¢ =n — 1) , it follows that

{8F0/:80/ in Q,
Fo' =0 in QF.

We modify Fo/ to make it smooth at M. Setting Fpa' = Fo' and using argu-

ments similar to those in Lemma 9.2.3, one can choose (p, g — 1)-forms Sy, - -, B,
and define
k1 1
’r_ / A( it1l3.
Fi, 10 = Fy —;i_’_la(p 61)7
such that

OF, 110/ = 0d’ in Q,
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and
Fi, 10’ = 0(p™+)  at M.

Each f3; is obtained by taking i-th derivatives of the components of Fya! . Thus
Fr 10’ € CF (Q). If we set Fy, 410/ =0in Q\ Q, then Fj, 10/ € C* (). We

(p,q) (p,q)
define
. { o — Fy, 11, in Q,
« =

o — Fy, 10 = at, in Q\Q,

then a™ € C(kpl q)(Q) and &+ = 0 in Q. Tt remains to show that & satisfies (9.3.17

i). Since o™ satisfies (9.3.14 i) and o/ satisfies (9.3.19 i), to estimate &+, we only
need to estimate Fy, 110’ in Q. To prove (9.3.17 i), it suffices to show

(9.3.20) | Fryr10 [[s—1(0) < C Il allsr) -

From Theorem 6.1.4, we have the estimates
(9.3.21) | Fo/ =1 £ C 100" [—1ia) < C |l a s -
We claim that for each positive integer 0 < m < k; +1, 0 < s < kq,
(9.3.22) Il D™ Fol|l|,_ 3y < C Il o llar -

If the claim is true, then (9.3.20) holds from our construction of Fj, 1o/, since
Fy,11&’ can be written as combinations of terms in Fo/ and p""D™Fa’. Thus it
remains to prove (9.3.22).

(9.3.21) implies that (9.3.22) holds when m = 0. To prove the claim for m > 0,
it suffices to show for each positive integer 0 < m < ky +1, 0 < s < kq,

(0.3.23) IDO™ Fal[ll,_s 0= < C | @ lsqany

since Fo' satisfies an elliptic system 0 @ 99;. Decompose 25 into subdomains 2,
such that
Qj = {Z € Qg | 6j+1 < —p(Z) < (5]'},

where §; = §/27. This is a Whitney type decomposition where the thickness of
each €2; is comparable to the distance of {; to the boundary. We define 27 =

Qj_1 Uﬁj U Qj+1. Let ¢j be a function in CSO(Q;) such that 0 < ¢j < 1, ¢j =1
on ;. Moreover,

(9.3.24) sup |gradg;| < Cc?j_l,

where C' is independent of j. Since 9 @ ¥, is elliptic and ¢;0™Fa/ is supported in
7, applying Garding’s inequality, we have
11D(6,0™ P, 3.0
(9.3.25) < C(\Hé(%@mFO/)ms—g(Q;) + |||19t(¢j@mF0/)ms—g(Q;)
+[16;0™Fa/llls_30:)),
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where C' is independent of j. We also know that

110(6;0™ Fa/)||ls— 30z
(9.3.26) < [[10(6)0™ Fo/|[| 530z + 16,0 0F /|||, 3 ()
+ 16510, 0™ F ||| -3 0z,

and using (9.3.24),

118(6)0™ Fo/|lI,3.0s) + 116510, 0™ Fo’| I, 3.0,

(9.3.27) iy
< Ol|DO™ Fal|ll,_s o).

Substituting (9.3.27) into (9.3.26), we obtain

16,0 Fa)ll,- 30
(9.3.29) < C(lIDO™ " Fal [l (o) + [10700/| I, 3 a))
< C(lIDO™ " Fa|ll,_y o) + 1DO™ [, 30))-

Similarly,
[19¢(¢;0™ Fa)lls—3 )
< 1[9:(6)0" Fa/lll,_s0) + 16,00, Fall, 3 ar)

+ 1116509, 0™ F'| I, 3.0,
< ClllpO™Fa|ll,_s o).

(9.3.29)

Substituting (9.3.28) and (9.3.29) into (9.3.25) and summing over j, we have using
induction,
m !/
IPO"FAll, 3 0r;)

2

< C(IDO™Fa |,y - + 111€700|II, 3 a)
<Cllallyan -

This proves (9.3.23) for a smaller 6. Thus (9.3.17 i) holds. The proof of Lemma
9.3.6 is complete.

We note that both Lemma 9.3.5 and Lemma 9.3.6 hold for ¢ = 0, i.e., when « is
CR. When ¢ =0 and n = 1, Lemma 9.3.5 corresponds to the Plemelj jump formula
in one complex variable (see Theorem 2.1.3). In this case, there is no condition
on « since Jyae = 0 on M is always satisfied. In contrast, there is a compatibility
condition (9.3.18) for ¢ = n—1 in Lemma 9.3.6 for n > 1. One should compare this
case with Corollary 2.1.4.

Using Lemma 9.3.6, we have the following lemma for smooth 0y-closed forms:
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Lemma 9.3.7. Let Q) be a bounded pseudoconvexr domain in C™ with smooth bound-

ary M. Let a € C&iq)(M), where 0 < p<mn, 1 <qg<n—2, such that pao = 0

on M. For every nonnegative integer s, there exists us € W(Sp q—l)(M) satisfying

Opus = o on M. Furthermore, there exists a constant Cj independent of o such
that

Wheng=n—-1, a € C€;7n_1)(M) and « satisfies (9.53.3), the same conclusion
holds.

Proof. Let s be a fixed nonnegative integer. From Lemma 9.3.6, there exists a
decomposition a = (&% — a7) such that a* € CF, 28, daT =0in Q, a” €
C: (Q) and da~ = 0 in Q. We also have the estimates:

(p.q)
(9.3.31 i) 16" -1 ay < Clledlseuy,
(9.3.31 ii) I [ls42(0) < Clledlsan-

(9.3.31 1) and (9.3.31 ii) follow from (9.3.17 i) and (9.3.17 ii).
Since (2 is pseudoconvex, we define

u = 5:]\[(tzmq)o‘i’
where N(tp 9 is the weighted -Neumann operator in 2. If we choose t > 0 suf-

s+1 =
ficiently large, using Theorem 6.1.4, it follows that u~ € W(:qQ_l)(Q), ou~ = a~
and

DU,y 0 < Cllo™ s @) < Cllolluqan

for some constant C independent of a. Restricting u~ to the boundary we have

Oyu~ =T~ on M and using the trace theorem for Sobolev spaces, we obtain
(9.3.32) ™ llsary < CsllIDu i1z ) < Csllallsearn-
Defining

S+ _ A s+
ut =09 N )
where N¢) ;) 18 the d-Neumann operator on €, we have dat = a* in Q and @™ is
one derivative smoother than & in the interior of Q. From (9.3.31 i),
DT l— 00y < CIE* -y < Clallqan

for some constant C independent of . Restricting @* to M, using the trace theorem
again,

(9.3.33) 1@ sy < CHIDEF - 105 < Clladlsan
for some constant C' independent of a. Letting
us =at —u” on M,

we get Jyus = o on M. We also have from (9.3.32) and (9.3.33),
||usH9(M) < CSHa”S(M)?
where C is independent of a.. This proves (9.3.30) and the lemma.

To prove Theorem 9.3.1, we need the following density lemmas which are of
interest independently.
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Lemma 9.3.8. Let M be the boundary of a smooth bounded pseudoconvexr domain
QinC", n>2 Foreach0<p<n 0<qg<n-—1ands > 0, the space

CogM)N ker(0y) is dense in Wi (M) N ker(0y) in the We,.q) (M) norm.
Proof. We define 2 = Ci /(M) N ker(9y) and Z° = W0 M) N ker(9,). For

any « € Z°, using Friedrichs’ Lemma (see Appendix D), there exists a sequence of

smooth forms ay, € CF (M) such that ap — « in W(Sp)q)(M) and Jpa, — 0 in
W(‘; q +1)(M ). Since Jpa, is a smooth form satisfying the compatibility condition
(9.3.2) (when ¢ < n —2) and (9.3.3) (when ¢ = n — 2), Lemma 9.3.7 implies that

there exists a sufficiently smooth form v,, such that dyv,, = Oy, in M with
vaHs(M) S CngbamHs(M) — 0.

We set

e
Oy, = Oty — Uy

Then 9y, = 0 and «/,, converges to a in W, (M). Thus, Z¥ is dense in Z* in
the W, q)(M ) norm where k is an arbitrarily large integer.
For any € > 0 and each positive integer k > s, there exists an ay € Z* such that

||Ozk — aHs(M) < €.

Furthermore, we can require that

€
llok — crr1llwan < oF

since Z¥*1 is dense in Z*. The series

o
g+ Z (ay —an-1)
N=k+1

converges in every W(l; q)(M ) norm to some element . The Sobolev embedding
theorem then assures that a is in CZ’;’ q)(M) N Ker(9y). We also have

Haoo — O‘HS(IVI) < 2e.

This proves the lemma.
When ¢ = n — 1, we have the density lemma in the L? norm.

Lemma 9.3.9. Let M be the boundary of a smooth bounded pseudoconvexr domain

QinC", n>2and0<p<n. Let Z denote the space of all forms in L%p,nq)(M)

satisfying (9.8.3) and Z°° be the subspace of all forms in C&;nfl)(M) satisfying
(9.3.8). Then Z* is dense in Z in the L? norm.

Proof. Since the holomorphic degree p plays no role, for simplicity we assume p = n.

If a € L%n’nil)(M), we can write a = f(xdp) for some f € L?(M). Using the

Hahn-Banach theorem, it suffices to show that any bounded linear functional ¢ on
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L2

(n,n—1
theorem, there exists a g € L?(M) such that ¢ can be written as

)(M ) that vanishes on Z° also vanishes on Z. From the Riesz representation

o) = / a g, a € L(znyn_l)(M).
M

For any u € C'(C>Tf’7k2)(M)7 it is easy to see that Oyu € Z°°. If £ vanishes on Z°°, we

have
/ OuNg=0, for any u € CF; ,,_o)(M).
M

This implies that d,g = 0 in the distribution sense. Using Lemma 9.3.8 when
p = q = 0, there exists a sequence of smooth functions g, such that dyg,, = 0 and
gm — g in L?>(M). For any a € Z, we have

ﬁ(a):/ aAg= lim a A gm =0.
M

m— 00 M

This proves the lemma.
We can now finish the proof of Theorem 9.3.1.

Proof of Theorem 9.3.1. When 1 < ¢ < n — 1, a can be approximated by smooth
dp-closed forms auy, in W, q)(M ) according to Lemma 9.3.8. For each a,, we apply

Lemma 9.3.7 to obtain a (p,q — 1)-form w,, such that Optiyy, = iy, and
HumHs(M) < CsHamHs(M)-
Thus, ., converges to some (p,q — 1)-form u such that Opyu = a on M and

ullsary < Collelscan)-

This proves the theorem when 1 < ¢ <n — 1.
When ¢ = n — 1, we approximate a by «a,, € Z* in the L%p nfl)(M) norm
using Lemma 9.3.9. Repeating the arguments above with s = 0, we can construct

u € L%p n—2) (M) with Opu = a. This completes the proof of Theorem 9.3.1.

Corollary 9.3.2 follows easily from Theorem 9.3.1.

9.4 The Hodge Decomposition Theorem for 0,

The L? existence result proved in Theorem 9.3.1 can be applied to prove the
Hodge decomposition theorem for the d, complex on pseudoconvex boundaries. We
use the notation 5;‘ to denote the Hilbert space adjoint of the operator d, with
respect to the induced metric on M.

We define O, as in Chapter 8. Let O, = gbgz + 5;5;, be defined on Dom(y),
where

Dom(,) = {¢ € L?, \(M) | ¢ € Dom(8) N Dom (3, );

(p,q)

Dy¢ € Dom(dy) and J,¢ € Dom(dy)}.
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Repeating arguments in the proof of Proposition 4.2.3, we can show that [J, is a
closed, densely defined self-adjoint operator.

We use H{,  to denote the projection

H(bp7q) : L(me(M) — Ker(y) = Ker(éb) N Ker(é,’:).

When M is the boundary of a smooth bounded pseudoconvex domain, we claim
that for 1 < ¢ <n -2,

(94.1) Ker((,) = Ker(9,) N Ker(9;) = 0.

To prove (9.4.1), let a € Ker((,) = Ker(dy) N Ker(9;). Then a = Jyu for some

u € L%%q_l)(M) by Theorem 9.3.1. Thus

(o, @) = (Opu, a) = (u, 0j ) = 0.

We have Hé’p,q) =0foral 0 <p<mn, 1 <g<n-—2 Only H(bp,o) = S(p,0) (the

Szegd projection) and H(bp,n—m = S'(pm_l) are nontrivial where
S(p,O) : L%p’o) (M) — Ker(éb),

S’(p’n,l) : L?p,n_l)(M) — Ker(0}).

We derive some equivalent conditions for (9.3.3) in Theorem 9.3.1. Again one can
assume p = n. Let S = S o) denote the Szegd projection on functions and S denote
the projection from L? (M) onto L yKer(y). Forany a € L7 (M),

(n,n—1) n,n—1 (n,n—1)
we can write a = f(x0p) for some f € L2(M), where * is the Hodge star operator
with respect to the standard metric in C". The following lemma links condition
(9.3.3) to the Szegd projection:

2
(n,n—1)
(1) « satisfies condition (9.3.3).
(2) Sf =0, where a = f(*x0p).

(3) Sa=0.

Lemma 9.4.1. For any a € L (M), the following conditions are equivalent:

Proof. Let 6 = x(0p A dp). Since dp = (Op+ Op) vanishes when restricted to M, we
have

*0p=0N0p=0Ndp—60N0Dp
=0 Adp++0p = +0p

on M. If ¢ € L*(M),

/M o= /M Fu(xBp) = /M fudp) — /M F(0p)
_ /N e - /M Fo(p),
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where do = xdp is the surface measure on M. Hence, for any v € L*(M),

| anv=5 [ pudo =50

Since Z°° is dense in Z from Lemma 9.3.8, (1) and (2) are equivalent.

To prove that (3) and (1) are equivalent, we write 3 = g(x0p) for any 3 €
I_’%n,nfl)(M% where g € L2(M). It is easy to see that 8 € Ker(9;) if and only if
g =0 on M. For any 3 € L? (M) NKer(0),

(n,n—1)

<a,ﬁ)M=/Mf§da=2/MaA§=0-

This proves that (1) and (3) are equivalent.
We have the following strong Hodge decomposition theorem for dj.

Theorem 9.4.2. Let M be the boundary of a smooth bounded pseudoconver domain
QinC", n>2. Then for any 0 < p <n, 0 < qg<n-—1, there exists a linear

operator Ny : L%p)q) (M) — pr)q)(M) such that

(1) Ny is bounded and R(Ny) C Dom([y).

2) For any o € L? (M), we have
(p,9)

o= ngZNba @52561\7604, if 1<q¢<n-2,
a= gngNboz & S0, if q¢q=0,
a= ngZNba &) S(pyn_l)a, if ¢g=n-—1.
(3) If 1 <q<n-—2, we have
NyOp =0OpNpy =1 on Dom(0y),
OyNy = Nydy  on Dom(0y),
9,Ny = Nvd, on Dom(Dy,).

4) If E~ L%p’q)(M) with Opar = 0, where 1 < ¢ < n—2 or a € L%p,nq)(M)

with S(pn—1ya = 0, then a = 5;,5;Nba.
The solution u = EZNboz in (4) is called the canonical solution, i.e., the unique
solution orthogonal to Ker(dy).

Proof. From Corollary 9.3.2, the range of 0y, denoted by R( _9), is closed in every
degree. If 1 < ¢ < n — 2, we have from Theorem 9.3.1, Ker(dy) = R(9,) and the
following orthogonal decomposition:

(9.4.2) L? (M) =Ker(0,) ® R(0;) = R(0) ® R(T})-

(p,q)

Repeating the arguments of Theorem 4.4.1, we can prove that for every a €
Dom(dp) N Dom(9y, ),

(9-4.3) lall* < e(I1Bsed|* + |Dpel®),
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and for any o € Dom([y),
(9.4.4) lolf* < el Oyer, |

where the constant c is independent of a.
(9.4.4) implies that [0, is one-to-one and, from Lemma 4.1.1, that the range of
[, is closed. It follows that the strong Hodge decomposition holds:

L, (M) = R(T,) @ Ker(Dy)
= 9,05 (Dom(0y)) ® 95 Iy (Dom(y)).

Thus O, : Dom(O,) — L%p,q)(M) is one-to-one, onto, and it has a unique inverse
Ny - pr’q)(M) — Dom(0p). Note that N, is bounded. Following the same argu-
ment as in Theorem 4.4.1, we have that N, satisfies all the conditions (1)-(4) and
Theorem 9.4.2 is proved when 1 < ¢ <n — 2.
When ¢ = 0,
L, 0)(M) = R(3y) & Kerd,.

Thus for any a | Ker(dy) and o € Dom([Jy),

(9-4.5) ladl* < clldper]|* < | D[]

Thus 0, has closed range on Ker(dy)* = Ker((J;)* and
L, 0)(M) = R(0,) ® Kerd,.

In particular, there exists a bounded operator N : L%p,()) (M) — L%p,O) (M) satisfying
OuNy, = I — S(p0)y, No = 0 on Ker(d,). This proves (1) and (2) when ¢ = 0.
Properties (3) and (4) also follow exactly as before. The case for ¢ = n — 1 can also
be proved similarly.

Thus, the strong Hodge decomposition for 9, holds on the boundary of a smooth
bounded pseudoconvex domain in C™ for all (p, ¢)-forms including ¢ = 0 and ¢ =
n — 1.

NOTES

The 0-closed extension of Oy-closed functions or forms from the boundary of a
domain in a complex manifold was studied by J. J. Kohn and H. Rossi [KoRo 1] who
first introduced the 9, complex. In [KoRo 1], they show that a d-closed extension
exists for any (p,q)-form from the boundary M to the domain € in a complex
manifold if € satisfies condition Z(n — ¢ — 1). Formula (9.1.3) was first given there.
The L? Cauchy problem on any pseudoconvex domain was used by M.-C. Shaw
[Sha 6] to study the local solvability for d,. Theorem 9.3.3 was first observed by
J. P. Rosay in [Rosa 1] where it was pointed out that global smooth solutions can
be obtained by combining the results of Kohn [Koh 6] and Kohn-Rossi [KoRo 1].
The 0 Cauchy problem was also discussed by M. Derridj in [Der 1,2]. A. Andreotti
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and C. D. Hill used reduction to vanishing cohomology arguments to study the
Cauchy problem and J, in [AnHi 1]. Kernel methods were also used to obtain O-
closed extension from boundaries of domains satisfying condition Z(n —q — 1) (see
Henkin-Leiterer [HeLe 2]). We mention the papers of G. M. Henkin [Hen 3] and
H. Skoda [Sko 1] where solutions of 0y, including the top degree case, on strongly
pseudoconvex boundaries were studied using integral kernel methods.

Much of the material in Section 9.3 on the L? theory of 0, on weakly pseudocon-
vex boundaries was based on the work of M.-C. Shaw [Sha 2] and H. P. Boas-M.-C.
Shaw [BoSh 1]. In [Sha 1], Kohn’s results of the weighted d-Neumann operator
on a pseudoconvex domain was extended to an annulus between two pseudoconvex
domains. Using the weighted 0-Neumann operators constructed in [Koh 6] and [Sha
1], a two-sided O-closed extension for Jj-closed forms away from the top degree was
constructed in [Sha 2]. The jump formula proved in Lemma 9.3.5 was derived from
the Bochner-Martinelli-Koppelman kernel in [BoSh 1] (c.f. Theorem 11.3.1). Our
proof of Lemma 9.3.5 presented here uses an idea of [AnHi 1]. Sobolev estimates
for 9, were also obtained for the top degree case (¢ = n — 1) in [BoSh 1]. The
proof depends on the regularity of the weighted Szegé projection in Sobolev spaces.
For more discussion on the Sobolev estimates for the Szegd projection, see [Boa
1,2,4]. Another proof of Theorem 9.3.1 was given by J. J. Kohn in [Koh 11] using
pseudodifferential operators and microlocal analysis.

We point out that all results discussed in this chapter can be generalized to any
C'R manifolds which are boundaries of domains in complex manifolds, as long as the
corresponding d-Neumann operators (or weighted d-Neumann operators) exist and
are regular (e.g, pseudoconvex domains in a Stein manifold). However, L? existence
theorems and the closed range property for 0, might not be true for abstract CR
manifolds. It was observed by D. Burns [Bur 1] that the range of d, is not closed in
L? on a nonembeddable strongly pseudoconvex C'R manifold of real dimension three
discovered by H. Rossi [Ros 1]. This example along with the interplay between the
closed-range property of 9 and the embedding problem of abstract C'R structures
will be discussed in Chapter 12.

There are also results on Sobolev estimates for [, on pseudoconvex manifolds.
Using subelliptic multipliers combining with microlocal analysis, J. J. Kohn (see
[Koh 10,11]) has proved subelliptic estimates for [J, when the C'R manifold is pseu-
doconvex and of finite ideal type. If the domain has a plurisubharmonic defining
function, Sobolev estimates for [0, have been obtained by H. P. Boas and E. J.
Straube [BoSt 4]. In particular, the Szegd projections are exactly regular in both
cases.

Much less is known for the regularity of [, and the Szegb projection on pseu-
doconvex manifolds in other function spaces except when the C'R manifold is the
boundary of a pseudoconvex domain of finite type in C2. We mention the work
of Fefferman-Kohn [FeKo 1] and Nagel-Rosay-Stein-Wainger [NRSW 1] and Christ
[Chr 1]. When the C'R manifold is of finite type in C", n > 3, and the Levi form
is diagonalizable, Holder estimates for 0y and O, have been obtained in Fefferman-
Kohn-Machedon [FKM 1]. Holder and LP estimates for the Szegd projection on
convex domains of finite type have been obtained by J. McNeal and E. M. Stein
[McSt 2]. Tt is still an open question whether Holder or L estimates hold for [,
and 0, on general pseudoconvex C'R manifolds of finite type.
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CHAPTER 10

FUNDAMENTAL SOLUTIONS FOR [0,
ON THE HEISENBERG GROUP

In Chapters 8 and 9, we have proved the global solvability and regularity for
the O, operator on compact pseudoconvex C'R manifolds. Under condition Y (q),
subelliptic 1/2-estimates for O, were obtained in Chapter 8. On the other hand,
it was shown in Section 7.3 that the Lewy operator, which arises from the tan-
gential Cauchy-Riemann operator associated with the Siegel upper half space, does
not possess a solution locally in general. The main task of this chapter is to con-
struct a fundamental solution for the 0, operator on the Heisenberg group H,.
The Heisenberg group serves as a model for strongly pseudoconvex C'R manifolds
(or nondegenerate C'R manifolds). Using the group structure, we can construct
explicitly a solution kernel for 0 and obtain estimates for the solutions in Holder
spaces. The Cauchy-Szego kernel on H,, is discussed in Section 10.2. We construct
a relative fundamental solution for [, in the top degree case and deduce from it the
necessary and sufficient conditions for the local solvability of the Lewy operator.

10.1 Fundamental Solutions for [J, on the Heisenberg Group
Let us recall that the Siegel upper half space 2, is defined by
(10.1.1) Q= {(¢,2,) € C" | Tmz, > |Z|*},

where 2/ = (21, ,2,-1) and [2/|> = |21]? + -+ + |2,—1|%. Denote by Aut(,) the
group of all holomorphic mappings that are one-to-one from (2, onto itself. Let
H, C Aut(9,) be the subgroup defined by

(10.1.2) H, ={ha;a € by, | ha(z) = (' + 2", an + 2, + 2i(z",d’))},
where (2', a’) is the standard inner product in C*~1, i.e., (2/,a/) = Y77 2;a,. To see
H,, actually forms a subgroup of Aut(2,,), put h.(z) = (v, w,). Since Ima,, = |a’|?,
we have

Imw, — |w'|*> = Imz, — |2/~

Hence, each h, maps €, into €2, and 082, into 0€2,. It is easily verified that if
a,b € b8y, then hy o hy = h. with ¢ = hy(b). It follows that if b = (—d’, —a,),
then h, o hy, = the identity mapping. Thus, H,, is indeed a subgroup of Aut(,)
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and it induces a group structure on the boundary 0£2,,. The boundary b£2,, can be
identified with H,, = C*~! x R via the mapping

(10.1.3) 7 (2 t+ilZ)?) — (¢,1),

where z, = t+is. We shall call H,, = C"~! x R the Heisenberg group of order n — 1
with the group structure induced from the automorphism subgroup H,, of Aut(,)
by

(10.1.4) (21, t1) - (25, t2) = (2] + 25, t1 + t2 + 2Im(2], 25)).

It is easily verified that

0 _J .
7= 5, * gy d=1- -1, and

0

ot’

are left invariant vector fields with respect to the Lie group structure on H,, such
that

T =

(10.1.5) (Z;,Z;] = —2T, for j=1,--- ,n—1,

and that all other commutators vanish. Hence, H,, is a strongly pseudoconvex
C'R manifold with type (1,0) vector fields spanned by Z,---, Z,_1. We fix a left

invariant metric on H,, so that Z;,---, Zn_1, Z1, - -+, Zn_1 and T are orthonormal
with respect to this metric. Let the dual basis be wq, -+ ,wn_1,w1, -+ ,wp_1 and
7, where w; = dz; +idy;, j =1,--- ,n —1 and 7 is given by
n—1
T=dt+2 Z (zjdy; — yjdx;).
j=1

Hence, (dzj,dz;) = (dy;,dy;) = 1/2, for j =1,--- ,n — 1, and the volume element
is
dV = 21_nd$1 A d$n_1dy1 s dyn_ldt.
Next we calculate O, on the (p, g)-forms of the Heisenberg group H,,. Since p

plays no role in the formulation of the 9, and 5: operators, we may assume that
p=20. Let f € CEX’ (H,,) be a smooth (0, g)-form with compact support on H,,.

i 0,9)
Write f as
/
f = Z fJ wJ7
[71=q
where J = (ji1,- -+ ,jq) is an increasing multiindex and @/ =w;, A--- A wj,- Then,
we have

oWf= ZI <Z Zifs Wk) A&’
k

[J]=q

= ZI (Z/ Eijzka) w",

|Ll=q+1 * k,J
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and

By f =~ Z/ (Z/ 62]HZlfJ) o
1,

|H|=q—1
It follows that

0,0 f = — Z/ (Z/ elLQZl (Z/ El?JZka)> @,

1Ql=q \ I,L k,J

and
N ’ ’ _ ’
00y [ = —Z <Z GSHZk(Z 6i]HZlfJ>) @,
1Ql=q Nk, H 1,J

For fixed Q and [ # k, it is easily verified that

L L _ _.Q _J
€1Q€kJ = —C€rHEIH>

and
[Z1,Z;] = 0.

Hence, we obtain

Ouf = (353, + 3.3) (Z’ f WJ)

[J|=q

- _Z/ ((Z Ty + ZZka>fJ> w’.

|J|=q k¢J keJ

The calculation shows that O, acts on a (0, ¢)-form f diagonally. It is also easily
verified that

n—1
_ _ 1 _ ‘
—( E VAYAES E Zka> :—5 E (Zka+Zka)+z(n—1—2q)T.

k¢J keJ k=1

Therefore, to invert [J, it suffices to invert the operators

n—1
(10.1.6) —> Y (ZZk + ZiZi) +i(n — 1 = 2q)T.
k=1

N |

In particular, when n = 2 and ¢ = 0, O, acts on functions and

-77
1

= —5(27+Zz) + T,

O

where Z is the Lewy operator. Hence, 00, in general is not locally solvable.
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However, we shall investigate the solvability and regularity of [J; via the following
more general operator £, defined by

1=, = = .
(10.1.7) 52 (ZiZi + ZrZy) + iaT,

for a € C.

The second order term Lo = —3 Z;ll (Z1Zy + Z1,Z4,) is usually called the sub-
Laplacian on a stratified Lie group. By definition, a Lie group is stratified if it is
nilpotent and simply connected and its Lie algebra g admits a vector space decom-
position g = Vi @ --- @ V,,, such that [V1,V;] = Vj44 for j < m and [V4,V,,] = {0}.
The Heisenberg group H,, is a step two nilpotent Lie group, namely, the Lie algebra
is stratified with m = 2, where V; is generated by Zy,--- , Zp_1,2Z1, - , Zn_1 and
V5 is generated by T. By Theorems 8.2.3 and 8.2.5, L satisfies a subelliptic esti-
mate of order 1/2 and is hypoelliptic. We want to construct an explicit fundamental
solution g for L£y. The group structure on the Heisenberg group suggests that one
can define a nonisotropic dilation in the following way: for a > 0,

a(,t) = (a?’, a’t)

which forms an one-parameter subgroup of Aut(H,). We also define a norm on H,
by |(/,t)] = (|2/|* +2)7 to make it homogeneous of degree one with respect to the
nonisotropic dilation.

By following the harmonic analysis on real Euclidean spaces, it is reasonable to
guess that a fundamental solution g for £y should be given by some negative power
of |(#/,t)|, and that the power should respect the nonisotropic dilation on H,,. In
fact, we have the following theorem:

Theorem 10.1.1. Let oo(2,t) = (2, 1) 720D = (|2/[* +2)~ "2 . Then Lopo =
cod, where § is the Dirac function at the origin and cq is given by

(10.18) = (=12 [ (27 + 17+ Fay,

n

Proof. Define, for € > 0,
poe(2,t) = (|22 +€)? + %)=
Then, a simple calculation shows that

Lopoe(z',t) = (n—1)?E((|2']* + €2)* + %) 77

!/

€2 (n — 1)2 (( %
- e%(i(z’, t)),

n+1

RO
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_n4

where ¢(2,t) = (n — 1)2((|2'|2 + 1)2 + t2)~ "2 . Then, by integration on H,, we
obtain the following:

! _ —2n 1 /
/Hnﬂogpo,e(z,t) dV—/Hne ¢<e(z,t)> av
:/ o(2',t) dV = co.
H,

Hence, lim. .o Lopo,c = cod in the distribution sense. On the other hand, Lyyg .
also tends to Lypg in the distribution sense. This proves the theorem.

It follows that c; Yoo is the fundamental solution for £y. We now proceed to
search for a fundamental solution ¢, for £, with a € C. Observe that £, has
the same homogeneity properties as £y with respect to the nonisotropic dilation on
H,,, and that L, is invariant under unitary transformation in z’-variable. Hence,
we can expect that certain ¢, will have the same invariant properties. From these
observations we intend to look for a fundamental solution ¢, of the form

a2, t) = ()2 D L 0)]72).

After a routine, but lengthy, calculation, we see that f must satisfy the following
ordinary second order differential equation:

(10.1.9) (1- w2)§f”(w)—(nz{1(1 —w?)? +ia(l — w?)) f (w)
+i(n—1owf(w) =0

with w = t|(2/,t)| 2.
By setting w = cost, f(w) = g(#), 0 <0 <, (10.1.9) is reduced to

(10.1.10) (sin@ja +(n— 1)cos€> (;‘9 + ia> g(0) =0.
Equation (10.1.10) has two linearly independent solutions
g1(0) = e,
and | Jias
g2(0) = e / Wdo.

Hence, the only bounded solutions for 0 < 6 < 7 are g(6) = ce "0 Tt follows that
fw)=clw—iv1—-—w?)*=c ik A il2'? i
B e )
If we choose ¢ = 1%, then

(n—1+a) (n—1—a)

(10.1.11) wa(Z )= (|22 —it)" =z ()P +it)” =

Here we have used the principal branch for the power functions. Then we have the
following theorem.
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Theorem 10.1.2. Let o (2',t) be defined as in (10.1.11) for a € C. Then,

Lopa = a6, where

24—2n n

™
D(r=g=e)r(==2)

Co =

Proof. For any € > 0, set
pe(2',t) = |7/ |> + € —it,

and define

_(n—140)  (n—1-a)
S B e —

(10.1.12) a2, 1) = pe De 2

Hence, ¢, is smooth and ¢, . tends to ¢, as distributions when e approaches zero.
It follows that L£,¢q,c tends to Lo, as distributions. Thus, it suffices to show that
Lo@a,e tends to ¢, 6 in the distribution sense.

Recall that Z, = (0/0z) + iz (0/0t), for 1 < k < mn — 1. Then, for a fixed € and
any a € C, a direct computation shows

a—1
e

—a—1

Zip® = 2azZip and  Zpp? = 2azppl ",
Zkpe = kag =0,

a—1
[

a—1
€

Tp¢ = —iap and Tpe =iap

It follows that

, 1 n—l _ _ ) _(n=lta)  _ (n—l-a)
‘Ca(pa,e(z 7t) = _5 Z(Zka + Zka) + T’ Pe 2 - Pe 2

k=1
_(nt14a) _ (ntl-a)
2

= ((n—-17-a’)pc 7 P

=€ " LoPan (1(2’, t)) .
€

Hence,

1
/ Lopac(Z t) dV = / 6_2"£ag0a,1((z’,t)) v
H,, H, €

= Lopai1(2',t) dV.
Hp,

Since the mass of L,p., concentrates at zero as € — 0, it follows that L,pq,c
tends to ¢, with ¢, = f Lopa,1dV as distributions. Therefore, it remains only to

compute the integral c,.
We set a = 3(n+ 1+ a) and b= 3(n+1— «), then

_ 1
T on-1

Ca

/ (n—=1)2=ad) () +1—it)"(|2)> + 1 +it) " dedydt
Hn

- (("_1)2_0‘2)/ (22 + 1) dxdy/oo (1—it)=o(1 +it)~" dt.
(Cnfl

-1
n —oo
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Here, if there is no ambiguity, we shall write dzdy for dxy - - dxp_1dy; - dyn—1-
The first integral is evaluated by

27T7z—1 e's} T2n—3
"2 4+1)™" dzdy = / d
/@H(‘z' O dedy = o= | G

71_nfl

= tTME— 12 dt, t=1+1r>
F(n—1)/1 (t-1) : T

7.‘.n—l

1
_ _ n—2 — —1
oD /0 (1—23s) ds, s=t

7Tn—l
= Ty
where I'(-) denotes the Gamma function. For the second integral we first assume
that —(n — 1) < a <n—1so that a > 1 and b > 1. We start with the formula
/ e g dp =T (b)s™
0

which is valid if the real part of s is positive. Set s =1 4+ it, then

L) (1+it)™" = /OO e~ e T dy = f(1),
0

where f(t) is the Fourier transform of f(z) defined by
e ®zb=1 for x>0
0, for z <0.

f@) =
Similarly, we obtain
T(a)(1 —it)™* = / e e Tz dy
0

0
_ / e—i:cte—|z|‘m|a—1 dr

where g(x) is defined by
0, forx >0
9(w) = { e l#l|z|a=1) for z < 0.
Hence, by the Plancherel theorem, we have

F(a)F(b)/ (1—it)"*(14it)™° dt:/m F()g(t) dt

— 00

oo

o / Z F(@)g(~2) do

= 277/ e 2T pott=2 gy
0

wT'(n)

on—1 "
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This implies

00 _(n_l)ﬂ' n
(10.1.13) /_Oo(l —it) (1 +it) " dt = ZF(G)F(I;)()

for —(n — 1) < a <n —1. In fact, the left-hand side of (10.1.13) defines an entire
function of « from the following equality:

/ (1—it)_a(1+it)_bdt:/ (14 12)= 25 giotan™"t gy

— 0 —o0
Hence, (10.1.13) holds for all o € C, and we obtain
((n _ 1)2 _ OZQ) an—1 27(7171)7.(.1-\(”) 24—2n,n

Cq = . . —

21 " T(n) T(SEEe)I(2==) ~ T(=L)r(=4=e)’

This completes the proof of Theorem 10.1.2.

It follows from Theorem 10.1.2 that ¢, = 0 if @« = £(2k +n — 1) for any nonneg-
ative integer k. Hence, if o # £(2k +n — 1) for k € NU {0}, then &, = c; ¢, is a
fundamental solution for L.

We now derive some consequences from Theorem 10.1.2. The convolution of two
functions f and g on H,, is defined by

[ glu) = /H g v () = /H Hw (o) av(w)
Set g(u) = g(u~1!), then
/ (f * 9)(w)h(u) AV (u) = / F () §) () AV (u),
H, H,,

provided that both sides make sense.

If @« # £(2k+n—1) for k € NU {0}, then for any f € C§°(H,), define
K.f = fx®,. It is clear that K,f € C*(H,) since ¢, has singularity only
at zero. For the rest of this section k will always mean a nonnegative integer.

Theorem 10.1.3. If f € C§°(H,,) and o # £(2k+n—1), then Lo Kof = KoLof =
f.

Proof. Since L, is left invariant, clearly we have L, K, f = f. For the other equality,
let g € C§°(H,,). Notice that —a # £(2k +n — 1) whenever a # +(2k +n — 1).
Then

[otwisw avw = [ £k ag)sw av(w
~ [ o) wtatw) avw
— [gtu(Caps-a)(w) dviw)
- / () Kn Lo f () dV (1),

Hence, KL, f = f. This proves the theorem.
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Theorem 10.1.4. The operator L, is hypoelliptic if and only if o # £(2k+n—1).
In particular, Oy is hypoelliptic on H,, for (0,q)-forms when 1 < g <n — 1.

Proof. If a = £(2k +n — 1) for some nonnegative integer k, then the function
©va(2’,t) defined in (10.1.11) is a nonsmooth solution to the equation L4, = 0.

Next, let @ # +(2k +n — 1), f € D’ such that L, f = ¢ is smooth on some open
set U. Let V CC U be an open set which is relatively compact in U. Choose a
cut-off function ¢ € C§°(U) with ¢ = 1 in some open neighborhood of V. Then,
by Theorem 10.1.3, K,(Cg) is smooth and satisfies £,K,(Cg) = (g. Hence, to
show that f is smooth on V', it suffices to show that h = {(f — K,(Cg)) is smooth
on V. Since h is a distribution with compact support, a standard argument from
functional analysis shows h = K,L,h. But on V we have

Loh=Laf = LaKa(Cg) =9 —Cg=0.

The fact that @,(2’,t) is just singular at the origin will then guarantee that K,Lqh
is smooth on V' which in turns shows h, and hence f, is smooth on V.

The hypoellipticity of O, on (0, ¢)-forms when 1 < ¢ < n — 1 follows immediately
from the expression of [0, in (10.1.6). This proves the theorem.

Theorem 10.1.3 can be used to obtain the following existence and regularity
theorem for the 9 equation on H,:

Theorem 10.1.5. Let f € Cq(Hy), 1 < g < n —1, with compact support. If
Ouf = 0 in the distribution sense, then u = EZKf satisfies Oyu = f and u €

AzéQq)(Hn, loc), where K = Ko with a = n —1—2q. Moreover, if f € Cf; ,(Hy),

k € N, with compact support, then u € C(o q)( n, loc).

Proof. Since f is a continuous (0, ¢)-form with compact support on H,, and 1 < ¢ <
n — 1, we obtain from Theorem 10.1.3 that

OpK f = (943, +0,00)K f = f.
where K acts on f componentwise. The hypothesis 9, f = 0 implies
WK f=K0opf=0.

Hence,

0,0,Kf = .

For the regularity of u = E:Kﬁ we write f = Zileq f7 @’. Then, we obtain
from the previous calculation that

aEf=— Y (Z' eszZz(Kf.])) ot

|H|=¢—1 l,J

Hence, it suffices to estimate the following integral, for 1 < j <n —1:

(10.1.14) /f B(E710) dV(€),
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where f is a continuous function with compact support on H,, and ¢ = (2/,t),
&= (w',u) and
B(,t) = (|2')? —it) "I 4 i)

We can rewrite (10.1.14) as
(101.15)  —2(n—1-q)f «¥(C) = —2(n—1—g / FEWIE1C) AV (),
where .

W2 8) = 2;(|2' P —it) "I OT()P 4i)

Define a new kernel W7 (2',t,y) on Hy, x Ry, where Ry = {y € R| y > 0}, by
Wi (2 ty) = 25(12' )7 — it +y) "D TN(P it 4y) T
It is easily seen that f x &J 1(2',t,y) is smooth on H,, x Ry and
Hm f W) (' ty) = f W (<, 1)

y—0+
The assertion then follows from the Hardy-Littlewood lemma proved in Theorem
C.1 in the Appendix if one can show, for 0 < y < 1/2, that

(10.1.16) IV(f T < ey || f Il

for some constant ¢ >0and 1 <j<n—1.

Since £71¢ = (2 — w,t — u — 2Imw - Z), we may introduce new coordinates
N2j—1 = Re(z; —wj), n2; = Im(zj —w;) and § =t —u—2Im(w-2) for 1 < j <n—1.
A direct calculation shows that (10.1.16) will be proved if one can show that

(10.1.17) 11:/ dim - dpp—odd eyt
(m.oy<ar (M7 + 1] +y)m — ’
(10.1.18) 12:/ sl -~ - dgn—odd - 4
imoy<m (N2 +10] +y)n+t — ’
and
(10119) 13:/ ‘77177/6|d771"'d772n—2d5 < Cyié
imoy<m (> + 8] +y)m Tt~ ’

where M > 0 is a positive constant. Notice first that (10.1.19) follows immediately
from (10.1.17). For I; we have

M M 7“2"_3
L < c/o /0 m drdd
M ,),,2n73
<[ & S i
/f 1—|z—x2 w1
M)(—logy)

<c
S (Ma) -
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for any a > 0. I3 can be estimated as follows:

<

I c/ / +5+y)n+1 drdé
<c 7[1’/‘
- A (r* +y)"

e} x2n—2
———— dx
/0 (1+22)"

This proves the case when f is continuous with compact support.
If feCk © q)( n) with compact support, we let X be any one of the left invari-

ant vector ﬁelds Zy,oo  Zp 1,721, Zn_1 and T. Then, from (10.1.14) and the
convolution formula we get

cy

N

AN

cy

N

IN

X7, / FEOB(EIC) dV (€)= / X1(6)2,8(671¢) dV(€)
_z/ XF(©)BEIC) AV (€).

Since the left invariant vector fields Z;, Zj, where j =1,--- ,n—1, and T span the
tangent space of H,,, the assertion now follows from differentiating k& times and the
first part of the proof. This proves the theorem.

The construction developed in this section can be extended to the generalized
Heisenberg group H,  which we now define. For each 1 <k <n —1, let

Qe = {(Z',20) € C* Tmzp > 21> 4+ - + |2)* = |21 [* = -+ = |21 [}

The boundary of 2, j is identified with the generalized Heisenberg group H,, ; =
C" ! xR by

k n—1
wi (2ri( Sl - X 15)) - o,
j=1 j=k+1

where (2/,t) is the coordinates on H,, j.
The group structure on H, j, is defined by

k n—1
(10.1.20)  (Z,1) - (w',u) = <z/ +w',t+u+ 2Im <Z 5 — Y zjwj)>.
j=1 j=k+1

One verifies immediately that

7]
Z:=—+4iz.—, 1<i<k
J aZj_F?,ZJat’ A
0o _ 0 .
ijaizj_w]&’ k—|—1§j§n—1, and
9
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are left-invariant vector fields on H,, , such that

_ —2iT, for1<j <k,
[Zj’Zj] = . .
24T, fork+1<j5j<n-1,

and that all other commutators vanish. It follows that the Z;’s define a nondegen-
erate C'R structure on H, ; such that the Levi matrix has k positive eigenvalues
and n — 1 — k negative eigenvalues. Without loss of generality, k can be assumed to
be at least (n — 1)/2. We shall call such a C'R structure k-strongly pseudoconvex.

We fix a left-invariant metric on H,, ; which makes Z;, Zj and T, 1<j5<n—-1,
orthonormal. The dual basis is given by w1, -+ ,wp_1 , W1, ,Wn_1 and 7, where

wj =dx; +idy; for 1 <j <n—1and 7 is given by

k n—1
T=dt + 22 (l'jdyj — yjdxj) -2 Z (l’jdyj — yjd:c])
j=1 Jj=k+1

The volume element is
dV = 21_ndl‘1 R dl‘nfldyl tee dynfldt.

Next, we calculate [, on the generalized Heisenberg group H, , as before. Let
K={1,---,k}and K' ={k+1,--- ,n — 1}. For each multiindex J with |J| = g,
we set

ay=|K\J|+|K'nJ—|KnJ|—|K"\J|,

where | - | denotes cardinality of the set. Hence, if f = Zfﬂ:q f7 @’ is a smooth
(0, g)-form with compact support on H, 5, we get

Opf = (04, + Dy 0p) (ZI fr w‘])

IJ1=q
|J|=q ~ “m¢J meJ
n—1
-y ((; S (ZnZom + o) +mJT) fJ) @,
171=q m=1

Notice that —(n — 1) < ay < (n —1). The extreme case ay = n — 1 occurs if and
only if |J| =n—1—k and J = K’. On the other hand, ay = —(n — 1) occurs if
and only if |J| = k and J = K. Hence, we have

Theorem 10.1.6. O is hypoelliptic for (0,q)-forms, 0 < ¢ < n—1, on H, 1 if
q#*kandq#*n—1—k.

Proof. The assertion follows immediately from Theorem 10.1.4 if we change the
coordinates z;, k4+1 < j <n —1, to Z;. This proves the theorem.

We note that Theorem 10.1.6 is a variant of Theorem 8.4.4 since condition Y (q)
holds on Hl, , when ¢ # k and ¢ # n— 1 — k. The conclusion of Theorem 10.1.5
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also holds on H,,  when ¢ # k and ¢ # n — 1 — k. The proof is exactly the same
and we omit the details.

10.2 The Cauchy-Szeg6 Kernel on the Heisenberg Group

In this section we compute the Szegd projection on H,,. Let Q, be the Siegel
upper half space in C*. Denote by H?(,) the Hardy space of all holomorphic
functions f defined on €2, such that

sup || fs(2) HL?(an) < 00,
s>0

where fi(z) = f(2/,2n +is) for z = (2/,2,) € bQ, and s > 0. It will be clear
later that H*(€2,) forms a Hilbert space under the norm | f [|g2(q,)= SupPssg

1 fs N2 v,
If f(2) € H?(,), then by definition f(z) satisfies

(10.2.1) / / |f (2t +i|2|? +is)|? dtda'dy’ < C,
Crn—1J—-00

where the constant C' > 0 is independent of s > 0 and dx’dy’ stands for dzy Ady; A
o ANdrp—1 Adyp—1 with z; = z; +dy; for 1 < j < n—1. By using the mean
value property of a holomorphic function it is not hard to see from (10.2.1) that
for each 2/ € C"~! and s > 0 the function f(2',t + i|2’|* + is), when viewed as
a function in ¢ on R, is L? integrable. Thus, we can form the Fourier transform
of f(2',t+i|2'|> + is) with respect to ¢ which will be denoted by fy(z’,A). The
resulting function fs(z' ,A) is L? integrable with respect to A and satisfies

1 o

(10.2.2) —/ / |fs(2, \)|? d\dz'dy’ < C.
2 crn—1J_0o

Since f is holomorphic on €2,,, we have by Cauchy’s theorem

(10.2.3) Fors (2 0) = e fo(2, ),

for s,s" > 0. It follows that, for fixed s > 0, we get that
/ / |f(2 t +i|2'|? +is +is")|? dtda’dy
Cr—1J—-0c0

| o :
_ ﬁ/w /7oo|f5(z’,/\)\ze*2’\s dxda'dy,

which implies fy(2/,A) = 0 a.e. for A < 0. Therefore, we may assume that f,(z', \)
is concentrated on Ry = {z € R| > 0} with respect to A. It is also clear from
(10.2.3) that

(10.2.4)

fs(zla A) = fO(Zla A)ei)\sa
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for some measurable function fo(z’,\). We set

Fo(Z/ N) = F(/ Ne T

Since f(z) is holomorphic on 2,, the homogeneous tangential Cauchy-Riemann
equation on each level set {z, =t +i(]2|? + s)} with s > 0 must be satisfied by f,
namely,

a 8 / . 112
= <k<n-—1.
(5‘zk szé)t)f(z Jd+i(|2']°+s)=0, 1<k<n-1

It follows that

0Zy,
for s > 0. Hence, for 1 < k <n — 1, we have

<8+)\zk)fs(z’,)\) =0, 1<k<n-1,

T~his shows that f (2/, ) is holomorphic in 2’ and measurable in A\. By substituting
f(2', A) into (10.2.2), we obtain

/ / Z )\ |2 —2)\|z |2 —2)\8 d)\dxldyl < 07
Cn— 1

where the constant C' > 0 is independent of s > 0. Letting s tend to zero, we see
that the function f z', \) satisfies

(10.2.5) / / 2 A)2em 2T anda'dy < C,
(Cn 1

and the function f(z) is recovered by

(1026) f(z) = f(Z/,Zn) — %\/O f(Z/,)\)ei)\Z" dA,

for 2, =t +i|2'|? + is with s > 0. Moreover, the Plancherel theorem shows that

o0
lim/ / F( il 2 4 is) — F(o b+ il 2 + i) dtda’dy/
(C’n. 1

s,s'—0

(10.2.7) - lim / / (7, \ |2 —2)|2' |2 (e —Xs _67)\5/)2 dXdz'dy'
Cn—1

s,8’—0

This means that f(z’,t+i|2|? +is) converges in the L? norm to f(2',t +i|2'|?) as
s —0. ~

The next theorem shows that the existence of the function f(z’, \) with property
(10.2.5) is also sufficient for representing a function f(z) in the Hardy space H?(,,).
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Theorem 10.2.1. A complez-valued function f defined on €, belongs to H?(SY,,) if
and only if there exists a function f(2', ), (2/,\) € C"~ xR, which is holomorphic
in z' and measurable in A and satisfies

/ / A)2e 2T dada'dy! < oo,
Cn— 1

where dx'dy’ stands for dey Adyy A+ - ANdxy_1 Ady,—1 and Ry = {z € R| = > 0}.
The integral

(oo}
f(z) = f(2,20) = i/ F(2', N)e= dA,
27T 0
for z, = t +ilZ'|? + is, converges absolutely for all s > 0 and defines a function
f(2) € H*(Qn).

Proof. Suppose that there is a function f(z’,\) which is holomorphic in 2’ and
measurable in A and f(2/,\) satisfies (10.2.5). For any z’ and z, = t +i|2'|* + is
with s > 0, we may choose a polydisc D(z';r) in C"~! centered at 2’ with small
multiradii r = (71, ,7,-1) such that |w'|> < |2/|> + (s/2) for all w’' € D(z';r).
Since the value of a holomorphic function is dominated by its L' norm, we obtain
by Holder’s inequality that

/ F( Ve d

0

</ (/ |f<w'7x>|dV(w'>)e—A'z"2—*s ax
0 D(z;r)

</ ( [ i e dV(w’))e“/Q aA
0 D(z;r)

([ [Tiwarese aavwn) ([ [T e aav)
D(z';r) JO D(z";r) JO
< 0

This shows that the integral defined by (10.2.6) converges absolutely and defines
a holomorphic function on Q,. To see f(z) is actually in H?(£,), we apply the
Plancherel theorem to the A-variable and get

/ /Oo |f(Z t 4|2/ +is)|* dtda’dy’
Crn— 1

/ / Z )\ 2 —2)\|Z |2 —2)\8 d)\dl'/dyl
Cn— 1

for all s > 0. ThlS completes the proof of Theorem 10.2.1.

It is clear from the proof of Theorem 10.2.1 that H?(Q,) can be identified with
a closed subspace of L?(bS2,,), namely, any f(z) € H?(Q,) is identified with its L?
limiting value f(z,t+ i|2’|?) on b§2,, with the norm
I £ ll2@0) = supaso | fs iz, = I FE t+il21%) 20, -
Thus, following the procedure of the Bergman kernel function, we obtain the repro-

ducing kernel, named Cauchy-Szego kernel, S(z,w) for the Hardy space H2(2,).
We make the following definition:
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Definition 10.2.2. The Cauchy-Szegi kernel associated with €2y, is the unique func-
tion S(z,w) whigiz is holomorphic in z and antiholomorphic in w with respect to
z € Q, and w € Q,, such that

(10.2.8) f(z) = /bQ S(z,w) f(w) doy,

for any f € H?(Q,) and any z € Q,, where do, is the surface element on bS2,,.

For each fixed z € Q,, (10.2.8) defines a bounded linear functional on H?(Q,,).
It is also clear from general Hilbert space theory that S(z,w) can be expressed in
terms of any orthonormal basis {¢y(2)}32, of H*(f2,), i.e.,

S(z,w) = or(2)r(w).
k=1

Now we want to calculate the Cauchy-Szegd kernel S(z,w) on the Siegel upper
half space §2,,. One way to achieve this goal is via the pullback of the Cauchy-Szego
kernel on the unit ball in C™ by the inverse Cayley transform. Recall that the
Cayley transform w = ®(z) is a biholomorphic mapping from the unit ball B,, in
C™ onto the Siegel upper half space §2,, defined by (7.3.2). Thus, the inverse Cayley
transform ¢ = ®~! is given by

¢:Q, — B,

—2iw1 —2tw,—1 14w,
w o oz = — o .
1—iw, 1—iw, 1 —w,

First, by constructing an orthonormal basis for H?(B,) directly, the Cauchy-
Szegd kernel on the unit ball can be calculated as follows:

Proposition 10.2.3. The Cauchy-Szegé kernel S(,n) on the unit ball in C™ can
be expressed explicitly as

(n—1)! 1
2nn (1—=¢-m)n’

(10.2.9) S(Cn) =

where ¢ -1 = G7y + -+ + Cally -
Proof. Tt is clear that {¢®} forms an orthogonal basis for the Hardy space H?(B,,),
where a = (ai,---,q,) is any multiindex with a; € NU {0} for 1 < j < n.
Therefore, to get the Cauchy-Szego kernel, we need to normalize {(*}.

We proceed as in Section 6.3 for the Bergman kernel function on the unit ball
B,, in C". Hence, we get

Caq = / |Ca|2 doon—1
bB,

= 2(Ja| + n) / P dVan

n

2™ ) a!

(ol +n—1)"
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It follows that the Cauchy-Szeg6 kernel S(¢,n) on the unit ball is given by

S(Cm) = Z ¢

=

n(n+1)- (n+|a| )Cana>

(n—1)!

1+

> -
a#0
n+1) n+ |a
(+kzllzk DRI
(n—1)! ( Zn n+1)- k!(n+k71) (Cn)k>
k=1

(n—1)!
27 (1- Cn)

This proves the proposition.

Our next step is to pull the Cauchy-Szego kernel S(¢,n) on the unit ball back to
the Siegel upper half space. Denote by r(z) = Z;L:l |zj|? — 1 the defining function
for the unit ball in C™, and fix the standard metric on C". Then, the surface element
ds on the boundary bB,, is given by the interior product of the volume form dVa,
with dr/|dr|, namely,

ds = Rev* <(Zn;zjdzj> v <212>n (Z\ldzk A de)>

1

Jj=1 k#3j

where V denotes the interior product and ¢ : bB,, — C" is the inclusion map. Hence,
the pullback of ds by the inverse Cayley transform ¢ is

1 2n=1; 1 _iwm, nl
d : dw, N dw; A dw;
¢ (ds) = on— 1Zn<1_iwn|2n 1—iw, w (j/_\1 W w])

n—1 .
227171*_ 1 Wy,
Py 2w )dwj/\(/\dkadwk>>.

_ 2n+2
= 2

Since wy, =t + ijw’|? on b2, we have

n—1
dw, = dt +i Y (w;dw; +W;dw;).
j=1

It follows that

n—1 n—1
dwy, N (/\dwj /\dwj) =dtA </\dwj /\dwj),

Jj=1 Jj=1
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and, for 1 <j<n-—1,
n—1
dw; N </\dm A dwk> = 2iw;dt A (/\dwj A dwj>,
k#j Jj=1
on the boundary of €,,. Thus,
¢" (ds)

) 0. n-l,. p— n—1

: ! 1= iwn, 2i[w|*(1 + 7w,

= (=) ' dt A dw; A dw;
(—2i) (1—iwn|2n l_iw7z+kz_:1 1w, 272 /\ dw; A dw;

Jj=1

n—1

_ (2@)”(“1 +W2) + (wn —wn)(1+iwn)> th(/\dwj Adwj)

1= iw, 272

j=1
2n—1 n—1
j=1

where w; = u; + v;.

Since the surface element do on the boundary b§2, is given by do = dt A
(/\?;11 dujAdv;), the above calculation suggests that the Cauchy-Szegd kernel S(z, w)
associated with the Siegel upper half space should be given by

S((Zl’zn)v (wl7wn))
on—1% on—3 (n—1)! 1

(10.2.10) (I —izp)" (L+awn)® 20" (1= (2)p(w))"

(—1)"2”_5(71 —. (i(zn —Wy) + QSijj) _".

Jj=1

We must show that the function S(z,w) obtained in (10.2.10) has the required
reproducing property for H?(€2,) as stated in Definition 10.2.2. Theorem 10.2.1
suggests that one should check the Fourier transform of S(z,w).

Notice first that, for z € ,, and w € ,,, we have

n—1 n—1
Re(i(zn —Wa)+2) zjwj> = Yo — U+ ¥ (2, + Zjw;)
j=1 Jj=1

= ~(yn = [2']%) = (vn = [W']) = |z = w'?

|Z*’UJ )

which is always negative. Therefore, we can rewrite S(z,w) as

2n—2 00 ) . L,
(10.2.11) S(z,w) = / APl =T $25 TN gy
0

7T7L

and the above integral converges absolutely for z € Q,, and w € Q,,. Here we use
2’ -w' to denote the inner product Z;le zjwj in C"~ 1,
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Define
_ 2 n—1 - o
(10.2'12) 5(217 \; w) _ () )\n—le(—zwn+2z W )/\.
T
We shall show that for each w € Q,,, the integral

(10.2.13) / / (2, A w)|2e 2T aada’ dy
(Cn 1

converges. Since w € €, w, = u + i|w’'|* + iv with v > 0. Hence, (10.2.13) can be
rewritten as

2277, 3

— 1/ / )\Qn 2 —2)\\2 —w’|? '6_2>\U d/\dl‘/dy/
™ Ccn—1

22n 3 5
— 7T2n - / / /\271 2 —2)\|z| —2/\1) d\dz' dy
cn-1

22n 2
— 2 / / )\Zn 2 72)\7" . 72)\1) 2n 3 drd)\
7r” n —

2n2

— / )\n—le—QAv d\
™  Jo

(n—1)!

dgnyn

It follows now from Theorem 10.2.1 and (10.2.11) that

2n72 00 ) B L
S(z,w) = / A Lpli(zn—wn)+22" W)X gy
0

) 7'('”

1 . )
= —/ S(Z', Ay w)e* d.
T Jo

Hence, for each w € Q,, S(-,w) € H*(Q,). Let w; = aj +ifBj for 1 <j<n—1
and let da’dB’ denote day AdB1 A -+ - Adap—1 AdB,—1. Since S(z,w) = S(w, z), for
any z € €, and any f € H?(Q,), we obtain

/ S(z,w) f(w) duda’dp’
/ / S(w', X 2) f(w', Ne 2 drda’dp’
Cn— 1

= 2" 2 / / )\n—1e/\(izn-',-2z'-E’—2|w’|2)J5(w/7 \) d\da'dg’
Tn Ccn-1
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2n2

/ / A" 1 )\(zzn+2|z |2—27"-w' —2|w’ —2'|? )f(w )\) d\do! dﬂ
cn-1
on— 2

— . / _ 712 _ G ’
An 16)\(7,zn+2|z 1) . e 2A|n" 17, e 20z (2" +n")
™ Jon-1 Jo

A dAdgde!
_ 1 2" > n—1_i\zp F( I /Oo —2Xp? 2n—3
_27r7n—2)'/0 A" e f(z,)\)( ; e P dp | dX

/ F(Z N)e?=m dx
f

where n; = w; —z; = (; +1§; for 1 < j <n—1 and d¢’d¢’ denotes d(y Adé1 A--- A
dCn—1 Nd&p—1. The last equality is guaranteed by (10.2.6) in Theorem 10.2.1. Thus,
we have shown that the kernel function (10.2.10) reproduces the functions belonging
to the Hardy space H?(f2,). Hence, by the uniqueness of the Cauchy-Szegé kernel
function, we obtain the following theorem.

Theorem 10.2.4. The Cauchy-Szegd kernel function S(z,w) associated with the
Siegel upper half space Q,, is given by

S(zy,w) = S((2, 2n), (W' wy,))

ST ()

T .
j=1
Hence, for any f € L?(bS2,,), the integral
(10.2.14) Sf(z) = / S(z,w)f(w) do(w),
b,

defines a function Sf(z) in the Hardy space H?({),) which has a well-defined L2
integrable limiting value on b£2,,. We recall that the Szegé projection on b2, is the
orthogonal projection from L?(bQ2,,) onto the closed subspace consisting of square
integrable C'R functions, which coincide with the limiting values of functions be-
longing to the Hardy space H?(€2,,). We shall still use (10.2.14) to denote the Szego
projection on bS2,,.

Since, for each f € L2(bS2,), Sf € H?(£2,), Theorem 10.2.1 shows that

lim Sf(2 t+il2|> +ie?) = Sf(2,t +il|?)

in the L? sense. Denote Sf(2/,t +i|2'|? +i€?) by (Sf)c(2',t + i|2'|?) which can be
regarded as an L? integrable function on b§),,. Let

pe(2',t) = |2 + € —it,

on b€2,,. Then we have
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Proposition 10.2.5. For any f € L?>(b2,,) and any € > 0, (Sf). is given by

21=2(p — 1)

(10.2.15) (Sl t+il2'?) = ——

frp"(Z0),

where the convolution is taken with respect to the group structure on bS),, and the
coordinates on bQy, are z' = (z1,-++ ,zn—1) and t.

Proof. Let = (2',t+i|Z'|?) and a = (w',u + i|w’|?). Hence,
2" 2 (n—1 2”2n—1
e = [ o) dofo).

™
A direct calculation shows that

a” = (—w',—uilw'|?) - (<, t +il']?)
= —w,t—u+ilZ P +ilw|? -2 - @).
It follows that we have

p: (a1 B)

—wPreE—it—u) -2 w+F )"

PP —i(t—u) -2 W)
D™t 41422 +ie® — (u—i|w')?)) + 22" - @)™
D™ (i(2n + i€ —wy) + 22" - W)™

(
(
(=
(=

Hence, we obtain

n—2 _
A L Srn D) frp (7

2’ t)
(=1)"2"2(n - 1)! fw',u)
/sz (i(

mn i(zn +1€2 —Wy) + 22/ - W)

do(a)

= Sf(Z t+il2|* +ie?).

This proves the proposition.

Finally, we can describe the Szegd projection on the Heisenberg group H,, as
follows:

Theorem 10.2.6. The Szegé projection Sf for any f € L*(H,) is given by

(10.2.16) Sf(2,t) = lim w

lim frp" (1),

where the convolution is taken with respect to the group structure of H,.

The convergence of (10.2.16) is guaranteed by Theorem 10.2.1. Notice also that
the factor 2"~! that appears in the formulation of (10.2.16) is due to the fact that
the volume form dV on the Heisenberg group H,, has been taken to be

dV = 217nd1'1dy1 ce dmn_ldyn_ldt.
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10.3 Local Solvability of the Lewy Operator

We now return to the local solvability of £,,_1 = OY on the Heisenberg group.
When O, acts on functions, (Y is not hypoelliptic since it annihilates all CR func-
tions. However, we shall show that, modulo the Szeg6 projection S, there exists a
relative fundamental solution for Dg. Rewrite Dg as

(10.3.1) O) = Lo —i(la —n+1)T,

for o« € C. Recall that

(n—1+a) (n—1—a)

pal2 ) = (IZ'P —it)" = (| +it)” =,

and
24—2nﬂ.n
Ca = n—1l4a n—l—a\"’
D(m=gte)D(=5=2)
Then, we have
(10.3.2) 0000 = Lapa —i(a —n+ 1)Tp,

=cod —i(a—n+1)Tp,.

Now with the aid of the identity

s

M(w)'(1 —w) =

sinTw’

we formally differentiate (10.3.2) with respect to a and evaluate it at « =n — 1 to
get

(10.3.3) Dg( (n_2)!10g<|2/|2 _it>(|z’2—it)_”+1> _ 2= Dby iy,

2472n7-rn |ZI|2 + 4t 2472nﬂ-n

Here the logarithm of the quotient means the difference of the corresponding loga-
rithm. Set

(n—2)! 2> — it 2 y—ntl
(10.3.4) b= 24_2n7rnlog EiEET (|2'|* —at)~"*1,
and define the operator K by
(10.3.5) Kf=/fxd,

where the convolution is taken with respect to the group structure on H,.
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Theorem 10.3.1. Let the operator K be defined as in (10.3.5), then we have
) K=K-0O0)=1-8,

when acting on distributions with compact support.

Proof. 1t suffices to show only that O0Y - K = I — S. The other identity then follows
immediately by transposition.
Set pe = |2/|> + €2 — it, and define

(n—2)! |2']> + € —it 2., 2 y—ntl
@e(zl’t): 2472n7-rn10g |ZI‘2+€2+it (‘Z/| te _Zt) :

Then, by the calculations done in the proof of Theorem 10.1.2, we obtain

n—1

0, = — Z ANAY D
k=1

n —2)! 2'|?
:M(—4(n—1)||n+2(n—1) 1n_1)

pspﬁ pepe
_(?’L—l)!(462 2)
212 \pep )

Hence, as € — 0, we get by the integral evaluated in the proof of Theorem 10.1.2,
that

4(n —1)! o =
0 2 _ n(|02 1
0,® = (24_2n7rn /H (JZ]F+1 =) "(]2|" + 1 +it) dV) )

2(n —1)! 1
T 94-2nn (|2']2 — it)"
(n—1)! 1
©23=2ngn (2 — it)n

=9

The assertion now follows from (10.2.16). This proves the theorem.

Theorem 10.3.1 shows that the operator K inverts () on the space of functions
that are orthogonal to the L? integrable CR functions. It is also clear that SCI) =
095 = 0. Then, we have the following local solvability theorem for OJY.

Theorem 10.3.2. Let f € L*(H,). The equation Ou = f is solvable in the L*
sense in some neighborhood of p € H,, if and only if S(f) is real analytic in a
neighborhood of p.

Proof. We may assume that f is an L? integrable function of compact support.
Suppose that S(f) is real analytic near p. Then, by the Cauchy-Kowalevski theorem,
there is a real analytic solution u; locally such that

Ohur = S(f)
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in some neighborhood of p. On the other hand, by Theorem 10.3.1, a solution
us = K f exists for
DYug = (I — 9)f.

Hence, u = uj + us is a local solution of (u = f.
Conversely, let u be a local solution of OYu = f. Choose a cut-off function ¢
with ¢ =1 in some open neighborhood of p. Set

0 (Cu) = h.

Then, Sh = 0 and f — h = 0 in some neighborhood of p. Now, from the explicit
formula (10.2.16) of the Szegd projection S, it is easily seen that S(f) = S(f —h) is
real analytic in some neighborhood of p. This completes the proof of the theorem.

If n = 2, we can deduce the local solvability of the Lewy operator from Theorem
10.3.2.

Theorem 10.3.3. Let Z = (9/9z) — iz(0/0t) and f € L*(Hs). The equation
Zu=fis locally solvable in the L? sense in some open neighborhood of p € Hy if

and only if S(f) is real analytic in a neighborhood of p.

Proof. f is still assumed to be an L? integrable function with compact support. If

S(f) is real analytic in some neighborhood of p, then Theorem 10.3.2 assures the
existence of a solution v of the equation

O =-ZZv=7F

which , by conjugation, gives a solution ©u = —Zv of the Lewy equation.

On the other hand, if there exists locally a solution v to the equation Zu = f,
we may assume that u is of compact support. Hence, Theorem 10.3.1 guarantees a
solution v of the equation Zv = u— Su. Now, by Theorem 10.3.2 again, we see that

S(f) is real analytic in some open neighborhood of p. This proves the theorem.

We note that the Lewy’s example can be extended to any tangential Cauchy-
Riemann equation L of a hypersurface in C? which is not Levi-flat, i.e., its Levi
form c(x), where

[L,L] = c¢(z)T, mod(L,L),

does not vanish identically in a neighborhood of the reference point. Note also
that, from the discussion at the end of Chapter 7, when the Levi form vanishes
completely, the dp-equation is reduced to a d-equation with a parameter.

Since we have established in Chapter 9 that the range of the [J, operator on
the boundary of any smooth bounded pseudoconvex domain in C" with n > 2 is
closed, the arguments for proving Theorems 10.3.2 and 10.3.3 can then be applied
verbatim to the boundary of any smooth bounded pseudoconvex domain with real
analytic boundary, provided that the following analyticity hypothesis on the Szego
projection is fulfilled:

Analyticity Hypothesis. Let D be a smooth bounded pseudoconvex domain in
C™, n > 2, with real analytic boundary bD and p € bD. Let S be the corresponding
Szegé projection on bD. If f € L?(bD) vanishes on some open neighborhood U of
p € bD, then Sf is real analytic on U.

Now, with this hypothesis, we can state the following theorem:
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Theorem 10.3.4. Let D be a smooth bounded pseudoconvexr domain in C? with
real analytic boundary. Let v be a real analytic defining function for D and L =
(0r/0z2)(0/0%1) — (0r/0%z1)(0/0Z2). Suppose that the Szegé projection S associated
with bD satisfies the analyticity hypothesis. Then the tangential Cauchy-Riemann
equation Lu = f is locally solvable for some L? function f near p € bD if and only

if S(f) is real analytic near p.

Finally, following the arguments of Theorem 10.1.5 we obtain the regularity the-
orem of the Lewy operator Z in the usual Holder class.

Theorem 10.3.5. Let f be a continuous function with compact support on Hs, and
let p € suppf. Suppose that S(f) is real analytic in some open neighborhood U of
p, then locally there exists a solution u € AI/Q(V) on some open neighborhood V' of
p with V C U such that Zu = f. Furthermore, if f € C*(Hy) for k € NU {0} with

compact support, then u € C’H'%(V).

NOTES

Most of the materials in Sections 10.1 are essentially taken from G. B. Folland
and E. M. Stein [FoSt 1]. Theorem 10.1.1 was proved by G. B. Folland [Fol 1].
The kernel @, = c; !¢, defined in (10.1.11) is homogeneous of order —2n + 2 with
respect to the nonisotropic dilation on H,. It follows that the regularity property of
the operator K, f = f *®, in the nonisotropic normed spaces can be drawn from a
general theory described in [FoSt 1]. We refer the reader to the book by E. M. Stein
[Ste 4] for a systematic treatment on analysis on Heisenberg groups. The proof of
Theorem 10.1.5 follows that of M.-C. Shaw [Sha 9]. The characterization via the
Fourier transform of the Hardy space H?(),) on the Siegel upper half space was
proved by S. G. Gindikin [Gin 1] (Theorem 10.2.1). The Cauchy-Szego kernel for
the ball B, in C*, n > 2, was found by L. K. Hua [Hua 1] (Proposition 10.2.3), and
for the Siegel upper half space ©,, by S. G. Gindikin [Gin 1]. The characterization
of the range of the Lewy operator was proved by Greiner, Kohn and Stein [GKS 1].
(See also [GrSt 1]). We also refer the reader to the books by R. Beals and P. C.
Greiner [BeGr 1] and F. Treves [Tre 3,6] for more discussions on Heisenberg group
and C'R manifolds.

The generalization of the nonsolvability of the Lewy operator to any tangential
Cauchy-Riemann equation on a hypersurface which is not Levi-flat in C? was proved
by L. Hérmander [Hor 1,7]. It is known that the analyticity hypothesis holds on any
smooth bounded strongly pseudoconvex domain with real analytic boundary. For
instance, see [Tar 1,2] and [Tre 2] for n > 3 and [Gel 1] for n = 2. Unfortunately,
there are no general theorems which would guarantee that the Szegb projection
S on weakly pseudoconvex boundaries satisfies this hypothesis. One should also
note that, in general, the analytic pseudolocality of S is false on pseudoconvex
boundaries, as shown by M. Christ and D. Geller in [ChGe 1].
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CHAPTER 11

INTEGRAL REPRESENTATIONS
FOR o6 AND 9,

In this chapter the method of integral representation in several complex variables
is discussed. This method can be viewed as a generalization of the Cauchy inte-
gral formula in one variable to several variables. The integral kernel method gives
solutions to O and 9, represented by integral formulas on strongly pseudoconvex
domains or boundaries. The representations are especially easy to construct on a
strictly convex domain where solution formulas can be written explicitly. It is in
this setting that we derive integral formulas for 0 and 9, in this chapter.

The L? approach is fruitful for solving d and 9, in the Sobolev spaces on pseu-
doconvex domains and their boundaries. In Chapters 4-6, the L? method to solve 0
was discussed using the d-Neumann problem. In Chapters 8 and 9, we studied the
global solvability and regularity for the tangential Cauchy-Riemann operator in the
Sobolev spaces on compact C'R manifolds. However, Holder and LP estimates for 0
and 0, are not easy to obtain by the L? method. An explicit kernel was computed
in Chapter 10 for [J, on the Heisenberg group and Holder estimates were obtained
for solutions of d,. Our goal here is to construct integral formulas for solutions of
0 and 0, with Hélder and LP estimates on strictly convex domains.

In Section 11.1, some terminology necessary in developing the kernel formulas is
defined. We derive the Bochner-Martinelli-Koppelman formula as a generalization
of the Cauchy integral. Unlike the Cauchy kernel in C!, the Bochner-Martinelli-
Koppelman kernel is only harmonic, but not holomorphic. Then we introduce
the Leray kernel and derive the homotopy formula for d on convex domains in
Section 11.2. Holder estimates for the solutions of @ on strictly convex domains are
obtained. In Section 11.3 the jump formula derived from the Bochner-Martinelli-
Koppelman formula is discussed and homotopy formulas for 9, on strictly convex
compact boundaries are constructed and estimated.

The kernel method is especially suitable for the local solvability of 0, on an open
subset with smooth boundary in a strictly convex boundary. It allows the derivation
of an explicit formula of a solution kernel on a domain with boundary in a strictly
pseudoconvex C'R manifold. This is discussed in Section 11.4. The LP estimates for
the local solutions for d; are proved in Section 11.5. We discuss the 0,-Neumann
problem in Section 11.6, which is an analogue for 9, of the J-Neumann problem.
The L? Hodge decomposition theorem for Jj, on an open set with boundary in a
strictly pseudoconvex C'R manifold is proved in Theorem 11.6.4.
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11.1 Integral Kernels in Several Complex Variables

Our first goal is to find a fundamental solution of d for (p,q)-forms in several
complex variables. Since p plays no role in the 0 equation, we shall assume that
p = 0. In C, the Cauchy kernel is a fundamental solution for 9. This can be derived
by differentiating the fundamental solution for A. Since

2

1 2 0
—Aloglz| = log |z] = do,
2

T 0202
where §g is the Dirac delta function centered at 0, we have

200, 101
7020z eV T 19z T 0

This implies that E(z) = 1/7z is a fundamental solution for 9/0z. For any bounded

function f on C with compact support in D, where D is a bounded domain in C,

we define

u(z):f*E(z):l ﬁdVZL_/ &dCAdf.

T Jpz—C( 2mi Jp (— 2
It follows that Ou/dz = f in C in the distribution sense. This can also be proved
directly as in Theorem 2.1.2.

In C™ when n > 1, we can also derive a fundamental solution for the J operator in
the top degree case similarly. Let a = fdz; A---AdZ, be a (0, n)-form in C"™ where f
is a bounded function with compact support in C™. Since there is no compatibility
condition for o to be solvable, we can derive a solution for the equation du = a as

follows: Let e(z) be a fundamental solution for A in C", n > 2, defined by

Both e(r) and all the first order derivatives of e(r) are locally integrable functions.
We define a (0,n)-form e, = —4e(r)dz; A -+ AdZ,. Then

_— " 9%e(r) _ _ -~
09" e,, :4282»5,2(121 A ANdz, = 6gdz1 N -+ NdZ,.
i=1 T

We define

- n (n—1)z; A _
B(z) = 0en =Y (1) "R dzm A dzy o A dz,
j=1

A
where dZz; denotes that the term dZ; is omitted. It follows that

O0E(z) = 6pdZ1 A -+ N dZ,.
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Define

(11.1.1) _ Z ((1)j (n;nl)! /D éj_ccénf(odv) [d/%j]v

j=1

where [d%j] =dz A--- dAZj -++ A dZ,. Then u satisfies u = o and E(2) is a funda-
mental solution for 9 when ¢ = n. For general 0 < ¢ < n, due to the compatibility
condition, the fundamental solution for @ is more involved. We introduce some
notation first.

Let ((—2)=((1— 21,00 — 22, ,Cpn — 2n) € C" and d¢ = (dCq,- -+ ,d(,). Let
A= (ay, - ,apn), B= (b1, - ,b,) be two vectors in C". We define

<A,B>:Zaibi, <A,d(>:ZaidQ.
i=1 i=1
Thus < ( —z,( —2>=[( —2|? and < { — 2z,d¢ >= > ({; — 2;)d(;. Let V be an
open subset of C" x C" with coordinates (¢,z) and let G((, z) be a C* map from
V into C™ such that G(¢,2) = (g1(¢,2), -+, gn(C,2)). We define the (1,0)-form w®
by
G _ L < G(C,z),d( > _ L Z?:l gz((az)dCz

2mi < G(¢,2), ¢ —2z>  2miy i 9i(C2) (G — 2)

on the set of ({,2) € C" x C™ where < G,{ — 2z > # 0.
When n = 1, w% is independent of G' and is the Cauchy kernel. We set the

Cauchy-Riemann operator on V equal to

Je.. = dc + 0.,
and

< 0c:G(C2),dC > =Y 0c.gi(C,2) NdG;.

=1

Let Q(G) be an (n,n — 1)-form in ({, z) defined by

QG) = w9 A (0¢ ,wO)" L =W NI wS A A O WO

n—1 times

Given m maps G* : V — C", i = 1,--- ,m, we abbreviate W& by w? and Q"™ is
the (n,n — m)-form defined by

Q= QG G™)

WA AU A Z (égyzwl)kl VARERWA (ag,zwm)k""
[ A———

on the set where all the denominators are nonvanishing. Since

1 <0G, d¢ > _L<5<,2Gi,C—z>A<Gi,dC>
2 < G((,2),( — 2> 2w (<G (¢ —2z>)? ’

(11.1.2) O W' =
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we have for k > 0 that

L\ <ahdc> (<0Gl de >
2mi <G, (—2z> <G, (—2z>

(11.1.3) W' A (O¢ wh)F = (

This follows from the fact that w? wedge the last term in (11.1.2) vanishes.
The following lemma is essential in the construction of the kernel formulas.

Lemma 11.1.1. Let G¥(¢,z) : V Cc C*" x C* — C", i = 1,--- ,m, be C' maps.
We have

(11.1.4) De Q™ =Y (—1)Qtim
j=1

. A
on the set where < G*,( —z > # 0 for everyi =1,--- ,m, where j denotes that the
term j is omitted. In particular, we have
(11.1.44) 0c..QF =0,
(11.1.4-ii) Ic M= — Q%
(11.1.4-iii) Je P = -0 + Q1% - Q"2

on the set where the denominators are nonvanishing.

Proof. We use the notation
(B, 2w)fm = (O 2w" ) A A (D ™)

for each multiindex K,, = (k1, - ,kn) and | K| = k1 + - - + k. It follows that

O Q= (=1 T W A A D A AW A Y (D aw)

j=1 | Ko |=n—m
m
=S TR A AT A AW A ST (G aw) K
j=1 | K |=n—m+1,
kj>1
S S pere A B pere
Jj=1 j=1

AN Z (8( LW Km

| K |=n—m+1,
k>0

We claim that for each K, such that |K,,|=n—m+1,

m

LGN A AT A Aw™ A (D w)Em = 0.
j=1
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We first observe that
(11.1.5) WA AW A AW A (O ww) B =0,

since there are n + 1 d(’s. Define
O =2mi Y ((; — z)d¢;.
j=1

It is easy to see that
(11.1.6) OVw' =1, i=1,---,m,

where V denotes the interior product.
Also from (11.1.2), we have

(11.1.7) OV w =0, i=1-- m.

Contraction of equation (11.1.5) with ©, using (11.1.6) and (11.1.7), gives

0 @\/(wl/\.../\wjA...AwmA((§<7zw)K7yl)

(1A A (O VW) A AW™ A (O w) B

-
I
=

(1) T A AT A A W™ A (D) K

.
I
A

This proves the claim and the lemma.

We also write

q=0

where Q)™ denotes the piece in Q' which is of degree (0, ¢) in z and (n, n—m—q)
degree in . If fis a (0, ¢')-form in C™, the form Qé"'m(c, 2)Af(C) is a form of degree
(n,n—m—q+¢’) in ¢ and of degree (0, ¢) in z. We write the form Qé"'m(g, 2)Af(Q)
uniquely as ZMZQ Aj(¢, 2) Adz? where A;((,2) is an (n,n —m — ¢ + ¢')-form in
¢ only with coefficients depending on z and J is an increasing multiindex. We
shall define the integration of the the form Q™ ((, z) A f(¢) with respect to the ¢

variables on a (2n — [)-dimensional real manifold M as follows:
[ ormeanso= [ e an
M M

-y (/M AJ(gz)) dz’,

[J|=q
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where g = | —m + ¢/, provided the integral on the right-hand side exists. Note that
from this definition, we have

3 1---m _ (_1\2n—I ) 1---m Py
2. /Mn (C.2)AF(O) = (-1) /Mazn (¢.2) A F(©)
— (1) / 8.0 (¢,2) A F(C),
M

provided that the differentiation under the integral sign is allowed.
Let

GO(C?'Z) = (6_2) = (é_-l —Z1, 7571 _2774)'
The Bochner-Martinelli-Koppelman kernel B((, z) is defined by
B((2) = UG%) = Q°

1 <C—zd¢> << dc—dz,dg>)"1
A
¢ — 2|2

(11.1.8) @mim ¢ — 2[?

n—1
= Z BQ(C? Z)v
q=0

where B, is the summand which is of degree (0, ¢) in z and of degree (n,n — ¢ —1)
in ¢. Using (11.1.4-1), we have

(11.1.9) OcB((,2) + 0.B(¢,2) =0 for ( # z,
or equivalently, for each 0 < ¢ < n,
(11.1.9-q) 0cBy(¢,2) +0,B4-1(¢,2) =0 for ( # %,

if we set B_1(¢,z) = Bn((,z) = 0. In particular, By is the Bochner-Martinelli
kernel defined by (2.2.1) and (11.1.9-q) was proved directly in (3.2.2) when ¢ = 1.

When n = 1, B(C,z) = (2mi) 'd¢/(C — z) is the Cauchy kernel. The following
theorem shows that the Bochner-Martinelli-Koppelman kernel is indeed a general-
ization of the Cauchy integral formula to several variables.

Theorem 11.1.2 (Bochner-Martinelli-Koppelman). Let D be a bounded do-
main in C™ with C* boundary. For f € C(lo’q) (D), 0 < q < n, the following formula
holds:

f2)=[ By(,2)Af+ | By(,2) NOcf
(11.1.10) /bD /D C

+52/Bq71('72)/\f7 ZGDv
D

where B((, z) is defined in (11.1.8).

Proof. For ¢ = 0, the Bochner-Martinelli formula was proved in Theorem 2.2.1. We
first assume that 1 < g < n.
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Let zg € D and (3. be a small ball of radius € centered at zy such that 56 Cc D.

We shall prove the theorem at z = zo. Applying Stokes’ theorem to the form
de(By(¢,2) A f(€)) on D. = D\ 3., we have, using (11.1.9), that

/Bq(g,z)Af—/ By o)A f
bD b3
(11.1.11) = [ amcans- [ B nds

— [ aBacans- [ By
D, De

Since B((,z) = O(|¢ — z|72"1), B((, 2) is an integrable function for each fixed 2.
We see from the dominated convergence theorem that

(11.1.12) / By(C,2) A f _>/ By(C,2) A,
D, D
Note that
1 1 _ _
B = — —-z,d d¢,d¢ >t
| Blen) = g [ <G> A< il
1 1 - n!
= dé,d¢ > = = [ av =1.
(2mi)™ e2n /[3 < de,de > ™ Jg, v
For any increasing multiindex J = (j1,--- , jq), we get that
=7 1 1 5= 5 s n—1 s j7J
By((,z) NdC? = — — <(—Z,d¢>N<d—dz,d¢ > A
bBe (27('/6)” €2n bBe
= 1_ i/ <dl,d¢ > AN < dl—dz,d¢ > AdC
(2mi)m e2n J g
_ — 1)
" )
=g
n

Let f(z0) denote the (0, q)-form whose coefficients are equal to the values of the
coefficients of f at zg. It follows from the above calculation that

[ Bcans="2p+ [ By (7~ 1)
(11.1.13) bBe " b

— %f(zo)7 as € — 0.

The kernel 0, B,—1(¢, z) = O(|¢ —2|*") is not integrable but the components are the
classical singular integrals (see e.g. Stein [Ste 2]). The Principal-value limit defined
by

PV [ 0BGy f =l [ 0BG A

= ll—{%( éz /De Bq—l(C,Z) /\f)

Z=Zz0
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exists for each zg € D. We claim that

(11.1.14) P.V./D@Bq_l(c,zo)Af: <8Z/DBq_1(C,z)/\f>

7 f (o).

Z=Z0

We use the notation d¢ A d¢ = dy AdCy A -+ AdC, A dC, and [dCJ] dCi A d¢ A

_ A _ A
~ANdC; ANdG N+ ANdCn A dCp, where d(; denotes that the term d(; is omitted. Let
f(¢) = fsd¢”, where J = (1,--- ,q). Using Stokes’ theorem, we obtain

/ Byoa(C.2) A (O)
Be

_ 1)' . ( ZJ d d) dl j -q
= (@2mi)n Z 5. \C |2an CAdC) Nz

- 27?@)” 21 5 <n—1> ¢ <|C_22712) f1(Q) dCAdC ndz T

=
‘
- (Z;Z;n'; 11 bﬁ IC—z|2n _15(0)1d)
* /ﬂ W?ZWCA dg) PR

Thus,

d, /ﬁ By-1(¢,2) A () = %ﬂ){z!g(l)j; ( /bﬁé ék |2an(<)[d2j]

* /ﬁs gk__szn%(é)dCAd<>dzk Adzta,
Since
(212;1.)12!(—1)3' /bﬁ |§k zIQ"f](C)[dzj] — J‘k(_l j_lfJ(zo),
and
| 2Ls Q)i nig — 0. as =0,

we have

0. [ Bisl62) 1O — Lyt
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a, < / Bq_l(c,z)Af(o> .

= lim ([a/D Bq_l((,z)/\f(C)Jréz/ﬁe Bq_l(c,z)Af(C)]

e—0

Thus

Z=Zo>
Z_Zo>

This proves the claim (11.1.14) for the special case of f. The proof for a gen-
eral (0,¢)-form f is the same. Combining (11.1.11)-(11.1.14), we have proved the
theorem for 0 < ¢ < n. When ¢ = n, it follows from (11.1.1) that

e—0

= lim (/D 0.By-1(¢, 20) A f(¢) + 0. /ﬁe By—1(¢,2) A £(Q)

=P.V. /D 5qu—1(C7 Zo) A f(C) + %fj(Zo)d,?J.

flz)= 82/1337,,_1(',2) A f.

Thus Theorem 11.1.2 holds for all 0 < g < n.

Corollary 11.1.3. Let D be a bounded domain in C™ with C' boundary. For
any f € C(O,q)(ﬁ)y 1 < q <mn, such that f = 0 on bD and Of = 0 in D in the
distribution sense, there exists u € C’&q_l)(D) with Ou = f in the distribution
sense, where 0 < a < 1. Furthermore, there exists a C > 0 such that

(11.1.15) lulleepy < CllfllLe(p)-
Proof. For z € D, define
u) = [ B2 A
D

We first prove (11.1.15). Since
[ Batans - [ Bt
D D
- G — % =
<cC / -
Sl -k
it suffices to show that for each 1 < j <mn,

(11.1.16) / G5 G5
D

|C— R o |C— z’|2"

Let |z — 2/| = 2e. We divide D into three regions: ((z), Bc(2') and D, = D\
(Be(2) U Be(2')) where Be(z) is a ball of radius € centered at z. On B¢(z), we have

/ G-z G- %
Be(2)

¢ =2 T JC— P

dV- | £l Dy

dV < Clz = 2'||log |z — 2|

1
Be(z) |< - Z|
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Similarly, we have the estimate on (§.(z’). To estimate the integral on D, we note
that £|¢ — 2’| < |¢ — 2| < 3|¢ — 2| for ¢ € D, thus there exists an A > 0 such that

J,

This proves (11.1.16) and (11.1.15) follows.

If fe C’(loﬂ)(ﬁ), Theorem 11.1.2 implies that du = f since f = 0 on bD. For
f€Cog (D), we use an approximation argument. We first assume that the domain
D is star-shaped and 0 € D. Let ¢(z) = ¢(|z|) be a function supported in |z| <1
and ¢ > 0, [(¢ = 1. We set ¢5,, = 0,,2"¢(2/6m) for 6, \, 0. Extending f to be 0
outside D, we define

o
dvgc/ ===

<le—zlca [C—2"
< Clz = 2'||log |z — 2|

G-z _ G—F
I S (et

dv

)= (15 ) <.

m

for sufficiently small d,,. One can easily check that f,, has coefficients in C§°(D),
Ofm = 0in D and f,, — f uniformly in D. When the boundary is C', we can
use a partition of unity {¢;};, with each ¢; supported in an open set U; such that
U; N D is star-shaped. We then regularize (;f in U; as before. It is easy to see

that there exists a sequence f,, € C’E’Oo q)(D) with compact support in D such that

fm — f uniformly in D and df,, — 0 uniformly. Applying Theorem 11.1.2 to each
fm and letting m — oo, we have proved du = f in the distribution sense.

Corollary 11.1.3 allows us to solve the equation Ju = f for any 0-closed form
f with compact support. Thus the Bochner-Martinelli-Koppelman kernel is a fun-
damental solution for 0 in C". In the next section we introduce new kernels and
derive a homotopy formula for 0 for forms which do not necessarily have compact
support.

11.2 The Homotopy Formula for 9 on Convex Domains

The Bochner-Martinelli-Koppelman kernel is independent of the domain D. Next
we introduce another kernel, the Leray kernel, which in general depends on the
domain.

Definition 11.2.1. A C"-valued C* function G(¢,2) = (91(¢,2), -+, gn((,2)) is
called a Leray map for D if it satisfies < G((,2),( —z > # 0 for every (,z) €
bD x D.

In particular, the C"-valued function G°(¢,2) = (( —2) = ((; — Z1,+ ,Cn — Zn)
is a Leray map for any domain D. We use the same notation Q° = Q(G°) = B((, 2)
to denote the Bochner-Martinelli-Koppelman kernel. If G1(¢, z) is another Leray
map, we set

1)" <GYd¢ > A<<<‘§<,ZGl,dg>>"1

11.2.1 Q' =9@GH = —
( ) (&) (2m' <Gl (—2> <Gl (—2>
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and
1\"<({—-zd.> <GYd¢>
901: [9) 0 N =
(GG (2m‘) ¢ — 2|2 <Gl (—2>
11.2.2 _ _
(11:22) S < dC—dz,d¢ > ’“A < Oc.GY,d¢ >\ "
e e <Gl C-z>) =

Notice that Q' and Q% are well defined for ¢ € bD and z € D. Also we use the
notation Qé, Q(qn to denote the summand of forms with degree (0, ¢) in z in Q!, Q0!
respectively.

Theorem 11.2.2 (Leray-Koppelman). Let D be a bounded domain in C™ with

C! boundary. Let G° = (( — z) and G' be another Leray map for D. For f €
C(Oq)( ), 0 < ¢ <n, we have

(11.2.3) f(z):/ Qé/\f—l—g‘quf—i-Tquf, z €D,
bD

where

T,f(2) = /D 001 (C.2) A F(C) / WL A Q)

Q0 Qb and Q% are defined in (11.1.8), (11.2.1) and (11.2.2) respectively.
Proof. From (11.1.4-ii), we have

8,0 =00 — !

on the set where ( € bD and z € D. Thus, for z € D,

/QO/\f:/ 3472(201/\f+/ QLA f
bD bD bD

Applying Stokes’ theorem, we have

/ 5(901 Af= / dC(Qm Af)— / Q0L A ggf = —/ Q0L A égf
bD bD bD bD
Since Q1 A f is of degree (n,n — 1) in (, it follows that
/ QN f = —52/ Q%A f
bD bD
Substituting the above formulas into (11.1.10), we have for z € D,

f(z):/ QO/\f+/QO/\6<f+8/QO/\f

/Ql/\f+8</QOAf /Qm/\f)
+</DQO/\5<f—/bDQmA5Cf>.

(11.2.3) follows from the degree consideration.
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Corollary 11.2.3 (Leray). Let D be a bounded domain in C"™ with C* boundary.
Let G be any Leray map for D. For any f € C1(D) N O(D), we have

- [ alcans©. zep.
bD

where Q' is defined in (11.2.1) and Q} is the piece in Q' of degree (0,0) in z.

Corollary 11.2.3 shows that a holomorphic function in D is represented by its
boundary value through any Leray map for D. So far we have not constructed any
Leray map other than the Bochner-Martinelli-Koppelman kernel. Our next goal is
to construct a Leray map which is holomorphic in the z variable when the domain
is convex. We recall the following definition:

Definition 11.2.4. Let D cC RY be a domain with C? boundary and p is any C?
defining function. D is a convex (or strictly convex) domain with C? boundary if

Z 33:18163 x)a;a; >0 (or > 0) on bD,

for every a = (a1, -+ ,an) # 0 with El 1 ata L(x) = 0 on bD. Here we use
(z1,--+ ,xN) to denote the real coordinates for RN and a; € R.

It is easy to check that the definition of convexity or strict convexity is indepen-
dent of the choice of the defining function p. In fact, for a strictly convex domain

D, we can choose a special defining function such that its real Hessian is positive
definite without restricting to the tangent plane as the next proposition shows.

Proposition 11.2.5. Let D be a strictly convex domain with C? boundary in RY .
Then there exists a C? defining function p such that

N

(11.2.4) (z)a;a; > cla?,  for all v € bDand a € R™,

P
8%‘1'6%‘]‘

ij=1
where ¢ is a positive constant.

Proof. Let po be any C? defining function for D. We set p = e?° — 1 where A
is a positive constant. Then p is another C? defining function. Arguments similar
to those in the proof of Theorem 3.4.4 show that p is strictly convex and satisfies
(11.2.4) if we choose A sufficiently large.

A defining function p satisfying (11.2.4) is called a strictly convex defining func-
tion for D. By continuity, p satisfies (11.2.4) in a small neighborhood of bD.

Lemma 11.2.6. Let D be a bounded convex domain in C™ with C? boundary and
let p be a C? defining function for D. Then the map

(11.2.5) G(C,2) = <g§) (gg ggz)

is a Leray map.



272 Integral Representations for & and 9y,

Proof. Using convexity, we have for any z € D, ( € bD,

n

dp
27

(11.2.6) Re (¢ —2i) > 0.

Thus G! is a Leray map.

Note that G' is a Leray map which is independent of z. The importance of the
existence of a Leray map which is holomorphic in z (or independent of z) is shown
in the next theorem.

Theorem 11.2.7 (A homotopy formula for d on convex domains). Let D
be a bounded convex domain in C™ with C? boundary bD and let p be a C? defining
function for D. Suppose that G° = (( — 2) and G is defined by (11.2.5). For
fech )(E), 0 < q <n, we have

(0,9
(11.2.7) f(z)=0.T,f + Ty110f, z€D, if 1<q<n,
(11.2.8) f(2) :/ QG Af+T0f, z€D, if ¢=0,
bD
where
(11.2.9) qu(z):/ Qg,l(g,z)Af(c)—/ QL1(¢,2) A F(Q)
D bD

Q0 Qb and Q% are defined in (11.1.8), (11.2.1) and (11.2.2) respectively.

Proof. Since G' is a Leray map which does not depend on z, the kernel Q! has no
dz’s. Thus for any 1 < ¢ <n, Q) =0 and

/ QA f=0.
bD

Thus (11.2.7) and (11.2.8) follow from (11.2.3).

Corollary 11.2.8 (A solution operator for J on convex domains). Let D be a
bounded convex domain in C" with C? boundary bD. Let f € C} (D), 1<q<n,

_ (0,9)
with f =0 in D. Then
u="T,f(2)

is a solution to the equation Ou = f, where Ty is defined in (11.2.9).

Formula (11.2.9) gives an explicit solution operator for 0 when the domain is
convex. Next we shall estimate the solution kernel in Holder spaces when the
domain is strictly convex.
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Lemma 11.2.9. Let D be a bounded strictly convex domain in C™ with C? boundary
bD and let p be a strictly convex defining function for D. There exists a constant
C > 0 such that for any ( € bD, z € D,

(11.2.10) Re< G ¢ — 2> >C(p(¢) — p(2) + ¢ — 2%,

where G is defined by (11.2.5).

Proof. Since p is a strictly convex defining function satisfying (11.2.4), we apply
Taylor’s expansion to p(z) at the point ¢ € bD, then

= 9 Py 0G;0¢; JT
e z;1 9G;0G; (G = 2)(G = 25) + oIC = 2.

Thus, for |¢ — z| <€, where € > 0 is sufficiently small,

1 1 c 9
Rez (9@ 5 (C)*QP(Z)+§|C*Z| .
where ¢ > 0 is the positive constant in (11.2.4). To show that (11.2.10) holds for

|¢ — 2| > €, we set
(1 ¢ ) € .
= ()t

Then | — 2| = € and Z € D since D is strictly convex. It follows that

Re<Gl(—2z>= ReK6 |<G1§—”>
> 20— o9y + Sl - 2)
C€2
> 2 Clp(Q) — o) + ¢ - =P,

since (—p(z) + |¢ — 2|?) < M for some constant M > 0.

Lemma 11.2.10. Let D be a bounded strictly convex domain in C™ with 02 bound-
ary and let p be a strictly convezr defining function for D. The kernel Q 1(¢, 2),
0 < g < n, is absolutely integrable on bD for any z € D. Furthermore, there exists
a constant C such that for any z € D,

(11.2.11) /bD 101 ,(¢,2)| < C,

where C' is independent of z.

Proof. Let

{(I)(C,Z) =< lec -z >,
Do(¢,2) = |¢ - 2[*.
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Using (11.2.10), the kernel Q°1((, 2) has singularities only at ( = z on bD.

We choose a special coordinate system in a neighborhood of a fixed z near bD.
From the definition of ®, we have d¢®|¢=. = dp and d¢(Im ®)|c—. = 5 (0p — Ip).
Thus dp and d¢(Im ®) are linearly independent at ¢ = z. On a small neighborhood
U ={C||¢—2 < €} of afixedz e D, Let (t,y) = (¢1, -+ ,ton—1,y) where
t = (t,tan—1) = (t1, - ,tan—1) are tangential coordinates for U. N bD, t;(z) = 0
and

(11.2.12) {f;f(i)im@(g 2).

From (11.2.10) it follows that there exists a positive constant vy such that

(11.2.13) { [8(,2)| = 0(lo(2)] + ' + [f201]),

€ =2l = % (lp(z)] + [t)-

Using (11.2.13), we have for some A > 0,

n—1
Q% (¢, <C / ﬁds
/bDﬂU€| a-1(6:7) <; sprw. 2] |Pol*

1
=¢ ¢ebDNU. P|[¢ — 2|23 a5
dtldtg cee dtzn_l
t<a (Itan—a] + /) [t —2
| log ‘t/Hdtl ce dtgn_g
|t/|2n73

<C

(11.2.14)

<C
<A

A 2n—3
T | log r|dr
= C/ r2n—3
0

<C,

where dS is the surface element on bD. This proves the lemma.

Thus the kernel Q(il is integrable uniformly on bD. We have the following Holder
regularity result for 0:

Theorem 11.2.11 (3-Hélder estimates for d on strictly convex domains).
Let D be a bounded strictly convex domain in C" with C? boundary. For any
J € C,g (D), 1 < q <n, such that Of = 0 in D, there exists a u € C(l()/,i_l)(D)
such that Ou = f in D and

(11.2.15) [lull < O flle=(Dy;

3 (D)
where C' is a constant independent of f.

Proof. We first assume that f € C(lqu)(ﬁ). Let

u="T,f =up+ u,
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where

_ 0 -
o = /D Q01 (¢.2) A F(Q)

and

up = */bD QL1(¢,2) A F(Q)

It follows from Corollary 11.2.8 that 9T,f = f. From Corollary 11.1.3, for any
z, 2/ € D,
luo(2) —uo(2')| < Co || f |l 12— 2'|*

for any o < 1. Also uy is smooth in D. In order to estimate u; near the boundary,
we use the assumption of strict convexity on D.
We may assume 1 < ¢ < n — 1 since u; = 0 if ¢ = n. From Lemma 11.2.10,

ur € C(gq—1)(D). Since uy € CF (D), using the Hardy-Littlewood lemma (see

12 (D), it suffices to show

Theorem C.1 in the Appendix), to prove that u; € C(o g—1)

that there exists a C' such that
(11.2.16) [Vuy(z)| < Clp(z)|"2, zeD.

Using the same notation as in Lemma 11.2.10, we have for 1 < ¢ <n —1,

\vz J Af<<>]
bDNU,

n—1

¢ — 2 / 1
) e o
<clfle | [ mroeapest | prome—ames
b

k=1 \4pnu. bDNU.

To prove (11.2.16), using the change of coordinates (11.2.12) and estimates (11.2.13),
it suffices to show that for some A > 0, there exists a C' > 0 such that for § > 0,
1<g<n—1,

dtydts - - dta, 1
11.2.17 <C§ 3,
( ) /t|<A (0 + [tan—a| + [¢/]2)n =t [[2a=1

dtidts - - - dton—1 —1
11.2.18 < Cpo e,
( ) /LtgA (6 + [tan—1| + [t'[2)"~a([t] + 6)%

where 0 < @ < 1 and C, C, are independent of . To prove (11.2.17), integrating
with respect to t2,—1 and then using polar coordinates |t'| = r, we have

dtidty - - - dtan—1
/tlgA (0 + [ton—a| + [¢/]2)n =0t [¢[2a-1
< C/ dtidte - - dton_2
T Jipiza (6 [P)rmafpat

A 2n—3 A
T dr dr 1
< < — < (Cd 2.
< C/o G5 r2ynarz = C e Cé 2
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1/2

(11.2.18) is proved similarly. Thus u; € Co a—1)

fe C(lo’q) (D).
When f € Cg,q) (D), we can find a sequence f. € C’(O(iq)(ﬁ) such that f. — f

uniformly in D and 0f. = 0 in D. The f.’s can be constructed easily by a dilation
(assuming that 0 € D) followed by regularization. Letting u. = T, f., we get

(D) and (11.2.15) is proved for

It is easy to see that u. converges C'/2(D) to u = T,f € C(lo/i_l)(D) and Ou = f

in the distribution sense.

Remark. In Chapter 5, we have proved that for any O-closed (0,q)-form with
W#(D) coefficients in a strictly pseudoconvex domain D, the canonical solution u
given by 0*Nf is in W52 (D) where N is the d-Neumann operator (see Theo-
rem 5.2.6). Theorem 11.2.11 gives a solution operator which has a “gain” of 1/2
derivatives in Hoélder spaces on strictly convex domains. Near a boundary point
of a strictly pseudoconvex domain, locally there exists a holomorphic change of
coordinates such that it is strictly convex (see Corollary 3.4.5). Globally, one can
also embed strongly pseudoconvex domains in C™ into strictly convex domains in
CV for some large N (see, e.g., Fornaess [For 2]). The Hélder 1/2-estimates proved
in Theorem 11.2.11 can be extended to any strictly pseudoconvex domain, but we
omit the details here.

11.3 Homotopy Formulas for J, on Strictly Convex Boundaries

Let D be a bounded domain in C" with C? boundary and let p be a C? defining
function for D, normalized such that |dp| = 1 on bD. f is a (0, ¢)-form on bD with
continuous coefficients, denoted by f € Cg q)(bD), if and only if

(11.3.1) f=ry,

where g is a continuous (0, ¢)-form in C" and 7 is the projection operator from
(0, g)-forms in C™ onto (0, ¢)-forms on bD ( i.e., (0,q)-forms which are pointwise
orthogonal to dp ). (11.3.1) is also equivalent to the following condition: for any
continuous (n,n — g — 1)-form ¢ defined in a neighborhood of bD, we have

(11.3.2) /bDngb:/ng/\qS.

To see that (11.3.1) and (11.3.2) are equivalent, we note that for any (0, ¢ — 1)-form
h with continuous coefficients in C",

/5p/\h/\¢:/ (dp—9p) AR N =0.
bD bD

The space of (0, ¢)-forms with Holder or L? coefficients are denoted by C ,(bD)

or Lfo q)(bD), where 0 < o <land 1 <p<oo. Ifuc Lﬁ) q_l)(bD)v u satisfies
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Opu = f for some f € LZ(’0 »(bD) in the distribution sense if and only if for any
b€ O, 1T,

(n,n—1—q

(11.3.3) /bDuA5¢: (-1)2 /bDfA¢.

Let D~ = D and Dt = C"\ D. We define the Bochner-Martinelli-Koppelman
transform for any f € C(g,q)(bD) as follows:

“(2), if z o
(11.3.4) /bD By(C2) A F(CO) = { §+EZ; if 2 E gf

It is easy to see that I~ € C{ (D~) and Ft e C(Cﬁq)(D*). In fact, F~ and

F7T are continuous up to the boundary if f is Hélder continuous and we have the
following jump formula:

Theorem 11.3.1. (Bochner-Martinelli-Koppelman jump formula). Let D
be a bounded domain in C" with C? boundary. Let f € C(loﬁq)(bD), where 0 < g <
n—1. Then

(11.3.5) F-eCy, (D), FteCh,D)

0,9) ’

for every a with 0 < o < 1 and

(11.3.6) f=7(F —F7"), z € bD.

Proof. We first assume that the boundary bD is flat with bD = {(z1,--- ,2,) € C" |
Imz, = 0} and f has compact support in bD. The coefficients of B((, z) are of the
form

Gz
—_— — 17... 7n.
C—ap
We rename the real coordinates z; = x; +1y; by setting z;4, =y;,7=1,--- ,n—1,

and y = y,. Similarly we set £+, =n;, j =1,--- ,n — 1, where (; = &; + in;. Set
x=(x1,  ,2on-1), E = (&1, ,&am—1) and z = (x,y). We define

_ Y
{py@) G A .

: &
J =
%)= e+ o

Then p, is a constant multiple of the Poisson kernel for the upper half space
R3" = {z| y > 0} and the ¢)’s are the conjugate Poisson kernels. If we write
f= Zf”:q frdz", then each summand in [, , B(¢,2) A f is a constant multiple of
the following form:

y>0, j=1,--,2n—1.

_ Yy = p, *
PIE)= [ T 16 00 Ny =+
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or

, _ & — 0 x
Qi 11(2) /&RM TS 1 e A Ay =) fr

where j = 1,---,2n — 1. The Poisson integral P is bounded from Cp(R?"~!) to
C(R3™). Since it ts a convolution operator, it is bounded from Cj(R**~!) to
Cl(Ri”).. The integral @ fr is the Poisson integral of the Riesz transform of f;. To
see that @, f is bounded from C§(R?*"~!) to C*(R3"), we use integration by parts
and arguments similar to those used in Corollary 11.1.3. This proves (11.3.5) when
the boundary is flat. For the general case, we note that the Bochner-Martinelli-
Koppelman kernel is obtained by differentiation of the fundamental solution e(z)
for A (c.f. 11.1). Using integration by parts and arguments in the proof of Corollary
11.1.3, one can also prove similarly that F'~ € Cg (D )and F* € Cio, (D +).

To prove (11.3.6), we first extend f to D such that the extension, still denoted
by f, is in C(O q)( ). From Theorem 11.1.2, we have

0 0.

/bDBq /\f+/B 2)NOcf + /Bq1 2N f

(11.3.7) f(z), z€D,
_{O, zeC"\ D.

When z € D, (11.3.7) was proved in (11.1.10). From the proof of (11.1.10), it is
easy to see that (11.3.7) holds for z € C" \ D. Since B((, z) is an integrable kernel
in C", the term fD B(-,z) A 5<f is continuous up to the boundary bD. We denote
by v, the outward unit normal to bD at z. Then for z € bD,

lim (/ By(,z —evy) NOc f — / Lzt evy) A8<f>
64}0+ D

It remains to see that the term 0, [, B D ,2) A f when restricted to the boundary
has no jump in the complex tangential component For any ¢ € O, 1)((C”),

we have
i [ o[ Biaca—a)ns@] no)
(11.3.8) = (—1)‘1613%1+ . [/D By_1(Cz —evy) A f(g)] A D.¢(2)

0 [ [ Bt ns@] nooe)

Similarly, we obtain

lim {/DBq ! €>Z+€Vz)/\f(C):| A ¢(2)

e—0*t

(11.3.9) q/w [ [ by Af(C)] A B.b(2).
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Thus from (11.3.7)-(11.3.9), we get for any ¢ € {7 (cm,

n,n—g—1)

/bD f(z) A o(2) = lim (/bD[Bq(C,z—eyz)—Bq(C,z—&-eyz)]/\f(g)) A é(2)

e=0% Jyp

- / F~(2) — FH2) A 6(2).
bD

Using (11.3.2), we have proved (11.3.6). This proves the theorem.

Corollary 11.3.2. Let D be a bounded domain in C" with C? boundary. For any
fe C(lo,q) (bD) with Opf =0 on bD, we have

f=717(F~ —F"), zecbD,
and OF~ =0 in D~, OF* = 0 in D*. Furthermore, we have F~ € C% (D ),

(0,9)
Ft e Cﬁ‘)’q)(ﬁn for any 0 < a < 1.
Proof. Since F~ € C(Ooovq)(D), differentiation under the integral sign and Stoke’s

theorem imply that for z € D,
B.F(z) = — / 8.By(¢.2) A F(Q)
bD

— [ 0B A 5(0)
bD

= [ BN+ [ Bua(¢:) AS(©)
bD bD

=0

Here we have used (11.1.9). Similarly, 9F'" = 0 in D*. Using Theorem 11.3.1, the
corollary is proved.

One should compare Corollary 11.3.2 with Lemma 9.3.5. When ¢ = 0, Corollary
11.3.2 implies that any C'R function f can be written as the difference of two
holomorphic functions. Thus Corollary 11.3.2 generalizes the Plemelj jump formula
in C proved in Theorem 2.1.3.

From Corollary 11.3.2, every Jy-closed form can be written as the jump of two
0O-closed forms. Solving 9, is reduced to solving the 0 problem on both D~ and
D*. When D is strictly convex, we have already discussed how to solve 9 on D by
integral formulas. We shall use Theorem 11.3.1 to derive homotopy formulas for 0,
when D is a strictly convex domain with C? boundary.

Let p be a strictly convex defining function for D. Define C' functions G~ and
Gt in C" x C" by

= (9 .. 9
(11.3.10) G (¢, 2) = (%7 ’8Cn)’
(11.3.11) GH(¢2) = (gzpl,... ,g))-

Using Lemma 11.2.6, G—((, 2) is a Leray map for D. Let
GO(C?’Z) = (51 _217"' aEn - En)

be the same as before.



280 Integral Representations for & and 9y,

Lemma 11.3.3. Let D be a strictly convex domain in C™ with C? boundary and p
be a C? strictly convex defining function for D. For (,z € bD, the kernels

(11.3.12) QO =QG7), 9t =G,

(11.3.13) Q0 =0(G7,aY%), ot =Gt GY)

have singularities only when ( = z. Furthermore, there exists a constant C' > 0
independent of z such that

(11.3.14) /bD(|Q*0(<,z)| 10, 2)) < C, 2 ebD.

Proof. Set
D(¢,2) =< G ((,2),0— 2z >,
{‘II(QZ) =<GT((2), ¢ 2>

Note that ®((,2) = ¥(z,(). Using Lemma 11.2.9, there exists a constant C' > 0
such that for any ( € bD,z € D~

(11.3.15) Re®((,2) > C(p(C) — plz) + I¢ — 2I7).

Let U be some small tubular neighborhood of bD. Again the proof of Lemma 11.2.9
shows that (11.3.15) holds for ¢ € D AU U s sufficiently small. Reversing the
role of ( and z, we have for any z € D' AU and (eD,

ReV (¢, z) = Re®(z,¢) = Re Z

(11.3.16)
> C(p(z) = p(¢ )+|C—ZI )-

Inequality (11.3.16) holds for z € D' AU since p is strictly convex in a neigh-
borhood of bD. Thus Q7 and Q°F have singularities only at ( = z € bD. Using
estimate (11.3.15), we have already proved that Q70 is absolutely integrable in
Lemma 11.2.10. Since ¥ satisfies a similar estimate (11.3.16), the proof for Q10
follows from the arguments of Lemma 11.2.10. This proves (11.3.14) and the lemma.

For ¢ # z, we set
r=0°%-Qt = ZF (¢, 2)

where T'y = Q0 — Q% is the summand which is of degree (0, ¢) in z. Using Lemma
11.3.3, T is an integrable kernel on bD. If f € C(g 4 (bD), the form

(11.3.17) H,f = /bD Tyoi(2)Af= /bD(Qq_fl - QA S

is a well defined (0, ¢—1)-form on bD with continuous coefficients. The next theorem
shows that T'(¢, z) is a fundamental solution for 9 on strictly convex boundaries.
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Theorem 11.3.4 (First homotopy formula for 9, on strictly convex bound-
aries). Let D be a strictly conver domain in C" with C? boundary and let p be a

C? defining function for D. Then for any f € C’(lo q)(bD), 0<qg<n—1, we have

(11.3.18) f(2) = OpHyf + THy110uf, z € bD,
where H, is defined in (11.3.17).
Proof. For any f € C} (bD), using Theorem 11.3.1, the Bochner-Martinelli-

(0,9)
Koppelman transform F~ and FT defined by (11.3.4) are continuous up to the

boundary. We denote the boundary value of F'~ and F'™ by (fbD B((,2) A f(Q)™
and (f,, B(¢,2) A f(¢))T respectively. From (11.3.6), we have for any z € bD,

flz) =7(F~(2) = F'(2))

(11.3.19) - +
= B((, 2 -7 B((, 2 .
([ eans) —o([ Beanso)
Applying (11.1.4-ii), we have for any ¢ € bD,
00.0%=-04+0"=-B(,2)+Q°, z€D,

0.0 = -0+ QF = —B(¢,2) + Q, ze DV,
Thus, for z € D™,

| Btons
bD
(11.3.20) = —/bDéc,ZQ—O(-,z)/\er/bD Q (L 2)Af
_5 -0/, -0/ 5 -
—8Z/bDQ (,z)/\f—l—/bDQ (,z)/\abf—l—/bDQ (2)Af
Similarly, for z € DT,
| Btons
bD
(11.3.21) :—/ 5<,ZQ+0(~,z)Af+/ QT (2N f
bD bD

_ 5 +00, 40/ 5 . _
—8z/bDQ 3 )/\f+/bDQ (,z)/\@bf+/DQ (L) AT

b
Since G~ is independent of z, Q7 ((,2) = Q4 (¢, 2). It follows that

(11.3.22) /bD Q (2)ANf=0, when ¢ #0.
Also since G¥ is independent of ¢, we have Q+(¢,2) = Q' (¢, 2) and
(11.3.23) /bDQ+(~,z)/\f:(), when 0<¢g<n-—1.
From Lemma 11.3.3, Q70 and Q10 are absolutely integrable kernels. Substituting

(11.3.20)-(11.3.23) into (11.3.19) and letting z — bD, we have proved (11.3.18). This
proves the theorem.
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Corollary 11.3.5 (A solution operator for 9, on strictly convex bound-
aries). Let D be a bounded strictly convex domain in C" with C? boundary bD.
For f € C,q(bD), 1 < q <n—2, such that 9yf = 0 on bD, define

(11.3.24) u(z) = Hyf = / Q% —Q°)Af, zebD.
bD

Then u € Cg,4—1)(bD) and u satisfies Oyu = f.
Proof. Using Lemma 11.3.3, we have

| wllzewpy < CIl flloewp) -

Thus v € C(gq—1)(bD). From Theorem 11.3.4, it follows that Oyu = f in the
distribution sense.

Remark. Under the same assumption as in Theorem 11.3.4, we also have the
following formula when ¢ = 0 (f is a function) and ¢ = n — 1 (the top degree case):
When g = n — 1, for any f € C* )(bD),

(0,n—1

f(z)= 77/ QF ()N f +5b/ Thoa(2)A S
bD bD
The kernel QF = QF | is a holomorphic function in ¢. If f is a (0,n — 1)-form
satisfying the compatibility condition (9.2.12 a), then
/ QF ((,2)ANf=0, z€Dandz— bD.
bD

Thus, we have
f(z) = 5b/ Tooa(2)Af,  z€bD.
bD

This gives us an explicit solution formula for the ) operator on strictly convex
boundaries for ¢ = n — 1.
On the other hand, for any f € C1(bD),

f(z):/bDQa(-,z)/\f—&-/bDl“o(-,z)/\(E)bf.

If f is a C'R function, we have
() = / Q5 (2)Af,  zebD.
bD

Thus ), is another reproducing kernel for holomorphic functions in O(D)NC(D).
We have already proved in Corollary 2.2.2 that the Bochner-Martinelli kernel is
a reproducing kernel. However, 2~ can be viewed as a true generalization of the
Cauchy kernel to C™ since 2~ is holomorphic in z.

We shall derive another homotopy formula for 0, on strictly convex boundaries.
Let QT be defined by

(11.3.25) Q=G ,G1),

where G~ and G are defined by (11.3.10) and (11.3.11). We first show that Q=T
is integrable.
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Lemma 11.3.6. Let D be a bounded strictly convex domain in C™ with C? boundary
and let p be a strictly convexr defining function for D. The kernel Qq__"'l(C,z),
1 < g <n—1 has singularities only at ( = z for {, z € bD. Furthermore, there
ezists a constant C' such that for any z € bD,

(11.3.26) /bD 1€, 7,(¢,2)| < C,

where C' is independent of z.

Proof. Since

S 1\" <G d¢> A < Gt,d¢ >
Vo \2rmi) <G-¢C—2>" <G*t,(—2z>

a _ n—qg—1 a + qg—1
/\(<84,ZG ,d§>> /\(<3<,zG ,d§>)

<G ,(—z> <Gr,(—z>

it follows from (11.3.15) and (11.3.16) that Q;fl has singularities only at ¢ = z.
Thus we only need to estimate the kernel when ( is close to z. For a fixed z, let U, =
{¢] I¢ — z| < €} be a sufficiently small neighborhood of z, ®({,z) = < G7,{ — z >
and ¥((,2) = < GT,(—2 > the same as before. Using the same change of variables
t = (t1, - ,tan_1) = (t',t2n—1) as in Lemma 11.2.10 with t5,_1 = Im®((, z) and
t;(z) =0fori=1,---,2n—1, there exists a constant ¢ > 0 such that for ¢, z € bD,

(11.3.27) W(C, 2] 2 01t + [tzn—1]?),

{ ‘(I)(Cvzﬂ Z 70(|tl|2 + |t2n71|)7
Yolt] < ¢ — 2 < (1/70)lt]-

We note that

| <G ,d(>A<GT,d(>|=|<G ,d{>N<G" -G ,d¢ > |

(11.3.28)

= O(|¢ = 2]).
Let dS denote the surface element of bD. Repeating the arguments of (11.2.14),
using (11.3.27) and (11.3.28), there exists an A > 0 such that

Q- (¢, 2 gc(/ Mds)
/bDﬂU€| a-1(6:2)] ponu, | P[P

<C ! ds

cebDn{|¢c—z|<e} |PI"TI|C — 2|21

< c/ dtydts - dtgyy
=7 Jiuea (ton—a] + [E[2)n—a]t2a1

<C.

Thus, the kernel Q=T is absolutely integrable and (11.3.26) is proved.
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Theorem 11.3.7 (Second homotopy formula for 0, on strictly convex
boundaries). Let D be a strictly convex domain in C™ with C? boundary and let p
be a C? defining function for D. Then for any f € CL (bD), where 0 < ¢ <mn—1,

(0,9)
we have
(11.3.29) f(2) = OpRyf + Rys10,f, 2 € bD,
where

qu=7/bDQ;_+1(-,2)Af

and Q™7 is defined by (11.3.25).

Proof. Using Lemma 11.3.6, the kernel Q7 is absolutely integrable. From Theorem
11.3.4, we have when 0 < g <n — 1,

f(z) =By /< PRGEIES /< PRGEIEY

Using (11.1.4-iii), we have for {, z € bD and { # z,

¢ T =0: .G ,GT,G")

(11.3.30) —QO0_Qt'_ - t—_r_O .

For each fixed z € bD, we claim that Q=79 and 9, ,Q~+° are absolutely integrable
kernels and

(11.3.31) ‘/ QUG™,GT,G%| < C,
bD

(11.3.32) ‘/ 0c.QG™,GT,GY| < C,
bD

where C is independent of z. Let ®, = |¢ — z|? as before. Using (11.3.27) and
(11.3.28), (11.3.31) can be estimated by

‘ / QG—,GT,G0)
bDNU,

<C Z / I — Z|2
— ks+1
ki1+ka+kz=n—3 bDNUe |(I)kl4_1\11162-"_1(1)03+ ‘

n—2

<C / [t|2dtydtsy - - - dton 1 >
=7 L e tanal + [F)"F [t

Since 9 ,® = 0c® = O(|¢ —2|) and I . ¥ = 9, ¥ = O(|¢ — 2|), we can use (11.3.27),
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(11.3.28) and differentiation term by term to get

] / 9. (G, G+, G0
bDNU,

<€ Z / k 1|<k_ le ks+1 5
ki+ko+kz=n—3 bDNU. l(I) Hwkat q)o |

+c Y / ¢ — 2
katl
Ky +hst kg=n—2 7 0DNUe | @k 1 P21 gkt

n—2
|t|dtydty - - - dton_1
<c /
Z itj<a ([tan—1] + [E[2)n =k [¢[2

[t]3dtdty - - - dtan 1
+C / < 00,
Z ij<a (ton—1| + [¢/]2)7F[E[2+2

where dS is the surface element of bD. This proves (11.3.32). From (11.3.31) and
(11.3.32), we can interchange the order of integration and differentiation to obtain

/ 0 U TONf= 0 TONF -0, QTOAf
(11.3.33) ¢ebD ¢ebD ¢ebD

:/ 00 A B, f — B, Q-+,
cebD cebD

where the last equality follows from Stokes’ theorem. The Stokes’ theorem can be
used here by first substituting ®° = ® + ¢, V¢ = ¥ 4 ¢ and ®f = ®g + € for &, ¥
and ®( respectively in the kernel Q=70 and then letting e \, 0. Similarly,

/ 5.0 NG f= [ 8.0 O NGf
(11.3.34) cebD cebD

=0, QTN O f.
¢ebD

From (11.3.33) and (11.3.34), we have
5177/ 54,29_“'0 Af+ T/ 5@-729_‘%0 ANOpf =0, ze€bD.
¢ebD ¢ebD
Thus using (11.3.30), we obtain

flz) = ab/CEbDF(Qz)/\f—i—T/CEbDF(C,z)A@bf

= (&,/ Oc Q10 /\f+7/ d¢ Q10 Aébf)
¢ebD ¢ebD
+<6b/ QiJr/\f—FT/ Q+/\8bf>
¢ebD ¢ebD

= &,/ Q**/\f+7/ QA0S
CebD CebD

for every z € bD. This proves Theorem 11.3.7.

From Lemma 11.3.6 and Theorem 11.3.7, we have derived another solution for-
mula for 9.
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Corollary 11.3.8 (Second solution operator for J, on strictly convex boun-
daries). Let D be a strictly convex domain in C* with C? boundary and let p be
a C? defining function for D. Let f € Cl0,q)(bD), where 0 < g < n — 1 such that
O f =0 on bD. Settingu = Ryf, then u is in Cg 4—1)(bD) and dyu = f on bD.

Proof. That u is in C(g 4—1)(bD) follows from Lemma 11.3.6. Using Theorem 11.3.7,
we have dyu = f on bD in the distribution sense.

Next we shall estimate R, f in the Holder and L spaces. We use || ||» to denote

the L?O q)(bD) norms for (0, ¢)-forms.

Theorem 11.3.9 (Hélder and L estimates for 0, on strictly convex bound-
aries). Let D be a strictly convex domain in C* with C3 boundary and p be a C3
defining function for D. For any f € LI(’qu) (bD),1<p<ocandl <g<n-1,
R, f satisfies the following estimates:

(1) ”qu”Lz?/lre < C|fllzr, for any small € > 0.

(2) [Boflle < Cllfllze,  where 5 = 2 — 55 for 1 <p < 2n.

(3) [|Refll o < C|fllLr, wherep=2n andp <p’ < oco.

(4) [|[Rgfllce < C|fll», where2n < p < oo and =1 — %, C% is the Holder

space of exponent o on bD.

() [1Rqfll g < CllSfllzoe-

Proof. We shall prove that the kernel Q™1 (¢, 2) is of weak type 272:1 on bD uni-
formly in ¢ and in z. (For definition of weak type, see Definition B.5 in the Ap-
pendix). Since 2T only has singularities when ¢ = 2, following the change of

coordinates ¢ — t and (11.3.27), it suffices to show that the function

1
11.3.35 K(t) =
( ) ( ) (|t2n—1| + |t/‘2)n7q‘tl|2qfl
is of weak type 23—:11, where t = (t1,- -+ ,tan—2,tan—1) = (', tan—1) and [t| < 1. Let

A be the subset
Ay={t e R*™ ' |t| < 1| K(t) > )}, A >0,

and let m be the Lebesgue measure in R?"~1. We shall show that there exists a
constant ¢ > 0 such that

2n

-~ 2n—1
(11.3.36) m(Ay) < (i) . forall A>0.
By a change of variables t — ¢ such that t; = )leflt], i=1,---,2n — 2 and

2 -
ton_1 = A" 2n-Tty, 1, we have for some ¢ > 0,

2n

m(Ay) = A" 5T m(A) < (i) o

since m(A;) < oo. This proves (11.3.36). It follows from Theorem B.11 in the
Appendix that the estimates (1), (2) and (3) hold.
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To prove (4) and (5), we define Q=+ by

O+ — ( 1 )"<G—,dg‘>/\ < Gt,d¢ >
(¢, 2) (¢, 2) — up(2)

> < (¢, 2) MG )

ki+ko=n—2

2mi

where p > 0 is sufficiently large. We first note that the kernel Q=7 is the same as
Q™" when ¢, z € bD. It follows from (11.3.15) and (11.3.16) that there exists a
C > 0 such that for any ¢ € bD and z € D,

(11.3.37) Re®((,2) > C(lp(2)| + ¢ — z[?),
and
(11.3.38) Re¥((, 2) = Re¥((, 2) — pup(2) = C(lp(2)] + ¢ — 2I*),

if p is chosen sufficiently large. Let Ds = {z € D | p(z) < —¢} for some § > 0.
From the Hardy-Littlewood lemma (see Theorem C.1 in the Appendix), to prove
(4) and (5), it suffices to show that for some small o > 0 and all 0 < § < do,

(11.3.39) sup
z€bDs

ad. | fz—+<~,z>Af] < C5 | fllus
bD

where 2n < p < oco. After the same change of variables in a small neighborhood
|¢ — z| < e that of (11.2.12), applying (11.3.37) and (11.3.38), (11.3.39) is proved
for p = oo if the following holds:

dtidty - - - dton_1 _1
11.3.40 <Céd 2z,
( ) /75SA (6 + [tan—1| + [¢/[2)r-att]tr[2a—1 i

dtldﬁg s dt2n71

11.3.41 <052
( ) /|t<A (0 4 [tan—1| + [t/[2)n—at’[2a+1 ’

where C'is independent of 4. Inequality (11.3.40) is proved in (11.2.17) and (11.3.41)
is proved similarly since 1 < ¢ <n — 1.
To prove (11.3.39) when p = 2n, it suffices to show that

|fldt1dts - - - dtan—1 .
11.3.42 (o) n
( ) /|t<A (0 + [tan_1| + |['2)—ati]¢/[2a1 < Il z2n s

|f|dt1dt2 <o dtoy—1 1
11.3.43 <Cs -
(11.3.43) / T ET e T PP £z
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2n

and use Holder’s
2n—1

where C is independent of . To prove (11.3.42), we set n* =
inequality to obtain

/ |f|dtidts - - - dton—1
it<a (0 + [tan—1| + [¢/]2)n—atL |t/ |2a—1

<7l / divdty - dts, 1 =8
2n
S itj<a (8 4 [tap_1] + [t/[2)n (=at D) [p7|n (2a—1)

1

dtydty -+ dton_o
S < /t/|<A (6 + [Py e DTy "*@‘1‘1’)

1

A 2n—3 n¥
T dr
< C||fHL2" <‘/0 (6 + T2)n*(nq+l)1rn*(2q1)>

A e
dr
< C||fHL2" / 2ntl 2n-3 ) (U = T/\/S)
0 (5 + f”'2)2n—1/)"2n—1

1

_ o dv B
<o 1Hf||L2" / 2ntl 2n-3
0 (1 + /02)2n71f02nfl

< C5 | fllen.

This proves (11.3.42) and (11.3.43) can be proved similarly. Inequality (11.3.39) is
proved for p = 2n and p = co. The other cases are proved by interpolation (see
Theorem B.6 in the Appendix). This completes the proof of Theorem 11.3.9.

Remark. In Chapter 8, we have proved that when bD is strictly pseudoconvex
or more generally, bD satisfies condition Y(g), the canonical solution gains 1/2-
derivatives in the Sobolev spaces (see Theorem 8.4.14). Theorem 11.3.9 gives a
solution operator which gains 1/2-derivatives in the Holder space on strictly con-
vex boundaries. This result again can be generalized to any strictly pseudoconvex
boundary by a partition of unity since the boundary can be convexified locally. We
note that the solution for Jj, defined by (11.3.24) has the same properties as the
solution given by R,f by a similar proof. It is interesting to note that when bD
is the boundary of the Siegel upper half space, R, f obtained by the integral ker-
nel method agrees with the solution obtained in Theorem 10.1.5 using a completely
different method. The reader should compare Theorem 11.3.9 with Theorem 10.1.5.

11.4 Solvability for 0, on CR Manifolds with Boundaries

Let D be a strictly convex domain in C" with C? boundary bD and w CC bD
be a connected open C'R manifold with smooth boundary bw. We consider the 0y
equation

(11.4.1) Du = a on w,
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where « is a (0, g)-form on w, 1 < ¢ < n — 2. In order for (11.4.1) to be solvable, it
is necessary that « satisfies

(11.4.2) da=0 on w.

Note that when ¢ = n — 1, (11.4.2) is void and (11.4.1) is related to the local
nonsolvable phenomenon of Lewy’s equation. Due to the fact that the compatibility
condition (11.4.2) is satisfied only on w instead of the whole boundary bD, this
question cannot be answered from the global solvability results obtained in the
previous section. The solvability of (11.4.1) depends on the special geometry of the
boundary bw.

In Chapter 9, we have seen that when ¢ = n — 1 with an additional compatibility
condition (9.2.12 a), one still can solve J; globally on bD. In fact, we have proved
that 0, has closed range in L%o, q)(bD) on any pseudoconvex boundary bD for any
1< g <n-—1. When we discuss the local solvability of (11.4.1), we must avoid the
top degree case (when ¢ = n — 1) due to the Lewy example.

In this section we study the solvability of (11.4.1) on w for any « satisfying
(11.4.2) on w. When g = n — 2, there is another compatibility condition for (11.4.1)
to be solvable without shrinking. This compatibility condition can be derived as
follows:

Let K be a compact set in C" and O(K) be the set of functions which are defined
and holomorphic in some open neighborhood of K. Let a be a form in C ,,—2)(©)
such that there exists u € C(g,—3)(@) with dyu = a on w. Then for any g € O(bw),
we have

/oz/\g/\dzl/\---/\dznz OuNgAdzy A+ Ndzy,
bw

bw

= [ OuAgAdz A---Ndzy)

bw

:/ dluNgANdzy A+ Ndz,) = 0.
bw

Thus, another necessary condition for (11.4.1) to be solvable for some u € C(g,—3)
(@) is that

(11.4.2 a) / aNgANdz AN Ndz, =0 for all g € O(w).
bw

It is easy to see that (11.4.2 a) is also necessary for the existence of a solution
u € C(g,n—3)(w) by approximation. This additional condition makes it necessary to
differentiate between 1 < ¢ < n —2 and ¢ = n — 2 when considering (11.4.1). At
the end of this section, we will discuss when condition (11.4.2) implies (11.4.2 a)
and give an example to show that (11.4.2 a) is indeed an additional compatibility
condition.

We first describe the geometry of the boundary bw of w on which one can con-
struct a solution kernel for 9, on w. Let p be a strictly convex defining function
for D. The set w is a domain in bD defined by some C? function r defined in a
neighborhood of bD such that

(11.4.3) w={ze€C"|p(z) =0, r(z) <0}.
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We require that 7 be a C? smooth function depending on only one complex variable.
Without loss of generality, we may assume that r depends on z, only. This implies
that the hypersurface My = {z € C" | r(2,,) = 0} is a Levi-flat hypersurface. The
boundary bw is defined by

bw=bDNMy={z€C"|p(z) =0, r(z,) =0}
On bw, we assume
(11.4.4) dpNdr #0 on bw.
Thus, the hypersurfaces bD and M, intersect transversally over R. If
(11.4.5) Op N\ Or # 0,
we say that bD and M, intersect transversally over C. The points in
Y={z€bw|dpAdr=0}

are called characteristic points. Any point in bw \ 3 is called a noncharacteristic
point or a generic point.

If p is a characteristic point on bw, the space T)-°(bD) N T,°(Mp) has complex
dimension n — 1. Near the noncharacteristic point p € bw, the set Tpl’o(bD) N
Tpl’0 (Mp) has complex dimension n—2. This jump in the dimension of the tangential
(1,0) vector fields at the characteristic points makes it difficult to study (11.4.1) by
imitating the L? techniques used in Chapter 4. We shall study the solvability of
(11.4.1) by integral kernels.

The following example shows that in general, an open C'R manifold with smooth
boundary has characteristic points.

Example. If D = {z € C" | |2| < 1} is the unit ball and r(z,) = Im z,, then the
boundary bw of the set
w={zeC"||z|=1, Imz, <0}

has two characteristic points at ¥ = {(0,--- ,4+1), (0,---,—=1)}, since dp A Ir =0
ifand only if 21 =--- = 2z,_1 =0.
If 7(2,) = |2n|? and bw is the boundary of

1
wi={zeC"||z| =1, |z|* < 5},

then bw; has no characteristic points.
Notice that w is simply connected but w; is not.

To use the integral kernels to solve (11.4.1), our starting point is the homotopy
formula derived in Theorem 11.3.7. From (11.3.29), we have that Q7 is a funda-
mental solution for d, on the compact hypersurface bD. Thus, it gives a solution
kernel for (11.4.1) if a has compact support in w. To solve 9, for forms which do
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not vanish on bw, we introduce new kernels constructed from the special defining
function r for w. Set

(11.4.6) G'(¢2)=G"(Q) = (0 .0, aTW)
e

and

(1147 w6 =2 ay = <@gz

Let

(11.4.8) o L <GdC> 1 dG,

Tomi<GP(—z> 27iCn—an

where the notation b is used to indicate that the hypersurface My defined by r is
Levi flat. Note that «” is independent of r and

5C,Zwb =0, Cn # 2n.

In other words, it is holomorphic both in the ¢ and z variables away from singular-
ities. Setting

(11.4.9) O =06, GG,

we see that Q°~F is an (n,n — 3)-form. We write

n—3
(11.4.10) X 2) =) TG 2),
q=0
where
O+ — 1 d¢n A S G (¢),d¢ > A S GT(z),d¢ >
a (278)™ Cp — 2n D((, 2) U((, 2)
2967 d¢ >r“ N [< 9.G*(2),d¢ >1°
®(¢, 2) U(¢, 2)

away from the singularities. Thus QZ_JF has exactly q dz’s.
If ¢ € bw and 7z € w, we have

7(Cn) — 7(2n) > 0.

It follows that ¢, # 2, when ¢ € bw and z € w. The kernel Q*~F is well defined
and smooth when ¢ € bw and z € w.
For o € Cg,q)(@), 1 < g <n — 2, we define

(11.4.11) Sia= [ 9O+ [ 8T a0,
(Ew (Ebw

where Q~1(¢, z) and Q°~1((, 2) are kernels defined by (11.3.25) and (11.4.10) re-
spectively. The following two theorems are the main results of this section.
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Theorem 11.4.1 (A homotopy formula for 9, on CR manifolds with bound-
aries). Let D be a strictly conver domain in C" with C? boundary and let p be a
C? strictly convex defining function for D. Let w CC bD be an open connected
CR manifold with smooth boundary defined by (11.4.3) where r(z) = r(z,) is a C*

function. We assume that dp Adr # 0 on bw. For any a € C’(lo)q) (@), 1<g<n-2,

(11.4.12) a = 0ySya + Sy+10pax, z € w,

where Sy is the integral operator defined by (11.4.11).

Theorem 11.4.2 (A solution operator for 9, on C' R manifolds with bound-
aries). Let w be as in Theorem 11.4.1. For any a € Cg,4)(@), 1 < g <n—2, with
dpae =0 on w, the form u = Sy is in C,g—1)(w) and Opu = o on w, where Sy is
the integral operator defined by (11.4.11).

When g = n — 2, we assume furthermore that a satisfies the additional compati-
bility condition

/ aANgAdzy N Ndz, =0 for all g € O(bw),
bw

the same conclusion holds.
To prove Theorems 11.4.1 and 11.4.2, we start with the following proposition:

Proposition 11.4.3. Let bD and w be as in Theorem 11.4.1. For every f €
Clogy @), 1<g<n—1,

£(2) :éb/ Q;lef(<)+T/Q;+A5bf(g) —T/b O, A Q)

w

for every z € w, where Q™ is defined by (11.3.25).

Proof. We first extend f to f on an open set @ DD w such that f € C'(lO q)(dj). Let
Xe € C§° (@) be cut-off functions such that x. = 1 on @ for every e and x. converges
to the characteristic function of w as € — 0. Applying the homotopy formula proved

in Theorem 11.3.7 to Xef, we have for z € w,

f(Z) = Xef = 51)/ Qq__+1 A Xef+ T/ Q;Jr A 5b(Xef~)

bD bD
= 5b/ QN Axef + T/ Q" AXObf
bD bD
+7‘[\ QT A (Doxe) A f-
For 2z € w, we note that Q™7 is smooth for ¢ € (&\w) and we can apply Stokes’
theorem to the third term on the right-hand side to obtain
lim QT AOpxe A f = lim QF Ndxe A f

€—0 o\w —0 @\w

= lim d(xeQ, T A f) — lim Xed(Q, T Af)

=0 /g \w \w

=— waq_Jr/\f.
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Thus for any z € w, letting ¢ — 0, since Q=7 is an absolutely integrable kernel by
Lemma 11.3.6 , we have

bD bD

e—0

+ hmT/ QT A (Dox) A f
@\w

/Q Af+r/Q;+A5bf—T/ Q" Af
w bw

This proves the proposition.
Proof of Theorem 11.4.1. We define
QP =Q(G,G7) and QT =Q(G,GY),

where G~ and G are defined by (11.3.10) and (11.3.11) respectively. The kernels
= (¢, 2) and QF(C, z) are smooth for (¢,z) € bw X w. Using (11.1.4-iii), we have

(11.4.13) 9 VT =t -

for any ¢ € bw and z € w. Applying Proposition 11.4.3 and (11.4.13), we obtain for
Z € w,

o) =9y [ 9621 <<>+T/Q;+<<,zméba<<>
(11.4.14) +T/ 00T, 2) A a(() + D / WT(C2) Aa()

—T/ QZ*(C,z)/\a(C)—kT/ Q¢ 2) Aa().
bw bw

We claim that for any a € 0(107(;) (@), the following three equalities hold for z € w:

(i) / B (¢ 2) Aa(() = / 9 A dhalc).
<n>/b (A =0, 1<g<n-2,
(m)/b X z)Aal() =0, 1<g<n-—2.

Since the kernel Q°~*((, 2) has the factor d¢; A --- Ad(,, applying Stokes’ theorem,
we have

e (¢,2) A a(C) :/ de(V7H(¢2) AalQ))

bw bw

+ /b 0 A Byal0),



294 Integral Representations for & and 9y,

which proves (i). Since w” is holomorphic in both the ¢ and z variables, for any
¢ € bw and z € w, we have

(11.4.15) P = Awm A @ew )",

(11.4.16) Pt =W’ Awt A (B0 2

(ii) follows from (11.4.15) and the fact that integration of an (n,n — 2 4 ¢)-form
on bw is zero. Similarly when 1 < g < n — 2, (iii) follows from type consideration
since each component in (11.4.16) has (n — 2) dz’s and no d(’s. Substituting (i),
(ii) and (iii) into (11.4.14), we have proved Theorem 11.4.1.

Proof of Theorem 11.4.2. When ¢ < n — 2, Theorem 11.4.1 implies Theorem 11.4.2
if a € C(lo’q) (@). If « is only in_C(qu) (W), we approximate a by a sequence «,, €
C(OOO q)(w) such that a,, — « and 9y, — 0 uniformly on @. This is possible from the
proof of Friedrichs’ lemma (see Appendix D). It is easy to see that S, 19pa, — 0
in the distribution sense in w and S,a,, — Sya uniformly on compact subset of w.
Thus u = Sya is in Cy 4—1)(w) and Jyu = « in the distribution sense in w.

To show that the theorem holds when ¢ = n — 2, we use (11.4.14) to obtain

(11.4.17) @ = 0pSy_sa — / QF (¢, 2) Aal0), z €Ew.
bw

To show that the last integral in (11.4.17) vanishes when ¢ = n — 2, notice that the
kernel Q% (¢, z) is holomorphic in ¢ in a neighborhood of bw for each fixed z € w.
Thus from our assumption on «, we have for z € w,

O L(C,2) Aal(¢) = 0.

bw

This proves the theorem.

In general, the additional assumption (11.4.2 a) on o when ¢ = n—2 is necessary.
The next proposition characterizes all domains w such that condition (11.4.2) will
imply condition (11.4.2 a). At the end of this section we shall give an example of a
Op-closed form which does not satisfy condition (11.4.2 a).

Proposition 11.4.4. Suppose that O(@) is dense in O(bw) (in the C(bw) norm).
Then any (0,n — 2)-form a € C(g,,—2)(W) satisfying condition (11.4.2) also satis-
fies condition (11.4.2 a). In particular, if polynomials are dense in O(bw), then
condition (11.4.2) implies condition (11.4.2 a).

Proof. From the assumption, for any g € O(bw), there exists a sequence of holo-
morphic functions g, € O(w) such that g, converges to g in C'(bw). We have, for
any OJp-closed «,

/oz/\g/\dzl/\-~-/\dzn:lim aAAgnANdzy N+ Ndzy,
bw

n—oo bw

= lim OaAgnNdzy A+ Ndzy)

—
n oow

= lim 5boz/\gn/\dz1/\---/\dzn

n—
1— 00 w

=0.
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Thus condition (11.4.2) implies condition (11.4.2 a). The proposition is proved.
Using Proposition 11.4.4, we have the following:

Corollary 11.4.5. Let w be as in Theorem 11.4.1. We assume that the set C\ S,
where
S={z2, €C| 2= (21, " ,2n) € bw},

is connected. For any o € Cg (W), 1 < q¢ <n — 2, with Oyor = 0 on w, the form

u = Sya is in Cgq-1)(w) and Oyu = a on w, where S, is the integral operator

defined by (11.4.11).

Proof. Using Theorem 11.4.2, we only need to prove the assertion for ¢ = n — 2.
From (11.4.17), it suffices to show that

Q¢ 2)Aall) =0, zew.
bw

An approximation argument can be applied using the additional assumption on the
set S.
Since the set C \ S is connected by assumption, by the Runge approximation
theorem, the function
1

Cn — 2n

can be approximated by polynomials P, ((,, z,,) for each fixed z, in the sup norm
on S. We approximate ¥ by ¥ (¢, z) = ¥((, 2) + ¢ for some € and let € — 0*. Then
U (¢, z) is smooth when z € w and ¢ € w. Also U, is holomorphic in ¢ € w. Define

Lo 1 <GHQ,dc> 1 <GF(Q),d¢ >

We = 27 < GH((),(—2z>+e 2mi V((, 2)+e

We can apply Stokes’ theorem first to the modified kernel with ¥ substituted by
U, letting e — 0, to obtain for z € w,

/b QF (¢ 2) Aa(0)

= lim lim [ P,(Cn,20)dCn Awd A (005" 2 Aa(C)

v—00 e—0*t bw

V—00 ¢e—0t

= lim lim /EC(Py(gn,zn)dgnijA(ézwj)"—%a(g))

=0

since every term in the integrand is gc—closed. This proves the corollary.

Example. We note that the additional assumption on « or w when ¢ = n — 2
cannot be removed. Let bD = {z | |21]? + |22]? + |23/ = 1} be the unit sphere in
C3. Let

w=bDN{zeC?||z*<1/2}.
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Then S = {z3 € C | |z3]* = 1/2} does not satisfies the hypothesis imposed on S in
Corollary 11.4.5 since C\ S is not connected. We shall show that equation Jyu = «
is not solvable for ¢ =1 in w. Let

zZ1dZo — ZodZy
(lz1]? + |22]2)%

Then « is a constant multiple of the Bochner-Martinelli-Koppelman kernel in C?

and Oa = 0 for |z1]? + |22|> # 0. Thus a € Ci 1) (@) and

O =0 on w.

If a = Jpu for some u € C(@), then o must satisfy

1
/aA%dzlAdngd23=/ aANdzy Ndzg ANdB3 =0,
bw 123 bw

where dfls = dzs/(iz3). On the other hand, we have that

/ aANdzy Ndzg N dbs = 87‘(’/ (21d22 — szzl) ANdzy N\ dzo
bw

{lz112+|22?=3}

= 1671'/ dz1 ANdzZy Ndz N dze
{lz1[2+2212< 3}

£0.

Thus there does not exist any solution u € C(w). There does not exist any u € C(w)
satisfying Oyu = « either, by an approximation argument. Thus the assumption on
a in Theorem 11.4.2 cannot be removed. We note that O(@) is not dense in O(bw)
here.

On the other hand, if
w=bDN{z€C"|Im z3 < 0},

then S = {23 € C| -1 < Rezz < 1, Im 23 = 0} and C\ S is connected. Thus it
satisfies the hypothesis imposed in Corollary 11.4.5 and we can solve (11.4.1) for all
Op-closed form o € C(g,q)(@) when 1 < ¢ <n—2.

11.5 L? Estimates for Local Solutions of 9,

Let D be a strongly pseudoconvex domain in C™ with smooth boundary M.
we shall study the local solvability of the tangential Cauchy-Riemann equations 9y
near a point zg in M. After a quadratic change of coordinates we may assume that
zo = 0 and there exists a strictly plurisubharmonic defining function p(z) for M
which has the following form near the origin:

(11.5.1) p(z) = —Im 2, + > Ajzize + O(|2]),
j,k=1
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where (A;1) is a positive definite hermitian matrix (see the proof of Corollary 3.4.5).
The function p is strictly convex near the origin. Let U be a small neighborhood of
0 and dp > 0 be sufficiently small. We define {ws} by

(11.5.2) ws={zeMnU|Im z, <}, 0<é<do.

We can always choose U and §y > 0 sufficiently small such that each ws is an open
neighborhood in a connected strictly convex hypersurface whose boundary lies in a
flat surface. It is easy to see that Nsws = {0}. Thus the {ws} forms a neighborhood
base at 0.

Using Theorem 11.4.2 and Corollary 11.4.5, there is a solution operator S,a
satisfying 9,5, = a on ws for any Jj-closed o € C(0,q)(@s). Our main goal is to
prove that there exists a solution operator satisfying L? estimates on ws.
Theorem 11.5.1 (L? existence and estimates for local solutions of J;). Let
M be a strongly pseudoconvexr hypersurface in C* and zg € M. There exists a
neighborhood base {ws} of zo such that for any a € L](Dqu)(w(;), 1<¢g<n-—2and
1 < p < o0, satisfying Opae = 0, there exists u € Ll()o,qq)(wé) satisfying Opu = av.
Furthermore, there exists a positive constant ¢ such that the following estimate holds:

(1153) ||u||Lf07q_1)(w5) < c||aHLP (ws )

(0,9)
where ¢ depends on p, ws but is independent of a.

Corollary 11.5.2. Let M and ws be as in Theorem 11.5.1. The range of 0y is
closed in the L?O o (ws) space, where 1 <p < oo and1<g<n-—2.

Corollary 11.5.3. Let M and ws be as in Theorem 11.5.1. For each 1 < q <n-—2,
there exists a solution operator S, given by integral kernels such that for any Op-
closed o € L’(’O @ (ws), 1 < p < 00, we have 9pS;a = a and

1a0lze, o) < cllallzy, g

where ¢ depends on p, ws but is independent of .

The rest of this section is to prove Theorem 11.5.1. Let ws be defined by (11.5.2).
To prove Theorem 11.5.1, we first prove the L estimates for the solution constructed
for dp-closed forms with C(ws) coefficients in Theorem 11.4.2.

Proposition 11.5.4. Let M be a strongly pseudoconvex C'R manifold defined by
(11.5.1) and ws be defined by (11.5.2). For any o € C(g 4)(@Ws) such that Oyor = 0,

1 < q < n—2, there exists a solution u € Cg 4_1)(ws) satisfying Oy = o on w;.
Furthermore, for every 1 < p < oo, there exists a constant C, > 0 such that

(11.5.4) ||U||Lfqu71>(ws) < Cpllallpr (ws)s

(0,9)
where C), is independent of a and small perturbation of 6.

Proof. Let

(11.5.5) u(z) = Sya(z) = Li(o) + I(a),
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where

I(a) = / 0746 2) A a(Q)

and

L) = / Q1 (C2) Aal).

Since the set C\ S is connected. it follows from Theorem 11.4.2 and Corollary 11.4.5
that for every 1 < ¢ <n —2, dyu = a on ws and u € C0,q-1)(ws).

To prove Proposition 11.5.4, we only need to prove that u satisfies (11.5.4). Using
Theorem 11.3.9, there exists a C' > 0 such that the integral I («) satisfies

(11.5.6) I 11(e) Lrws) < C ll e llzres) -

We only need to estimate Io(«).

Since Iy(«) is an integral on bws, we rewrite I>(a) to be an integral on ws to
facilitate the L? estimates. Since the kernel Q°~*(¢, ) has singularities at ¢, = z,
for any ¢,z € ws, we shall modify the kernel first so that Stokes’ theorem can be
applied.

Let r(z) = 7(z,) = Im z,. Then for any ¢,z € @y,

or(¢)
n

(11.5.7) r(z) —r(¢) — 2Re (zn — Cn) = 0.

We set

6.2 = 56 -2 - 010 - 9)

=1n(¢,2) — (r(¢) —9).
It follows from (11.5.7) that

Rei(6.) = 3 (-r(0) = r(2)) +9
(11:58) —5(-6© -9 - ¢)-9)
>0

for all ¢,z € ws. Thus Re 7(, z) vanishes only when ¢ and z are both in bws. Also
we have
7(¢,2) =n((,2), when ¢ € bws and z € ws.

We define the kernel Q"_+(C, z) by modifying Q"=+ with 7 substitute for 7. Set

n—3
(11.5.9) Y2 =D W 2),
q=0
where
or
~ 1 5 d < GT((),d¢ > < GT(z),d( >
I R e (oS IEARE (oS R o)
N r 3G (C), d¢ >r‘3“’ N [< 3.6 (2),d¢ >1°
®(¢, 2) U (¢, 2)
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away from the singularities. The kernel QZ_‘“ has exactly ¢ dz’s. Since
(11.5.10) Q¢ 2) = F((,2), when ¢ € bws and z € w;,

we shall substitute Q*~+ in I5(a) for Q°~F. The advantage is that "~ is integrable
for each fixed z € ws since 7 satisfies (11.5.8). Thus for any z € ws, by Stokes’
theorem and a limiting argument (substituting ®. = ® 4+ € and V. = ¥ + ¢ for
® and U, approximating a by smooth forms a. such that a. — o and Oy, — 0
uniformly on ws, then letting € \, 0), we can write

I(a)(z) = /< L

Lt
>
2
o
\
~—
m
&
Ql
ol
|
=+
>
2
o
~——

(11.5.11)

From (11.3.28), we have
| <G7(0),dC > A< GT(2),dC > | = O([¢ — 2|).

Thus for every 1 < g<n—1,

L O C_
(11.5.12) 0T, 2) = 5C z)"‘q—(1|\l'(c,23’lﬁ(g‘n, .t
We write
or
S 1 S [ < GTd¢> < Gt—-GT,d(>
0c8y1(62) = iy {ﬁ@x)A 3o T W)
N << 3G, d¢ >)"‘2‘qA (< 9.G* . d¢ >>q‘1]
d((, 2) V(¢ 2) '

It follows from the definition of ® and ¥ that

{ac( 2) = O(|¢ = =),
8< (C,Z):O.

Using < G~,d( >= agp, acdCn = Ocr and estimate (11.3.15), after grouping terms
of the same form together we have

_ —Z
ECE '<C§:{ T
|&pA&rAwW%@n
7C 2)[B(C, = e[ w(C. 2)e
IC = 2||0cp A Ocr A Beif A Van—a(C)]
(G, 2) PR, D [w (C, )
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where Y ranges over all possible monomials V%n,g(( ) and Va,,—4(¢) of degree 2n—3
and 2n — 4 respectively in d(1,d(y, -+ ,dCn,dC,,. Let

I — 2|
11.5.13 Ki(C2) = ’
(115.13) &R = G TR e A
|(9<p A O¢r A Van—3(¢)|
5. K. =

(11.5.14) 268 = FEC IR A (G 2

¢ = 2||@ep A Der A Dt A Van—a(C)]
(11.5.15) K3(C,2) = 17(¢, 2)[2|®(C, 2) [P 19| W (C, 2) |7
We define

K@ = [ eI dmaa (@), =123,
CEws
where ma,—1(¢) is the surface measure of ws. For z € ws, using |7(¢, z)| > 0,
| Aima @ <0 i=123
(Ews

where C, depends on z. Thus the operator J; is bounded from L (ws) to LP(ws, loc),
i = 1,2,3. Near the boundary bwgs, the singularities of K; are not absolutely
integrable, but are of Hilbert integral type (see Theorem B.9 in the Appendix).
However, we shall show that there exists a constant ¢ > 0 such that

(11.5.16) 17 ()| o ws) < cllallzrws 7= 1,2,3.

Let r5(¢n) = () — d be the defining function for ws. To prove (11.5.16), we use
the following lemma:

Lemma 11.5.5. If for every 0 < € < 1, there exist a constant ¢ such that K;((, z)
satisfies

(11.5.17) /C [rs(Cn) | T K (¢, 2) < celrs(zn)| 7€ for all z € ws,
Cws

(11.5.18) / 11y (2) <K (C, 2) < celrs(Ca)| = for all € € ws,
zZEws

then for 1 < p < oo, there exists ¢, > 0 such that

i)l Lo ws) < epllerllous)

for all a € LP(ws).
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Proof. By Holder’s inequality and (11.5.17), we have

‘Jl(a)(’zﬂp S K’L(C7 Z)|a(<)|p|T6(Cn)|€p/p/dm2nfl(C)

(Ews

p/p’
( : Ki((az)rts(cn”_ede"1(C)>
Cws

< (Ce)p/p,|7“5(zn)|_ep/pl/ Ki(¢, 2)]a(Q) P75 ()| P77 dman—1(C),
(Ews

where & + - = 1. Integrating with respect to » and interchanging the order of

integration we obtain, using (11.5.18),

/ [T:(0) (2) P
ZEWs

—€

<t [ U Irs ()| 7 KA, 2)dm(2)] - [a(OPIrs(Ca) | dmi()
CEws ZEws
< ()" (cepp )|l g

This proves Lemma 11.5.5 with the constant ¢, = (ce)l/p/(cep/p/)l/p if one chooses
€ so small such that 0 < e <1 and 0 < ep/p’ < 1.

Thus, to prove (11.5.16), it suffices to prove (11.5.17) and (11.5.18) for i = 1,2, 3.
Using a partition of unity in both ¢ and z variables, we can assume that ( lies in
a coordinate patch U and z lies in a coordinate patch W. When U N W = (), then
|®(¢,2)] > 0 and [¥(¢,2)] > 0 for ¢ € U and z € W and the estimation will be
simpler. We assume U and W are the same coordinate patch and omit the other
cases.

Let X denote the set of the characteristic points, i.e., points where dp A dr = 0
on bws. We first assume that U N Y = (). We shall choose special coordinates for
wsNU.

Since dp A dr # 0 on bws, we can choose r((,) as a coordinate function near
U Nws. Since de®((, 2)|c=. = Ip(¢) and dp = —dp on wy, it follows that dp(¢) =
1(9p — 9p) = idIm®P(C, 2)|¢=-. Thus,

Ip(¢) = idIm®(C, z) + O(|¢ — z|).
Similarly for ¢ € bws, we have
O¢r = idcImi)(Cny 2n) + O(|Cn — 2nl)-
Thus, if ¢ € bws \ &,

dr(¢n) A deIm®(C, 2) A deImn(Cp, 2n) A dp({)|c=2
= —dr(Ga) A 9cp(C) A Ocr(Cn) A dp(Q)
= —0cr NOcp N O N Ocp
#0.
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Let Im®((, z) = t; and Im7(¢, z) = t3. We can choose coordinates (r(¢p),t1, - ,
ton_o) with #;(z) = 0, i = 1,---,2n — 2. From (11.3.15), (11.3.16) and (11.5.8),
there exists ¢ > 0 with

(11.5.19) [©(¢, 2)] = e[t + [ta]),
(11.5.20) [ReW(C,z)| > clt],
(11.5.21) [Renj(C, 2)| = c(|r(¢) — 6] +[r(z) = d]).

It follows that there exists C' > 0 independent of z such that

C
|K1(C,Z)| < (lT(C) _ 6| + ‘T‘(Z) _ 5|)|t|2n—3’
C
KNS G =T+ e = Nl + e
|K3(¢, 2)| < c

(Ir(€) = 8l + [r(2) = o + [t2)*(|ta] + [¢]?)m— 1= 9[t]e= 1

Estimate (11.5.17) will be proved for ¢« = 1,2,3 when ¢ and z are away from the
characteristic points using the following lemma (letting u = |r(¢) — é| and o =

r(z) — 6l).

Lemma 11.5.6. Let t = (t1, -+ ,tapn—2) and dt = dtidty---dtap_o. For any 0 <
e<1, A>0, there exists ¢t > 0, i = 0,1,2,3, such that the following inequalities
hold: For any o >0,1<qg<n-—2,

o0 M_E
(1) / dp < o™,
0o otp

° :U/_e 1 _—e
2 / / P gtdu < clo,
@y Jien @ ol
° .u“ie 2 _—e€
(3)/ / —— dtdp < clo™¢,
o Ji<a (0 +p)(tr] + [t2)n—1-a|t[2

e wedtdp _
4) / / <coe.
( o Jigga (0 +p+lta])?([ta] + [¢2)n—1mafi2a!

Proof. (1) follows from a change of variables to the case when o = 1. In fact one
can show using contour integration that ¢ = 7/ sin re.

Estimate (2) follows from (1) by using polar coordinates for ¢ variables. To prove
(4), we integrate ti,to first and then use polar coordinates for ¢ = (¢3,--- ,ton_2)
and apply (1) to obtain

oo u*f
dtdu
/0 /t|<A (0 + p+ [t2])2([ta] + [2[2)n—taft|2a—t
°° log [t"||p ¢
< C/ / | dt’ dp
o Jirj<a (@ +p)([¢7[2)n-2-afg|2a-t

o0 1 2n—5 —€
< 0/ </ | OggliiS dv) LRy
0 o<v<A U (0 +n)

<coe.
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Estimate (3) can be similarly proved.

Thus (11.5.17) is proved when there are no characteristic points. Similarly one
can prove (11.5.18) by reversing the roles of ® and ¥, ¢ and z.

Near any characteristic point z € X, we cannot choose r((,), Im® (¢, z) and
Im7j(¢, z) as coordinates since they are linearly dependent at ¢ = z. The kernel K;
is less singular than K5 or K3 and can be estimated as before by choosing 7({,)
and Im ® = ¢; as coordinates. To estimate (11.5.17) and (11.5.18) when i = 2,3,
one observes that at characteristic points, the numerator of each K;((,z), i = 2,3
also vanishes. We shall prove (11.5.17) for K3 and the case for K5 is similar.

We write
gl(C: Z) = Im‘I)(C, Z)a
92(¢,2) = Imii(¢,2) = —3RelGu — 2n).

It is easy to see that dcIm7((,z) Adp = =28r A Or. Since dp = (9p — Op)/2 =
idIm® (¢, 2) + O(|¢ — z|), we have, setting u(¢,) =0 — r(Cp),

dg1(¢, z) Ndga(C, 2) A dM(C)‘q:z = —dcIm®(¢, 2) A deImi(C, ) A dT(C)|<:Z
— an AN 87’(C) /\ET(CM(:Z'

Thus (11.5.17) will be proved for ¢ = 3 if we can prove that

(11.5.22) J3(z) < Co,
where J3(z) is the integral

/ 1 |dgi (¢, 2) AN dga(C, z) Adp A Vay_4(Q)]
cevrws (192(C 2) [+ 14 0)2(|91(C 2)| + ¢ — 2[2)n 19| — z[2a— 1"

The other terms are less singular and can be estimated as before.
Let * = (z1, -+ ,Tan—2,) = (2', ) be real coordinates on U N ws such that
z=1(0,---,0,u(z)) where x; = Re({;—z;) or ; = Im({;—z;) forsome j =1,--- ,n.

In this coordinate system, we have, for some A > 0, J3 is bounded by the integral

Js(2) :/ p=<\dgr (z, 2) A dgs(, 2) A dp A Voo ()]
wl<a (l92(@, 2)[ + p+ 0)2(|g1 (2, 2)| + [[2)n L =]z [2a=1
where Va,,_4 is a monomial of degree 2n — 4 in dx1,--- ,dxo,—2. Without loss of

generality, we can assume that Va,_4 = dx3 A -+ Ado,_o. Let By = {x € R1|
|z] < A}. The integral J3(z) is the pull-back of the integral Z,

7 / pwedty ANdts -+ N\ dton_odu
1=t wyec(Ba) (0 + 1+ [t2))2([ta] + [¢[2)n—1-af¢[2a-1

by the map
G:z¢ BA - G(x) = (glag%‘rf)’a T 7x2n—27,u)'
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T can be estimated by
T— / /J,_Edh Adty--- A dtgn_gd,u
t=(twyec(Ba) (O + p+ [t2])?([tr] + [¢[2)n 1 aftf2a—t

/ / edtl/\dtz /\dth gd,u <030_ €
<Al o*+u+|t2|) (Ita] + [e[P)=tmafefpa=t = =

using (4) in Lemma 11.5.6. However, the set {(g1,92, 3, - ,Tan—2, p)||z| < A}
may cover the image G(B,) infinitely many times. We have to modify the function
g1 to guarantee a finite covering. We approximate g1 (x, z) by the polynomial g4 (x, z)
where g1 (z, z) is the second-order Taylor polynomial in z of g1 (z, z) at the point z.
From (11.3.15) we have for |z| sufficiently small,

(11.5.23) (2, 2)| > c(|ga (@, 2)] + [2]*)

where c is independent of z.

For each fixed a; € R and fixed 3,23, - , X2,—2, > 0, the equation go(z, 2) =
a1 has at most two solutions by the strict convexity of the defining function p for ws.
For each fixed a € G(Ba), (1,92, %3, ,Tan—2, ) = a has at most four solutions
from Bezout’s theorem (see [GrHa 1]) since g; is a second-order polynomial in z.
With (11.5.23), one can estimate (11.5.22) by substituting ¢1 (z, 2) by g1 (=, z) plus
remaining terms which are less singular. We have

/’L_E‘dgl(mvz)/\dQQ(x Z)/\diu’/\VZn 4( )|

<CI<C.o0~
/|r|<A (lg2(2, 2)[ + o+ 0)2(|g1 (2, 2)| + |2[>)—1-a|z|2a=t

for any 0 < ¢ < 1. This proves (11.5.22). Reversing the roles of ® and ¥, and ¢ and
z, one can show (11.5.18) for ¢ = 3 similarly. This proves (11.5.16) for ¢ = 3 and

(11'5'24) H 12(a> ||LP(w,s) <C H @ ||LP(w5) :

Combining (11.5.6) and (11.5.24), (11.5.4) follows with u = S;a. We have proved
Proposition 11.5.4.

In order to prove Theorem 11.5.1, we need the following density lemma:
Lemma 11.5.7. Under the same assumption as in Theorem 11.5.1, the set of Oy-

closed forms in Cg 4 (Ws) is dense in the set of Oy-closed L(0 )(w(g) forms in the
L(Oq)( 5) norm where 1 <p < oo, 0 <g<n—2.

Proof. Let a € L(0 )(W§) and Jya = 0 on ws. We approximate o by smooth (0, ¢)-
forms o, € C ) (Ws) such that o — a in L(0 )(w(s) and Jpay, — 0 in L(0 le)( 5)-

This is possible by Friedrichs’ Lemma (see Appendix D). Since Jpay, is a smooth
Op-closed form on a slightly larger set ws, D ws where §; \, § and &, is sufficiently
close to &, we can apply Proposition 11.5.4 to dpay, on ws, (since 1 < g+1<n—1)
to find (0, ¢)-forms vy, such that

{8},1% = gbak on we,,

(11.5.25)
okl Lx

< cpllPbouk |1

(0, Q)(w‘sk (0, +1)(W6k)7
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where ¢, is a constant independent of k£ and §. This is true since the constant
proved in Proposition 11.5.4 is independent of small perturbation of . We set

(11.5.26) Q= — Vg,

then o), € C(g,q)(@s). It follows from (11.5.25) that «j, is dy-closed and aj, — « in

L?O’q)(w(;). This proves the lemma.

For the case when ¢ = n — 2, we have the following density lemma:

Lemma 11.5.8. For every Oy-closed form o € Lfo n_2)(w5), there exists a sequence

of Op-closed forms {ax} such that ap € Clon—2)(@s) and o converges to a in

L](jo,n—z) (ws, loc), 1 < p < oo.

Proof. Let B denote the space of all 9j-closed L?o n—2) (ws) forms. We note that the

dual of LP(ws, loc) in the Fréchet norm is the space of compactly supported functions
in L*' (ws), where 1% + 1% = 1. Consider the linear functional L on Lfo n_2)(w5, loc)

defined by

(11.5.27) L(B) = / BAg for BeBnN L’(joynd)(cu(;,loc)7

5

where g € LP (ws) such that g has compact support in ws. We assume that L(3) =
fwé BNg=0 forevery 3 € BNCE, 5 (@s). From the Hahn-Banach theorem, the
lemma will be proved if one can show that

L(B)=0 for every § € B.

Let D be a strictly convex set in C™ such that the boundary of D, denoted by M,
contains ws. Let K = supp g CC ws. Since (11.5.27) holds for all 8 = dyv for any
v E C(O&n_?)) (@Ws), Opg = 0 on ws in the distribution sense. We extend g to be zero
on M \ ws, then 9pg = 0 on M in the distribution sense. Applying Theorem 11.3.9
for (n,1) forms with L? (M) coefficients on M, we can find u = R,f € Ll(j;,o)(M)
such that dyu = g on M. It follows from (11.3.27) that u € Cﬁs,o)(M \ K). Let
0 < 6o < 91 < 6 be chosen such that K C ws, C ws, C W5, C ws and let x be
a cut-off function such that x € C§°(ws,) and x = 1 on K. We set u; = xu and
uz = (1 — x)u, then uq, dpu1 and dpus have compact support. Thus, we can write

/a/\g:/ aAgbU:/ a/\gbul—f—/ a A Opus.
ws ws ws ws

We shall prove that for every o € B,

(11.5.28) / aAdpuy =0
ws

(11.5.29) / a A Oyug = 0.
ws
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Since u; has compact support, we regularize u; and (11.5.28) follows easily from
Friedrichs’ lemma and integration by parts.

To prove (11.5.29), we note that the coefficients of ug are C'R functions on M\ws,
since dyus = g = 0 on M \ ws,. It follows from Theorem 3.3.2 (Lewy’s extension)
that one can extend ug holomorphically into the set D5, = DN {z € C" | r(z,) >
d1}. The set Ds, is convex. We can approximate uz € C7 g (Ds,) by (n,0)-forms
P,, with polynomial coefficients and the convergence is in C*°(M \ws, ). Let x; be a
cut-off function such that x; € C5°(ws) and x; = 1 on Ws,. Since Jyus is supported
on wy, \ K, we have

/ a/\gbuQ:/ a A x10y(uz — Pp)
(11.5.30) @0 o B
:/ oz/\ab(xl(ug—Pn))—/ a A (Opx1) A (ug — Pp).

ws

The first term on the right-hand side of (11.5.30) vanishes from the same arguments
of (11.5.28). Thus

/a/\gbuzz—/ a A (@px1) A (ug — P,) — 0
ws ws

as n — 00, since uy — P, converges to 0 uniformly on the supp(d,x1). This proves
(11.5.29) and Lemma 11.5.8.

Proof of Theorem 11.5.1. Theorem 11.5.1 can be proved for any dj-closed o with
LP(ws) coefficients using an approximation argument. We first assume 1 < ¢ < n—2.

Using Lemma 11.5.7, there exists a sequence of -closed forms a,, € C(g,q)(@s)
such that o), — o in LI(JO,q) (ws). We can apply Proposition 11.5.4 to o, to find
(0,q — 1)-form u,, such that

(11.5.31) Optm = al, on ws,
and
(11.5.32) lumllze,  ws) < collomllzs,  ws)-

From (11.5.31) and (11.5.32), u,, must converge to some (0, g — 1)-form u such that
u satisfies Opu = o on ws and

(11.5.33) ull .o

(O,q—l)(‘*’é) < CP||a||LP

(0,q) (ws)*

Theorem 11.5.1 is proved for 1 < g <n — 2.

When ¢ = n — 2, from Lemma 11.5.8, there exists oy € C&;’nfz) (Ws) such that
Iy, = 0 on ws and ap — « in Lfo ne2) (ws) for any 0 < &' < §. Let 6™ be an

increasing sequence such that 0 < 6™ 4. Applying Proposition 11.5.4 to oy on
wsm , there exists a solution u}' € C(g,,—3)(wsm ) such that

(11534) gbu? = 0 Oon wsm
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and

(11.5.35) || .o

gy wsm) < Cllarllee  wsm)s

where C' is independent of m and k. It follows that u}’ converges strongly to an
element u™ € Lfo n_g)(wgm) for every m and

(11.5.36) Opu™ =a on wsm.
Furthermore, we have

(11.5.37) ™| .o

<0’n_3)(W57n) S CHa”Lf}O,n_z) (ws)>

where C' is independent of m. There exists a subsequence of ™ which converges

weakly in Lf07n_3)(w5) to a limit u € L?o,n—s) (ws). Tt follows from (11.5.36) that

dpu = a on w; in the distribution sense. From Fatou’s lemma and (11.5.37) we have

||u||L’;“M73)(w5) < C||04HL§’M72)(W5)-

Theorem 11.5.1 is proved for ¢ = n — 2. This proves Theorem 11.5.1.

Corollary 11.5.2 follows easily from Theorem 11.5.1. To prove Corollary 11.5.3,
we define

Syo = I () + Ix(«)

where

I(a) /Q;fl@,z)m(o,

and

iz(a)/ce 0N ~T N a(Q).

Corollary 11.5.3 follows from the proof of Proposition 11.5.4 and Lemma 11.5.7.

11.6 The J,-Neumann Problem

Let D be a strongly pseudoconvex domain in C™ with smooth boundary bD. Let
ws be an open connected subset in bD with smooth boundary bw; defined in (11.5.2).
The L? existence theory for 9 can be applied to obtain the Hodge theorem for 0y
on ws. We shall set up the 9,-Neumann problem along the lines of the O-Neumann
problem for pseudoconvex complex manifolds. Let 9, be the linear, closed, densely
defined operator

Op L%O,q—l)(w(;) - L%O,q) (w5)'

The formal adjoint of 9y, is denoted by ¥, and defined on smooth (0, g)-forms by the
requirement that (9,¢,%) = (¢, dp) for all smooth ¢ with compact support in ws.
The Hilbert space adjoint of 9, denoted by 8y, is a linear, closed, densely defined
operator defined on Dom(d,) C Lﬁovq)(w(;). An element ¢ belongs to Dom(8,) if
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there exists a g € L%o,qq)(wé) such that for every 1 € Dom(d;) N L%o,qq)(‘%)’ we

have (¢, 9p1)) = (g,1). We then define 5:¢ = g. We have the following description
of the smooth forms in Dom(éZ):
For all ¢ € £(09 (@), ¢ € £0:971) (@), integration by parts gives

(11.6.1) (956.9) = (6, By) + / (0 (9, dr), s,

bws

where ds is the surface measure of bws and o (9, dr) denote the symbol of ¥ in
the dr direction. More explicitly, for every = € bws, o(Js, dr)¢‘z = ﬁb(T¢)’x~ The

following characterization of Dom(dy) N €9 (ws) uses arguments similar to those
in Lemma 4.2.1:

Proposition 11.6.1. ¢ € Dom(8,) N E©D (wy) if and only if o(Vy,dr) ¢ = 0 on
bws. If ¢ € Dom(8,) N ECD(@s), Dy = Dy,

We next define the dy-Laplacian O, = 0,9; + 0; 0p from LY ) (ws) to LY,y (ws)
such that Dom(C) = {f € Dom(d) N Dom(8;); dpf € Dom(d;) and J;f €
Dom(0y)}. Repeating the proof of Proposition 4.2.3, we have the following propo-
sition:

Proposition 11.6.2. 0, is a linear, closed, densely defined self-adjoint operator.

We note that the smooth forms in Dom([J,) must satisfy two boundary condi-
tions, namely, the Jp-Neumann boundary conditions. To be precise, we have the
following:

Proposition 11.6.3. ¢ € 09 (@5) is in Dom(Ty) if and only if o(Vy, dr)p = 0
on bws and o(dy,dr)dpp = 0 on bws.

The 0p-Neumann problem is formulated in exactly the same way as the O-
Neumann problem. However, due to the existence of characteristic points, it is
much harder to study this boundary value problem using a priori estimates by
imitating the 0-Neumann problem. By applying the L? existence result proved in
Theorem 11.5.1, we have the following L? existence theorem for the J,-Neumann
operator on ws:

Theorem 11.6.4. Let M be a strongly pseudoconvex hypersurface in C*, n > 4,
and zog € M. Let {ws}, ws C M, be the neighborhood base of zy obtained in Theorem
11.5.1. Then for each fizred 6, 1 < q < n — 3, there exists a linear operator N :
L%O’q)(w(;) — L?O,q) (ws) such that
(1) N5 is bounded and Range(Ns) C Dom(Oy).
(2) For any a € LY, ,\(ws), o = 00y N + 3, 0N
(3) NsOp = OpNs = I on Dom(0y);
OpN5 = N0, on Dom(0y), 1 < qg<n—4;
0, N5 = N30, on Dom(d,), 2<q<n-—3.
4) If a € L?O,q) (ws) and Bya = 0, then o = ydyNso. The form u = 9, Nsa
gives the canonical solution (i.e., the unique solution which is orthogonal to
Ker(9y)) to the equation Oyu = .
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Using Theorem 11.5.1 and Corollary 11.5.2, the 0, operator has closed range
in L?O,q) (ws) when 1 < ¢ < n — 2. Theorem 11.6.4 can be proved by repeating
the arguments of the proof of Theorem 4.4.1, Thus the L? 9,-Neumann problem is
solved for 1 < ¢ < n — 3 and N is called the 0,-Neumann operator.

Thus the Hodge decomposition theorem for compact strongly pseudoconvex C'R
manifolds proved in Theorem 8.4.10 has been extended to strongly pseudoconvex
C R manifolds with boundaries.

We next study the interior regularity of Ns with applications to the regularity
of the solutions of d; and the related Szegd projection. Let W#(ws) denote the
Sobolev s space and W#(ws, loc) denote the Fréchet space of functions which are in
W*# on every compact subset of ws.

Theorem 11.6.5. Under the hypothesis of Theorem 11.6.4, given o € W(S0 q)(w(;),
s >0, then ¢ = Nsa satisfies the following estimates: for any ¢, (1 € C§°(ws) such
that (1 = 1 on the support of , there exists a Cs > 0 such that

16011241 < Calliaall? + ).

Proof. Since ¢ = (gbﬁb + 191,51,)¢ = « in the distribution sense on ws and wy is
strongly pseudoconvex, the theorem follows from the interior regularity results for
[, on strongly pseudoconvex manifolds proved in Theorem 8.4.3.

Corollary 11.6.6. Let o € L?, (ws) N W.q) (ws, loc) and Oa =0,1<q<

(0,9)
n — 3, then there ezists u € L?O)q_l)(w(;) N W(Sofql_/?)(wg, loc) satisfying Oyu = a.
In particular, if o € L%O’q)(w(;) NCE ) (ws), then there exists u € L%o,qq)(wﬁ) N

C&iqil)(w(s) satisfying Oyu = a.

Proof. Let u = 5;]\/2;& and let (o € C§°(ws) such that (o = 1 on supp (3, then from
Theorem 11.6.5, we have

Iu)1?2 = [1€3, 612
< 2(|9, (Co)II2 + 2[1[¢, Dy 1ol
< c([[CollZ ey + 1Gioll?)
< c([1Ga0ll? + [l ?).-

Thus, u € W ,_1y(ws,loc). To show that u € L%(Lq_l)(w(;)7 we note that

lull* = (@ Noor, B, N5)
= (51,5:/\/50(,./\/'504) = (()4,./\/50()
< el [INsall < cllaf®.

To show that u € W(?qlﬁ)(wg,loc), we assume first that s = 0. Let A* be

the pseudodifferential operator of order k. Then, from Theorem 11.6.5 and the
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discussion above

IGullf /s < e(AV2¢0, Nsar, AV2¢D, Nsar)
COyNsa, ALCOyNs) + ||al|?)

(
(COpO,N3a, AL CN5a) + [|a|?)
[Call [ICNGally + llal?)

<

o
o
o

For general s € N, one can prove that u € W(SOJrql_/ ?)

and we omit the details. If o € L%O,q) (ws) NCF ) (ws), then a € W\ (ws, loc) for

every s € N. Thus the solution u = 9, Nya € W(80+qlﬁ)(w5, loc) for every s € N. It
follows from the Sobolev embedding theorem that u € C (ws) and the corollary
is proved.

Definition 11.6.7. Let Hy(ws) = {f € L%*(ws) | Opf = 0} and let S, denote
the orthogonal projection from L*(ws) onto Hy(ws). We shall call Sy, the Szegd
projection on ws.

(ws,loc) similarly by induction

Sp is the natural analogue of the global Szegd projection. We have the following
expression for S, which is an analogue of the formula for the Bergman projection
using the 0-Neumann operator:

Theorem 11.6.8. Let f € L*(ws). Then Syf = (I — 9,N50,)f. In particular, if
fe Ooo(w(s), then Syf € Coo(wé)_

Proof. Since
abab./\/gabf = (abab + 5b3b)./\/585f = 8bf

by (3) in Theorem 11.6.4, we have

Oo(f — Oy Ns0pf) = Dy f — By f = 0.
This implies that (1—52./\/'55;))]” € Hp(ws). On the other hand, for any h € Hp(ws),

(B,Ns0uf,h) = (NsDy f,ph) = 0.

It follows that (I — 8,Ns0)f = Spf. The interior regularity proved in Theorem
11.6.5 implies Spf € C®(ws) if f € C>®(ws). In fact one can show that if f €

W#(ws), then Sy f € W*(ws,loc) following the same argument as for the Bergman
projection and we omit the details.

NOTES

The use of explicit kernels to solve the Cauchy-Riemann equations in several
variables is a different approach parallel to the L? method. It is an attempt to
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generalize the Cauchy integral formula in one variable to several variables. Start-
ing from the Bochner-Martinelli formula, the integral formula stated in Corollary
11.2.3 for holomorphic functions was discovered by J. Leray in [Ler 1,2]. G. M.
Henkin [Hen 1] and E. Ramirez [Ram 1] introduced Cauchy-type integral formu-
las for strictly pseudoconvex domains. Subsequently, H. Grauert and I. Lieb [GrLi
1] and G. M. Henkin [Hen 2] constructed the integral solution formulas for 0 on
strictly pseudoconvex domains with uniform estimates. Our exposition of the first
three sections in this chapter follows that of R. Harvey and J. Polking [HaPo 1,2]
(see also the book of A. Boggess [Bog 2]) without referring to currents. It is their
notation that we adopt here.

The so-called Bochner-Martinelli-Koppelman formula was proved by S. Bochner
[Boc 1], E. Martinelli [Mar 1] independently for functions (when ¢=0) and W.
Koppelman [Kop 1] for forms. Our proof is due to N. N. Tarkhanov [Tark 1].
The jump formula of the Bochner-Martinelli-Koppelman formula was proved in R.
Harvey and B. Lawson [HaLa 1] for continuous functions. For more discussion on
the Bochner-Martinelli-Koppelman formula, see the book by A. M. Kytmanov [Kyt
1].

The Hélder estimates for 9 in strongly pseudoconvex domains were proved in N.
Kerzman [Ker 1] using the integral solution operators for d constructed by Grauert
and Lieb [GrLi 1] and Henkin [Hen 2]. L? estimates were obtained by N. Kerzman
for ¢ = 1 and by N. @vrelid [Ovr 1]. Exact Hélder 1/2-estimates for 0 were proved
by G. M. Henkin and A. V. Romanov [HeRo 1] for (0, 1)-forms and by R. M. Range
and Y.-T. Siu [RaSi 1] for the general case. Sup-norm and Holder estimates for
derivatives of solution for d are obtained in Siu [Siu 1] and Lieb-Range [LiRa 1].
Holder estimates for @ on piecewise strongly pseudoconvex domains are discussed
in Michel-Perotti [MiPe 1], Polyakov [Poly 1], and Range-Siu [RaSi 1]. Optimal
Holder and LP estimates for  was proved by S. G. Krantz [Kra 1], where a theorem
similar to Theorem 11.3.9 was proved for 0. There are also many results on integral
kernels for 0 on weakly pseudoconvex domains (see Chaumat-Chollet [ChCh 1],
Michel [Mic 1], and Range [Ran 1,3,7,8]). We refer the reader to the books by G.
M. Henkin and J. Leiterer [HeLe 1], S. G. Krantz [Kra 2] and R. M. Range [Ran 6]
for more discussion and references on integral representations for 0.

The homotopy formula for J, on compact strictly pseudoconvex boundaries was
constructed by G. M. Henkin [Hen 3], A. V. Romanov [Rom 1] and H. Skoda [Sko
1] where Holder and LP estimates for 0 are obtained. Our proof of Theorem 11.3.9
was based on [Hen 3]. These estimates have also been obtained by a different
method by L. P. Rothschild and E. M. Stein [RoSt 1]. Using the estimates for 0y,
G. M. Henkin [Hen 3] and H. Skoda [Sko 1] have constructed holomorphic functions
in the Nevanlinna class with prescribed zeros in strongly pseudoconvex domains.
There is another proof of the Henkin-Skoda theorem using estimates for 0 directly
by R. Harvey and J. Polking [HaPo 1]. When the domain is a ball, this is treated
explicitly in the book of W. Rudin [Rud 2]. The Henkin-Skoda theorem has been
extended to finite type domains in C2 by D.-C. Chang, A. Nagel and E. M. Stein
[CNS 1] and for convex domains of finite type recently by J. Bruna, P. Charpentier
and Y. Dupain [BCD 1].

There are many results on the Holder and LP estimates for 9 and d, on convex
boundaries using kernel methods. In particular, Holder estimates for 9 on convex
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domains in C? and for complex ellipsoids in C" are proved by R. M. Range [Ran
3,8]. Range’s results have been generalized by J. Bruna and J. del Castillo [BrCa
1]. Hilbert integrals were used by J. Polking [Pol 1] to prove LP estimates for d on
convex domains in C2. Sharp Hélder estimates for 0 on real ellipsoids are obtained
in Diederich-Fornaess-Wiegerinck [DFW 1]. Hélder estimates for d on convex finite
type domains are proved in A. Cumenge [Cum 1](see also [DiFo 4] and [DFF 1] ).
Holder and LP estimates for 0, on the boundaries of real ellipsoids are proved in
M.-C. Shaw [Sha 4] (for related results for 9, see [CKM 1]). Holder estimates for
dp on convex boundaries in C? are proved in D. Wu [Wu 1].

J. E. Fornaess [For 4] first obtained the sup-norm estimates for d on certain
finite type domains in C? which are not convexible, including the Kohn-Nirenberg
domains [KoNi 3]. Using pseudodifferential operators, Holder estimates for 9 and
dp were obtained by C. Fefferman and J. J. Kohn in [FeKo 1] for finite type domains
in C? (see also [CNS 1]) and for domains in C" with diagonalizable Levi forms (see
Fefferman-Kohn-Machedon [FKM 1]). L estimates for 0, for finite type domains
in C? were obtained by M. Christ [Chr 1].

We also note that N. Sibony [Sib 1] has given an example to show that the sup-
norm estimates for 0 in general fail for smooth pseudoconvex domains of infinite
type. The example in [Sib 1] is not convex and is strongly pseudoconvex except
at one boundary point. It is still unknown if sup-norm estimates hold for 0 on
convex domains in C2. J. E. Fornaess and N. Sibony [FoSi 1] also showed that L?
estimates, 1 < p < 00, also do not hold in general for pseudoconvex domains in C?
with smooth boundaries except for p = 2.

The local homotopy formula discussed in Section 11.4 was derived in G. M.
Henkin [Hen 3]. This homotopy formula is useful in proving the embeddability of
abstract C'R structures (see the notes in Chapter 12). When g = n—2, A. Nagel and
J. P. Rosay [NaRo 1]) showed that there does not exist any homotopy formula for
Oy locally on a strictly convex hypersurface. The additional compatibility condition
(11.4.2 a) derived for ¢ = n — 2 was observed in M.-C. Shaw [Sha 7]. The example
given at the end of Section 11.4 was due to J. P. Rosay [Rosa 2].

The LP estimates for the local solution discussed in Section 11.5 was based on the
paper of M.-C. Shaw [Sha 3]. It is proved there that there does not exist any solution
operator which maps 0p-closed forms with L?, p < 2, coefficients to solutions with
L? coefficients. It is also proved in [Sha 3] that the closed range property in L? for
Oy is equivalent to the local embeddability of abstract strongly pseudoconvex C'R
structures. Lemma 11.5.5 was based on the work of D. H. Phong and E. M. Stein
[PhSt 1] on Hilbert integral operators. Theorem 11.5.1 is also true for p = oo (see
the paper by L. Ma and J. Michel [MaMi 1]).

The 9y-Neumann problem on strongly pseudoconvex C'R manifolds with bound-
aries follows the paper by M.-C. Shaw [Sha 5]. The 9,-Neumann problem with
weights was discussed earlier in M. Kuranishi [Kur 1] in order to prove the embed-
ding theorem for abstract C'R structures. The weight functions used in [Kur 1] are
singular in the interior. Boundary regularity for the Dirichlet problem for [, is
discussed by D. Jerison [Jer 1].

Solvability of J, on a weakly pseudoconvex C'R manifold near a point of finite
type is discussed in [Sha 6]. It is proved there that near a point of finite type,
there exists a neighborhood base ws such that Oy is solvable on ws with interior



313

Sobolev estimates. C'™ solvability for J, on weakly pseudoconvex manifolds with
flat boundaries were proved by J. Michel and M.-C. Shaw [MiSh 2] based on the
barrier functions constructed in [MiSh 3]. When the boundary is piecewise flat,
solvability for d, is discussed by J. Michel and M.-C. Shaw [MiSh 3,4]. Integral
kernels on a domain in a convex hypersurface with piecewise smooth boundary are
constructed by S. Vassiliadou in [Vas 1].

For integral formulas for @ on domains which are not pseudoconvex, we refer the
reader to the paper by W. Fischer and I. Lieb [FiLi 1] and the book by G. M. Henkin
and J. Leiterer [HeLe 2]. There are also results on the local solvability for J, when
the Levi form is not definite. For more discussion on the integral representation
for local solutions for 0, under condition Y(q), we refer the reader to the papers
by R. A. Airapetyan and G. M. Henkin [AiHe 1], A. Boggess [Bog 1], A. Boggess
and M.-C. Shaw [BoSh 1] and M.-C. Shaw [Sha 8,9]. The reader should consult the
book by A. Boggess [Bog 2] for more discussions on integral representations for 9,
and C'R manifolds.
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CHAPTER 12

EMBEDDABILITY OF ABSTRACT
CR STRUCTURES

The purpose of this chapter is to discuss the embeddability of a given abstract
CR structure. This includes local realization of any real analytic C'R structure. In
Section 12.2, using the subelliptic estimate for [, obtained in Chapter 8, global CR
embeddability into complex Euclidean space of any compact strongly pseudoconvex
CR manifold of real dimension 2n — 1 with n > 3 is proved. In Sections 12.4 and
12.5, we present three dimensional counterexamples to the CR embedding either
locally or globally.

12.1 Introduction

Let (M, T%%(M)) be a smooth CR manifold of real dimension 2n — 1, n > 2,
as defined in Section 7.1. If M is diffeomorphic to another manifold M; of equal
dimension via a map ¢, then clearly ¢ induces a CR structure o, (T*%(M)) on M.
Since the most natural CR structures are those induced from complex Euclidean
spaces on a smooth hypersurface, it is of fundamental importance to see whether
a given abstract CR structure T*°(M) on M can be CR embedded into some
CY or not. Namely, can one find a smooth embedding ¢ of M into CV so that
the induced C'R structure o, (TH%(M)) on ¢(M) coincides with the CR structure
THO(CN) N CT(p(M)) from the ambient space CV. More precisely, we make the
following definition:

Definition 12.1.1. Let (M,T%°(M)) be a CR manifold. A smooth mapping ¢
from M into CVN is called a CR embedding if

(1) ¢ is an embedding, namely, p is a one-to-one mapping and the Jacobian of
w is of full rank everywhere,
(2) @«(TVO(M)) = THO(CY) N CT(p(M)).

The C'R embedding problem could be formulated either locally or globally. The
following lemma shows that condition (2) in Definition 12.1.1 is equivalent to the
fact that each component ¢; of ¢ is a C'R function.

Lemma 12.1.2. Let (M,TY°(M)) be a CR manifold and let o = (p1, -+ ,on) be
a smooth embedding of M into CN. Then ¢ is a CR embedding if and only if p; is
a CR function for 1 < j < N.
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Proof;lf Y is a gR embedding, then for any type (0, 1) vector field L on M, we
have L(p;) = ¢.L(z;) =0 for 1 < j < N. Thus ¢; is a CR function. By reversing
the arguments we obtain the proof for the other direction.

To conclude this section, we prove that any real analytic C'R structure is locally
realizable. Let (M, T*9(M)) be a CR manifold of real dimension 2n — 1, n > 2,
and let p € M. Locally near p, a basis for T1°(M) can be described by

2n—1
0
(1211) Lj = E ajk(x)a—xk for ]:1, ,n—l,
k=1

and the integrability condition is then equivalent to

(12.1.2) [L;, Li] = Z bk (@

for all 1 < j,k < n —1. The real analyticity of the C'R structure means that the
coefficient functions a;i(x) defined in (12.1.1) are real analytic. The real analyticity
of the bjx,’s then follows.

Theorem 12.1.3. Any real analytic C R manifold (M, T*°(M)) of dimension 2n—
1 with n > 2 can locally be CR embedded as a hypersurface in C™.

Proof. We may assume that

0

(M) & TN (M
S ETHQD ST (M),

and that p is the origin. Choose a small neighborhood Uy of the origin in R2"~1,

and a € > 0 small enough so that, when the variable x5, 1 is complexified, i.e.,

replacing xo,_1 by x2,_1 + it, the power series of the real analytic functions that

are involved in the expressions of (12.1.1) and (12.1.2) converge on Uy x (—¢, €).
Define

2n—1

0
X = aig(T1,+ yTon_2,Top_1 +it)=— for 1<j<n-—1,
J ; jk( 1 2n—2,42n—1 )3$k
and 9 5
Xp=—+i—.
6$2n—1+lat

Then we have
X],Xk; ijkp L1yt ,$2n—2,x2n—1+it)Xpa

and
[X;,X,)=0 for 1<j<n-1



316 Embeddability of Abstract C R Structures

Hence, by the Newlander-Nirenberg theorem proved in Section 5.4, there is a com-
plex structure defined on Uy x (—¢,¢), and M is embedded as the hypersurface
{t = 0} in this complex structure. This completes the proof of the theorem.

One should note that a compact real analytic C R manifold of real dimension
2n — 1, in general, can not be globally CR embedded into CV for any N. A
counterexample will be provided in Section 12.4.

12.2 Boutet de Monvel’s Global Embeddability Theorem

Let (M, TY°(M)) be a compact strongly pseudoconvex C'R manifold of real di-
mension 2n — 1 with n > 2. Choose a purely imaginary vector field T defined
on M so that T), is complementary to T,°(M) & T3»'(M) at each point p € M.
Fix a Hermitian metric on CT(M) so that T*9(M), T®Y(M) and T are mutu-
ally orthogonal. Let S be the orthogonal projection, called the Szegd projection,
from L?(M) onto the closed subspace H(M), where H(M)={f € L?>(M)| O,f =
0 in the sense of distribution}. Denote by £79(M) the space of smooth (p, ¢)-forms
on M. Then we have the following global embeddability theorem of the C'R struc-
tures:

Theorem 12.2.1 (Boutet de Monvel). Let (M, T'°(M)) be a compact strongly
pseudoconvexr C R manifold of real dimension 2n—1 withn > 3. Then (M, T°(M))
can be globally CR embedded into C* for some k € N.

Theorem 12.2.1 will follow from the next theorem.

Theorem 12.2.2. Let (M, T"°(M)) be a compact strongly pseudoconvex CR man-
ifold of real dimension 2n — 1 with n > 2. Suppose that

(1) 9y : EXO(M) — E%L(M) has closed range in the C* topology, and that

(2) S maps C>®°(M) into C*>°(M) continuously in the C* topology.
Then (M, TY°(M)) can be globally CR embedded into complex Euclidean space.
Also, CR functions separate points on M.

Proof. The first step is to show that C'R functions separate points on M. By
assumption (2) we have the following orthogonal, topological direct sum decompo-
sition:

C™(M) = (Ker(S)NC>®(M)) & (Range(S) N C*°(M)).
Let the range of 9, on £%° be denoted by R which is a closed subspace of £%! in

the C'* topology. Since both Ker(S)NC*(M) and R are Fréchet spaces, the open
mapping theorem implies that the isomorphism

(12.2.1) Oy : Ker(S)NC>®(M) > R

and its inverse are continuous.
For each p € M we claim that there exists a ¢, € C*°(M) satisfying
(a) ¢p(p) =0 and Op¢ vanishes to infinite order at p,
(b) for some coordinate neighborhood system centered at p, we have

Re¢p(z) > c\x|2,
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in some neighborhood of p, where ¢ is a positive constant,
(c) Reg,(x) > 1 outside a small neighborhood of p on M.

Proof of the claim. If M is the boundary of a smooth bounded strongly pseudo-
convex domain D in C", and let r be a strictly plurisubharmonic defining function
for D, then we may take ¢(z) to be the Levi polynomial g,(z) at p in some small
neighborhood of p and extend it suitably to M to satisfy (c¢). Namely, define

op(2)

9p(2)
n a n
Z 37 Z 8zJ8zk 2j)(pr = 21),

J,k‘ 1

in a small open neighborhood of p. Using Taylor’s expansion, it is easily verified
that for z € M near p we have

Reg,(2) > ¢z — p|*.

Thus ¢, satisfies (b), and (c) is done by an appropriate extension to M. This proves
the claim for the embedded case.

If M is an abstract C'R manifold, we can first find functions 1, -, ¢, € C‘XL(M)
such that ¢;(p) = 0, dpi(p),--- ,dpn(p) are linearly independent at p and Jpp;
vanishes to infinite order at p for j = 1,--- ,n. Then

o=(p1," " ,n) : M —C"

is a smooth embedding of a small neighborhood of p on M into C™ with ¢(p) =0
and (M) is strongly pseudoconvex at the origin. Let go(z) be the Levi polynomial
for (M) defined at the origin, then the pullback ¢,(z) = gooy(z) is defined in some
small neighborhood of p and satisfies conditions (a) and (b) on a small coordinate
neighborhood. Condition (c) is satisfied by a suitable extension of ¢, to M. This
completes the proof of the claim.

Now if p,q € M with p # ¢, let ¢,(x) be the function satisfying (a), (b) and (c)
so that Re¢,(q) > 1. Consider the function

w=e ' for t>0.
Then u; € C°(M), us(p) = 1 and u(q) is close to 0 for large ¢ > 0. Write
up = S(ug) + (I — ) (ue).
Applying 9y to u; we obtain
Opuy = —te to» (5b¢p).

We claim that dyu; converges to zero in the C'*° topology as t — +oo. First we
note that any kth derivative of pu; can be written in the following form:

(12.2.2) Iy = £t/ DP By ) x (@),
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where x () is a smooth function on M and 1 < j < k+ 1, |8| < k. Hence, by (b),
(12.2.2) is bounded in some open neighborhood V; of p by

[I] < Cr(etle?)Y e - o~ D° Dy, (),

for some positive constant C, > 0. Given any € > 0, since dy¢, vanishes to infinite
order at p and (ct|z|?)?e=<!1*I" is uniformly bounded for all  and ¢ > 0, one may
choose a sufficiently small neighborhood V5 € V; so that |Ix| < € on V,. For x ¢ V3,
we have |z| > ¢ > 0 for some constant 0. Letting ¢ be sufficiently large, we see also
that |I)| < e for « ¢ V5. This proves the claim.

It follows that, by (12.2.1), (I —5)(u¢) also converges to zero in the C°° topology
and that the C'R function S(u;) for sufficiently large ¢ > 0 will separate p and g.

By the same reasoning as above, we see that the functions

hj = S(gpje_t¢p) for ] = 17 N2

for sufficiently large t > 0, satisfy

(1) Oyh? =0 for j =1,--- ,n, and

(2) cll_zl(p)7 -+« ,dh™(p) are linearly independent, and

(3) W (p)=0for j =1,---,n, if necessary, by a translation in C".

Hence, for each p € M, there exists an open neighborhood U, of p on M and
smooth CR functions hy,--- ,h? such that dhy(z),---, dh?(x) are linearly inde-
pendent for all z € U,,.

Now cover M by a finite number of such Up,, i =1,--- ,k, and let g1,--- , g5 be
the C'R functions that separate points a,b with distance d(a,b) > § > 0 for some
constant 0. Then set
F= (h’;llylv ,h;'l,h}lm,"' 7h2125"' 7h:jk7... 7hzlkagla" : 798)'

It is easily verified that F' is a global CR embedding of M into C™**5. The proof
of Theorem 12.2.2 is now complete.

We now return to the proof of Theorem 12.2.1.

Proof of Theorem 12.2.1. By the hypothesis of the theorem Condition Y (1) (see
Definition 8.3.3) holds on (M,T%°(M)) if the real dimension of M is at least

five. Hence, Corollary 8.4.11 shows that the range of J; on W(Oo,o)(M) is closed

in W(OO’I)(M) in the L? sense. The formula for the Szegd projection S,
S =1—-09,Nyd,

together with Theorem 8.4.14 shows that S maps C°°(M) continuously into itself
in the O topology. Theorem 8.4.14 also shows that the range of 9, on £%9(M)
is closed in £%(M) in the C* topology. It follows that conditions (1) and (2) in
Theorem 12.2.2 are established for any compact strongly pseudoconvex C'R manifold
(M, T%°(M)) of real dimension 2n — 1 with n > 3. This proves Theorem 12.2.1.
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12.3 Spherical Harmonics

In this section we will review the spherical harmonics in R™. For any & € NU {0},
denote by Py, the vector space of all homogeneous polynomials of degree k over the
complex number field. A basis for P, is given by all monomials {2} 4= of degree
k, and it is easily seen that the dimension dj, of Py over C is equal to

n+k—1\ (n+k-1)
d’“_( n—1 >_ (n— DIk

We define an inner product on Py, as follows. For any P(z) = >, _), aaz®, Q(z)
= _|a|=k baz®, the inner product between P(z) and Q(z) is defined by

(12.3.1) (P,Q) = Z aabaal.

|a|=k

If P(x) =) a,x® is any polynomial, set
«

8@
P(D) = -
D)= Yz
Then the inner product (12.3.1) can be realized as a differentiation
(12.3.2) (P,Q) = P(D)(Q(x)).

Lemma 12.3.1. For any P(x) € Pj, we can write

(12.3.3) P(z) = Po(z) + [z[*Pi(z) + - - + |2[* Pi(),

where each polynomial Pj(x) is homogeneous and harmonic of degree k — 2j for
0 < j <1 withl being the largest integer less than or equal to k/2.

Proof. We may assume that k > 2. Define a map Ay

AP —  Pr_o,
P(z)— AP(x),

where A is the classical Laplacian. The adjoint operator A} of Ay is then defined
by
(Q,AP) = (ALQ, P),

where P(z) € P and Q(z) € Pr—2. A direct computation shows that
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This implies that
2
Ay Q(z) = [2[°Q(x).

It follows that A} is one-to-one, and the following decomposition holds:
Pr ~ KerAy @ RangeAJ.
Hence for any P(z) € Py, we can write P(x) as
P(z) = Py(x) + [2[*Q(z),
where Py(z) is a homogeneous harmonic polynomial of degree k and Q(z) € Pr—_a.

The proof of the lemma is then completed by an induction argument.

Lemma 12.3.1 shows that the restriction of any polynomial P(x) to the unit
sphere S”~! in R™ is given by a sum of restrictions of homogeneous harmonic
polynomials to S"1.

Definition 12.3.2. Denote by SHy the space of the restrictions to the unit sphere
S™=1 of all homogeneous harmonic polynomials of degree k, i.e., SHy, = HPx|gn-1,
where HPy, = KerAy.

The restriction is clearly an isomorphism from HPy onto SHj, and

dimSH, = dimH Py,
=dp — dg—2
_(n+k-1 _ n+k—3
N n—1 n—1 )’
for k£ > 2. In particular, dimSHy = 1 and dimSH;, = n.
The elements in HPj, are called solid spherical harmonics and the elements in
SHj, are called surface spherical harmonics, or simply spherical harmonics. As

an easy consequence of the Stone-Weierstrass theorem, we obtain the following
proposition:

Proposition 12.3.3. The finite linear combination of elements in U2 SHy is
uniformly dense in C(S™~1Y), and L* dense in L?(S"7!, do).
Proposition 12.3.4. If YY) € SH; and Y®) € SH), with j # k, then
/ YO (/)Y ® (@) do(a') = 0.
Sn—1

Proof. The proof will rely on the following two facts:
(i) (Green’s identity) Let D be a bounded domain with C? boundary. If f,g €

C?(D), we have
dg  Of _
/6D< Bn_g@n) dU—/D(ng—gAf) av,
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where 9/0n is the unit outward normal derivative on the boundary 9D.

(ii) If f € C*(B,,) and is harmonic on B, then

of
. % do = 0.

Here B,, denotes the unit ball in R™.

For z € R", write z = ra’ with r = 2] and |2/| = 1. If Y € SH; and
Y*) € SHy, define
uj(z) = 2P YD (@) = YD (@),

and
ug(z) = |z|FY B (&) = rFy B (2.

Case (I). If one of j or k is zero, say, j = 0, then u;(z) = ¢, a constant, and

2 /_gk(k)/_(k)/
8nuk($)76r(ry (") = kYW ().

Thus, by fact (i) we have

C

/S YO ()Y ® (z') do = . /SH %(x') do = 0.

Case (II). If both j and k are nonzero with j # k, then

; ou Ou;
_ D (VY ® (5 - Rl B )
(k ])/Snf1 YV ("YYW (2") do /Swl (uj 5, Uk 8n> do

= / (ujAup — upAuy) dV

n

0.

This completes the proof of the proposition.

Let L?(S™"! do) be equipped with the usual inner product. For each k €

N U {0}, let {Yl(k)7 e ,ngfk)} be an orthonormal basis for SHj, where my = dj, —
di_o. It follows from Proposition 12.3.3 that

Jyv® oy
kgo{yl 9 Y }

» fmy

forms a complete orthonormal basis for L?(S"~1, do). Hence, for f € L*(S"~!,do),
we have a unique representation

f= i y (k)
k=0
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such that the series converges to f in the L? norm, and Y (*¥) € SH}, can be expressed
in terms of the Fourier coefficients

g: y®) y y(k)

When n = 2, we have dp — dp_o = 2 for all & > 2. It is easily seen that
HPy, = {z*,Z"}. This implies, by normalization,

EANEIERER.)

is a complete orthonormal basis for L?(S*).

12.4 Rossi’s Global Nonembeddability Example

We shall present in this section a compact real analytic three dimensional C'R
manifold which can not be globally CR embedded into C" for any dimension n.
In view of Theorem 12.1.3 one sees that the nature of global embedding of a CR
structure is quite different from that of local embedding. Global properties of the
CR structure should be taken into account in the set up of the global embedding
problem.

Let S% = {(21,22) € C?| |21]? + |22]*> = 1} be the boundary of the unit ball in
C2, and let the induced C'R structure T*°(S?) be generated by L = z5(0/921) —
21(0/022). Thus, (S, T1°(S3)) forms a compact strongly pseudoconvex C'R man-
ifold of real dimension three. For each ¢ € R, |t| < 1, define a new CR structure
T;°(53) on S3 by letting T;"(S®) be generated by the vector field Ly = L + tL.
If t = 0, T, °(S3) coincides with the induced standard CR structure T%(S3). Tt
is easily verified that for |t| < 1, (S, T}"(S?)) is a compact real analytic strongly
pseudoconvex C'R manifold of real dlmensmn three.

The next theorem shows that any L? integrable C'R function f on S® with respect
to the CR structure (S3,7}°%(53)) for 0 < || < 1 must be even. Obviously, this
implies that, for 0 < [t| < 1, (S3, T}*°(53)) can not be globally CR embedded into
any C".

Theorem 12.4.1. Any L? integrable CR function f(z) on S3 with respect to the
CR structure T}°(S3), 0 < |t| < 1, is even, i.c., f(z) = f(—2).

Proof. Notice first that we can decompose the space of homogeneous harmonic
polynomials of degree k as follows.

HPy= @® HPPY,

p+q=k

where HP}? denotes the space of all homogeneous harmonic polynomials of degree

k that can be expressed as a linear combination of terms 2*z” with |a| = p, |3| = ¢
and p + ¢ = k. We set SHYY = HPY?| g5, then we have

SHr= & SHpq

p+q=k
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If h is a harmonic function on C2, then a simple computation shows that both
Lh and Lh are also harmonic on C?. It follows that

L(SHPY) ¢ SHYhat

and B
L(SHYY) ¢ SHEHhe!,

Thus, if f(2) is a square integrable C'R function on S® with respect to the CR
structure T"°($3) for 0 < |t| < 1, according to Proposition 12.3.3, there is a unique
representation

1) =3 (),
m>0
where f,,(2) € SH,, and the series converges to f in the L norm. Since L;f(z) = 0

in the distribution sense on S3, we obtain L;f,,(2) = 0 on S® for all m > 0. For
m = 2k 4+ 1, we can write

for+1 = for+1,0 + fow1 + -+ for b + foe+r + -+ froe + fo2k+1,

where f,, € SHp,. Here we have identified f, , with its preimage in HP}Y,.

Since Ly for41(2) = 0 on S?, we obtain
ffgk’l(z) =0 on SS.

Hence, for1(2) is a real analytic CR function on S*. By Theorem 3.2.2, foy 1]s3
extends smoothly to a holomorphic function Fyy1(z) defined on Bz. Then, by
harmonicity of far 1(2) and the maximum modulus principle, we obtain for 1(2) =
Fyi.1(2) on Ba. It follows that foy 1(2) is holomorphic on C? and that no z terms
appear in for 1(2). This implies that far1(z) = 0 on C2.

Similarly, we obtain fi 2x(2) = 0 on C2. Inductively, one can show

for—23(2) = for—a5(2) =+ = faok-1(2) = fo2m+1(2) =0,
and

f32k-2(2) = fsok-a(2) = -+ = far—12(2) = far+1,0(2) =0.
Therefore, f,,,(z) =0 for all odd indices m, and f(z) must be even. This completes
the proof of the theorem.

Theorem 12.4.1 indicates that a three dimensional compact strongly pseudocon-
vex C'R manifold in general can not be globally CR embedded into a complex
Euclidean space. However, we shall show now for any 0 < [t| < 1, (3, T}°(5?))
can always be CR immersed into C3.

We have seen that the only possible solutions to the L; equation on (S3,T;*(53))
are the even functions. By reasoning similarly, one can show that for k even, if
u € SHy, such that Lyu = 0 and ug,0 = 0, then u = 0. It follows that the space of
solutions of L;(u) = 0 in SH is of dimension three which is spanned by

p)
X = %(z? + 22 +t(Z12 + 227)),

2
Y = g(—zf + 22 + (7,2 — Z22)),

Z = \/5(212’2 — t?lfg).
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A direct computation shows that

(12.4.1) X2 +Y? 4+ 7% = -2,
and
(12.4.2) IXP+ Y+ |27 =1+

For each fixed t, 0 < |t| < 1, equation (12.4.1) defines a two dimensional complex
submanifold M, in C3. We claim that the map

7 (83, 1710(8%) — M, c C3

(12.4.3) 2= (21,22) — (X(2),Y(2), Z(2))

is a two-to-one C'R immersion.

Proof of the claim. First we show that 7 is two-to-one. If z = (21, 22), w = (w1, w2)
are two points on S? such that 7(z) = 7(w), then we have

(12.4.4) 22 4 22 +t(Z3 4 22) = wi + Wl + t(wr + W),
(12.4.5) — 2 4 22+ t(F —73) = —wi + ws + t(wh — W),
and

(1246) 2129 — tZ129 = wiwe — tW1W2.

From (12.4.4) and (12.4.5) we obtain

t2(wf — 27) = wi — 1.
Hence, w; = 2. If wy = z; and wy = 29, then w = z. Otherwise, we have w; = 21
and wy = —2z2. From (12.4.6) this implies

2129 —tZ122 = 0.

Hence, z129 = 0. If 23 = 0 and 29 # 0, then w = —z. If 2; # 0 and 2z, = 0, then
w = z. Similarly, if wy = —z;, we have either w = —z or w = 2. Thus, 7 is a
two-to-one mapping.

Next we show that the Jacobian of 7 is of full rank at each point z € S3. Since
CT(S®) is spanned by L;, L; and Ly — Lo, where Ly = 21(0/021) + 22(0/022),
it suffices to show that the images . (L;), 7.(L;) and m,(Lo — L) are linearly
independent for each point z € S3.

Let w = (w1, ws,ws3) be the coordinates for C3. Suppose that we have

(12.4.7) ary(Ly) + by (Ly) + ey (La — Ly) = 0.
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Case (i). For |z1]| # |22|, we apply dws and dws respectively to (12.4.7) to get

(12.4.8) —a(l —t3)(21Z0 + Z122) + (=23 + 25 + t(—Z3 +73)) = 0,
and
(12.4.9) a(l —2) (|22 = |21]%) + c(22120 + t(221%2)) = 0.

A direct calculation shows the determinant of the coefficient matrix given by (12.4.8)
and (12.4.9) is

~(1 =)l + 12+ B) +1(F + )

= (=) +B)+ 13 + )

£ 0.
It follows that a = ¢ = 0, and hence b = 0.

Case (ii). For zp = €2 # 0 with 0 # 7/2,37/2, we obtain similarly from Case
(i) that a = ¢ = 0. Then by applying dw, to (12.4.7) we get
0= b(l — t2)(2’1§2 +§12§2)
=b(1 —1?)|z1]? (" + 7).

Hence, we have b = 0.
Case (iii). For zo = +iz; # 0, we have

dwy (m.(Ly)) = a(£2v2)(1 — t3)|z1 2 = 0,
dwy (7. (Ly)) = b(£2V2)(1 — t3)|z1]2 = 0,
dws(m,(Ly — Ly)) = e(£2v/2i) (22 — t22) = 0.

Thus, a = b = ¢ = 0. It shows that 7 is a two-to-one C'R immersion of ($3, T,"?(S3))
into M, in C3.

12.5 Nirenberg’s Local Nonembeddability Example

In this section we shall construct strongly pseudoconvex CR structures which
are not locally embeddable.
As in Section 7.3, the following notation will be used: The Siegel upper half space
Qy in C? is defined by
0 = {(z,w) € €| 5 > |2},

where z = x 4+ iy and w = t + is. The boundary of 5 will be denoted by M, and
will be identified with the Heisenberg group Hsy via the mapping

(12.5.1) 7 (2t +1i)2)?) = (2,1).
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Hence, the tangential Cauchy-Riemann operator on M is generated by

- 0 0
12.5.2 L=——2iz—
(12:52) oz “Cow
and the corresponding Lewy operator on Hy is

- 0 0
12.5. Z=— —iz—.
(12:5.3) oz ot

We start working on Hy = C x R with coordinates given by (x,y,t). Construct a
sequence of disjoint closed discs Dy on the zt-plane with centers (1/k,0,1/k). The
radii of these discs are chosen to be so small that D; N D; = () if ¢ # j, and that
D; has no intersection with the t-axis for all j. Denote by Cj, the boundary of Dy,
and by Dy, the interior of Dj,. Then denote by T}, the open solid torus obtained by
sweeping Dy, around the t-axis. The topological boundary of T} is denoted by Sk
which is given by sweeping Cj around the t-axis.

Now lift these objects from Hy via the mapping 7 to M, namely, set

ék = Wﬁl(ck), gk = Wﬁl(sk) and Tk = ﬂil(Tk).

Next, let P be the projection from C? onto the second component, i.e., P(z,w) =
(0,w), and set ) ) .
C,. = P(Cx), Si, = P(Sk) and T}, = P(Ty).

It is then easily seen that {C} = S}.} is a sequence of disjoint simple closed curves
in the first quadrant of the w-plane converging to the origin, and 7}, is exactly the
open region bounded by Cj.. Obviously, we have the following lemma:

Lemma 12.5.1. P(M \ U2, T}) is a connected subset of {w € C| s > 0} which
contains the t-axis.

For any function f: Hy — C, let f be the lifting of f to M, namely, f = forL.
Hence f is a CR function on M, i.e., Lf =0 on M, if and only if Zf = 0 on Hs.
Then we have

Lemma 12.5.2. Let f: M — C be a C* function.
(1) If Tf = 0 on an open subset V of M, then the function

F(w)z/lﬂ()fdz

is holomorphic on {w € C| I'(w) C V'}, where I'(w) = M N P~Y(w).
(2) If Lf =0 on M\ UX, Ty, and T'(w) C M \ U2, Ty, then

f dz = 0.
I'(w)

(3) IfLf =0 on M\U,;";lfk, then for each k > 1, we have

//fdzAdw:O.

Sk
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Proof. For (1), notice that f is a C'R function of class C''. Hence, f can be extended
to a C function, denoted also by f, in an ambient neighborhood so that D f exists
and is continuous on V and Jf vanishes on V. Also, the circle

D(w=t+is)={(z,t +1is)| s = |2|*}
can be parameterized by z = /s¢?,0 < # < 2. Then, we have

%F(w):i fdz

The assertion in (2) follows now from (1). First, F(w) is holomorphic on the
interior of the set D = {w € C| T(w) € M \ U Ty} and continuous up to the
boundary of D. Observe that I'(w) degenerates to just a point on the ¢-axis, this
implies F'(w) = 0 on the t-axis, and hence F(w) =0 on D.

For (3), we parameterize C}, by w(¢) for 0 < ¢ < 2m. Then Sy is parameter-
ized by (2(¢,0),w(¢)) = (/Imw(¢)e? w(¢)), and using the fact that T'(w(¢)) C

M\ U2 T, we obtain

N 27 27 _ dw az
[/f dz/\alw:/O ; f(z,w)%% dfd¢
Sk
27 27 N az dw
=] ([ e @)
27 5 dw
=[] Te)G e
I'(w(4))
=0.

This completes the proof of Lemma 12.5.2.
Lemma 12.5.3. Let D be a domain with C' boundary on M. Iff :D—Cisa

C' function, then
//f dz A dw = 2¢///(Zf) dtdzdy,

bD D
where L is defined in (12.5.2).
Proof. Notice that on M, w = t + i|z|?. Hence,

dw = dt +1zdz + 1zdz.
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Then, by Stokes’ theorem we have

[D/fdz/\dw:///df/\dz/\dw
///< LIz +dw>/\dz/\dw

///<+2zza£> dt Ndz A dz
=2i / é / (Lf) dtdxdy.

The proof of Lemma 12.5.3 is thus completed.

Now let g be a smooth function on Hy with support contained in U2, T such
that g is positive on U327} and vanishes to infinite order at the origin. Deﬁne the
operator Z on Hs by

0
12.5.4 Z,=2Z
( 5 ) g +g(9t

There exists a neighborhood U of the origin such that Z, and 79 are linearly
independent and (U, Z,) defines a strongly pseudoconvex CR structure on U. The
next theorem shows that (U, Z;) can not be realized as a three dimensional CR
submanifold of C” for any n > 2.

Theorem 12.5.4 (Nirenberg). Let Z, be defined as in (12.5.4). Suppose that
fi and f2 are two C functions on Hy such that Z,f1 = Z,f2 = 0 on U. Then
dfi Adfa = 0 at the origin. In particular, the CR structure (U, Z,) is not embeddable.

Proof. The corresponding vector field of Z, on M is given by

_ — 0
L = L ~7.
s =Lt 95
It follows that .
Lgfl = Lng =0

on 7r_~1(U). Hence, by the construction of g, Lf; = _g(afl/at) vanishes on M \
U2 T. Lemma 12.5.2 then implies that for all £ > 1,

O—//fl dz/\dw72z/// Lf1) dtdzdy
:—2@/// dtdzdy.
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Since § is positive on Ty, each of the functions Re(df1/0t) and Im(df; /Ot) must
vanish at some point in T}, for all k. Equivalently, both Re(df,/dt) and Im(d f1 /dt)
vanish at some point in T} for all k. Hence, (0f1/0t)(0) = 0. The fact that f; is
a CR function with respect to the CR structure (U, Z,;) implies (0f1/0%)(0) = 0.
Thus, we obtain

_ofh

df1(0) = E(O)dz\o.

A similar argument also holds for fo. Therefore, df(0) and df2(0) are always linearly
dependent for any two C'R functions f; and f, of class C! on Hy. This proves the
theorem.

We now extend the local nonembeddability example to higher dimensions. Let M
be a smooth nondegenerate C'R manifold in C"*!, n > 2, with signature n — 2 near
a point p, namely, the Levi form at p € M has either n — 1 negative eigenvalues and
one positive eigenvalue or n — 1 positive eigenvalues and one negative eigenvalue.
We may assume p is the origin. Let r(2) be a local defining function for M. As in
the proof of Theorem 3.3.2 we may write

r(2) =Imzo + ) euzize + O NIt + 7 + (', 1))
Jk=1

in local coordinates z = (2’ z,4+1), where z,+1 = t + is. Another linear change of
coordinates will turn the defining function r(z) locally to the form

(12.5.5) r(z) =s—lal+>_ |z - ¥(,7,1),
j=2

where W (2,7, t) = O(|2'||t] + [t|* + |(#/,t)|®). Then we show that a small pertur-
bation of the induced C'R structure will in general yield a nonembeddable new CR
structure on M.

Theorem 12.5.5 (Jacobowitz-Treves). Let M be the nondegenerate CR mani-
fold with signature n — 2 defined locally near the origin in C" ™t by (12.5.5). Then
there exists a new nonembeddable CR structure on M which agrees with the induced
CR structure CT(M) N TH0(C™*1) to infinite order at the origin.

Proof. We shall identify M locally with an open subset U containing the origin in
C™ x R via the map
Tt ig(2, 7)) — (2,8),

where
n
(12.5.6) o(2, 7 ) = |z = ) |51* + (2,7, 1),
=2
It is easily verified that type (0, 1) vector fields on M are spanned by

0 ., _9
J_GEJ- jBEnH’

l
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where
owv ov
z21+ 55 _Zj+8z,->
A =2 —3L and \; =2 ——=2L forj=2,---,n.
' (Hz‘%‘f) ’ ( 1+idr /

It follows that the corresponding embeddable C'R structure on U is spanned by

— 0 0
12.5.8 Zi=——iXi=—, j=1,---,m,
(12.5.8) 1=z o "
where ) .
2+ & -2+ 5=
M=— and A\j=—-—7"2 forj=2---,n.
SRR ENT T 7

To get a nonembeddable CR structure we shall perturb the induced C'R structure
on U. Let h be any smooth function in z,41 with support contained in {t + is €
C| |t| < s}. Note that A must vanish to infinite order at the origin. We set w =
t+ip(z',Z,t), the restriction of 2,11 to M, where ¢(2',Z',t) is defined in (12.5.6).
Then, the composition function ko w is supported in {(2',t) € U] |t| < ¢(2',7Z',t)}.
Define

h ~
(12.5.9) g:% and A\ =X(1+g) forj=1,---,n,
2158 — how
and set
- 0 ~ 0 = 0
We claim that Z,1, -+, Z,, defines a new CR structure on an open neigh-
borhood, denoted still by U, containing the origin in C" x R which agrees with
Z1,--+ ,Zy to infinite order at the origin. We shall show that
(1) [Zgj, Zgx) =0 for 1 < j,k <n, and

(2) the coefficients of Z,; are smooth and agree with those of Z; to infinite
order at the origin.

Proof of the claim. Since the problem is purely local, we may assume that by
shrinking the domain, if necessary, the open set U is sufficiently small,

U ={(,t) €C" xR| |ar| +|2"| + [t] < &},

for some sufficiently small € > 0, where 2" = (22, , zp,).

First, we show that the function g is well defined and smooth. The constant ¢
that appears below may be different at each occurrence. We estimate the function
w =t +1is with s = ¢(2',Z/,t) as follows:

s < o = 2"+ cllzalft] + |27 [[t] + [¢%) + el + 277 + [¢]?)
<@+l = (1 =" + ez + [t +[2"[]])
< (1+e+o)|z | + 2celt].
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Since |t| < s, we obtain if € is sufficiently small,
s < c\zl|2,

and
lw| < ¢z ?,

on the support of h o w.

Since h = O(Jw|*) for any k € N, we have z; # 0 if how # 0. Noting that
(Ow/0ot) = O(1), we see that the denominator of g is never zero if how # 0. Hence,
we get g = O(|z1)7|w|¥) for any j, k € N which in turn implies that g is smooth and
vanishes to infinite order at the origin. This proves (2).

To prove (1) we note that

(Z;,Z] =0, forl<jk<n.
Hence, a direct calculation shows that
— = = O\, = O 0
o Zurl = {3 (<2000 + B+ ) -0 (-0 + B+ ) |5
Thus, for the integrability of the new C'R structure it suffices to show that

— O\ .
Z](g):/\]Ailaitj(g+g2)7 ]:15"'7”’5

for some function A independent of j. Since Z;w =0 for j =1,--- ,n, we get
— (Ow O\ Ow
Zi|l — ) =i~ —.
i ( a:s) ot ot

ij = Zj (w + W) = 72i>\j,

Note that

hence,

Zj(how) = (g:} o w)Zj(w) = —2i\; (gZ o w)

It follows that

— - how
7= —
](g) J(Zla'%)_how)

0
B f2i)\j(% ow) B (how)fj(zl%—lt” —how)
zla—'f—how (z;ﬁ%”—how)2
O\
:/\jA—ZaftJ(g+92),
where oh
A=—2i(14g)—2m "
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is independent of j. This proves (1), and hence the claim.

Thus, we have shown that, for each smooth function A in 2,41 with support
contained in {t+1is € C| |t| < s}, Equations (12.5.9) and (12.5.10) define a new CR
structure on U. With an appropriate choice of h, we shall show that this new CR
structure is not realizable locally near the origin. Let f be a C'R function of class
C' with respect to the new C'R structure, namely, Zgjf =0forj=1,---,n. In
particular, we have

(12.5.11) Zgf =0.

We may set 2’ = (22, ,2,) = 0 in (12.5.11), and reduces the problem to the
case when n = 1. Obviously, we have Zjw = 0 for w = t + i(|21]* + ¥(21,%1,1))
with W = O(|z1||t] + |t|> + |(21,t)]*). Then, as in the three dimensional local
nonembeddability example we study the intersection of M; = M|,»—¢ with the
complex line 2,41 = p. Writing ¢ = a + i3, this intersection is given by

D(u) = P~ () N My = {(z1,p)| B = |z21]* + ¥ (21,71, )},

where P(z1, zn41) = (0, 2,11) is the projection from C? onto the second component.
Then we have

Lemma 12.5.6. In the p-plane there is a smooth curve v given by = B(«) such
that

(1) for B < B(a), M(a+ifB) =0,

(2) for B = p(a), T'(a+1iB) is a point which varies smoothly in c,

(3) for B> B(a), (e +iB) is a simple closed curve which varies smoothly in
L

Proof. Let z1 = x + iy, we write

F(x,y,a) - |Zl|2 + \11(21721,04)
=2 +y* + U(z,y,a).

Since W vanishes at the origin to the order at least two, it is easily seen that for
each fixed o the minimum of F occurs at a point (z(«), y(a)) which varies smoothly
with a. Set B(a) = F(z(«),y(a), ). This proves (1) and (2). For (3), we write

F(x,y,a) :B(Oz)+Q(x,y,a)+ y

where @ is a positive definite quadratic in 21 = 2 — z(«) and y; = y —y(«a). It
follows that if 3 > (), then the level sets 5 = F are smooth simple closed curves
which vary smoothly with o and (. This completes the proof of Lemma 12.5.6.

Note that {¢t +is € C| [t] < s and s > ((¢)} is an open subset in the z,11-plane
with piecewise smooth boundary passing through the origin. Therefore, as in the
three dimensional local nonembeddability example one may construct a sequence
of disjoint open discs T}, in this open set which converges to the origin, and let T}
be the corresponding solid open topological torus 7(I'(Z7)) in U. Now let h be a
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smooth nonnegative function in the z,,1-plane with support contained in Uz"ﬂT;
such that h is positive on U3 ; T}. Define g by (12.5.9), and let the new C'R structure
be defined by (12.5.10). Obviously, when restricted to {z” = 0}, g is supported in
U2 Tk. Thus, it follows from the same arguments that Lemma 12.5.2 and 12.5.3
hold in this setting. Hence, for any solution f of class C! to Zgjf =0,1<353<n,

we have
[ rda=o,
m(T(1))

provided that p ¢ U2, T}, and

(12.5.12) (Z1f) dzdydt = 0.
i

Since Z1 f = i\1g(0f/0t) on Ty, we get

(12.5.13) ///Alg% dzxdydt = 0.
Tk

On Ty, the previous estimate shows that both A\; and z; (Ow/0t) — h o w are given
by 21 + O(|z1]?). Thus, (12.5.13) becomes

how (9f
0= O dxdydt
/// a+ 0P 50y ar

_ ///(1 +O(|]) (ho w)%{ drdyd.
Ty

Equation (12.5.14) holds for all k. Hence, we must have (0f/0t)(0) = 0. Since f
is a CR function of class C' with respect to this new C'R structure, we conclude
that (0f/0z1)(0) = --- = (0f/0%,)(0) = 0. This implies df (0) = (0f/021)(0)dz1 +

+ (0f/02,)(0)dz,. Obviously, this new C'R structure locally can not be CR
embedded into CV for any N > n + 1. This proves Theorem 12.5.5.

(12.5.14)

NOTES

Boutet de Monvel’s global embeddability theorem 12.2.1 for compact strongly
pseudoconvex C'R manifolds with dimension at least five is proved in [BdM 1]. Our
presentation here follows that of J. J. Kohn [Koh 7]. Based on the ideas of Boutet
de Monvel the formulation of Theorem 12.2.2 for n = 2 can be found in [Bur 1]. For
more details concerning various properties of the spherical harmonics the reader is
referred to [StWe 1].

The nonembeddable compact strongly pseudoconvex C'R manifold (53,7} °(53))
of dimension three for 0 < |t| < 1 is due to H. Rossi [Ros 1]. We proved in
Section 12.4 that Rossi’s nonembeddable example can be C'R immersed into a two
dimensional complex submanifold M; sitting in C3. The image of (S3,T;°(5%)),
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0 < |t| < 1, under the map 7 defined by (12.4.3) is precisely described by (12.4.1)
and (12.4.2). In particular, the image bounds a relatively compact domain ; in
M. Thus, by combining a theorem proved by L. Boutet de Monvel and J. Sjostrand
in [BAS;j 1], one can show that the Szegd projection S on (S3,7;°(S%)) must map
C>(S?) into C°°(S3) continuously in the C*° topology (see also [Bur 1]). It follows
from Kohn’s work [Koh 10] that the nonclosedness of the range of 3, on L?(S®) in the
L? sense is the only obstruction to the global C'R embeddability of (S3,T°(5?)).

The three dimensional local nonembeddable strongly pseudoconvex C'R structure
was discovered by L. Nirenberg [Nir 4]. Theorem 12.5.5 which generalizes Niren-
berg’s local nonembeddability example to higher dimension is due to H. Jacobowitz
and F. Treves [JaTr 1].

The local C'R embedding problem for a strongly pseudoconvex C'R manifold of
dimension 2n—1 with n > 3 is more complicated. M. Kuranishi showed in [Kur 1,2,3]
that if n > 5, the answer is affirmative. Later, it was proved by T. Akahori [Aka 1]
that the theorem remains true for n = 4. By employing Henkin’s homotopy formula
proved in Theorem 11.4.1 and using interior estimates of the solution operator, S.
Webster presents in [Web 2,3] a simplified proof of the theorem for the cases n > 4
(see also [MaMi 2]). The remaining case n = 3 is still open. When the Levi form has
mixed signature, C R embedding problems are discussed in [Cat 5]. Local homotopy
formulas for 9, on C'R manifolds with mixed Levi signatures have been obtained in
[Sha 8,9] and [Tre 5].
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APPENDIX

A. Sobolev Spaces

We include a short summary of the basic properties of the Sobolev spaces for the
convenience of the reader. Our goal is to give precise definitions and statements of
all theorems or lemmas about the Sobolev spaces which have been used in this book.
Since most of the results are well-known and due to the vast amount of literature
on this subject, we will provide very few proofs.

Let f € LY(RYN), the Fourier transform f of f is defined by

(1 fo) = [ e o
RN
where z- & = 377 2;¢;. The estimate
I f llos <1 llze

is clear from the definition. We now list some basic properties of the Fourier trans-
form whose proofs are left to the reader or can be found in any standard text. For
instance, see Stein-Weiss [StWe 1].

Theorem A.1 (Riemann-Lebesgue). Suppose that f € L'(RN), then f(€) €
Cy, where Cy denotes the space of continuous functions on RN that vanish at infin-
ity.

Theorem A.2 (Fourier Inversion). Suppose that f € L*(RN) and that f(£) €
LYRYN). Then

f(z) = (2m)~N /IRN e"”ff(g) d¢, a.e.

In other words, f(x) can be redefined on a Lebesgue measure zero set so that f(x) €
Cy.

Theorem A.3 (Uniqueness). If f € L'(RY) and f({) =0 for all ¢ € RN, then
f(z) =0 almost everywhere.

Denote by S the Schwartz space of rapidly decreasing smooth functions on RY
i.e., S consists of all smooth functions f on RY with

sup 27D f(x)] < oo,
]RN

for all multiindices a, 5, where a = (a1, -+ ,an), z* = 7" - -z} and D* =
Dgr .- DN, each «; is a nonnegative integer. Obviously, any smooth function
with compact support belongs to S and we have the following formulas:

(D7) (€) = (i)~ f(6).

(1.2) i
Df(&) = ((—iz)*f)(&)-
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Theorem A.4. The Fourier transform is an isomorphism from S onto itself.

Since L*(RY) ¢ L'(RY), the Fourier transform defined by (1.1) in general cannot
be applied to L? functions directly. Using the following fundamental theorem of the
Fourier transform, one can extend the definition to L? functions easily:

Theorem A.5 (Plancherel’s Theorem). The Fourier transform can be extended
to be an automorphism of L*>(RN) with

(1.3) I fI2= @oN | fI?  forall f € L*RY).

FEquation (1.3) is called the Parseval’s identity.

We collect a few results about the Sobolev spaces. For a detailed treatment
of the Sobolev spaces W#(Q2) for any real s, we refer the reader to Chapter 1 in
Lions-Magenes [LiMa 1] for smooth domains or to Grisvard [Gri 1] for nonsmooth
domains.

We first define the Sobolev spaces in RY. Let

p(D) = Z aaD”

|a|]<m
be a differential operator of order m with constant coefficients. Then, by (1.2), it

is easy to see that for any f € S,

— ~

(1.4) (p(D)f)(€) = p(i§) £ (£)-

Here, the polynomial p(i€) is obtained by replacing the operator D in p(D) by €.
For any s € R, we define A* : § — S by

(271)1\1 /RN (L € a(g) de.

(1.5) ANu(z) =

Set o(A®%) = (14 |€2)%/2. o(A®) is called the symbol of A°. Define the scalar
product (u,v)s on § x S by

(u,v)s = (A’u, A°v)
and the norm
luls =+ (u,u)s forues.

The Sobolev space H?®(RY) is the completion of & under the norm defined above. In
particular, L>(RY) = H°(R™). The Sobolev norms || || =g~ for any u € C5°(RY)
is given by

(1.6 ey = [+ Py late)Pde.

Next, we define the Sobolev spaces for domains in RV . Let Q cC RY be a domain
with C* boundary, k = 1,2,---. By this we mean that there exists a real-valued
C* function p defined in RY such that Q = {z € R¥|p(z) < 0} and [Vp| # 0 on bS).
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The implicit function theorem shows that locally, b2 can always be expressed as a
graph of a C* function. If the boundary can be expressed locally as the graph of a
Lipschitz function, then it is called a Lipschitz domain or a domain with Lipschitz
boundary.

For any domain © in RV, let H*(Q), s > 0, be defined as the space of the
restriction of all functions u € H*(RY) to Q. We define the norm of H*(2) by

1.7 s(Q) = inf U .
(17) Y PRTSEI  a [ E

Ulo=u

When s is a positive integer, there is another way to define the Sobolev spaces
by weak derivatives. For any domain Q C RY, we define W*(f2) to be the space of
all the distributions u in L?(£2) such that

D%u € LQ(Q)7 lo] < s,

where « is a multiindex and |a| = a1 + -+ + ay. We define the norm || [|y=(q) by

(1.8) | (e oy = Z | D% [y < oo
la|<s

The space C>°(£2) denotes the space of functions which are restrictions of func-
tions in C>°(RY) to Q. If Q) is a bounded Lipschitz domain, then C> (1) is dense in
W#(£2) in the W* () norm (see Theorem 1.4.2.1 in Grisvard [Gri 1]). Thus W#()
can also be defined as the completion of the functions of C°°(Q) under the norm
(1.8) when € has Lipschitz boundary.

When Q = RY, we have H*(RY) = W*(R") for any positive integer s. This
follows from Plancherel’s theorem and the inequality

Sy Eersarirr<e Y P,

lal<s lal<s

where C' > 0.
Obviously for any bounded domain 2, we have H*(Q) C W*(Q) for any Q. If bQ
is Lipschitz, the following theorem shows that the two spaces are equal:

Theorem A.6 (Extension Theorem). Let Q be a bounded open subset of RY
with Lipschitz boundary. For any positive integer s, there exists a continuous linear

operator Ps from W*(Q) into W*(RYN) such that
Psulg = u.

The extension operator Ps can be chosen to be independent of s. In particular, we
have
W?(Q) = H°(Q).

For a proof of Theorem A.6, see Chapter 6 in Stein [Ste 2] or Grisvard [Gri 1].
Thus when s is a positive integer and {2 is bounded Lipschitz, the Sobolev spaces
will be denoted by W*(Q2) with norm || ||, or simply || ||



A. Sobolev Spaces 339

Theorem A.7 (Sobolev Embedding). If Q is a bounded domain in RN with
Lipschitz boundary, then there is an embedding

WH(Q) — C™(Q)  for any interger m, 0<m <k — N/2.

Theorem A.8 (Rellich Lemma). Let Q be a bounded domain in RN with Lip-
schitz boundary. If s >t > 0, the inclusion W*(Q) — W(Q) is compact.

Theorem A.9 (Trace Theorem). Let ) be a bounded domain in R with smooth
boundary. For s > 1/2, the restriction map f — f|bQ for any f € C=(Q) can be
extended as a bounded operator from W*(2) to Ws=1/2(bS2). For any f € W*(Q),
f’bﬂ € Ws=1/2(bQ) and there exists a constant Cy independent of f such that

I flls—ze) < Cs Il f llse) -

We remark that in general, the trace theorem does not hold for s = 1/2. However,
if f € WY2(Q) and f is harmonic or f satisfies some elliptic equations, then the
restriction of f to bQ is in L? (c.f. Lemma 5.2.3).

Let ©Q be a bounded domain in RY. We introduce other Sobolev spaces. Let
W§(£2) be the completion of C§° () under W#(Q) norm. When s = 0, since C5°(2)
is dense in L2(Q), it follows that W¥(Q) = W°(Q) = L3(Q). If s < 1/2, we also
have C§°(Q) is dense in W*(Q). Thus

W2 (Q) = W5 (@), s<

M| —

This implies that the trace theorem does not hold for s < 1/2. When s > 1/2,
Wi (Q) C WH(Q).
We define W—*%(2) to be the dual of W§(£2) when s > 0 and the norm of W~%(Q)
is defined by
(£, 9)]

| £ 1l—s0y = sup—p=i—,
) 9 s

where the supremum is taken over all functions g € C§°(€2). We note that the
generalized Schwarz inequality for f € W*(Q2), g € W—%(Q),

(s 9)al < f sl 9 1-s

holds only when s < 1/2 for a bounded domain . The proof of these results can
be found in Lions-Magenes [LiMa 1] or Grisvard [Gri 1].

The Sobolev spaces can also be defined for functions or forms on manifolds. Let
M be a compact Riemannian manifold of real dimension N. Choose a finite number
of coordinate neighborhood systems {(U;, ¢;)}7,, where

;iU = V;c RN

is a homeomorphism from U; onto an open subset V; contained in RY. For each i,
1<i<m,let {17;}5\[:1 be an orthonormal basis for CT*(M) on U;, and let {¢;}7,
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be a partition of unity subordinate to {U;}7,. Thus, locally on each coordinate
chart U;, one may express a smooth r-form ¢ as

o
(1.9) b= o,
|I|=r
where I = (i1, ,iy) and nf = n! A---An. . Then, we define the Sobolev s norm
of ¢ € E"(M), for s € R, by

!/ .
(1.10) lol2 =351l Goh) o v I2.
i=1|I|=r

Denote by W2 (M) the completion of £ (M) under the norm || - ||s. The definition of
WE(M) is highly nonintrinsic. Obviously, it depends on the choice of the coordinate
neighborhood systems, the partition of unity and the local orthonormal basis {77;}
However, it is easily seen that different choices of these candidates will come up
with an equivalent norm. Therefore, W?(M) is a well-defined topological vector
space. If M is a complex manifold of dimension n and €2 is a relatively compact
subset in M, the space W(‘;’q)(Q), 0 < p,g <nands € R, are defined similarly.
The Sobolev embedding theorem and the Rellich lemma also hold for manifolds.

B. Interpolation Theorems and some Inequalities

There is yet another way to define the Sobolev spaces W*(Q)) when s is not an
integer and s > 0. Let k1 and ko be two nonnegative integers and k; > k. On any
domain Q in RY, we have W*1(Q) C W*2(Q). The space W*(Q) for ko < s < k1
can be defined by interpolation theory. We shall describe the procedure in detail
for the interpolation between W' and L? (i.e., when k; = 1 and ky = 0).

For each v € W1(Q) and u € W(Q),

(u,v)1 = (u,v) + (D;u, D;v),
i=1
where D; = 0/0x;. Let D(L) denote the set of all functions u such that the linear
map

N

v— (u,v)1, veEWHQ)

is continuous in L?(€2). From the Hahn-Banach theorem and the Riesz representa-
tion theorem, there exists Lu € L?(Q2) such that

(2.1) (u,v); = (Lu,v), veWH Q).

If u € C3° (), then u € D(L) and Lu = (—A + 1)u. It is easy to see that L is a
densely defined, unbounded self-adjoint operator and L is strictly positive since

(Lu,u) = [lul] > [[ull®.

Using the spectral theory of positive self-adjoint operators (see e.g. Riesz-Nagy
[RiNa 1]), we can define £? of £ for 6 € R. Let

A=LV2
Then A is self-adjoint and positive in L?(2) with domain W*. From (2.1), we have
(u,v); = (Au, Av), for every u, v € W(Q).
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Definition B.1. Let W%(Q) be the interpolation space between the spaces W()
and L*(Y) defined by
wWo(Q) = [WHQ), L2(Q)]g = Dom(A*™%), 0<0<1,
with norm
|wl| + [|AY~u|| = the norm of the graph of A*~9,
where Dom(A*=%) denotes the domain of A*~9.

From the definition, we have the following interpolation inequality:

(2.2) ATl < [ Au]| = |ul|®
Thus
(2.3) ullo < Cllull}=°lul®.

The general case for arbitrary integers k; and ko can be done similarly. Thus, this

gives another definition for the Sobolev spaces W*(Q2) when s is not an integer. If

b2 is bounded Lipschitz, this space is the same Sobolev space as the one introduced

in Appendix A (see [LiMa 1] for details for the equivalence of these spaces). For a

bounded Lipschitz domain, we can use any of the definitions for W*(2), s > 0.
The following interpolation inequality holds for general Sobolev spaces:

Theorem B.2 (Interpolation Inequality). Let 2 be a bounded domain in RN
with Lipschitz boundary. For any e >0, f € W31(Q), s1 > s > s > 0, we have the
following inequality:

(2.4) IFIZ<el 12+ Cell FI3,

where C. is independent of f.

Theorem B.3 (Interpolation Theorem). Let T be a bounded linear operator
from Wi (Q) into W (Q), i =1, 2, and

1 1
>8> =, bt >ty > —=,
S1 > 89 > 5 1 2275

then T is bounded from [W*1 (), W=2(Q)]g into [W* (), W'(Q)]p, 0 <6 < 1.

We warn our reader of the danger of interpolation of spaces if the assumption s; >
—1/2 and t; > —1/2 is dropped! (See [LiMa 1].) Next we discuss the interpolation
between LP spaces and some applications.

Definition B.4. Let (X, ) and (Y,v) be two measure spaces and let T be a linear
operator from a linear subspace of measurable functions on (X, u) into measurable
functions defined on (Y,v). T is called an operator of type (p,q) if there exists a
constant M > 0 such that

(2.5) ITf e < M| £ llLe
for all f € LP(X).

The least M for which inequality (2.5) holds is called the (p, ¢)-norm of T. If f
is a measurable function on (X, ut), we define its distribution function Ay : (0,00) —
[0, 0c] by

Ap(@) = p({z [ [f(2)] > a}).
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Definition B.5. Let (X, ) and (Y,v) be two measure spaces and let T be a linear
operator from a linear subspace of measurable functions on (X, u) into measurable
functions defined on (Y,v). T is a linear operator of weak type (p,q), 1 < p < oo
and 1 < q < oo, if there exists a constant k such that

A(s) < (’“”J;”L)q for every f € LP(X),

where X\ is the distribution function of T f.
We have the following interpolation theorems:

Theorem B.6 (Riesz-Thorin). Let (X, p) and (Y,v) be two measure spaces and
Po, P1, qo, qu be numbers in [1,00]. If T is of type (pi, ;) with (ps,qi)-norm M,
1=0,1, then T is of type (pt,q:) and

(2.6) I Tf llpae < My~ ML || f Lot
provided
1 1—t t 1 1—t ¢
— = +— and — = +—
Pt Po p1 qt q0 q1
with 0 <t < 1.

For proof of this fact, see Theorem 1.3 in Chapter 5 in Stein-Weiss [StWe 1].

Theorem B.7 (Marcinkiewicz). Let (X,u) and (Y,v) be two measure spaces
and po, P1, qo, q1 be numbers such that 1 < p; < q; < oo fori=20,1 and gy # q1-
If T is of weak type (pi,q;), i = 0,1, then T is of type (pt,q:) provided

11—t

t 1 1—1t t
+— and — = +
bt Po P qt q0 a1
with 0 <t < 1.
For a proof of this theorem, see Appendix B in Stein [Ste 3].

Theorem B.8 (Hardy’s Inequality). If f € LP(0,00), 1 < p < 0o and

then »
ITflle < EHJC”L%

Proof. We use a change of variables and Minkowski’s inequality for integrals,

@l = | | (e

1
d
E / | ()it

1
1 p
p— 7dt = —-— D.
|1t = 21
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Theorem B.9. Let
oo
Tf@) = [ K@)y o>0,
0

where K (x,y) is homogeneous of degree —1, that is, K(Ax,\y) = A" K (z,y), for
A>0. If for each 1 < p < o0,

/ | K(1,y) |y~ YPdy = A, < o0,

then
ITflle < ApllfllLe,  for every f € LP(0,00).

In particular, the Hilbert integral defined by

_ [T W

dy, x>0,
o T+y

Tf(zx)

is a bounded operator of type (p,p) for each 1 < p < oo.

Proof. Since -
Tie) = [ KLy

using Minkowski’s inequality for integrals, we get

ITF e < ( JALCR y-l/de) 1l = Al oo

The Hilbert integral is of type (p, p) since, for 1 < p < oo, using contour integration,

we have
/ y_l/p dy _ T
1+y sin(w/p)’

Theorem B.10. Let (X, u) and (Y,v) be two measure spaces and let K(x,y) be a
measurable function on X XY such that

/ K(o,9)| du<C, forac.
X

and

/ |K(z,y)| dv < C, for a.e. =z,
where C' >0 is a constan: Then, for 1 < p < oo, the operator T defined by
7fa) = | K@i dv
is a bounded linear operator from LP(Y,dv) into LP(X,du) with
ITf ey <CIH ey -

For a proof of Theorem B.10, we refer the reader to Theorem 6.18 in Folland [Fol
3.
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Theorem B.11. Let (X, u) and (Y,v) be two measure spaces and 1 < q¢ < oo. Let
K(x,y) be a measurable function on X XY such that

a
v{yeY | K(z,y) >s} < <S> , forae x€X,

and oo
u{z€X|K(:r,y)>5}§(s), forae yevy,

where C > 0 is a constant. Then the operator T defined by
Tf) = [ Kz f() dv
Y

is a bounded linear operator from LP(Y') into L"(X) provided

1 1 1
l<p<r<oo and —-+-—-=1.
p q T
T is bounded from L*(Y) to LY¢(X) for any e > 0.

The proof of this theorem is based on the Marcinkiewicz Interpolation Theorem
B.7. We refer the reader to Theorem 15.3 in Folland-Stein [FoSt 1] or Theorem 6.35
in Folland [Fol 3].

C. Hardy-Littlewood Lemma and its Variations

We first prove the Hardy-Littlewood lemma for bounded Lipschitz domains.

Theorem C.1 (Hardy-Littlewood Lemma). Let Q) be a bounded Lipschitz do-
main in RN and let §(x) denote the distance function from x to the boundary of §).
Ifuis a C' function in Q and there exists an 0 < o < 1 and C > 0 such that

(3.1) | Vu(z) | < C 6(x)~ 1 for every x € Q,
then u € C*(R2), i.e., there exists some constant Cy such that

|u(z) —u(y) | <C1lx—y|* formzyel

Proof. Since u is C' in the interior of ), we only need to prove the assertion when
x and y are near the boundary. Using a partition of unity, we can assume that v is
supported in U N2, where U is a neighborhood of a boundary point 2o € bS2. After
a linear change of coordinates, we may assume xg = 0 and for some ¢ > 0,

UNnQ={z=(z",on) | zny > o), 2" |<e,|zn |<ce},

where ¢(0) = 0 and ¢ is some Lipschitz function with Lipschitz constant M. The
distance function é(x) is comparable to zy — ¢(z'), i.e., there exists a constant
C > 0 such that

(3.2) éé(x) <zy—¢(z') < Co(x) forz e .



C. Hardy-Littlewood Lemma and its Variations 345

Weset @ =602 +(1—0)y and 2y = 0zn + (1 —O)yn. Let d = |z —y|. If
x= (2 zn), y = (¥,yn) € Q, then the line segment L defined by 0(a’, xny + Md)+
1-0)(y,yn + Md) = (&', Zn + Md), 0 <0 <1, lies in © since

O0(xn + Md) + (1 - 0)(yn + Md)
> Md+06(z") + (1 - 0)o(y')
> Md+0(¢(a) — ¢(&)) + (1 = 0)(¢(y') — ¢(&)) + ¢(3')
> ¢(3').

Since u is C! in Q, using the mean value theorem, there exists some (%, %x +
Md) € L such that

| u(z’ oy + Md) —u(y',yn + Md) | < | Vu(Z',Zx + Md) | d.
From (3.1) and (3.2), it follows that

‘ U(I'/,IITN +Md) —u(y/’yN _|_Md) | S C(S(Lf/7i'N +Md)_1+a d
< O((M +1)d) ™" - d < Cprd®.
Also we have
| u(z) —u(a,zn + Md) |

/Md ou(z',xn +1)
0 ot

dt’
Md Md
< C/ 5($’,$N —‘rt)_l-'radt < C/ (zn +1t— ¢($/))_1+adt
0 0
Md
< C/ t=1edt < C(Md)~.
0

Thus for any z, y € Q,

| u(@) —u(y) | < | (u(@) —u(@,zy + Md) | + [ u(y’,uy + Md) — u(y) |
+ | w(@'on + Md) —u(y',yn + Md) |
< Cpd®.
This proves the theorem.
The following is a variation of the Hardy-Littlewood lemma for Sobolev spaces.

Theorem C.2. Let Q be a bounded Lipschitz domain in RN and let 6(x) be the
distance function from x in Q to the boundary bQ). If u € L*(Q)NW._(Q) and there
exists an 0 < a < 1 such that

(3.3) / §(x)?72% | Vu > dV < o0,
Q
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then u € W(Q). Furthermore, there exists a constant C, depending only on €,

such that
Q Q

Proof. For 0 < a < 1, W(Q) = [W1(Q), L?()]1—a. The interpolation norm of a
function u in W*(Q) (see Lions-Magenes [LiMa 1]) is comparable to the infimum
over all functions

f :[0,00) = L*(Q) + W) with f(0) =

of the norm Iy where I is defined to be

(3.4) If(/o Itlaf(t)|%v1(9>t1dt) +(/ tl“f’(t)llizm)tldt)

From (3.3), we have u € W1(') for any ' CC Q. Thus we only need to estimate
u in a small neighborhood of the boundary. Using a partition of unity and a change
of coordinates as in Theorem C.1, we can assume U N Q = {ay > ¢(a’)}. Let
n € C3°(—¢,¢) such that 0 <n < 1,7 =1 when | t |< /2. We define

ft) =u(@',zn + t)n(t).

Then f(0) = u(x) and f(t) € W) for t > 0. To compute the norm defined by
(3.4), we have

15
;2 < C (/ / |u(z’,xn +1t) |? do t'72dt
0 QNU
g
—|—/ / 72| Vu(a oy + ) 2 dxdt).
o Jonu

Since 1 — 2« > —1, the first integral on the right-hand side of (3.4) is bounded by
Hu||%2(9). To estimate the second integral on the right-hand side of (3.5), we first

note that for x € QN U, using (3.2), there exists C; > 0,

(3.5)

5(zan +1t) > Ci(zy +t — ¢(a'))
> Cyt.

Thus, after changing variables and the order of integration, we have

€
/ / t1_2“|Vu(x’7xN+t)|2dxdt
o Jonu
C(x
/ / tl 2y (z)|*dtdx
onu

/ 5()> 20 V() Pde
QNU

< 0.

This implies that Iy < oo and u € W(2). Theorem C.2 is proved.
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Theorem C.3. Let Q be a bounded domain in RN with C* boundary and let s be
a positive integer. If u € W§(Q), then we have

s—stlelpoy e L2(Q), for every o with |a| < s,

where § is the distance function to the boundary, a is a multiindex and D is defined
as in Appendiz A.

Proof. If f € C§°(0,00), using Taylor’s theorem, we have

e T e (e — gyt
f(z) (8_1)!/0]” (t)(z — t)*Ldt.

Applying Hardy’s inequality (Theorem B.8 in the Appendix), we see that

‘ fz) e _11>! - /0 IO @)t

thtS
2
< ) (#) || 2.
< ol
Using localization and a partition of unity, we can assume that u is supported in
a compact set in the upper half space {x = (2/,xn) | zxy > 0}. Applying the
argument to the Taylor expansion in the xy variable, we have for any u € C§°(2),

S ‘

L2 L2

167 D[ 12 ) < Clluflwe (-

The theorem follows by approximating u € W§(2) by functions in C§5°(£2).

Theorem C.4. Let Q be a bounded domain in RN with C*> boundary. Let s be
any positive number such that s # n — 1/2 for any n € N. If u € L?(Q,loc) and

(3.6) / 6% u)?dV < oo,
Q

where § is the distance function to the boundary, then u € W—2(Q).
When s = n — 1/2 for some positive integer n, if we assume in addition that u
is harmonic, the same statement also holds.

Proof. We first assume that s is a positive integer. For any v € W§(Q), we have
from Theorem C.3,

|(w, 0)| < [|6%ull[|0™v]|
< Csljo*ullf|vlfw -
Thus, v € W~5(Q) from definition.
For other s when s # n — 1/2, we use interpolation between W~5(Q). For sy >

s1 >0, s1, 89 integers, if (1 — 0)s; + 0sy #n —1/2, then

(3.7) (W (Q), W2 (Q)]p = W=D 02(q),
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When (1 —60)s1 +0s2 =n—1/2, (3.7) no longer holds (see Lions-Magenes [LiMa
1]) and we restrict ourselves to harmonic functions.

We first prove for s = 1/2. Using a partition of unity, we may assume that 2 is
star-shaped and 0 € Q. Define

o(z) = /0 L (s)ds.

S

Then v is harmonic and

(x, Vo(z Z/ Tig (sx)ds = /01 %u(sx)ds = u(z) — u(0).

Without loss of generality, we may assume that u(0) = 0. We have expressed u as
a linear combination of the derivatives of some harmonic function v and, from our
assumption,

(3.9) /Q(S(x)|<x,Vv>|2dV _ /Q(S(m)\u|2dV < o0,

where C' is some positive constant. We claim that

(3.9) /Q(S(x)|Vv|2dV§C(/Q 6(x)|(x,Vv>|2dV+/Q(S(z)h}(x)2dV>.

To prove (3.9), we apply the Rellich identity to the harmonic function v on the
boundary bQ,,, where Q, = {z € Q| §(x) > n} for small n > 0. We have

(3.10) /bQ,, (|V1}|2<x,n> 2z, Vv)?—n — (N - 2)1122) dS =0,

where 7 is the outward normal on b(2,, and d is the surface element on 0£2,,. Identity
(3.10) follows from the equality

N
0 9 ov Ov
gaxi <|W| T — 287%@, Vo) — (N — Q)Uaxi)
= —2Av(z,Vv) — (N —2)vAv =10

and Stokes’ theorem. If 7 is sufficiently small, we have (z,n) > Cy > 0 for some
Coy > 0 uniformly on 08, it follows from (3.10) that

co/ \WPng/
bQ) b2

n n

SE/
b2y,

) )
2<x,V1}>a—Z +(N - 2)“372

asea
b2

as

(3.11) 5

an

n

|v|2dS + |<x7Vv>|2dS> ,
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where € > 0. If € is sufficiently small, the first term on the right-hand side of (3.11)
can be absorbed by the left-hand side and we obtain

(3.12) /m Vo2 < C (/m

Multiplying (3.12) by 1 and integrating over n, (3.9) is proved. Using (3.8) and
(3.9), we get

[v|?dS + |(x, Vv)2d5> :

n n

(3.13) /Qa(x)\wﬁdv < C/Qé(x)|u|2dV < .

It follows from Theorem C.2 that v € W2 (). Since for any first order derivative
D with constant coefficients, we have
(3.14) D: HW?(Q) — HW3(9),

where HW?*(Q) = W3(Q) N {u € C>®(Q) | Au = 0}. This implies that v €
w—1/2 (). The cases for other integers can be proved similarly and this completes
the proof of Theorem C.4.

We remark that (3.14) does not hold without restricting to the subspace of har-
monic functions (see [LiMa 1]). The technique used in the proof of Theorem C.2
involves real interpolation, while the proof of (3.14) uses complex interpolation. We
refer the reader to Jerison-Kenig [JeKe 1] and Kenig [Ken 3] for more discussion on
these matters.

D. Friedrichs’ Lemma

Let x € C5°(RY) be a function with support in the unit ball such that y > 0
and

(4.1) /de =1

We define x.(z) = e~V x(z/¢) for ¢ > 0. Extending f to be 0 outside D, we define
for e > 0 and z € RV,

fo(@) = f o yela) = / F(@)xe(a — 2)dV (&)
- / f(z — ex')x(@')dV (2').

In the first integral defining f. we can differentiate under the integral sign to show
that f. is C°(RY). From Young’s inequality for convolution, we have

(4.2) el <10

Since x. is an approximation of the identity, we have f. — f uniformly if f €
Cs°(RY). Since Cg°(RY) is a dense subset of L2(R"), this implies that

fe— f in L*(RY) for every f € L*(RY).
A very useful fact concerning approximating solutions of a first order differential

operator by regularization using convolution is given by the following lemma (see
Friedrichs [Fri 1] or Hérmander [Hor 2)):
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Lemma D.1 (Friedrichs’ Lemma). If v € L?(RY) with compact support and a
is a C' function in a neighborhood of the support of v, it follows that

(4.3) aD;(v* xe) — (aDiw) * xe — 0 in L2 (RY) ase — 0,
where D; = 3/0x; and aD;v is defined in the sense of distribution.

Corollary D.2. Let

N
L:ZaiDi+aO

i=1

be a first order differential operator with variable coefficients where a; € C*(RY)
and ag € C(RYN). Ifv € L*(RY) with compact support and Lv = f € L?*(RN) where
Lv is defined in the distribution sense, the convolution ve = v x x. is in C§°(RN)
and

(4.4) ve = v, Lve— f in L*(RY) ase— 0.

Proof of Friedrichs’ lemma. First note that if v € C$°(RY), we have from the
discussion above,

D;(v*xe) = (Div) x xe — Djv,  (aDv) * xe — aD;v,
with uniform convergence. We claim that
(4.5) | aDi(v* xe) — (aDiv) x x [| < C || v ||, ve LXRY),

where C' is some positive constant independent of € and v. Since C§°(RY) is dense
in L2(RY), (4.3) will be proved if one can prove (4.5). To see this, we approximate
v by a sequence v; € C§°(RY) in L?(RY) and observe that if (4.5) holds, we have
| aD;(v * xc) = (aDiv) * xe ||
< O v =w; | + [ aDi(v; * xe) = (aDiv;) * xe [])-

Thus, it remains to prove (4.5). Without loss of generality, we may assume that
a € C}(RY) since v has compact support. We have for v € C$°(RY),

aD;(v* xe) — (aD;v) * Xe

—a@)D; [ oo - ypxwdy — [ ale )5 @~ Dxw)dy
= [ (@)~ alo = ) (@ = )y

—— [ (@) ~ata =) -

- / (a(z) - alz — 1) v(z - y)aa—yixe(y)dy

_ / (863/2 a(z — y)) v(z — y)xe (y)dy.

( —y)xe(y)dy
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Let M be the Lipschitz constant for a such that |a(z) — a(z — y)| < M]y| for all
x, y. We obtain

|[aDi(v % xe) = (aDiv) * x| < M/ [o(z = y)[ (xe(W) + lyDixe(y)]) dy.
Using Young’s inequality for convolution, we have
| aDi(v * xe) — (aDsv) * xe [| < M || v || /(xe(y) + lyDixe(y)]) dy
= M(1+m) [ v,

where

i = / lyDixe(y)ldy = / (Do) ()ldy.

This proves (4.5) when v € C§°(RY). Since C§°(RY) is dense in L2(RY), we have
proved (4.5) and the lemma.

Proof of the Corollary. Since agv € L?(RY), we have
lii%ao(v * Xe) = lii%(aov ¥ Xe) = agv  in LA(RY).
Using Friedrichs’ lemma, we have
Lvc — Lvxxe = Lve — fxxe — 0 in L2(RY) ase— 0.

The corollary follows easily since f * x. — f in LZ(RY).
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