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The Cauchy-Riemann equation in C

Let C be the complex Euclidian space with coordinate z = x + iy. We define
the Cauchy-Riemann operator

@

@z̄
:=

1
2

✓

@

@x
+ i

@

@y

◆

,

A function h is holomorphic (or analytic) in a domain D of C, if h satisfies the
homogeneous Cauchy-Riemann equation

@h
@z̄

= 0. (1)

Let h = u + iv, where u and v are real-valued functions on D. The equation
(1) is equivalent to

ux = vy, uy = �vx. (2)
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The inhomogeneous Cauchy-Riemann equation

@u
@z̄

= f , (3)

where f a given function in D.

Theorem
Let D be a bounded domain in C and let f 2 Ck(D), for k � 1. Then the
function defined by

u(z) :=
1

2⇡i

ZZ

D

f (⇣)
⇣ � z

d⇣ ^ d⇣̄,

is in Ck(D) and satisfies (3). Moreover, if f is only in C(D), then u(z) defined
as before satisfies (3) in the distribution sense.

Proof: This can be derived from the Generalized Cauchy Integral Formula.
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The fundamental solution for @

Observe that the function

u(z) =
1
⇡
· 1

z
,

is a fundamental solution to (1).
This can be derived by differentiating the fundamental solution for the
Laplace operator 4 = @

@x2 +
@
@y2 . Since

1
2⇡

4 log |z| = 2
⇡

@2

@z̄@z
log |z| = �0,

where �0 is the Dirac delta function centered at 0.

2
⇡

@

@z̄
@

@z
log |z| = 1

⇡

@

@z̄
1
z
= �0.

We can solve @ on any domain D in C using the Mittag-Leffler theorem.
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The Cauchy-Riemann equations in Cn

Let Cn be the n-dimensional complex Euclidian space, n � 2. We denote
coordinates by z = (z1, . . . , zn), where zj = xj + iyj, 1  j  n. We can define
the Cauchy-Riemann operator

@

@z̄j
:=

1
2

✓

@

@xj
+ i

@

@yj

◆

, 1  j  n.

The Cauchy-Riemann equations are

@u
@z̄j

= fj, j = 1, . . . , n, n � 2. (4)

This system is overdetermined (one unknown function with n equations). In
order for Equation (4) to be solvable, f must satisfy the following
compatibility conditions

@fk
@z̄j

=
@fj
@z̄k

, 1  j, k  n. (5)
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(Non)-Riemann Mapping Theorem

Theorem (Riemann Mapping Theorem)
Let D be a simply connected domain in C. Then D is either C or bihomorphic
to the unit disc 4 = {|z| < 1}.

When n � 2, there is no such uniformization theorem in Cn. Let

Bn = {|z|2 = |z1|2 + · · ·+ |zn|2 < 1}

and
4n = {|z1| < 1, . . . , |zn| < 1}.

Theorem (Poincaré (1907))
The ball Bn and the polydisc 4n in Cn are not equivalent when n � 2.

Poincaré proves the theorem by comparing the automorphism groups of the
two domains.
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Hartogs’ phenonmenon

One of the most striking differences between holomorphic functions in one
variable and several variables is the so called Hartogs phenomenon.

Theorem (Hartogs’ phenomenon (1906))
Let D be an open set in Cn, n � 2, and let K be a compact subset in D, such
that D \ K is connected. If f 2 O(D \ K), then f can be extended
holomorphically to all D.

This is not true in C.
The zero set of a non-trivial holomorphic function in C is isolated. The
zero set of a holomorphic function in Cn is a variety.
One can solve @ with compact support in Cn, but not in C.
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Domain of holomorphy

Definition
Let ⌦ be a domain in Cn. D is a domain of holomorphy if for any p 2 bD,
there exists a holomorphic function f 2 O(D) such that f is singular at p.

The following domains are domains of holomorphy:

(1) Any domain in the complex plain C.
(2) Product of planar domains in Cn.
(3) Convex domains in Cn.

The Levi Problem
What kind of domains are domains of holomorphy?

Lemma (Levi)
A C2 bounded domain ⌦ in Cn, n � 2, is a domain of holomorphy only if it is
pseudoconvex.
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Pseudoconvex Domains

Let ⌦ be a domain of Cn with C2 boundary with a C2 defining function ⇢.

Definition
The domain ⌦ is (Levi) pseudoconvex if

L|p(⇢; a) = @@⇢p(a, ā) =
n

X

j,k=1

@2⇢

@zj@z̄k
(p)ajāk � 0, 8 p 2 bD,

for all vector a = (a1, . . . , an) 2 Cn such that
Pn

j=1 aj
@⇢
@zj

= 0 (a 2 T1,0
p (b⌦)).

Lp(⇢; a) is called the Levi form of ⇢ at p. A domain D is called strictly
pseudoconvex if the Levi form is positive definite. We call the @@⇢|p(a, ā))
the complex Hessian.

Definition
A function ⇢ is called (strictly) plurisubharmonic at p if Lp(⇢; a) � 0 (> 0)
for all vectors a 2 Cn.
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Inhomogeneous Cauchy-Riemann equations

The @-problem

Let ⌦ be a domain in Cn (or a complex manifold), n � 2. For the
complexified tangent space CTCn, there is a natural decomposition:
CTCn = T1,0(Cn)� T0,1(Cn),

T1,0(Cn) = span
n

@
@zj

o

, T0,1(Cn) = span
n

@
@ z̄j

o

.

Let f a C1 function defined on an open subset D of Cn. We have

df = @f + @f =
n

X

j=1

@f
@zj

+
n

X

j=1

@f
@zj

.

The @ complex

d = @ + @

d2 = 0, @2 = 0, @2
= 0.
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The @-equation

Given a (p, q)-form g in ⌦ such that @g = 0, find a (p, q � 1)-form u such that

@u = g.

If g is in C1
p,q(⌦) (or g 2 C1

p,q(⌦)), one seeks u 2 C1
p,q�1(⌦) (or

u 2 C1
p,q�1(⌦)).

Definition
A (p, q)-form g satisfying @g = 0 is called @-closed. A (p, q)-form g = @u
for some (p, q � 1)-form u is called @-exact.

This is analogous to the problem of solving the real de Rham complex

du = g

for a q-form g with dg = 0 on ⌦.
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de Rham Cohomology Groups

de Rham Cohomology

Let ⌦ be a domain in Rn (or a differential manifold), n � 2.

de Rham Cohomology

Hq
de(⌦) =

ker{d : C1
q (⌦) ! C1

q+1(⌦)}
range{d : C1

q�1(⌦) ! C1
q (⌦)}

Obstruction to solving the d-problem on ⌦.
If the boundary of ⌦ is sufficiently smooth (C1 or Lipschitz), Hq

de(⌦) is
finite dimensional.
From the de Rham’s Theorem: Hq

de(⌦)
⇠= Hq

sing(⌦).

Hq
de(⌦) is a topological invariant.

H0
de(⌦) = {R} and H1(⌦) = �1, the first Betti number.
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Dolbeault Cohomology Groups

Dolbeault Cohomology

Hp,q(⌦) =
ker{@ : C1

p,q(⌦) ! C1
p,q+1(⌦)}

range{@ : C1
p,q�1(⌦) ! C1

p,q(⌦)}

Obstruction to solving the @-problem on ⌦.
Hp,0(⌦) is the space of holomorphic functions or forms in ⌦.
if Hp,q(⌦) = 0, every @-closed form is @-exact.
Natural topology arising as quotients of Fréchet topologies on ker(@) and
range(@).
If the range(@) is closed, we also say that one can solve @ (in the
functional analysis sense).
This quotient topology is Hausdorff if and only if range(@) is closed in
C1

p,q(⌦)
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Solution to the Levi Problem

Theorem
Let ⌦ be a domain in Cn. The following are equivalent:

⌦ is pseudoconvex;

⌦ is a domain of holomorphy;

For each 0  p  n, 1  q  n, if f 2 C1
p,q(⌦) with @̄f = 0, there is

u 2 C1
p,q�1(⌦) such that @̄u = f .

Hp,q(⌦) = 0, 0  p  n, 1  q  n.

Sheaf method: (1950) K. Oka, H. Bremermann and F. Norguet (n=2) and
(1958) H. Grauert.
L2 method: (1962, 63) Kohn on smooth strictly pseudoconvex domains.
L2 method: (1965) Hörmander on pseudoconvex domains.
Integral Kernel: (1970) Henkin-Grauert on smooth strictly pseudoconvex
domains.
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L2-approach to @

Two ways to close an unbounded operator in L2

(1) The (weak) maximal closure of @:
Realize @ as a closed densely defined (maximal) operator

@ : L2
p,q(⌦) ! L2

p,q+1(⌦).

The L2-Dolbeault Coholomolgy is defined by

Hp,q
L2 (⌦) =

ker{@ : L2
p,q(⌦) ! L2

p,q+1(⌦)}
range{@ : L2

p,q�1(⌦) ! L2
p,q(⌦)}

(2) The (strong) minimal closure of @: Let @c be the (strong) minimal
closed L2 extension of @.

@c : L2
p,q(⌦) ! L2

p,q+1(⌦).

By this we mean that f 2 Dom(@c) if and only if there exists a sequence
of compactly supported smooth forms f⌫ such that f⌫ ! f and @f⌫ ! @f .
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By this we mean that f 2 Dom(@c) if and only if there exists a sequence
of compactly supported smooth forms f⌫ such that f⌫ ! f and @f⌫ ! @f .
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The @-Neumann problem

Let ⇤p,q (@-Laplacian) be the closed self-adjoint densely defined (unbounded)
operator :

⇤p,q = @@
⇤
+ @

⇤
@ : L2

p,q(⌦) ! L2
p,q(⌦)

and let Hp,q(⌦) = ker⇤p,q, the space of harmonic (p, q)-forms.

Consequences of the closed range property of @
Suppose that the range of @ is a closed subspace in L2

p,q(⌦) and L2
p,q+1(⌦),

(Hodge Theorem) The space Hp,q
L2 (⌦) is isomorphic to the space of

harmonic forms Hp,q(⌦).
The operator ⇤p,q is invertible on Hp,q(⌦)? and its inverse is called the
@- Neumann operator Np,q.

The @ problem can be solved with L2-estimates: If g ? ker(@⇤
), then

there is u such that @u = g, and kukL2  C kgkL2 .
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L2 theory for @ on pseudoconvex domains in C

n

Hörmander 1965

If ⌦ ⇢⇢ Cn is bounded and pseudoconvex, then

Hp,q
L2 (⌦) = 0, q 6= 0.

Sobolev estimates for the @-problem (Kohn 1963, 1974)

Let ⌦ be a bounded pseudoconvex domain in Cn with smooth boundary.
Then

Hp,q
Ws (⌦) = 0, s > 0.

Boundary Regularity for @

If ⌦ ⇢⇢ Cn is bounded and pseudoconvex with smooth boundary, then

Hp,q(⌦) = 0, q 6= 0.
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Ideas of the proof

Use the strictly plurisubharmonic weight function t|z|2, t > 0, to set up the
problem in the weighted L2 space with respect to weights L2(⌦, e�t|z|2).

In Hörmander’s case, we first choose t > 0 to obtain the L2 existence
theorem. Set t = ��2 where � is the diameter of the bounded
pseudoconvex domain ⌦ to obtain the estimates independent of the
weights: The basic estimates hold:

kfk2  e�2

q
(k@fk2 + k@⇤

fk2)

=
e�2

q
(f , @@

⇤
f + @

⇤
@f )  e�2

q
kfkk⇤fk.

If q = n, this is the Poincaré’s inequality: Let ⌦ be a bounded domain.

kfk2  4�2krfk2, f 2 C1
0 (⌦).
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Consequences of the basic estimates

On a pseudoconvex domain ⌦, from Hörmander’s Basic Estimates:

kfk  e�2

q
k⇤fk.

⇤ is one-to-one and 0 is not an eigenvalue of ⇤.
⇤ has closed range and the range is L2

p,q(⌦).

⇤ has a bounded inverse N , the @-Neumann operator.
The @-Neumann operator N is not necessarily compact on a
pseudoconvex domain!
N is compact (subelliptic) if the domain is strictly pseudoconvex
(Kohn), or finite type (Kohn, Catlin).
Not much is known for the spectrum of ⇤ when N is not compact.
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Outline

1 The Cauchy-Riemann equation in C and Cn

2 The @-problem and Dolbeault cohomology groups

3 L2 Theory for @

4 Hearing pseudoconvexity in Cn

5 Dolbeault cohomology on annuli

6 Non-closed Range Property for Some smooth bounded Stein Domain
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Can one hear the shape of a drum?

Eigenvalues of the Laplacian
Mark Kac (1966) asks whether the spectrum (eigenvalues) of the Dirichlet
Laplacian determines the shape of a planar domain. This question was
answered negatively by Gordon, Webb, and Wolpert (1992).

Not all is lost!

Kac (1966), Kac-Singer (1967)
One still can deduce from the spectrum of the domain its area, perimeter and
the number of holes.

The generalization to domains in higher dimension is to study the
spectrum of the Laplace-Beltrami operator

4q = dd⇤ + d⇤d.

4q is Fredholm with discrete spectrum if the boundary is sufficiently
smooth (e.g., Lipschitz).
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Hearing pseudoconvexity with ⇤
We can characterize pseudoconvex domains via L2 Dolbeault cohomology
groups.

Theorem (Hörmander, Laufer)

Let ⌦ be a bounded domain in Cn with connected Lipschitz boundary. The
following are equivalent:

1 ⌦ is pseudoconvex.
2 H0,q

L2 (⌦) = {0}.
3 The infimum of the spectrum of ⇤0,q is positive for all 1  q  n � 1.
4 The infimum of the essential spectrum of ⇤0,q is positive for all

1  q  n � 1.
When n = 2, the conditions are equivalent to the following:

The range of ⇤0,1 is closed.
@ : L2(⌦) ! L2

0,1(⌦) has closed range.
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Hearing pseudoconvexity with Kohn’s Laplacian

Let @b be the (induced) tangential Cauchy-Riemann complex on the boundary
of b⌦ and let ⇤b be the @b-Laplacian (or Kohn’s Laplacian):

⇤b = @b@
⇤
b + @b@b.

Theorem (Fu 2005)
Let ⌦ be a bounded domain in Cn with connected Lipschitz boundary.
Suppose that the infimum of the essential spectrum of ⇤b is positive for all
1  q  n � 1, then ⌦ is pseudoconvex.

The converse is also true for domains with smooth boundary.
L2 existence for @b is proved by Shaw (1985) for 1  q < n � 1 and
closed range property by Boas-Shaw and Kohn (1986) for q = n � 1.
This is also true if the boundary is Lipschitz with a plurisubharmonic
defining function (2003).
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Serre Duality Theorem

A useful tool in complex analysis is the Serre duality. This is the complex
version of the Poincaré duality.

Theorem (Serre Duality (1955))
Let ⌦ be a domain in a complex manifold and let E be a holomorphic vector
bundle on ⌦. Let @E has closed range in the Fréchet space C1

p,q(⌦,E) and
C1

p,q+1(⌦,E). We have Hp,q(⌦,E)0 ⇠= Hn�p,n�q
c (⌦,E⇤).

The classical Serre duality are duality results of Dolbeault coholomology
group Hp,q(⌦,E) for E-valued smooth (p, q)-forms with the Fréchet
topology and compactly supported smooth E⇤-valued forms with the
natural inductive limit topology.
It is natural to use the L2 setting for duality results.
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L2 Serre Duality

Theorem (Chakrabarti-S 2012)
Let ⌦ be a bounded domain in a complex hermitian manifold of dimension n
and let E be a holomorphic vector bundle on ⌦ with a hermitian metric h.
Suppose that ⇤E has closed range on L2

p,q(⌦,E). Then ⇤c,E⇤ has closed range
on L2

n�p,n�q(⌦,E⇤) and Hp,q
L2 (⌦,E) ⇠= Hn�p,n�q

c,L2 (⌦,E⇤).

Let ?E : C1
p,q(⌦,E) ! Cn�p,n�q(⌦,E⇤) be the Hodge star operator.

?E⇤E = ⇤c
E⇤ ?E .

This gives the explicit formula:

?EHp,q(⌦,E) = Hn�p,n�q
c,L2 (⌦,E⇤).

The theorem follows from the L2 Hodge theorem.
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Non-closed range property for @

Laurent-S (2013)

Let ⌦ be a bounded Lipschitz domain in C2 such that C2 \ ⌦ is connected.
Suppose that ⌦ is not pseudoconvex. Then H0,1

L2 (⌦) is non-Hausdorff.

Corollary

Either H0,1
L2 (⌦) = 0 (and ⌦ is pseudoconvex) or H0,1

L2 (⌦) is non-Hausdorff.

Similar results also hold for (0, n � 1)-forms in Cn when n � 3 or s Stein
manifold.

Laufer (1975) Let ⌦ be a domain in Cn (or a Stein manifold). Then
either H0,1(⌦) = 0 or H0,1(⌦) is infinite dimensional.
Trapani (1986) obtained similar results in H0,1(⌦).
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Hearing pseudoconvexity on domains with holes

We can characterize domains with holes with L2 Dolbeault cohomology
groups. Let ⌦̃ be a bounded domain in Cn such that Cn \ ⌦̃ is connected. Let
D = [N

1 Di be the disjoint union of finitely many domains with C2 boundary
and D ⇢ ⌦̃. Let

⌦ = ⌦̃ \ D.

Fu-Laurent-Shaw (Math. Zeit. 2017)

The following are equivalent:
⌦̃ and D are pseudoconvex.
(

H0,q
L2 (⌦) = {0}, 1  q  n � 2,

H0,n�1
L2 (⌦) is Hausdorff and infinite dimensional.

0 is not in the spectrum of ⇤0,q when 1  q  n � 2 and 0 is not a limit
point for ⇤0,n�1 but 0 is in the essential spectrum of ⇤0,n�1.

Remark: The number of holes is irrelevant!
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Dolbeault cohomology for domains with or without holes

Dolbeault cohomology on domains with holes (Trapani 1986)

The following are equivalent: ⌦ = ⌦̃ \ D.
(

H0,q(⌦) = {0}, 1  q  n � 2,
H0,n�1(⌦) is Hausdorff and infinite dimensional.

⌦̃ is pseudoconvex and D is holomorphically convex (stronger
condition).

Domains without holes

Let ⌦ be a bounded domain in Cn with Lipschitz boundary. The following are
equivalent:

⌦ is pseudoconvex.
H0,q(⌦) = {0}, 1  q  n.
H0,q

L2 (⌦) = {0}, 1  q  n.
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The @̄-equation on an annulus

Annuli between smooth pseudoconvex domains (S. 1985)

Let ⌦ b Cn be an annulus between two smooth pseudoconvex domains
⌦0 and ⌦1 with

⌦0 b ⌦1, ⌦ = ⌦1 \ ⌦0.

If1  q < n � 1,
Hp,q

Ws (⌦) = 0, s � 0.

The proof is based on Kohn-Hörmander’s weighted @̄-Neumann operator
with strictly super-harmonic weight function �t|z|2 near the
pseudoconcave part of the boundary. The boundary smoothness has been
relaxed by using the L2 Serre duality results (Chakrabarti-S, 2012).
The hole domain ⌦0 is assumed to have C2 boundary.
Hörmander-Kohn (1965) Subelliptic 1

2 estimates hold for smooth
strongly pseudoconvex boundary.
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Harmonic spaces for q = n � 1 on the annulus

Hörmander 2004

Let ⌦ = B1 \ B0, where B1 and B0 are two concentric balls in Cn. Then ⇤ has
closed range and the harmonic space Hp,n�1

L2 (⌦) is isomorphic to the Bergman
space HL2(B0). The harmonic space
Hn,n�1(⌦) = {

P

j h( z
|z|2 ) ? dz̄j | h 2 HL2(B0)}.

Duality between harmonic and Bergman spaces (2011)

Let ⌦ = ⌦1 \ ⌦0 b Cn where ⌦1 is bounded and pseudoconvex and ⌦0 b ⌦1
is also pseudoconvex but with C2 smooth boundary, then again closed range
holds for q = n � 1 and

Hn,n�1
L2 (⌦) ⇠= HL2(⌦0).

If b⌦0 is not C2, it is not known if H0,n�1(⌦) is Hausdorff.
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More on the annulus

Let T b C2 be the Hartogs triangle

T = {(z,w) | |z| < |w| < 1}.

Then T is not Lipschitz at the origin.

Let ⌦ be a pseudoconvex domain in C2 such that T ⇢ ⌦. Then
H0,1(⌦ \ T) is not Hausdorff (Trapani, Laurent-S).
If we replace H by the bidisc 42, then H0,1(⌦ \42) is Hausdorff since
42 has a Stein neighborhood basis (Laurent-Leiterer).

Chinese Coin Problem
Let B be a ball of radius two in C2 and 42 be the bidisc. Determine if the L2

cohomology H0,1
L2 (B \42) is Hausdorff.
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Solution to the Chinese Coin Problem

Let V1, . . . ,Vn be bounded planar domains in C with Lipschtz boundary and
let V = V1 ⇥ · · ·⇥ Vn.

Theorem (Chakrabarti-Laurent-S)
Let ⌦̃ be a bounded pseudoconvex domain in Cn such that V b ⌦̃. Let
⌦ = ⌦̃ \ V be the annulus between ⌦̃ and V. Then H0,1

L2 (⌦) is Hausdorff and

H0,1
L2 (⌦) = {0}, if n � 3.

H0,1
L2 (⌦) is infinite dimensional if n = 2.

Corollary
Let V be the product of bounded planar domains with Lipschitz boundary.
Then

H0,n�1
W1 (V) = {0}.
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Non-closed range property for some Stein domain

Theorem (Chakrabarti-S, 2015 Math. Ann.)

There exists a pseudoconvex domain ⌦ in a complex manifold such that

⌦ is Stein with smooth (real-analytic) Levi-flat boundary.

Any continuous bounded plurisubharmonic function on ⌦ is a constant.

@ does not have closed range in L2
2,1(⌦).

H2,1
L2 (⌦) is non-Hausdorff.

Let
X = CP1 ⇥ T

be a compact complex manifold of dimension 2 endowed with the product
metric where T is the torus.
The domain ⌦ ⇢ X = CP1 ⇥ T is defined by

⌦ = {(z, [w]) 2 CP1 ⇥ T : Rezw > 0}.
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Remarks

⌦ is biholomorphic to a punctured plane C⇤ and an annulus. Hence ⌦ is
Stein (Ohsawa 1982).

Hp,q(⌦) = 0, q > 0.

We still do not know if H0,1
L2 (⌦) or H1,1

L2 (⌦) is Hausdorff.
An earlier example (constructed by Grauert) of a pseudoconvex domain
in a a two-tori has been shown with non-Hausdorff property by
Malgrange (1975). But the domain is not holomorphically convex (not
Stein).
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Thank You
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