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Abstract We give an example of a pseudoconvex domain in a complex manifold
whose L2-Dolbeault cohomology is non-Hausdorff, yet the domain is Stein. The
domain is a smoothly bounded Levi-flat domain in a two complex-dimensional com-
pact complexmanifold. The domain is biholomorphic to a product domain inC

2, hence
Stein. This implies that for q > 0, the usual Dolbeault cohomology with respect to
smooth forms vanishes in degree (p, q). But the L2-Cauchy–Riemann operator on the
domain does not have closed range on (2, 1)-forms and consequently its L2-Dolbeault
cohomology is not Hausdorff.

1 Introduction

For each bidegree (p, q), with p ≥ 0, q > 0, the Dolbeault Cohomology group
H p,q(�) of a Stein manifold � in degree (p, q) vanishes, and indeed this property
characterizes Stein manifolds among complex manifolds (see e.g. [12,13]). In partic-
ular, with respect to the Fréchet topology, the operator ∂ from the spaceAp,q−1(�) of
smooth (p, q−1)-forms on� to the spaceAp,q(�) has closed range, since this range
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coincides with the null-space of the operator ∂ : Ap,q(�) → Ap,q+1(�). The aim of
this paper is to show that things are much more interesting for the L2-cohomology of
a bounded Stein domain in a Hermitian manifold.

Recall that a Hermitian manifold is a complex manifold whose tangent bundle has
been endowed with a Hermitian metric. On a Hermitian manifold, one can define
the L2-Dolbeault Cohomology groups, which capture the L2-function theory on the
manifold. If the manifold � is realized as a relatively compact (i.e. bounded) domain
inside a larger Hermitian manifold X (with the restricted metric), the L2-spaces of
forms and functions and the L2-cohomology groups do not depend on the particular
choice of the metric on X . According to a famous theorem of Hörmander, the L2-
Dolbeault groups H p,q

L2 (�) vanish for q > 0, provided � is a bounded Stein domain

in a Steinmanifold. In particular, the range of the ∂ operator in the L2-sense is closed in
each degree. One can also show that if � is a smoothly bounded domain with strongly
pseudoconvex boundary in a complex Hermitian manifold, then again ∂ has closed
range, and the L2-Dolbeault groups are finite dimensional.

The question arises whether on a bounded Stein domain in a general complex mani-
fold, the ∂-operator still has closed range, or equivalently whether the L2-cohomology
groups of such a domain are Hausdorff in the natural quotient topology. This is not
the case:

Theorem 1.1 There is a compact complex surface X and a relatively compact,
smoothly bounded, Stein domain O in X, such that the range of the L2 ∂-operator
from the space L2

2,0(O) of square integrable (2, 0)-forms to the space L2
2,1(O) of the

square integrable (2, 1)-forms on O is not closed. Consequently, the L2-cohomology
space H2,1

L2 (O) is not Hausdorff in its natural quotient topology.

The complex surface X in the above theorem can be taken to be the product P1×E,
whereP

1 is the projective line, andE is an elliptic curve defined by a rectangular lattice
in C. The domain O defined below in Section 4 is a domain introduced by Ohsawa in
[23], which has the property that in spite of the fact that its boundary is smooth (even
real analytic), the domain O is biholomorphic to a product of two planar domains,
one of which is the punctured plane C

∗ = C\{0}, and the other is a bounded annulus.
Though O is a Stein domain, its properties are quite unlike what one would expect
from a bounded pseudoconvex domain in a Stein manifold. The domain O used here
as a counterexample, as well as closely related domains, have been studied before in
several contexts (see [1,2,9]).

The main tool in the proof of Theorem 1.1 is the study of holomorphic extension of
CR functions defined on the boundary of O. On a general complex manifold M , there
is noHartogs–Bochner phenomenon (see [18] or [21]). In otherwords, it is not true that
a CR function defined on the connected boundary b� of a smoothly bounded domain
� � M can be extended holomorphically into �. Such Hartogs–Bochner extension
does take place when the ambient M is C

n, n ≥ 2, or M is Stein with dimension at
least 2. In Sect. 3 below, we study some obstructions to holomorphic extension of
CR functions, and relate them to the non-closed range property for the ∂-operator.
Suppose that the range of ∂ is closed in L2

2,1(O). Using the L2 version of Serre duality

(see [6]), the L2 cohomology for (2, 1)-forms H2,1
L2 (O) is isomorphic to H0,1

c,L2(O),
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The L2-cohomology of a bounded smooth Stein Domain 1003

the L2 cohomology for (0, 1)-forms with minimal realization of the ∂-operator (see
Sect. 2 below for definitions). One of the main observations in this paper is that if
the range of ∂ is closed in L2

2,1(O), then H0,1
c,L2(O) vanishes. Then the ∂-Neumann

operator exists on L2
2,1(O) and H2,1

L2 (O) vanishes. In this case, one can show that the

∂-Neumann operator is regular fromW ε to itself for some small ε > 0. Then from the

L2 ∂-Cauchy problem, every CR function on the boundary bO in W
1
2−ε(bO) can be

extended holomorphically to O. On the other hand, the boundary of O is Levi-flat and
contains two complex tori, which divide the boundary into two disjoint parts. If we
take two distinct constants on the disjoint boundary pieces, it defines a CR function on

the boundary ofOwhich is inW
1
2−ε(bO), but they do not extend (see Proposition 3.1).

There are well-known elementary examples of non-Stein domains in C
2 where

closed range of the ∂-operator does not hold either in the Fréchet topology (cf. [25,
Section 14]) or in the L2-topology (cf. [11, pp. 75–76]). There is also an example
by Malgrange of a bounded domain with pseudoconvex boundary (in a two com-
plex dimensional torus) for which the ∂-operator does not have closed range in the
Fréchet sense (cf. [22]). Similar phenomena happen in some noncompact complex Lie
groups (cf. [14]). As already noted, in a Stein manifold, in the Fréchet topology on
the space of smooth forms the ∂-operator has closed range. On the other hand, in the
L2-sense, many unbounded domains in C

n (for example the whole of C
n itself) are

easily seen not to have the closed range property for the ∂-operator. The example of
O considered here shows that such non-closed range phenomena are also possible on
bounded Stein domains with smooth boundary. This is in sharp contrast with the case
for bounded domains in C

n . In fact, it has been shown recently that for a bounded
Lipschitz domain in C

2 such that the complement of the domain is connected in C
2,

the ∂ equation has closed range in L2
0,1(�) if and only if the domain is pseudoconvex

(cf. [19, Theorem 3.4]).
The range of the map ∂ : L2

2,0(O) ��� L2
2,1(O) is not closed, and it is desirable to

find an explicit ∂-closed L2 (2, 1)-form which is not in the L2 range. In Sect. 5, we
show that there is a harmonic (2, 1)-form g on X such that g|O is not in the range of ∂

in the L2 sense, but we do not know whether g|O is in the closure of the range. On the
other hand, there exists a solution v of ∂v = g which is in W−ε(O) for each ε > 0.
Recalling that as a complex manifold, O is the product of the punctured plane C

∗ with
an annulus, one may suspect that the lack of closed range of ∂ is somehow connected
to the unboundedness of the punctured plane. In Sect. 5, we also show that this is not
the case by looking at the L2-function theory on O in more detail, and in particular
show that for (2, 0)-forms which depend only on the C

∗ factor, the ∂ operator actually
has closed range. This shows that the non-closed range property is more subtle.

2 Definitions and notation

We briefly recall the definitions related to the L2-Dolbeault cohomology. Details on
the L2-theory of the ∂-equation, and the associated ∂-Neumann problemmay be found
in standard texts on the subject, e.g. [7,11,13,27], and details on the L2-version of
Serre duality theorem used in this paper may be found in [6].
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Let � be a Hermitian manifold, i.e., a complex manifold with a Riemannian metric
which is Hermitian with respect to the complex structure on the tangent spaces. We
can define in a natural way the L2-spaces of (p, q)-forms L2

p,q(�). In the special
case when � is realized as a relatively compact domain in a larger complex manifold
X , and is given a Hermitian metric by restricting from X , the spaces L2

p,q(�) are
defined independently of the particular choice of the metric in X . In our application,
the domain � will be of this latter type.

The differential operator ∂ is defined classically on the space A∗,∗(�) of smooth
forms on �, and maps (p, q)-forms to (p, q + 1)-forms. Standard techniques of
functional analysis allow us to construct extensions of the operator ∂ acting as
closed unbounded operators on the spaces L2

p,q(�). Two such realizations of ∂ as an
unboundedoperator on L2∗,∗(�) are of fundamental importance. First, the (weak)maxi-
mal realization of ∂ is defined to have domainD p,q

max = { f ∈ L2
p,q(�) | ∂ f ∈ L2

p,q+1},
where ∂ acts on an L2-form in the sense of distributions. By standard abuse of nota-
tion we will denote by ∂ the unbounded, closed, densely Hilbert space operator from
L2
p,q(�) to L2

p,q(�)with domainD p,q
max, and such that for f ∈ D p,q

max, we take ∂ f in the

sense of distributions. We also define the (strong)minimal realization ∂c as the closed
operator with smallest domainD p,q

min which extends the restriction of the ∂-operator to
the smooth compactly supported forms. This may be interpreted by saying that forms
inD p,q

min satisfy a boundary condition. The existence of such a “closure” ∂c is proved in
functional analysis. Note thatD p,q

max � D p,q
min on a bounded domain�, and the maximal

realization ∂ is an extension of the operator ∂c. Note that ∂ ◦ ∂ = ∂c ◦ ∂c = 0, so we
have two different examples of Hilbert Complexes (cf. [4]), i.e., a chain complex (in
the sense of homological algebra) in which the differential operators are unbounded
operators on Hilbert spaces, and the chain groups are the domains of these operators.
One can associate to such a complex its cohomology, and this way we obtain, for any
Hermitian manifold �, its L2-Dolbeault cohomology groups:

H p,q
L2 (�) = ker(∂ : L2

p,q(�) ��� L2
p,q+1(�))

img(∂ : L2
p,q−1(�) ��� L2

p,q(�))
,

where the dashed arrows signify that the maximal realization is defined only on a
dense subspace of the Hilbert space L2∗,∗(�) (in this case D∗,∗

max). Similarly, we can
define the L2-Dolbeault cohomology with minimal realization by setting

H p,q
c,L2(�) = ker(∂c : L2

p,q(�) ��� L2
p,q+1(�))

img(∂c : L2
p,q−1(�) ��� L2

p,q(�))
,

where now the minimally realized Hilbert space operators ∂c are used. In general,
the L2-Dolbeault groups, and the L2-Dolbeault groups with minimal realization are
very different, but under appropriate hypotheses, there is a relation of duality between
the two collections of groups, which is an analog of the classical Serre duality in the
L2-setting (see [6] for details).
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The L2-cohomology of a bounded smooth Stein Domain 1005

Note that the cohomology spaces H p,q
L2 (�) and H p,q

c,L2(�) are complex vector
spaces, and have a natural linear topology as quotients of linear topological spaces.
In particular, for H p,q

L2 (�), if the range img(∂ : L2
p,q−1(�) ��� L2

p,q(�)) is a closed

subspace of L2
p,q(�), then H p,q

L2 (�) has the natural structure of a Hilbert space itself.

However, if img(∂ : L2
p,q−1(�) ��� L2

p,q(�)) is not closed, the quotient topology is

not even Hausdorff. The closed range property for the ∂-operator has other important
consequences, and most importantly, it is equivalent to the possibility of solving the
∂-problem with L2-estimates.

The Hilbert space adjoints ∂
∗
and ∂

∗
c are again closed, densely defined, unbounded

operators on L2∗,∗(�). TheComplex Laplacian is the operator� = ∂∂
∗ +∂

∗
∂ , and its

inverse (modulo kernel) is the ∂-Neumann operatorN. Both map the space L2
p,q(�) to

itself for each degree (p, q). The kernel of� in degree (p, q) consists of theHarmonic
forms.More details on these constructions may be found in the texts mentioned above.

3 Extension of CR functions from boundaries of manifolds

Proposition 3.1 Let X be a Hermitian manifold of complex dimension n, and let �

be a smoothly bounded relatively compact domain in X. Suppose that

(a) b� is connected, and there is a smooth complex hypersurface H (not necessarily
connected) of X such that H ⊂ b� and b�\H is not connected.

(b) The L2-cohomology in degree (0,1) with minimal realization vanishes, i.e.,

H0,1
c,L2(�) = 0.

Then the L2 ∂-operator from L2
n,n−2(�) to L2

n,n−1(�) does not have closed range.

Consequently, the L2-cohomology group Hn,n−1
L2 (�) is not Hausdorff in its natural

topology.

Proof For a contradiction, assume that the ∂-operator from L2
n,n−2(�) to L2

n,n−1(�)

has closed range. We claim that then there is an ε with 0 < ε <
1

2
such that each

CR function f on b� which belongs to the L2-Sobolev space W ε(b�) of order ε

extends to holomorphic function F on �. (In the Sobolev context, “extension” means
that F ∈ W

1
2+ε(�), and the Sobolev trace of F on b� is f ). Postponing the proof

of the claim for now, to produce a contradiction it suffices to produce a CR function

on b� which is of class Ws on b�, for each 0 < s <
1

2
, and which does not admit a

holomorphic extension to �. But such a function is easy to construct as follows.
Let b�+ be a connected component of b�\H , and let b�− be the union of the

remaining connected components. By hypothesis, neither of b�± is empty, their union
is b�\H , and the closures of b�+ and b�− meet along the complex hypersurface H .
Define a locally integrable function f on b� by setting f ≡ 1 on b�+ and f ≡ 0 on
b�−.
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1006 D. Chakrabarti, M.-C. Shaw

We claim that f is CR on b� in the sense of distributions. This is clear except
along the complex hypersurface H , where f has a jump discontinuity. To verify the
fact that f is CR on H , let p ∈ H , and choose a local C∞ real coordinate system
(x1, y1, . . . , xn−1, yn−1, t) on a neighborhood of p in b� such that the hypersurface
H is given by {t = 0}, and along H , z j = x j + iy j is a complex coordinate on H for
1 ≤ j ≤ n − 1. We can further assume that f = 1 on {t > 0} and f = 0 on {t < 0}.
At the point p, a basis of (0, 1)-vector fields is given by the (n−1) vectors

∂

∂z j
, where

1 ≤ j ≤ n − 1. It follows that in a neighborhood of p in b� there are vector fields

Z j = ∂

∂z j
+

n−1∑

�=1

(
a�
j

∂

∂x�

+ b�
j

∂

∂y�

)
+ c

∂

∂t
,

which pointwise span the CR vector fields, where a�
j , b

�
j and c (with 1 ≤ j, � ≤ n−1)

are smooth functions near p which vanish identically on the hypersurface H . To show
that f is CR, we need to check that for each j , we have Z j f = 0 in the sense of
distributions (in order to induce a distribution corresponding to the function f , we
use the standard volume form of R

2n−1). For each φ which is smooth and compactly
supported near p, we need to show that (Z j f )(φ) = 0, i.e.,

∫
t>0 Z

t
jφ = 0, where

Zt
j = − ∂

∂z j
+ Y j + λ j , where Y j is a smooth vector field and λ j a smooth function

given by

Y j = −
(
n−1∑

�=1

(
a�
j

∂

∂x�

+ b�
j

∂

∂y�

)
+ c

∂

∂t

)
(3.1)

λ j = −
(
n−1∑

�=1

(
∂a�

j

∂x�

+ ∂b�
j

∂y�

)
+ ∂c

∂t

)
. (3.2)

Now, assuming that the support of φ is contained in the cube {∣∣x j
∣∣ < δ,

∣∣y j
∣∣ <

δ, |t | < δ}, we have using Fubini’s theorem (the hat ·̂ in the formulas below
indicates that this factor is absent from the product):

∫

t>0

∂φ

∂z j
=

∫ (∫

|x j |<δ,|y j |<δ

∂φ

∂z j
dx j dy j

)
dx1dy1 . . . d̂x j d̂y j . . . dxn−1dyn−1dt

=
∫ δ

t=0
0 · dx1dy1 . . . d̂x j d̂y j . . . dxn−1dyn−1dt

= 0,

where the inner integral in the repeated integral vanishes by an application of the diver-
gence formula. To complete the proof we need to show that

∫
t>0(Y j +λ j )φ = 0. Now

let ψ be a compactly supported smooth function on the real line which is identically
1 in a neighborhood of 0, and for small ε > 0, let φε(x1, y1, . . . , xn−1, yn−1, t) =
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The L2-cohomology of a bounded smooth Stein Domain 1007

φ(x1, y1, . . . , xn−1, yn−1, t)ψ( t
ε
). Writing φ = φε + (φ −φε), we see that

∫
t>0(Y j +

λ j )(φ − φε) = 0, since f is a smooth CR function outside H . The integral
∫
t>0 λ jφε

is clearly O(ε) as ε → 0, since the function λ jφε is bounded uniformly in ε, and the
integral ranges over a subset of the support of φε , which has volume O(ε). Noting that
the coefficients a�

j , b
�
j , c vanish along H , we see that they are O(ε) in the support of

φε . Further,

∣∣∣∣
∂

∂t
(φε)

∣∣∣∣ = O( 1
ε
). Therefore,

∣∣∣∣
∫

t>0
Y jφε

∣∣∣∣ ≤ sup

∣∣∣∣∣

n−1∑

�=1

(
a�
j
∂φε

∂x�

+ b�
j
∂φε

∂y�

)
+ c

∂φε

∂t

∣∣∣∣∣ · vol(supportφε)

≤ C

(
ε + ε + ε · 1

ε

)
· ε

= O(ε).

Combining the estimates, it follows that for each ε > 0, we have that

∣∣(Z j f )(φ)
∣∣ =

∣∣∣∣
∫

t>0
Zt
jφ

∣∣∣∣

=
∣∣∣∣
∫

t>0
− ∂φ

∂z j
+ Y jφ + λ jφ

∣∣∣∣

≤ Cε,

so that Z j f = 0 for 1 ≤ j ≤ n − 1, i.e., f is CR in the sense of distributions.

We now claim that for 0 < s <
1

2
, the CR function f belongs to the fractional-order

Sobolev space Ws(b�). Let B denote the unit ball of R
2n−1 and let B± denote the

upper and the lower half balls. To see that f ∈ Ws(b�), it clearly suffices to show
u ∈ Ws(B), where u is the function on B which is identically 1 on B+ and which

vanishes on B−. The fact that u ∈ Ws(B) for 0 < s <
1

2
can be verified by a direct

computation, cf. [28, Proposition 5.3], or it follows from [20, Theorem 11.4], where
it is shown that the extension by 0 of a function in Ws(B+) is a function in Ws(B) if
0 < s < 1

2 .
Note that the function f does not admit a holomorphic extension to either � or

X\�. If such an extension F did exist, by standard estimates on Bochner–Martinelli
type singular integrals, F would be C∞-smooth up to the boundary on b�\H . Then
by a classical boundary uniqueness result, the holomorphic function F has to be
simultaneously both identically 1 and identically 0 on �. This produces the required
contradiction. To complete the proof we only need to establish the claim made in the

first paragraph regarding the existence of an ε with 0 < ε <
1

2
for which each CR

function of class W ε(b�) extends holomorphically into �.
By assumption, the ∂-operator has closed range in L2

n,n−1(�). Then the ∂-Neumann

operator N = Nn,n−1 exists on � as a bounded operator on L2
n,n−1(�), since in the
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top degree, ∂ automatically has closed range from L2
n,n−1(�) to L2

n,n(�). Further,

by L2-Serre duality (cf. [6, Theorem 2]) it follows that Hn,n−1
L2 (�) = 0, and further

that the harmonic space Hn,n−1(�) = 0 (cf. [6]). Using an observation of Kohn (see

Proposition 3.2 below), there is an 0 < s <
1

2
such that the operator N extends as a

bounded operator on Ws
n,n−1(�), i.e., the space of (n, n − 1)-forms on � with coef-

ficients in Ws(�). When N maps Ws to itself, it follows that the “canonical solution
operator” ∂

∗
N and all the related operators (∂N and the Bergman projection) also

map Ws to itself. (For integral s, a proof based on a standard commutator estimate
may be found in texts on the ∂-Neumann problem, see [7, Theorem 6.1.4 and The-
orem 6.2.2] or [27, Lemma 3.2 and Corollary 3.3]. Essentially the same arguments
generalize to fractional s, even with 0 < s < 1, if we replace the tangential differential
operators in the commutator estimates by tangential pseudo-differential operators of
fractional order and use the commutator estimates for such operators, see [11, Appen-
dix, Prop. A.5.1 to A.5.3]). Therefore ∂N and ∂

∗
NmapWs(�) to itself. If 0 < s < 1

2 ,
the space C∞

0 (�) is dense in Ws(�), so that Ws(�) coincides with Ws
0 (�) (cf. [20,

Theorem 11.1]), and therefore W−s(�), defined to be the dual of Ws
0 (�), is actually

the dual of Ws(�). Since N is self-adjoint, it maps W−s(�) to itself. It follows that
the associated operator ∂N (or ∂

∗
N) maps W−s(�) to itself.

Now let f be a CR function on b� belonging to W ε(b�) where ε = 1
2 − s. We

can extend f to a function f̃ ∈ W
1
2+ε(�). Then ∂ f̃ ∈ W ε− 1

2 (�) = W−s(�). We
consider the function

uc = − ∗ ∂N
(
∗∂ f̃

)
,

where ∗ denotes the Hodge Star operator on the space of differential forms on the
Hermitian manifold �. Since ∗ induces an isometry of each Sobolev space, it follows
that uc ∈ W−s(�). It follows from [6, Theorem 3], that uc satisfies ∂cuc = ∂ f̃ , where
∂c is the minimal realization of the ∂ operator (see [6] or the proof of Theorem 3.2
in [26]). Furthermore, using the regularity of ∂N on W−s(�) established above, we
have

‖uc‖W−s (�) ≤ C
∥∥∥∂ f̃

∥∥∥
W−s (�)

≤ C
∥∥∥ f̃

∥∥∥
W 1−s (�)

≤ C ‖ f ‖
W

1
2−s

(b�)
.

If we define

F = f̃ − uc,

then F ∈ W−s(�) and F is holomorphic. Using the weak and strong extension of
∂c (cf. [19, Lemma 2.4]), we see that uc satisfies the equation ∂uc = ∂ f̃ in an open
neighbourhood of � if we set uc and ∂ f̃ equal to zero outside �. From the interior
regularity for ∂ , we have that uc is in W 1−s(�). This shows that uc actually has

trace in W
1
2−s(b�). The trace of uc on b� is equal to zero since uc satisfies the

∂-Cauchy problem. Noting that the distributional boundary value of F on b� is of

class W
1
2−s(b�), it follows that F ∈ W 1−s(�), so that F is indeed a holomorphic

extension of f .
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The L2-cohomology of a bounded smooth Stein Domain 1009

To complete the argument in the previous result, wewill use the following observation,
which is due to Kohn (see [3]).

Proposition 3.2 Let � be a relatively compact domain with smooth boundary in a
Hermitian manifold X. Suppose that for some degree (p, q), the ∂-Neumann operator
Np,q exists on � as a bounded linear operator on the space L2

p,q(�) of square inte-
grable (p, q)-forms, and suppose that the harmonic space of degree (p, q) is trivial.
Then there is an ε0, with 0 < ε0 ≤ 1

2 , such that for 0 < ε < ε0, the operator Np,q

extends as a bounded operator from the Sobolev space W ε
(p,q)(�) to itself.

If � admits a bounded Hölder continuous plurisubharmonic exhaustion (which
happens when X = C

n [8] or X is a complex projective space [5,24]) then the con-
clusion follows directly. However, the existence of such a bounded plurisubharmonic
exhaustion is not necessary for the conclusion to hold. In our application, we will
use it on a domain which does not admit a bounded plurisubharmonic exhaustion
(see Lemma 4.3). The proof of the proposition is the same as the arguments used in
Kohn–Nirenberg [16] using pseudo-differential operators (see [15]) and we omit the
details.

4 The proof of Theorem 1.1

4.1 The domain O

As was already mentioned in the introduction, the domain O will be realized as a
domain with real-analytic boundary in the compact complex surface X = P

1 × E,
where P

1 is the complex projective line (the Riemann Sphere) and E is an elliptic
curve defined in the following way. Let β > 0, and let �β = {e2kπβ |k ∈ Z} be the
cyclic subgroup of C

∗ = C\{0} generated by the number e2πβ . Then E is the quotient
C

∗/�β which is an elliptic curve.
Let the natural projectionC

∗ → E be denoted byw �→ [w] (so that [e2πβw] = [w])
and let z : P → C ∪ {∞} denote the inhomogeneous coordinate on P. Then O is the
domain in P × E given by

O = {(z, [w]) ∈ P × E : �(zw) > 0}, (4.1)

where it is easily seen that the condition �(zw) > 0 is well defined independently
of the choice of the lift w of the point [w] ∈ E. This is a smoothy bounded Levi-flat
domain in X = P × E, and is in fact biholomorphic to a product domain in C

2, where
one factor is C

∗ and the other is an annulus. Indeed, let

A =
{
W ∈ C : e− π

2β < |W | < e
π
2β

}
, (4.2)

which is an annulus in the plane. Let 
 be the map from C
∗ × A to X given by


(Z ,W ) =
(
Z ,

[
Z−1 exp (iβ · logW )

])
=

(
Z ,

[
Z−1 · Wiβ

])
. (4.3)
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 is well-defined in spite of the multivaluedness of the logarithm. It is not difficult to
verify that 
 is a biholomorphism from C

∗ × A onto O. We will refer to � = C
∗ × A

as the product model of O.
Note that the domain O depends on the choice of the parameter β, and the domains

obtained for distinct β are easily seen to be non-biholomorphic. Therefore, in fact we
have a one-parameter family of counterexamples to prove Theorem 1.1. In the sequel,
we consider the Ohsawa domain corresponding to one fixed β.

The Levi structure of bO can be summarized as follows:

Proposition 4.1 bO is a smooth, real-analytic, connected, Levi-flat hypersurface. The
complex tori {0} × E and {∞} × E are contained in bO and the complement of these
two tori is a disjoint union of two open subsets�± of bO. Each of�± is CR equivalent
to the product C

∗ × S1 (with the natural CR structure).

Proof The assertions in thefirst sentence canbe verifiedbydirect computation, starting
from the representation (4.1).

The map 
 extends biholomorphically to a neighborhood of C
∗ × A, and it is easy

to see that the image of C
∗ ×bA is all of bO except the two tori {0}×E and {∞}×E.

Note that the boundary of the annulus A consists of two circles bA
+ and bA

−. Define
�+ = 
(C∗ × bA

+) and �− = 
(C∗ × bA
−). Then bO is the disjoint union of the

four pieces �+, �−, {0} × E and {∞} × E. By construction each of �± is a Levi-flat
hypersurface biholomorphically equivalent to C

∗ × S1 (where S1 is the circle).

If we use (Z ,W ) as coordinates on O, each function holomorphic on O has a
Laurent expansion ∑

( j,k)∈Z2

a jk Z
jWk . (4.4)

Viewed as a complex manifold, being a product of planar domains, O is Stein, and
the Dolbeault Cohomology H p,q(O) vanishes for each positive q. Note further there
are nonconstant bounded holomorphic functions on O, namely, the ones represented
in the product model as bounded holomorphic functions of W alone.

In order to study L2 theory on O, we need to impose an arbitrary Hermitian metric
on X and restrict it to O. The actual L2-spaces of forms and functions, the realizations
of the ∂-operator are independent of the choice of the metric. For simplicity therefore
we give themost symmetric metric to X , which arises as the product metric of constant
curvature metrics on the factors. We endow P (which is diffeomorphic to the round
2-sphere) with a round metric (the Fubini-Study metric) and the elliptic curve E with
a flat metric. The metric on P is normalized such that

φ = dz

1 + |z|2 , (4.5)

is a (1, 0)-form of unit length at each point. Denote by ψ the unique (1, 0)-form on E

whose pullback to C
∗ by the map π : w �→ [w] satisfies

π∗ψ = dw

w
. (4.6)
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Such a ψ exists since the form
dw

w
is periodic with respect to the action of the group

�β by multiplication on C
∗. Then ψ is in fact a holomorphic 1-form on E, and by

declaring it to be of unit length we get a flat Hermitian metric on E. Therefore, the
metric on O induced from P × E is represented as

ds2 = φ ⊗ φ + ψ ⊗ ψ, (4.7)

where, by standard abuse of notation, we denote also by φ and ψ the pullbacks of
these forms from P and E respectively to the product P × E via projections on the
factors.

We can pull back themetric (4.7) onO via themap
 and obtain ametric
∗(ds2) on
the product model� = C

∗×A, so that with these metrics,
 becomes an isometry. By
a direct computation we can verify that the Riemannian volume form on � associated
to the pullback metric 
∗(ds2) is represented as:

ω = β2

(
1 + |Z |2)2 |W |2

dV (4.8)

where dV = (−2i)−2dZ ∧ dZ ∧ dW ∧ dW represents the Euclidean volume form
on C

2. We characterize some Sobolev spaces of holomorphic functions:

Lemma 4.2 (1) The Bergman space O(O) ∩ L2(O) consists of functions which are
represented in the product model C

∗ × A as functions on A alone, with no depen-
dence on C

∗.
(2) The Holomorphic Sobolev space O(O) ∩ W 1(O) consists of only the constant

functions.
(3) The above statements remain true if O is replaced by X\O.

Proof The proofs are by direct computations. For (1), it suffices to note that in the
product representation, thanks to the structure of the volume form (4.8), the terms of
the Laurent series (4.4) are orthogonal. Consequently, it suffices to prove that terms
of the form Z jWk are not in L2 if j �= 0. But this follows from integration on the
product representation C

∗ × A using the volume form (4.8).
Thanks to part (1) it suffices to show that the functions Wk , where k �= 0 are not

in the Sobolev space W 1(O). To show this, it suffices to show that the differential
d(Wk) = kWk−1dW is not in the space L2

1,0(O). Since Wiβ = zw, differentiating
logarithmically, we see that

iβ
dW

W
= dw

w
+ dz

z

= ψ + 1 + |z|2
z

φ,
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where ψ and φ are as in (4.6) and (4.5) respectively. Using z = Z and the pointwise
orthogonality of ψ and φ, we have for the pointwise norm:

β2 |dW |2
|W |2 = 1 +

(
1 + |Z |2)2

|Z |2 .

Using the volume form (4.8), we now see that Wk−1dW is not square integrable for
any k, so that it follows that the function Wk is not in the Sobolev space W 1(O).
Therefore, the only functions in O(O) ∩ W 1(O) are the constants.

The last statement follows since O and X\O are isometrically biholomorphic by
the map (z, w) → (−z, w). ��

The following lemma shows that in spite of the boundedness of the domain O in
P×E, in some respects the function theory onO is analogous to that on an unbounded
domain:

Lemma 4.3 (a) Bounded plurisubharmonic functions on O do not separate points.
In particular, O does not admit a bounded plurisubharmonic exhaustion function.

(b) A continuous plurisubharmonic function on O is a constant.

Proof For (a), representingO as a product, we see that any bounded plurisubharmonic
function on O must be constant on each slice C

∗ × {W } for each W ∈ A.
For (b), note that the restriction of such a continuous plurisubharmonic function

to the torus T0 = {0} × E is a constant. But it is easy to see that T0 is contained in
the closure of each slice C

∗ × {w} of the product representation. Consequently, the
constant value assumed by the plurisubharmonic function on each slice is the same.

��
Remark The function �(zw) is pluriharmonic (hence plurisubharmonic), and serves
as a defining function for the domain O except near the torus T∞ = {∞} × E. But it
is not a global defining function of O since it is not defined near T∞. A related result
on the non-existence of a plurisubharmonic exhaustion function on a certain Stein
domain with Levi-flat boundary may be found in in [24, Theorem 1.2].

4.2 Proof of Theorem 1.1

We can now complete the proof of Theorem 1.1. Let

H = ({0} × E) ∪ ({∞} × E).

It is easy to see that bO is actually connected, and bO\H is not connected, since it is
the disjoint union of �+ and �−.

To complete the proof of Theorem 1.1 we will study the cohomology group
H0,1
c,L2(O). This L2-cohomology group is independent of the choice of the metric

adopted, so we can simplify our work by choosing the metric (4.7). It suffices to
endow the ambient manifold X = P × E with a Hermitian metric, which then can be
restricted to the domain O. We now prove the following:
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Lemma 4.4 With the metric (4.7) (and therefore with any other comparable metric),
suppose that the range of ∂ : L2

2,0(O) → L2
2,1(O) is closed in L2

2,1(O). Then we have

H0,1
c,L2(O) = 0

Proof Let f be a ∂c-closed (0, 1)-form on O. We need to show that the equation
∂cu = f has a solution. We instead first consider the equation on X = P × E given
as ∂ ũ = f̃ , where f̃ is the ∂-closed (0, 1)-form obtained by extending the form f as
0 outside O. By the Hodge decomposition on the compact Kähler manifold X , this
equation has a solution provided f̃ is orthogonal to the Harmonic spaceH0,1(X). But
by the Künneth formula, H0,1(X) is one dimensional and generated by the form ψ ,
whereψ is as in (4.6), and so there is a ũ satisfying the equation provided ( f̃ , ψ)X = 0.

Define a smooth (0, 2)-form on O by setting v = zφ ∧ ψ . One easily sees that v is
not in L2

0,2(O). Recall that, if ϑ denotes the formal adjoint of the differential operator

∂ , we can write ϑ = −∗ ∂∗, where ∗ denotes the Hodge star operator on the de Rham
complex of X , which is a C-antilinear map (see [6] for details), and we have

ϑv = − ∗ ∂ ∗ (zφ ∧ ψ)

= ∗∂(zφ ∧ ψ)

= ∗∂

(
z

1 + |z|2 dz ∧ ψ

)

= ∗
(

1

(1 + |z|2)2 dz ∧ dz ∧ ψ

)

= ∗(φ ∧ φ ∧ ψ)

= ψ.

Notice that if it were true that v ∈ L2
0,2(O) thenwewould have ( f̃ , ψ)X = ( f, ϑv)O =

(∂ f, v)O = 0, where the boundary term in the integration by parts vanishes since f is
in the domain of ∂c. Since v is not in L2, we need a more delicate argument to prove
the claim.

Since f satisfies ∂c f = 0 in O, using Friedrichs’ lemma we can approximate f
by a sequence { fν} of smooth forms with compact support in O such that fν → f in
L2
0,1(O) and ∂ fν → ∂ f = 0 in L2

0,2(O) as ν → ∞. Thus we have

( f̃ , ψ)X = ( f, ϑv)O

= lim
ν→∞( fν, ϑv)O

= lim
ν→∞(∂ fν, v)O,

where the boundary term vanishes since fν has compact support in O.
Assuming that ∂ : L2

2,0(O) → L2
2,1(O) has closed range, this implies by duality that

∂c : L2
0,1(O) → L2

0,2(O) has closed range (see Theorem 3 in [6]). Since ∂c fν = ∂ fν
is in the range of ∂c, there exists uν

c with u
ν
c ∈ Dom(∂c) such that
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∂cu
ν
c = ∂ fν

and
‖uν

c‖ ≤ C‖∂c fν‖ → 0. (4.9)

If ∂ has closed range in L2
2,1(O), then the ∂-Neumann operator N2,0 : L2

2,0(O) →
L2
2,0(O) exists. We can take uν

c = − ∗ ∂N ν
2,0 ∗ ∂ fν and uν

c satisfies (4.9). One can
approximate uν

c by a sequence of smooth forms uν,ε
c compactly supported in O such

that uν,ε
c → uν

c and ∂uν,ε
c → ∂uν

c in L2 (see e.g. Lemma 2.4 in [19]).
Therefore

(∂ fν, v)O = (∂cu
ν
c , v)O = lim

ε→0
(∂cu

ν,ε
c , v)O

= lim
ε→0

(uν,ε
c , ϑv)O

= (uν
c , ψ)O

→ 0

where we have used (4.9). Therefore ( f̃ , ψ)X = 0 and this shows that there is a ũ
on X satisfying ∂ ũ = f̃ . Since f̃ ∈ L2(X), by interior elliptic regularity, we have
ũ ∈ W 1(X). Since ũ|X\O is holomorphic, it follows from Lemma 4.2, parts 2 and 3
that ũ reduces to a constant c on X\O. Therefore u = ũ−c is a function in X satisfying
∂u = f in X . The support of u is in O. The boundary bO is smooth. Thus we have,
using the weak and strong extension for ∂c (cf. [19, Lemma 2.4]) that u ∈ Dom(∂c)

and ∂cu = f . ��
End of Proof of Theorem 1.1 Suppose that the range of ∂ : L2

2,0(O) → L2
2,1(O)

is closed in L2
2,1(O). Then by Lemma 4.4 we have H0,1

c,L2(O) = 0. But this is in
contradiction with the conclusion of Proposition 3.1. ��

5 Forms on O depending on the C
∗ factor only

Since O is biholomorphic to C
∗ ×A, it may seem that the lack of closed range proved

above might somehow be related to the factor C
∗. To investigate this, we consider

forms on O, whose coefficients depend only on the variable Z ranging over C
∗ and

not on the variable W ranging over A. In the natural coordinates (z, w) of P × E,
this corresponds to considering forms on O whose coefficients are functions of the
inhomogeneous coordinate z on P\{∞}, since z = Z by (4.3).

Let us say that a (2, 0)-form u · dz ∧ ψ on O depends on z only if the coefficient
function u is a function of the coordinate z alone. Denote by L2

2,0(O, z-only) the

space of square-integrable (2, 0)-forms which depend on z only. Similarly, let L2
2,1(O,

z-only) be the subspace of L2
2,1(O) consisting of forms of the type v ·dz∧dz∧ψ , with

v a function of z. Note that L2
2,0(O, z-only) and L2

2,1(O, z-only) are closed subspaces

of L2
2,0(O) and L2

2,1(O) respectively. Note further that each form in L2
2,1(O, z-only)

is automatically closed, and the image under ∂ of L2
2,0(O, z-only) is contained in
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L2
2,1(O, z-only). Let T : L2(C) ��� L2(C) be the unbounded closed densely defined

operator given on smooth functions by

Tu(z) = (1 + |z|2)∂u
∂z

, (5.1)

and with the weak maximal realization. Then we have the following:

Lemma 5.1 There are Hilbert-space isomorphisms η : L2
2,0(O, z-only)→ L2(C) and

θ : L2
2,1(O, z-only)→ L2(C) such that the following diagram commutes:

L2
2,0(O, z-only) ∩ Dom(∂)

∂−−−−→ L2
2,1(O, z-only)

η

⏐⏐� θ

⏐⏐�

Dom(T )
T−−−−→ L2(C)

where Dom(T ) ⊂ L2(C) is the domain of the maximally realized operator T , and the
map η : dom(∂) ∩ L2

2,0(O, z-only)→ Dom(T ) is a bijection.

Proof Let η : L2
2,0(O,z-only)→ L2(C) be the map

η : u · dz ∧ ψ �→ u

and let θ : L2
2,1(O, z−only) → L2(C) be the map

θ : v · φ ∧ φ ∧ ψ → v

(1 + |z|2) .

(Note that each element of L2
2,1(O, z-only) may be written in the form v · φ ∧ φ ∧ ψ ,

for a function v of z ∈ C
∗). We first check that η and θ are isomorphisms. The space

L2
2,0(O) is defined independently of the metric, since its elements are sections of the

canonical bundle, and we have

‖ f ‖2 =
∫

O

f ∧ f

=
∫

O

|u|2 dz ∧ ψ ∧ dz ∧ ψ

= 4
∫

O

|u|2 (1 + |z|2)2dO,

where dO = (−2i)−2φ ∧ φ ∧ ψ ∧ ψ is the Riemannian volume form of O. Pulling
back the integral to C

∗ ×A via the map 
 of (4.3), and noting that under the pullback
metric, the volume form is the form ω of (4.8), we see that
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‖ f ‖2 = 4
∫

C∗×A

|u|2 (1 + |Z |2)2ω

= 4β2
∫

C∗×A

|u|2
|W |2 dV,

where dV denotes the standard Euclidean volume form of C
2 = R

4. Therefore, if
f ∈ L2

2,0(O, z-only), it follows by Fubini’s theorem that

‖ f ‖2
L2
2,0(O,z−only)

= C ‖u‖2L2(C)
,

whereC is a constant independent of f = u ·dz∧ψ . Since η( f ) = u, and η is clearly
surjective, it follows that η is an isomorphism of Hilbert spaces.

We now consider the map θ : g �→ v · (1 + |z|2)−1, where g = v · φ ∧ φ ∧ ψ . We
have

‖g‖2
L2
2,1(O)

=
∫

O

|v|2 dO

= β2
∫

C∗×A

|v(Z)|2 dV

(1 + |Z |2)2 |W |2

= C
∫

C∗

|v(Z)|2
(1 + |Z |2)2 dV (Z)

= C ‖θ(g)‖2L2(C)
,

so that θ is also an isomorphism, since it is clear that θ is surjective.
Now let f ∈ Dom(∂) ∩ L2

2,0(O,z−only), and write f = u · dz ∧ ψ where u is a

function of the variable z only. Then T (η( f )) = (1 + |z|2)∂u
∂z

. But

∂ f = ∂u

∂z
dz ∧ dz ∧ ψ

= (1 + |z|2)2 ∂u

∂z
φ ∧ φ ∧ ψ,

so that θ(∂ f ) = (1 + |z|2)∂u
∂z

= T (η f ) and the diagram commutes. To see that η

is bijective, note first that η is injective, since it is an isomorphism of Hilbert spaces.
Further, it is clear that whenever u ∈ C∞(C) ∩ Dom(T ), then u lies in the image of
η. Now the surjectivity of η follows from the density of smooth forms in the domain
of the maximal L2-realization of a differential operator. ��
We now analyze the behavior of the operator T :

Lemma 5.2 The range of the operator T : L2(C) ��� L2(C) of (5.1) is the orthog-

onal complement of the function
(
1 + |z|2)−1

in L2(C). In particular the range is
closed.
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Proof We have the decomposition L2(C) = img(T )⊕ker(T ∗), where T ∗ denotes the
Hilbert space adjoint of T . Integration by parts shows that for v ∈ Dom(T ∗), we have
T ∗v = − ∂

∂z

{
(1 + |z|2)v}

. Consequently, the kernel of T ∗ consists of v ∈ L2(C) such

that (1+|z|2)v is entire. Denoting this entire function by h, we have v = (1+|z|2)−1h
is in L2(C). Expanding h in an entire Taylor series, we see that v ∈ L2(C) if and only
if h is reduced to a constant. Consequently, the space ker(T ∗) is one-dimensional and
spanned by (1 + |z|2)−1 ∈ L2(C). Therefore

img(T ) =
{
f ∈ L2(C) :

∫

C

f ·
(
1 + |z|2

)−1
d A = 0

}
,

where d A is the Lebesgue measure on C. Note also that T is injective from L2(C)

to img(T ), since its null-space consists of L2 holomorphic functions on C, the only
instance of which is the zero function.

Let now f ∈ img(T ), i.e. the inner product
(
f, (1 + |z|2)−1

)
vanishes. Noting that

f ∈ L2(C), we easily conclude using the Cauchy-Schwarz inequality that f · (1 +
|z|2)−1 ∈ L1(C)∩L2(C). Define a function γ onC by γ = F( f · (1 + |z|2)−1), where
F is the Fourier transform on R

2. By standard properties of the Fourier transform, the
function γ is continuous, vanishes at infinity and is also in L2(C). Furthermore, we
have (1 + �)γ = f̂ ∈ L2(C), where � is the Laplacian, the operator with symbol
|z|2. Combining with the fact that f ∈ L2(C), we conclude that �γ ∈ L2(C), so that
we have γ ∈ W 2

loc(C). By Sobolev embedding then, γ belongs locally to the Hölder
space Cα for any 0 < α < 1. Also by definition of γ

γ (0) =
∫

C

(1 + |z|2)−1 f (z)e−i〈0,z〉d A(z)

=
(
f, (1 + |z|2)−1

)

= 0.

It follows therefore that for each α with 0 < α < 1, there is a Cα such that

|γ (ζ )| ≤ Cα |ζ |α .

Let u = F−1
(
2γ

ζ

)
. We assume that u is in L2(C) first. Then, noting that the

Fourier multiplier corresponding to the operator
∂

∂z
is

ζ

2
, we have

Tu = (1 + |z|2) ∂

∂z
F−1

(
2γ

ζ

)

= (1 + |z|2)F−1(γ )

= (1 + |z|2) · (1 + |z|2)−1 f

= f,
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so that u satisfies Tu = f . To complete the proof it suffices to show that u is in fact
in L2(C), so that we will have u ∈ Dom(T ) and consequently f ∈ img(T ). We have
for some constants C > 0

∥∥∥∥
γ

ζ

∥∥∥∥
2

L2(C)

≤ C
∫

ζ∈C,|ζ |≤1

|ζ |2α
|ζ |2 d A(ζ ) +

∫

ζ∈C,|ζ |≥1

|γ |2
|ζ |2 d A(ζ )

≤ C

(∫ 1

r=0
r2α−1dr + 1

)

< ∞,

where A is a positive real number. This shows that u = F−1
(
2γ

ζ

)
is in L2(C). This

completes the proof. ��
Then we have the following:

Proposition 5.3 The operator ∂ : L2
2,0(O,z−only) ��� L2

2,1(O) has closed range.

The range is the orthogonal complement of the form φ ∧φ ∧ψ in the closed subspace
L2
2,1(O,z−only).

Proof According to Lemma 5.1, the range of the operator ∂ : L2
2,0(O,z−only) ���

L2
2,1(O,z−only) is equal to θ−1 ◦ T ◦ η, and since η is surjective onto Dom(T ), the

range of ∂ coincides with θ−1(range(T )). Since θ is an isomorphism and an isometry
(up to a constant) of Hilbert spaces, and the range of T is the orthogonal complement of
v = (1+|z|2)−1 in L2(C), it follows that the range of ∂ is the orthogonal complement
in L2

2,1(O,z−only) of θ−1(v) = φ ∧ φ ∧ ψ . ��
The result of Proposition 5.3 can be strengthened to prove the following:

Proposition 5.4 The form g = φ∧φ∧ψ is not in the rangeof ∂ : L2
2,0(O) → L2

2,1(O).

Proof In view of the previous proposition, it is sufficient to prove that if there is a
solution μ in L2

2,0(O) satisfying the equation

∂μ = g = φ ∧ φ ∧ ψ

then there is also a solution λ ∈ L2
2,0(O, z-only).

We work in the product model C
∗ × A with natural coordinates (Z ,W ). Then we

have

g = dZ ∧ dZ ∧ dW

(1 + |Z |2)2W ,

and suppose that in these coordinates the solution μ is given as μ = u(Z ,W ) dZ
1+|Z |2

∧ dW
W , where from ∂μ = g we conclude that

∂

∂Z

(
u(Z ,W )

1 + |Z |2
)

= 1

(1 + |Z |2)2 ,

123



The L2-cohomology of a bounded smooth Stein Domain 1019

from which we get the relation

uZ · (1 + |Z |2) − Z · u = 1.

Since μ is in L2, it follows that

∫

C∗×A

|u(Z ,W )|2
(1 + |Z |2)2 |W |2 dV < ∞,

where dV is the volume form of C
2. Let v be defined as a function of Z by

v(Z) = 1

|A|
∫

A

u(Z ,W )d A(W )

where d A is Lebesgue measure on the plane. Note that

∂

∂Z

(
v(Z)

1 + |Z |2
)

= vZ · (1 + |Z |2) − Z · v

(1 + |Z |2)2
= 1

(1 + |Z |2)2 · 1

|A| ·
∫

A

(
uZ · (1 + |Z |2) − Z · u

)
d A

= 1

(1 + |Z |2)2 .

By the Cauchy–Schwarz inequality, |v(Z)|2 ≤ |A|−1 ∫
A

|u(Z ,W )|2 d A(W ). Integrat-
ing this over C

∗ it follows that v · (1 + |Z |2)−1 ∈ L2(C).
We set

λ = v(Z)
dZ

1 + |Z |2 ∧ dW

W
,

which is a (2,0)-form. From the fact that v · (1 + |Z |2)−1 ∈ L2(C), it follows that
λ ∈ L2

2,0(O, z-only). Further,

∂λ = ∂

∂Z

(
v(Z)

1 + |Z |2
)
dZ ∧ dZ ∧ dW

W
= g.

The claim is proved. ��
Remarks (1) In spite of Theorem 1.1 and Proposition 5.3, we do not have a full
understanding of the L2 theory of the manifoldO. In particular, it would be interesting
to compute the L2-cohomology of O in other degrees, and to know whether the form
g of the preceding lemma lies in the closure of the range of ∂ . In the earlier examples
by Serre [25] or Malgrange [22], the groups H2,1, H1,1 and H0,1 are isomorphic.

(2) We note that for a bounded pseudoconvex domain with smooth boundary in P
n ,

there does not exist any hypersurfacewhich satisfies the condition (a) in Proposition 3.1
(see [10, Theorem 1.3]).
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