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Several complex variables is a moderately old field, dating back at least to the
end of the nineteenth century. It got off to a slow start, as there were no tools avail-
able that would afford any deep insights. Power series were the primary technical
device, and they did little to show the differences between one and several complex
variables.

Matters changed dramatically in 1906 with the publication of two seminal papers,
one by Poincaré and one by Hartogs. Poincaré proved that the unit ball

B = {z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}
and the unit bidisc

D2 = {z = (z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}
are biholomorphically inequivalent. This discovery deflated any dreams that there
would be an analog of the Riemann mapping theorem in several complex vari-
ables. We have been attempting to make peace with Poincaré’s result for the past
100 years. Hartogs proved an equally shocking, but slightly more subtle fact. An
appreciation of his result requires just a little background.

Let Ω ⊆ C be a domain, that is, a connected open set. Let W = {wj} be a
sequence of points in Ω which has no interior accumulation point in Ω but which
accumulates at every boundary point of Ω. By Weierstrass’s theorem, there is a
holomorphic function h on Ω which vanishes precisely on W and nowhere else.
Now h cannot be analytically continued to any open domain that properly contains
Ω; if it could, then there would be a (former) boundary point of Ω which is an
interior accumulation point of the zeros, forcing the analytically continued h to be
identically zero. That is a contradiction.

Thus we see that any domain in C is a domain of holomorphy—i.e., it supports
an analytic function that cannot be analytically continued to any larger domain.
Hartogs discovered that if

Ω = {(z1, z2) ∈ C2 : |z1| < 2, |z2| < 2} \ {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1},
then any function f that is holomorphic on Ω will perforce analytically continue to
the strictly larger domain

Ω̂ = {(z1, z2) ∈ C2 : |z1| < 2, |z2| < 2} .
So this Ω is not a domain of holomorphy.1

It became a major program of twentieth century mathematics to give an extrinsic
geometric characterization of domains of holomorphy in several complex variables.

2000 Mathematics Subject Classification. Primary 35N15; Secondary 35N99, 35J15, 32W05,
32W10.

1Hartogs is known for this result and one other: that a separately holomorphic function is
in fact jointly holomorphic. Both these theorems appear in the remarkable paper [HAR]. It is
a tragic fact that Hartogs (and Hausdorff too) committed suicide in the 1930s rather than live
under the Nazi terror.
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A condition known as pseudoconvexity, which is a biholomorphically invariant ver-
sion of convexity (see [KRA1], [KRA2]), was formulated by E. E. Levi around 1912
and was soon conjectured to be the sought-after notion. Elementary but tricky
arguments were concocted by the Germans in the 1920s and 1930s to show that
if a domain is a domain of holomorphy, then it is pseudoconvex. The question of
proving the converse result became known as the Levi problem.

The Levi problem was cracked by Kiyoshi Oka in the 1940s—first in dimension
two and then in all dimensions. To solve the problem he used something called the
Cousin problems, which are a natural outgrowth of the combinatorial formulation
of cohomology theory and which shoehorns rather naturally into the modern the-
ory of sheaf cohomology. During the course of the 1940s and 1950s, Narasimhan,
Bremerman, Norguet, and many others helped to develop and iron out the Levi
problem. There are still aspects of the theory, and particular questions, that are
open today; study of the Levi problem continues. But the question of pseudoconvex
domains and domains of holomorphy remains a cornerstone of the theory.

In point of fact, the Levi problem is so fundamental that new techniques have
been developed for studying the matter. One of these is the methodology of differ-
ential geometry—invariant metrics and completeness and curvature. Another is the
method of partial differential equations. The idea is to study the inhomogeneous
Cauchy-Riemann equations. Again, a little background is required.

In one complex variable, define
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It is natural to wonder why the good guys have a minus sign and the bad guys have
a plus sign. The answer is that of course we want
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Then it is an easy calculation (using the classical Cauchy-Riemann equations) to
see that a continuously differentiable function u on a domain U ⊆ C is holomorphic
if and only if ∂u/∂z = 0.

In several complex variables there is a similar notation: for j = 1, . . . , n we set
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Then a continuously differentiable function u on a domain Ω ⊆ Cn is holomorphic
if ∂u/∂zj = 0 on Ω for j = 1, . . . , n.

It turns out to be useful in several complex variables (somewhat less so in one
complex variable) to study the so-called inhomogeneous Cauchy-Riemann equa-
tions:

∂u

∂zj
= fj , j = 1, . . . , n . (∗)
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for a suitable smooth function g, we see easily that a necessary condition for solving
(∗) is that

∂fj
∂zk

=
∂fk
∂zj

(?)

for all j, k = 1, . . . , n. The question is then, subject to the compatibility condition
(?), to find a solution u of (∗). In practice, we abbreviate the equations (∗) with
∂u = f (where ∂u ≡ ∂u

∂z1
dz1 + · · · ∂u∂zn dzn and f = f1z1 + · · ·+fndzn) and we phrase

the compatibility condition (?) as “f is a ∂-closed form”.
Why might one wish to solve (∗)? Let us illustrate with an example. A funda-

mental result in the subject, essentially due to Hörmander, is this:

Theorem (Hörmander). Let Ω ⊆ Cn be pseudoconvex. If f is a ∂-closed form on
Ω with smooth coefficients, then there is a smooth u on Ω such that ∂u = f .

The proof of this theorem is hard work (see, for example, [KRA1]), and we
cannot indicate it here. It can be used to establish the following very interesting
theorem:

Extension Theorem.2 Let Ω ⊆ Cn be a pseudoconvex domain. Assume that the
complex hyperplane p = {z : zn = 0} intersects Ω in such a way that ω ≡ Ω ∩ p
is a domain of the (n− 1) complex variables z1, . . . , zn−1. Now suppose that g is a
holomorphic function on ω. Then there exists a holomorphic function G on all of
Ω such that G

∣∣
ω

= g.

Sketch of Proof of the Extension Theorem. Define π(z) = π(z1, . . . , zn) = (z1, . . . ,
zn−1, 0). Set B = {z ∈ Ω : π(z) 6∈ ω}. Then B and ω are disjoint and relatively
closed in Ω. Thus, by the C∞ version of Urysohn’s lemma, there is a C∞ function
ϕ on Ω such that ϕ ≡ 1 in a relative neighborhood of ω and ϕ ≡ 0 in a relative
neighborhood of B.

Now set
G(z) = ϕ(z) · g(π(z)) + zn ·K(z) . (†)

Notice that the first term on the right-hand side here is a C∞ extension of g to all
of Ω. We include the second term in hopes that (with a propitious choice of K) we
can force G to be holomorphic while still preserving this extension property.

Asking that G be holomorphic is the same as asking that ∂G ≡ 0 on Ω. Doing
a little algebra, we find that the condition is thus

∂K(z) = −∂ϕ(z) · g(π(z)
zn

. (‡)

The apparent difficulty with dividing by zero goes away because ∂ϕ vanishes in
a neighborhood of ω (just because ϕ is identically 1 in a neighborhood of ω).
Another calculation shows that the right-hand side of this last equation is ∂-closed.
Hörmander’s theorem tells us then that (‡) has a solution. Thus we may create G
as specified in (†), and that is the holomorphic extension of g that we seek. �

2It turns out that this theorem is essentially equivalent to a solution of the Levi problem. For
the details of this assertion, see [KRA1]. It is also worth noting that this theorem is so trivial in
one complex variable as to be virtually nonsensical.
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The theory of the ∂ problem is extensive and well developed. Pioneers of the
subject were Spencer and Morrey. Kohn solved the problem in the early 1960s, and
Hörmander developed another point of view a few years later. In the late 1960s
and early 1970s, yet another point of view stemming from integral formulas was
unfolded. The full story of these various approaches is detailed in [HOR3], [KRA1],
[RAN].

The ∂ equation is but one aspect of the partial differential equations lore of
several complex variables. There are also the Monge-Ampère equation, the ∂b
equation, and the Laplace equation, and many other aspects and ramifications that
cannot be explored here. This material is the métier for the book under review.

There are not many books that develop the important symbiotic relationship of
complex analysis with partial differential equations. The book [KRA3] has already
been mentioned. Of course [FOK] is the primordial reference for Kohn’s approach to
the ∂ problem, and [HOR1], [HOR2] are the quintessential sources for Hörmander’s
approach. Aubin’s book [AUB] talks about the Monge-Ampère equation. But this
new book of Chen and Shaw is the first definitive and comprehensive treatment of
partial differential equations in the subject of several complex variables. As one
who works in the subject area, I am immensely grateful that this book was written.
The book not only covers the classical material that is treated elsewhere, but it
also gives very careful treatments of very modern topics like

• Christ’s proof of the failure of Condition R on the worm domain,
• Nirenberg’s result on the nonembeddability of certain CR manifolds,
• sharp estimates for the ∂ equation,
• L2 existence theorems for the ∂b complex,
• the Lewy unsolvable operator,
• subellipticity of �b.

There are many more.
I do not know any polite way to say this: Many of the papers and books in

this subject are fraught with errors. They are inconsistent in notation, they are
inconsistent with each other, and they are frequently rather opaque. It is really
quite a battle for the student to get up to speed in the subject. Chen and Shaw
present the entire picture, from soup to nuts (with adequate prerequisites and also
appendices on ancillary topics such as Sobolev spaces and the Friedrichs extension
theorem) in a relatively self-contained manner. The book is lovingly and carefully
written. I have yet to find any serious errors. It is a delightful read.

In fact, I am an expert in this subject, and I refer to the Chen/Shaw book every
day. It is one of the most valuable books that I own. I fear that I tend to wax
euphoric in my praise of this effort. For those who want to learn more about the
interaction of partial differential equations and complex analysis, for those who want
to learn the partial differential equations approach to solving the Levi problem, or
for those hard analysts who want a sympathetic introduction to several complex
variables, I can hardly think of a better source.

This book is deep and substantial and difficult. It does not conform to Sammy
Eilenberg’s dictum that doing mathematics should be “like floating on your back
downstream.” But its contribution will be a lasting one. The book elucidates and
clarifies an important but heretofore obscure subject area. It has enriched the world
of several complex variables.
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