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ABSTRACT. For certain annuli in Cn, n á 2, with non-smooth
holes, we show that the s∂-operator from L2 functions to L2 (0,1)-
forms has closed range. The holes admitted include products
of pseudoconvex domains and certain intersections of smoothly
bounded pseudoconvex domains. As a consequence, we obtain
estimates in the Sobolev spaceW 1 for the s∂-equation on the non-
smooth domains which are the holes of these annuli.

1. INTRODUCTION

1.1. Results. Let n á 2, let Ω̃ be a bounded domain in Cn, and K ⊂ Ω̃ be a
non-empty compact subset such that Ω = Ω̃ \ K is connected. We will refer to Ω
as the annulus between K and Ω̃, and K as the hole of the annulus. Annuli such as
Ω are of great importance in complex analysis, for example as one of the simplest
types of domains to exhibit Hartogs’ phenomenon.

The goal of this paper is to study whether the s∂-operator from L2
0,0(Ω) to

L2
0,1(Ω) has closed range, and to characterize the range. As a consequence of

such closed-range results, using a duality argument, we can prove estimates for the
s∂-problem on the hole in degree (0, n − 1) in the Sobolev space W 1. Since our
holes can be non-smooth, this leads to Sobolev estimates on certain classes of non-
smooth domains, including intersections of smoothly bounded convex domains.
Previously, such W 1-estimates have been known only on domains of class C2, and
have been unknown even for domains such as the bidisc or the intersection of two
balls in C2, on both of which we obtain here W 1 estimates for the s∂-problem.
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To state our results we introduce a few definitions. First, for an open subset
U ⊂ Cn, we define the L2-Dolbeault cohomology group

(1.1) H
p,q
L2 (U) =

ker(s∂ : L2
p,q(U)⇢L

2
p,q+1(U))

img(s∂ : L2
p,q−1(U)⇢L

2
p,q(U))

,

where the dashed arrows are a reminder that the s∂ operator is defined only on
a dense linear subspace of the space L2

p,q(U). Then, the quotient topology on

H
p,q
L2 (U) is Hausdorff if and only if s∂ : L2

p,q−1(U)⇢L
2
p,q(U) has closed range.

Similarly, we use the notationH
p,q
W 1 (U)when we substitute L2 spaces byW 1 spaces,

where W 1(U) is the Sobolev space of functions in L2(U) with all first partial
derivatives in L2(U). Note the following strengthening of [21, Proposition 4.7],
which characterizes the annuli with Lipschitz holes on which s∂ has closed range
(see also [27, Theorem 3]).

Theorem 1.1. Let V ⋐ Ω̃ be bounded open subsets of Cn, n á 2. Assume V has
Lipschitz boundary and Ω = Ω̃ \ sV is connected; then the following are equivalent:

(1) H0,1
L2 (Ω) is Hausdorff.

(2) H0,n−1
W 1 (V) = 0 and H0,1

L2 (Ω̃) is Hausdorff.

Because of Theorem 1.1, the question of closed range in the L2-sense on an-
nuli is reduced to an estimate in the W 1 norm for the s∂-problem on the hole,
and an L2-estimate for the s∂-problem on the domain Ω̃. From Kohn’s theory of
the weighted s∂-Neumann problem (see [17]), it follows that, for a C∞-smooth
bounded pseudoconvex domain V in Cn, we have H

p,q
W 1 (V) = 0, if q á 0. This

therefore gives examples of domains to which Theorem 1.1 applies. In this paper,
we give examples of more general non-smooth holes for which the closed range of
s∂ holds in the annulus. Our first result in this direction is the following.

Theorem 1.2. Let Ω̃ be a domain in Cn, n á 2, and let K ⊂ Ω̃ be a compact
set such that Ω = Ω̃ \K is connected. Suppose that

(1) H0,1
L2 (Ω̃) is Hausdorff.

(2) K =
⋂N
j=1 Kj , where for 1 à j à N, Kj ⊂ Ω̃ is a compact set such that

Ω̃ \Kj is connected, and H0,1
L2 (Ω̃ \Kj) is Hausdorff.

(3) For each pair of indices 1 à i, j à N, the set Ω̃ \ (Ki ∪ Kj) is connected.

Then, H0,1
L2 (Ω) is Hausdorff.

By Theorem 1.1, if Kj is the closure of a Lipschitz domain Vj such that

H
0,n−1
W 1 (Vj) = 0, then hypothesis (2) is satisfied (we can take Kj = sVj , where
Vj is a smoothly bounded pseudoconvex domain). Further, if the sets Kj are
taken to be closures of smoothly bounded convex domains or closures of smoothly
bounded pseudoconvex domains which are star-shaped with respect to a common
point, then the hypothesis (3) will be automatically satisfied.
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Our approach to Theorem 1.2 (as well as Theorem 1.4 below) is based on an
analog of the Leray theorem in the L2 setting which allows us to replace questions

about the L2-Dolbeault cohomology H0,1
L2 (Ω) with questions about the Čech co-

homology Ȟ1(U,OL2) (with coefficients in the presheaf OL2 of L2 holomorphic
functions), where U is a cover of the domain Ω by sets on each of which there is
an L2 estimate for the s∂-operator (see Theorem 3.1 below).

Combined with Theorem 1.1, Theorem 1.2 gives the following estimate for
the s∂-problem on a class of non-smooth domains.

Corollary 1.3. Let V ⋐ Cn be a Lipschitz domain such that Cn \V is connected.
Suppose that sV =

⋂N
j=1

sVj , where for 1 à j à N, Vj ⋐ Cn is a Lipschitz domain

such that H0,n−1
W 1 (Vj) = 0. If Cn \ Vj is connected for each j, and Cn \ (Vi ∪ Vj) is

connected for each 1 à i, j à N, then H0,n−1
W 1 (V) = 0.

If we define the Sobolev spaces correctly (see Corollary 4.1 below), one can
obtain analogous results for much more general domains.

In the case of intersection of two smoothly bounded pseudoconvex domains
in Cn, it is known that the s∂-Neumann operator is compact in degree n − 1,
provided it is compact on each domain (cf. [2]). It would be interesting to know
if this result is related to the above result.

Next, we consider the case when the hole is a product.

Theorem 1.4. Let N á 2, and for j = 1, . . . , N, let Vj be a bounded Lipschitz
domain in Cnj , nj á 1, such that Cnj \ Vj is connected. If the dimension nj á 2,

assume further that H
0,nj−1
W 1 (Vj) = 0.

Set n =
∑N
j=1nj and let V = V1 × · · · × VN ⋐ Cn. Then, H0,n−1

W 1 (V) = 0.

When the factors are one dimensional, a similar result holds with much less
boundary regularity requirement on the factors.

Before Theorem 1.4, it was known by a different method (cf. [6]) that, given
g ∈ WN

0,n−1(V) such that s∂g = 0, there is a u ∈ W 1
0,n−2(V) such that s∂u = g.

Theorem 1.4 improves this result considerably.
Combining Theorems 1.4 and 1.1, we have the following result.

Corollary 1.5. Let V ⋐ Cn be a domain which is a product, as in Theorem 1.4.
Let Ω̃ be a domain such that H0,1

L2 (Ω̃) is Hausdorff, and V ⋐ Ω̃. If Ω = Ω̃ \ sV is
connected, then H0,1

L2 (Ω) is Hausdorff.

Corollary 1.5 solves the so-called Chinese Coin Problem, which is to obtain
L2-estimates for the s∂ operator in an annulus Ω̃ \ sV in C2, where Ω̃ is a ball, and
V ⋐ Ω̃ is a bidisc (see [22]). Alternatively, the existence of such estimates also
follows from Theorem 1.2, since the bidisc can be represented as the intersection
of two smoothly bounded convex domains.

The question arises of characterizing the cohomology group H0,1
L2 (Ω). When

the dimension n = 2, it is known (see Corollary 2.5 to Theorem 2.4 below) that
the L2-cohomology in degree (0,1) of an annulus in C2 is infinite dimensional,
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provided that the hole is Lipschitz. Observe, therefore, that we need only to
consider the case n á 3. When Ω̃ is strongly pseudoconvex and K is also the
closure of a strongly pseudoconvex domain, the annulus Ω = Ω̃ \ K satisfies the
condition Z(q) for q 6= n− 1 (see [10,15]). It follows that for n á 3, we have for
such annuli that H0,1

L2 (Ω) = 0. It was shown in [25] and [26, Theorem 2.2] that
even in the situation when Ω̃ is a smoothly bounded pseudoconvex domain and K
is the closure of a smoothly bounded pseudoconvex domain, we haveH0,1

L2 (Ω) = 0,
when the dimension n á 3. We generalize this to the situation of Theorem 1.2.

Corollary 1.6. Let Ω = Ω̃ \ K be an annulus, which for some compact sets Kj ,
1 à j à N satisfies the hypotheses (1), (2), and (3) of Theorem 1.2. Suppose further
that for each j, we have H0,1

L2 (Ω̃ \Kj) = 0. Then, H0,1
L2 (Ω) = 0.

For example, if Ω̃ is a bounded pseudoconvex domain in Cn, n á 3, and
each Kj ⊂ Ω̃ is the closure of a smoothly bounded convex domain, then the
assumptions of Corollary 1.6 are satisfied. To state such a vanishing result for the
product situation will require further hypotheses. For simplicity, before stating the
somewhat technical full result, we first state a special case, when each factor of the
product is one dimensional.

Corollary 1.7. Let K1, . . . , Kn be compact sets in C and Ω̃ ⋐ Cn be a bounded
domain with H0,1

L2 (Ω̃) = 0. Set K = K1×· · ·×Kn and assume that K ⊂ Ω̃ and that
Ω = Ω̃ \ K is not empty and connected. Then, H0,1

L2 (Ω) is Hausdorff, and vanishes if
n á 3.

The general result on the vanishing of H0,1
L2 (Ω) for product holes is as follows.

Theorem 1.8. Consider an annulusΩ = Ω̃\K ⊂ Cn, where K = K1×· · ·×KN
is a product of compact sets in Cnj , nj á 1. Assume the following:

(1) H0,1
L2 (Ω̃) = 0.

(2) There is a neighborhood U of K contained in Ω̃ of the form

U = U1 × · · · ×UN ⋐ C
n,

where, for each j, the open set Uj is a neighborhood of Kj in Cnj , satisfying
H0,1
L2 (Uj) = 0.

(3) For each j, H0,1
L2 (Uj \Kj) is Hausdorff.

Then, H0,1
L2 (Ω) is Hausdorff, and if n á 3, we have H0,1

L2 (Ω) = 0.

Hypotheses (2) and (3) are vacuous if each nj = 1, so that Theorem 1.8 re-
duces to Corollary 1.7 if each of the factors Kj of K is one dimensional. Note also
that hypothesis (3) is implied (thanks to Theorem 1.1) by the following statement:

(3)’ If for some 1 à j à N we have nj á 2, then Kj = sVj , where Vj ⊂ Cnj is a

Lipschitz domain which satisfies H
0,nj−1
W 1 (Vj) = 0.
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1.2. Remarks. The analogs of Theorem 1.1 and Theorem 1.2 continue
to hold for an annulus in a Stein manifold rather than in Cn, and the proofs
generalize easily. Theorem 1.4 and its proof can also be readily generalized to
products V1 × · · · × VN ⊂ M where, for each j, there is a Stein manifold Mj
of dimension nj such that the factor Vj is a relatively compact Lipschitz domain

in Mj, which further satisfies H
0,nj−1
W 1 (Vj) = 0 if nj á 2, and M is the product

M1 × · · · × MN . The other results can also be generalized to domains in Stein
manifolds. We prefer to state the results in the case of domains in Cn for clarity
of exposition.

One also notes here that the choice of the L2 topology for estimates on the
s∂-problem is a matter of convenience rather than necessity. The methods of this
paper are based on duality and gluing of local estimates, and can be generalized to
estimates in any norm: for example, the Lp-norm. The required duality results in
the Lp setting may be found in [20].

On pseudoconvex domains, the closed-range property is a consequence of a
priori estimates on the s∂-operator (for bounded domains see [15], and see [14]
for some recent developments regarding unbounded domains). When Ω is the
annulus between two smooth strongly pseudoconvex domains in Cn, L2 theory
for s∂ is obtained in [10, 15] for all (p, q)-forms since the boundary satisfies the
Andreotti-Grauert condition Z(q) for all q ≠ n − 1. The closed-range property
for s∂ when q = n − 1 also follows in this case (see Proposition 3.1.17 in [10]).
When the domainΩ is the annulus between a bounded pseudoconvex domain and
a C2-smooth pseudoconvex domain in Cn, L2 theory for s∂ has been established in
the works [16, 25, 26]. Duality between the L2 theory on the annulus and the W 1

estimates for s∂ in the hole has been obtained in [21].
The classical approach to regularity in the s∂-problem is via the s∂-Neumann

problem. It is difficult to use this method to obtain Sobolev estimates even on
simple Lipschitz domains such as the bidisc or the intersection of two balls. The
problem arises because a (0,1)-form on the bidisc D2 which is in the domain

of s∂∗ and is smooth up to the boundary must vanish along the Šilov boundary
bD× bD, since the complex normal components of the form along two C-linearly
independent directions must vanish. Thus, a priori estimates do not translate
into actual estimates. One can show that, on product domains, the s∂-Neumann
operator does not preserve the space of (0,1)-forms smooth up to the boundary on
the bidisc (see [8]). However, for domains represented as intersections of strongly
pseudoconvex domains, with boundaries meeting transversely, one may obtain

subelliptic estimates with 1
2 gain for the canonical solution operator (see [13,23]).

2. GENERAL CONDITION FOR CLOSED RANGE

2.1. Notation and preliminaries. We now introduce some notation for the
L2-version of the s∂-complex.
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For an open set U ⊂ Cn, denote

A
p,q
L2 (U) = {f ∈ L2

p,q(U) |
s∂f ∈ L2

p,q+1(U)},

where s∂ acts in the sense of distributions. One may recall here that this defines the
(weak) maximal realization of the s∂-operator as an unbounded, densely defined,
closed operator on L2

p,q(U). Let Zp,qL2 (U) = {f ∈ A
p,q
L2 (U) | s∂f = 0} and

B
p,q
L2 (U) = {s∂f | f ∈ A

p,q−1
L2 (U)} denote the subspaces of s∂-closed and s∂-exact

forms in Ap,qL2 (U). Note that Bp,qL2 (U) ⊂ Z
p,q
L2 (U) since s∂2 = 0. As noted in (1.1),

we denote H
p,q
L2 (U) = Z

p,q
L2 (U)/B

p,q
L2 (U).

Denote by s∂c the (strong) minimal realization of the s∂-operator as a closed,
densely defined, unbounded linear operator from L2

p,q(U) to L2
p,q+1(U). The

operator s∂c is the closure (in graph norm) of the restriction of s∂ to the space
of smooth compactly supported forms in L2

p,q(U). The domain of the opera-

tor s∂c is a dense subspace of L2
p,q(U), denoted by Ap,qc,L2(U). Then, Ap,qc,L2(U)

is a proper subspace of A
p,q
L2 (U) for bounded domains U , and s∂c is the restric-

tion to A
p,q
c,L2(U) of the operator s∂ : A

p,q
L2 (U) → B

p,q+1
L2 (U). We thus denote by

Z
p,q
c,L2(U) = {f ∈ A

p,q
c,L2(U) | s∂cf = 0} the space of s∂c-closed forms, and by

B
p,q
c,L2(U) = {s∂cf | f ∈ A

p,q
c,L2(U)} the space of s∂c-exact forms. The quotient

H
p,q
c,L2(U) = Z

p,q
c,L2(U)/B

p,q
c,L2(U) is the L2-Dolbeault cohomology with minimal re-

alization, analogous to cohomology with compact support. We also use the follow-
ing L2-analog of Serre duality. Consider the pairingH

p,q
L2 (U)×H

n−p,n−q
c,L2 (U) → C

given by

(class(f ), class(g))֏
∫

U
f ∧ g.

Then, H
p,q
L2 (U) (respectively, H

n−p,n−q
c,L2 (U)) is Hausdorff if and only if 0 is the

only element of Hp,qL2 (U) (respectively, Hn−p,n−qc,L2 (U)) which is orthogonal to all

of H
n−p,n−q
c,L2 (U) (respectively, H

p,q
L2 (U)) (cf. [5]).

We say that a nonempty compact subset K ⊂ Rn is regular if there is an open
set V with

(2.1) K = sV and V = interior(K).

For a regular compact subset K ⊂ Cn, we use the notation

(2.2) H
p,q
W 1 (K) = 0

to denote that the following is true: if f ∈ W 1
p,q(C

n) is a form with coefficients

in the Sobolev space W 1, and on the set K we have s∂f = 0, then there is a form
u ∈ W 1

p,q−1(C
n) such that on the set K we have s∂u = f . Note that if K = sV ,

where V is a Lipschitz domain, then H
p,q
W 1 (K) = 0 if and only if H

p,q
W 1 (V) = 0.

This is so since each function inW 1(V) can be extended to a function inW 1(Cn).
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2.2. Proof of Theorem 1.1. We prove below three propositions which to-
gether imply Theorem 1.1.

Proposition 2.1. Let Ω̃ be a bounded open set in Cn, n á 2, and let K be a
regular compact subset of Ω̃. If Ω = Ω̃\K is connected such thatH0,1

L2 (Ω) is Hausdorff,
then H0,n−1

W 1 (K) = 0.

Proof. Let f ∈ W 1
0,n−1(C

n) be a form with W 1 coefficients, and assume that
s∂f = 0 on K. We need to show that there is a u ∈ W 1

0,n−2(C
n) such that s∂u = f

holds on K. After multiplying with an appropriate smooth compactly supported
function, we assume that f has compact support in Ω̃. Then, the (0, n)-form s∂f

lies in A0,n
c,L2(Ω̃) and vanishes on K. We then claim that, for each holomorphic

(n,0)-form θ ∈ Zn,0L2 (Ω) on Ω, we have

(2.3)
∫

Ω
θ ∧ s∂f = 0.

Indeed, since Ω is connected, by the Hartogs extension phenomenon, the form θ

extends through the hole K to give a holomorphic form θ̃ ∈ Z
n,0
L2 (Ω̃) and

∫

Ω
θ ∧ s∂f =

∫

Ω̃
θ̃ ∧ s∂f = (−1)n

∫

Ω̃
s∂θ̃ ∧ f = 0.

Observe, now, that by [5, Lemma 3], the hypothesis that H0,1
L2 (Ω) is Hausdorff

is equivalent to the fact that Hn,nc,L2(Ω) is Hausdorff, which in turn is equivalent

to H0,n
c,L2(Ω) being Hausdorff. Now, (2.3) shows that under the Serre pairing

Hn,0L2 (Ω) × H0,n
c,L2(Ω) → C, the cohomology class of s∂f is orthogonal to all of

H
n,0
L2 (Ω), and therefore there is a g ∈ A0,n−1

c,L2 (Ω) such that s∂f = s∂g. Let g̃ be

the extension of g by 0 to all of Cn. Then, g̃ ∈ A0,n−1
c,L2 (Cn) and has compact

support. Therefore, the form f − g̃ is a compactly supported s∂-closed form in

Z0,n−1
c,L2 (Cn). Thus, there is a compactly supported (0, n− 2)-form u on Cn such

that s∂u = f − g̃, and by interior regularity of the s∂-problem, we may assume that
u has coefficients in W 1 when restricted to a neighborhood of K. Noting that by

construction g̃ vanishes on K, we see that s∂u = f , so that H0,n−1
W 1 (K) = 0. ❐

For a general regular compact set K, the condition H0,n−1
W 1 (K) = 0 is only a

statement about existence of solutions of the s∂ problem, and does not lead to any

estimates for these solutions. However, when H0,n−1
W 1 (K) = 0 can be interpreted

as the vanishing of a cohomology defined by a densely defined closed realization
of the operator s∂ acting between Banach spaces, by the open mapping theorem,
we do obtain estimates for the s∂-problem. For example, when K = sV , where V is

a Lipschitz domain, the condition H0,n−1
W 1 (K) = 0 implies that there is a constant



838 D. CHAKRABARTI, CH. LAURENT-THIÉBAUT & M. C. SHAW

C > 0 such that, for each f ∈ W 1
0,n−1(V) such that s∂f = 0 as distributions,

there is a u ∈ W 1
0,n−2(V) such that s∂u = f in the sense of distributions, and

‖u‖W 1 à C‖f‖W 1 .

Proposition 2.2. Let Ω̃ be a bounded open set in Cn, n á 2, and let K be a
compact subset of Ω̃. If Ω = Ω̃ \K is connected such that H0,1

L2 (Ω) is Hausdorff, then
H0,1
L2 (Ω̃) is Hausdorff.

Proof. Assuming again that H0,1
L2 (Ω) is Hausdorff, we now show that H0,1

L2 (Ω̃)
is Hausdorff. Let f ∈ Z0,1

L2 (Ω̃) be such that for each ϕ ∈ Z
n,n−1
c,L2 (Ω̃), we have∫

Ω̃
f ∧ϕ = 0. We have to show that f is s∂-exact, and then the claim will follow

by Serre duality.

Now, if ψ ∈ Zn,n−1
c,L2 (Ω), then we clearly have

∫

Ω
f ∧ψ = 0, so that the fact

that H0,1
L2 (Ω) is Hausdorff implies that there is a g ∈ A0,0

L2 (Ω) satisfying s∂g = f .
Let χ ∈ C∞0 (C

n) be a cutoff which is identically equal to 1 on a neighborhood ofK
and is supported in a compact subset of Ω̃. We consider the (0,1)-form θ on Cn,
defined by extending by zero the compactly supported form f − s∂((1 − χ)g) on
Ω. Writing f−s∂((1−χ)g) = χf+s∂χ∧g, we see that θ is a compactly supported
form in L2

0,1(C
n). Therefore, there is a compactly supported L2 function u on Cn

such that s∂u = θ. Then, (1− χ)g +u ∈ A0,0
L2 (Ω̃), and s∂((1− χ)g +u) = f . ❐

Proposition 2.3. Let V ⋐ Ω̃ be bounded open subsets of Cn, n á 2. Assume
V has Lipschitz boundary, Ω = Ω̃ \ sV is connected, H0,n−1

W 1 (V) = 0, and H0,1
L2 (Ω̃) is

Hausdorff. Then, H0,1
L2 (Ω) is Hausdorff.

Proof. First note that, thanks to [5, Lemma 3], the hypothesis that H0,1
L2 (Ω̃)

is Hausdorff is equivalent to the condition that H0,n
c,L2(Ω̃) is Hausdorff, and the

conclusion that H0,1
L2 (Ω) is Hausdorff is equivalent to H0,n

c,L2(Ω) being Hausdorff.

We therefore start with an f ∈ Z0,n
c,L2(Ω) such that, for eachϕ ∈ Zn,0L2 (Ω), we have∫

Ω
f ∧ϕ = 0, and want to show that there is a u in A0,n−1

c,L2 (Ω) such that s∂u = f .

By Hartogs’ phenomenon, each element of Zn,0L2 (Ω) extends to an element of

Zn,0L2 (Ω̃). It follows that
∫

Ω̃
f̃ ∧ϕ = 0, where f̃ is the extension of f by 0 to all

of Ω̃. Since, by hypothesis, H0,n
c,L2(Ω̃) is Hausdorff, there is a g ∈ A0,n−1

c,L2 (Ω̃) such

that s∂g = f̃ , and using interior regularity of s∂, we may assume that g has W 1

coefficients in a neighborhood of sV . Note that, by the definition of f̃ , we have
s∂g = 0 on V . Invoking the hypothesis H0,n−1

W 1 (V) = 0, we see that there is an
h ∈ W 1

0,n−2(V) such that s∂h = g on V . Since V is Lipschitz, we may extend h as
a form with W 1 coefficients on the whole of Cn. Multiplying by a smooth cutoff,
we may further assume that h has compact support in Ω̃. Then, u = (g − s∂h)|Ω
is a form on Ω whose extension by zero to Ω̃ belongs to the domain of s∂ on Ω̃.
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Since V has Lipschitz boundary, it follows by [5, Proposition 2] that u belongs to

A0,n−1
c,L2 (Ω), and s∂u = s∂g = f on Ω. ❐

2.3. The two-dimensional case. For a domain D ⊂ Cn, denote by Z0,1( sD)

the space C∞0,1( sD)∩ker s∂ of s∂-closed forms which are C∞-smooth up to the bound-

ary onD, and let B̃0,1(D) denote the subspace of Z0,1( sD) consisting of those forms
g smooth up to the boundary such that there is a distribution u ∈ D′(D) such
that s∂u = g on D. We consider the quotient

(2.4) H̃0,1(D) = Z0,1( sD)/B̃0,1(D).

The proof of the following result is known (see Fu [11]).

Theorem 2.4. Let D ⊂ C2 be a domain such that interior( sD) = D. If the vector
space H̃0,1(D) of (2.4) is finite dimensional, then D is pseudoconvex.

Proof. We repeat the proof of [11]. Assume D is not pseudoconvex; then,
there exists a domain D̃ strictly containing D such that any holomorphic function
on D extends holomorphically to D̃. Since interior( sD)= D, after a translation
and a rotation, we may assume that 0 ∈ D̃ \ sD, and there exists a point z0 in the
intersection of the plane {(z1, z2) ∈ C2 | z1 = 0} with D, which belongs to the
same connected component of that plane with D̃.

For an integer k á 0, we consider the smooth (0,1)-form Bk on C2 \ {0},
derived from the Bochner-Martinelli kernel and given by

Bk(z1, z2) = (k+ 1)! · szk2 ·
sz1 dsz2 − sz2 dsz1

|z|2(k+2)
.

These forms are s∂-closed, and if we define

uk(z1, z2) = k! ·
sz(k+1)

2

|z|2(k+1)
,

we have on C2 \ {0}
s∂(uk) = −z1Bk.

Note that the restriction of Bk to D belongs to Z0,1( sD). Let N be an integer such
that N > dim H̃0,1(D). Then, there exists a non-trivial linear combination

B =
N∑

k=1

akBk

(which belongs to Z0,1( sD)), such that there exists a distribution v on D satisfying
s∂v = B. Set

F = z1v +
N∑

k=1

akuk.
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Then, F is a holomorphic function on D, so it should extend holomorphically to
D̃, but we have

F(0, z2) =
N∑

k=1

ak
k!

zk+1
2

,

which is holomorphic and singular at z2 = 0. This then gives the contradiction,
since 0 ∈ D̃ \ sD. ❐

This allows us to prove the following analog for cohomologies with estimates
of a result of Laufer ([19]).

Corollary 2.5. Let D ⋐ C2 be a bounded domain such that interior( sD) = D.
If either H0,1

L2 (D) or H0,1
W 1(D) is finite dimensional, then D is pseudoconvex.

Proof. Suppose that H0,1
L2 (D) = Z

0,1
L2 (D)/B

0,1
L2 (D) is finite dimensional. Then,

a fortiori, the space Z0,1( sD)/(B
0,1
L2 (D) ∩ Z0,1( sD)) consisting of L2 cohomology

classes representable by forms smooth up to the boundary is also finite dimen-
sional. But,

Z0,1( sD)

B
0,1
L2 (D)∩ Z0,1( sD)

⊃
Z0,1( sD)

B̃0,1(D)
= H̃0,1(D),

since B0,1
L2 (D) ∩ Z0,1( sD) ⊂ B̃0,1(D). Therefore, it follows that H̃0,1(D) is finite

dimensional, and we can apply Theorem 2.4 to conclude that D is pseudoconvex.
A similar proof works in the case of the W 1-cohomology. ❐

Now, we can give a general characterization of domains in C2 on which the
L2 s∂-operator has closed range.

Corollary 2.6. Let V ⋐ Ω̃ be a Lipschitz domain in C2, and suppose that C2 \Ω̃
and Ω = Ω̃ \ V are connected. If H0,1

L2 (Ω) is Hausdorff, then both Ω̃ and V are
pseudoconvex, and the space H0,1

L2 (Ω) is infinite dimensional.

Proof. By Theorem 1.1, the fact that H0,1
L2 (Ω) is Hausdorff is equivalent to

the fact that H0,1
W 1(V) = 0 and that H0,1

L2 (Ω̃) is Hausdorff. By Corollary 2.5 above,

H
0,1
W 1(V) = 0 implies that V is pseudoconvex. It was shown in [21, Theorem 3.4]

that, for a Lipschitz “hole-less” domain such as Ω̃, the space H0,1
L2 (Ω̃) is Hausdorff

if and only if Ω̃ is pseudoconvex.

The infinite dimensionality of H0,1
L2 (Ω) also follows from Corollary 2.5, since

we have interior(sΩ) = Ω, and if H0,1
L2 (Ω) were finite dimensional, Ω = Ω̃ \ sV

would be pseudoconvex. ❐

3. L2-DOLBEAULT AND L2-ČECH COHOMOLOGIES

For an open U ⊂ Cn, let A
p,q
L2 (U), B

p,q
L2 (U), and Z

p,q
L2 (U) be as in Section 2.1

above. Then, Ap,qL2 defines a presheaf of pre-Hilbert spaces on Ω, which is not a
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sheaf. B
p,q
L2 and Z

p,q
L2 are sub-presheaves of A

p,q
L2 , and Z

p,q
L2 is a presheaf of Hilbert

spaces. Note that Z0,0
L2 (U) is just the Bergman space on U , which will also be

denoted by OL2(U). Recall also that the L2-Dolbeault cohomology of U is defined
to be the quotient topological vector space Hp,qL2 (U) = Z

p,q
L2 (U)/B

p,q
L2 (U). Given

open sets V ⊂ U ⊂ Ω, and a class γ ∈ H
p,q
L2 (U), we denote by γ|V the class in

H
p,q
L2 (V) obtained by restricting γ to V . More precisely, if g ∈ Zp,qL2 (U) is such

that γ = class(g) in Hp,qL2 (U), then γ|V = class(g|V ) in H0,1
L2 (V).

Now, suppose that we are given a finite collection U = {Ωj}Nj=1 of open sets
covering an open set Ω ⊂ Cn (i.e.,

⋃N
j=1Ωj = Ω). Given a presheaf B of normed

linear spaces on Ω (e.g., the presheaves A
p,q
L2 , Z

p,q
L2 and B

p,q
L2 of the previous para-

graph), we can define for each k the space Čk(U,B) of Čech k-cochains, and the

corresponding coboundary map δk : Čk(U,B) → Čk+1(U,B) (cf. [12, p. 187]).

As usual, we let Žk(U,B) and B̌k(U,B) denote the spaces of Čech cocycles and

coboundaries respectively, and then the Čech cohomology of B with respect to the

cover U is given by Ȟq(U,B) = Žk(U,B)/B̌k(U,B).

Note that Čk(U,B) is a topological vector space as the direct sum of the
B(Ωi0...ik) as 1 à i0, . . . , ik à N, endowed with the direct sum topology, where

Ωi0...ik =
⋂k
ℓ=0Ωiℓ . The topological vector space Čk(U,B) is a normed linear

space in a natural way: for k á 0, a norm on Čk(U,B) is given by

∥∥g
∥∥2
Čk(U,B) =

∑

1ài0,...,ikàN

∥∥gi0...ik
∥∥2
B(Ωi0 ...ik ).

Of course, there are many other choices of equivalent norms, but the above choice
is appropriate when B is a sheaf of pre-Hilbert spaces, which is the only case we

consider. Then, Čk(U,B) is again a pre-Hilbert space, and a Hilbert space if B
happens to be a sheaf of Hilbert spaces. With this topology, the coboundary map

δ is continuous, the cocycle space Žk(U,B) = kerδk∩Čk(U,B) is a normed linear

space, and the coboundary space B̌k(U,B) = imgδk−1 ∩ Čk(U,B) is a subspace

of Žk(U,B). Then, the k-th cohomology group of this complex Ȟk(U,B) is a
topological vector space with the quotient topology, and this topology is Hausdorff

if and only if B̌k(U,B) is a closed subspace of Žk(U,B).
A relation between these two types of cohomology is given by the following

result, whose proof is inspired by that of a well-known classical result of Leray (cf.
[12, p. 189]). Related results were obtained for the Fréchet topology in [18].

Theorem 3.1. Let Ω be a bounded domain in Cn. Let U = {Ω1, . . . ,ΩN} be a
finite open cover of Ω such that, for all j = 1, . . . , N, the cohomology group H0,1

L2 (Ωj)
is Hausdorff. Then, we have the following:

(1) If the Čech group Ȟ1(U, Z0,0
L2 ) is Hausdorff, then the L2-Dolbeault cohomol-

ogy H0,1
L2 (Ω) is also Hausdorff.
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(2) If Ȟ1(U, Z0,0
L2 )= 0, the map H0,1

L2 (Ω)→
⊕N
k=1H

0,1
L2 (Ωk) induced by restric-

tion maps from Ω to Ωk maps H0,1
L2 (Ω) isomorphically onto a subspace of

(3.1)
{(
γk
)N
k=1, γk ∈ H

0,1
L2 (Ωk) | for i 6= j, γi

∣∣Ωij = γj
∣∣Ωij

}
.

(3) If Ȟ1(U, Z0,0
L2 ) = 0 and for each j, H0,1

L2 (Ωj) = 0, then H0,1
L2 (Ω) = 0.

Note that this result may be interpreted as saying that, given an L2-estimate
for the s∂-problem in each open set of the cover U, the obstruction to obtaining

a global L2-estimate on Ω resides in the L2-Čech group Ȟ1(U, Z
0,0
L2 ). When this

Čech group is Hausdorff, then the L2-Dolbeault group is Hausdorff. In particular,

when the Čech group vanishes, the cohomology classes in H0,1
L2 (Ω) are obtained

by “gluing together” the cohomologies in each set in the cover as in (3.1).
We also note that use of the L2-topology in Theorem 3.1 is not important,

and similar gluing techniques work for estimates in any norm: for example, Lp

estimates or Hölder estimates.

Proof of Theorem 3.1. For k, q á 0, define an operator

s∂ = s∂q : Čk(U, A
p,q
L2 )→ Čk(U, A

p,q+1
L2 )

sectionwise; that is, for g ∈ Čk(U, Ap,qL2 ), set (s∂g)i0...ik =
s∂(gi0...ik), and note that,

for a given k, ker s∂q = Čk(U, Z
p,q
L2 ) and img s∂q = Čk(U, B

p,q+1
L2 ). Then, for each

fixed k,p á 0, we have a complex (Čk(U, A
p,q
L2 ), s∂q). In fact, we have, for each

fixed p, a double complex of commuting differentials (Čk(U, A
p,q
L2 ), s∂q, δk); that

is, we have s∂δ = δ s∂. This follows, since, for g ∈ Čk(U, Ap,q),

s∂δg = δ s∂g =
k∑

j=0

(−1)js∂gi0...îj ...ik

where the hat denotes omission. We represent the relevant part of the double
complex for p = 0 in the following diagram:

0 // Z
0,0
L2 (Ω) ε

//

i

��

Č0(U, Z
0,0
L2 )

δ
//

i

��

Č1(U, Z
0,0
L2 )

δ
//

i

��

· · ·

0 // A
0,0
L2 (Ω) ε

//

sδ
��

Č0(U, A
0,0
L2 )

δ
//

sδ
��

Č1(U, A
0,0
L2 )

δ
//

sδ
��

· · ·

0 // A
0,1
L2 (Ω) ε

//

sδ

��

Č0(U, A
0,1
L2 )

δ
//

sδ

��

Č1(U, A
0,1
L2 )

δ
//

sδ

��

· · ·
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Here, for a presheaf B, the map ε : B(Ω)→ Č0(U,B) is given by (εf )i = f |Ωi for

eachΩi ∈ U. Note that, then, the sequence B(Ω) ε--------------------------------→ Č0(U,B)
δ
-------------------------------------→ Č1(U,B) is exact

at Č0(U,B), that is, imgε = kerδ. The map i is the inclusion map, so that we
have that each vertical column is exact along the second row, that is, img i = ker s∂.
Our proof will be a “Topological Diagram Chase” with this diagram, where we
will need to keep track of the continuity of the maps.

Note that, by hypothesis, H0,1
L2 (Ωj) is Hausdorff for each j, so there is a

continuous solution operator Kj : B0,1
L2 (Ωj) → A0,0

L2 (Ωj). For example, we can
take Kj to be the canonical solution operator s∂∗N0,1, where s∂∗ is the adjoint
of s∂, and N0,1 is the s∂-Neumann operator (see [10]). Now, we define a map

K = K : Č0(U, Z
0,1
L2 ) → Č0(U, A

0,0
L2 ) by setting (Kg)j = Kj(gj). Then, K is

continuous, and we have s∂Kg = g.
Consider the map ε : A0,1

L2 (Ω) → Č0(U, A0,1
L2 ). Since, by hypothesis, B0,1

L2 (Ωj)
is a closed subspace of A0,1

L2 (Ωj) for each j, it follows that ε−1(Č0(U, B
0,1
L2 )) is a

closed subspace of A0,1
L2 (Ω). Define a continuous linear map

ℓ : ε−1(Č0(U, B
0,1
L2 ))→ Ž1(U, Z

0,0
L2 )

by setting

(3.2) ℓ = δKε.

From the definitions of ε, K, and δ, it follows that ℓ is a continuous linear map

from ε−1(Č0(U, B0,1
L2 )) to Č1(U, A0,0

L2 ). But, for g ∈ ε−1(Č0(U, B0,1
L2 )), we have

s∂ℓg = s∂δKεg = δ s∂Kεg = δεg = 0,

which shows that ℓ(g) ∈ Č1(U, Z0,0
L2 ). However, since δδ = 0, it follows that

ℓ(g) ∈ Ž1(U, Z0,0
L2 ).

The basic property of ℓ that makes it useful is that

(3.3) ℓ−1(B̌1(U, Z
0,0
L2 )) = B

0,1
L2 (Ω).

To see (3.3), first, let g ∈ B0,1
L2 (Ω). Then, there is a u ∈ A0,0

L2 (Ω) such that
s∂u = g. Consider h = Kεg − εu. By construction, h ∈ Č0(U, A0,0

L2 ). Note that

s∂h = s∂Kεg − s∂εu = εg − s∂εu = 0,

since s∂u = g. Therefore, in fact, h ∈ Č0(U, Z0,0
L2 ). On the other hand,

δh = δKεg − δεu = ℓ(g)− 0 = ℓ(g),

which shows that ℓ(g) = δ(h) ∈ B̌1(U, Z
0,0
L2 ). It follows that

B0,1
L2 (Ω) ⊂ ℓ−1(B̌1(U, Z0,0

L2 )).
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For the opposite inclusion, let g ∈ ℓ−1(B̌1(U, Z0,0
L2 )); then, ℓ(g) ∈ B̌1(U, Z0,0

L2 ),

and there exists h ∈ Č0(U, Z
0,0
L2 ) such that ℓ(g) = δh. We defineu0 ∈ Č0(U, A

0,0
L2 )

by u0 = Kεg − h. In fact, s∂u0 = s∂Kεg − s∂h = εg. Also,

δu0 = δKεg − δh = ℓ(g)− δh = 0.

It follows that there is a u ∈ A0,0
L2 (Ω) such that u0 = εu. Since s∂u0 = ε(g), it

follows that g = s∂u, so that g ∈ B0,1
L2 (Ω). Equation (3.3) is thus established. It

follows from (3.3) that there is a continuous linear injective map

(3.4) sℓ :
ε−1(Č0(U, B

0,1
L2 ))

B
0,1
L2 (Ω)

→ Ȟ1(U, Z
0,0
L2 ),

induced by the map (3.2).

To prove part (1), suppose that Ȟ1(U, Z0,0
L2 ) is Hausdorff, that is, the subspace

B̌1(U, Z
0,0
L2 ) is closed in Ž1(U, Z

0,0
L2 ). Then, by (3.3), since ℓ is continuous, B0,1(Ω)

is a closed subspace of Z0,1
L2 (Ω), which means that H0,1

L2 (Ω) is Hausdorff. This
completes the proof of part (1).

To prove part (2), from the hypothesis that Ȟ1(U, Z0,0
L2 ) = 0 and the injectivity of

the map (3.4), we see that

(3.5) B0,1
L2 (Ω) = ε−1(Č0(U, B0,1

L2 )).

Consider, now, the sequence of Hilbert spaces and continuous linear maps:

(3.6) Z
0,1
L2 (Ω) ε--------------------------------→ Č0(U, Z

0,1
L2 )

δ
-------------------------------------→ Č1(U, Z

0,1
L2 ),

which is clearly exact. Therefore, going modulo B0,1
L2 (Ω), and using (3.5), we

obtain an injective continuous map

sε : H0,1
L2 (Ω)→

Č0(U, Z0,1
L2 )

Č0(U, B0,1
L2 )

≅

N⊕

j=1

H0,1
L2 (Ωj),

whose image, by the exactness of (3.6), is the subspace of Č0(U, Z0,1
L2 )/Č0(U, B0,1

L2 )
given by

img sε =
ker(δ : Č0(U, Z0,1

L2 )→ Č1(U, Z0,1
L2 ))

Č0(U, B0,1
L2 )

=
{(
gk
)N
k=1 ∈

N⊕

k=1

Z0,1
L2 (Ωk) | for i 6= j, gj

∣∣Ωij = gi
∣∣Ωij

}
/
( N⊕

k=1

B0,1
L2 (Ωk)

)

⊂
{(
γk
)N
k=1 | γk ∈ H

0,1
L2 (Ωk), γi

∣∣Ωij = γj
∣∣Ωij for i 6= j

}
,
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which completes the proof of part (2) of the proposition.

For part (3), note that, under the hypothesis H0,1
L2 (Ωj) = 0 for each j, the space⊕N

k=1H
0,1
L2 (Ωk) vanishes. But by part (2), there is an injective mapping ofH0,1

L2 (Ω)
into this space, so the conclusion follows. ❐

4. CASE OF A HOLE WHICH IS AN INTERSECTION

For an open set D in Cn, from now on, for convenience of notation we denote the

space Z0,0
L2 (D) by OL2(D). Then, OL2(D) = O(D) ∩ L2(D) is the Bergman space

of D, the space of all holomorphic functions on D which are square integrable
with respect to the Lebesgue measure.

4.1. Proof of Theorem 1.2. Set Ωj = Ω̃ \ Kj . Then, U = {Ωj | 1 à j à N}

is an open cover of Ω, each Ωj is connected, and H0,1
L2 (Ωj) is Hausdorff for each

j by hypothesis.

We claim that Ȟ1(U,OL2) = 0. Let f ∈ Ž1(U,OL2), so that f = (fij), where
fij ∈ OL2(Ωij), 1 à i, j à N. By hypothesis (3), the open set Ωij = Ω̃\(Ki∪Kj)
is connected. By Hartogs’ phenomenon, each fij extends to a f̃ij ∈ OL2(Ω̃).
Now, since δf = 0, we have for 1 à i, j, k à N the following equation on Ωijk.

fij − fjk + fki = 0.

By analytic continuation, we have on the whole of Ω̃:

f̃ij − f̃jk + f̃ki = 0.

Define a u ∈ Č0(U,OL2) by setting u1 = 0 on Ω1, and for j á 2, uj = f̃1j|Ωj .
Then, on Ωij , we have

(δu)ij = uj −ui = f̃1j − f̃1i = f̃ij
∣∣Ωij = fij.

Therefore, δu = f , that is, Ȟ1(U,OL2) = 0. It now follows from Theorem 3.1
that H0,1

L2 (Ω) is Hausdorff. This completes the proof of Theorem 1.2.

4.2. Proof of Corollary 1.3. We note that the following stronger form of
Corollary 1.3 holds, where the Lipschitz domain V can be replaced by a compact
set with minimal boundary regularity hypothesis.

Corollary 4.1. Let K ⋐ Cn be a regular compact set such thatCn\K is connected.
Suppose that K =

⋂N
j=1

sVj , where for 1 à j à N, Vj ⋐ Cn is a Lipschitz domain

such that H0,n−1
W 1 (Vj) = 0. If Cn \ Vj is connected for each j, and Cn \ (Vi ∪ Vj) is

connected for each 1 à i, j à N, then H0,n−1
W 1 (K) = 0.
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Proof. Recall that, here, regularity of the compact K is in the sense of (2.1),

andH0,n−1
W 1 (K) = 0 is in the sense explained after (2.2) above. Apply Theorem 1.2,

taking Ω̃ to be a ball of sufficiently large radius to contain the closure of all the Vj .
If we set Kj = sVj , it is easy to verify that all the hypotheses of Theorem 1.2 hold,

so that H0,1
L2 (Ω) is Hausdorff. The conclusion follows from Proposition 2.1. ❐

4.3. Proof of Corollary 1.6. By hypothesis, we have H0,1
L2 (Ωj) = 0 for each

Ωj ∈ U, and as we saw in the proof of Theorem 1.2 above, Ȟ1(U,OL2) = 0.

Consequently, by Theorem 3.1 (3) we have H0,1
L2 (Ω) = 0.

5. L2-ČECH COHOMOLOGY OF AN

ANNULUS BETWEEN PRODUCT DOMAINS

Let N á 2, and for each j ∈ {1, . . . , N} let Uj ⊂ Cnj be a bounded domain, and
Kj a compact set in Cnj such that Kj ⊂ Uj , and such that the annulus Rj = Uj\Kj
is connected. Let U = U1 × · · · ×UN and K = K1 × · · · ×KN . In this section we
consider the domain W = U \ K, which is an annulus between a product domain
and a product hole. We let

Ωj = U1 × · · · × Rj × · · · ×UN ,

where the j-th factor is Rj and for k 6= j, the k-th factor is Uk. We call the
domains Rj (j = 1, . . . , N) the factor annuli of W. We denote the collection

{Ωj | 1 à j à N} by U, and note that
⋃N
j=1Ωj = W, that is, U is a cover of W by

open sets. In this section, we prove the following result.

Proposition 5.1. With U as above, Ȟ1(U,OL2) is Hausdorff, and vanishes if
n á 3.

Note that pseudoconvexity does not play any direct role in the statement of
this result. The proof will be based on a closed-range property of the restriction
map on Bergman spaces (see Lemma 5.2). Also, it is true that for n = 2, the group

Ȟ1(U,OL2) is infinite dimensional, though we neither prove nor use this fact. A
technique similar to that used in the proof of Proposition 5.1 was used to compute
the usual Dolbeault cohomology of some non-pseudoconvex domains in [4].

5.1. Closed range for restriction maps on Bergman spaces. For open sub-
sets U,R ⊂ Cn, where R ⊂ U , we denote by OL2(U)|R the subspace of OL2(R)
consisting of restrictions of functions in OL2(U).

Lemma 5.2. Let U be a bounded domain in Cn, and let K ⊂ U be a compact
subset. Set R = U \K, and when n á 2, assume that R is connected. Then, OL2(U)|R
is a closed subspace of the Hilbert space OL2(R).

Proof. If n á 2, then by the Hartogs extension theorem, OL2(U)|R = OL2(R),
so the assertion is correct. For n = 1, by a classical argument (cf. [1, p. 143]
or [7, p. 195, Proposition 1.1]), there is a neighborhood W of K such that W is
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contained in U , the boundary bW is a union of finitely many closed polygons,
and for any holomorphic function in U , we have a Cauchy representation

f (z) =
1

2πi

∫

bW

f (ζ)

ζ − z
dζ

valid for each z ∈ K.
Let fν ∈ OL2(U), and suppose that fν|R → g in OL2(R) as ν → ∞. By

Bergman’s inequality (cf. [24, p. 155]), {fν} converges uniformly to g when re-
stricted to the compact subset bW of R. Representing the holomorphic function
fν on K as the Cauchy integral over bW as in the above formula, we see that {fν}
converges uniformly on K to a function given by the Cauchy integral of g. It
follows that g extends to a function in OL2(U), which proves the lemma. ❐

Let Q⊗̂R denote the Hilbert tensor product of Hilbert spaces Q and R. In
our application, we only consider Hilbert tensor products where for some domain
D ⊂ C

m, the space Q is a closed subspace of OL2(D), and for some domain
V ⊂ Cn, the spaceR is a closed subspace of OL2(V). Then, Q⊗̂R is the closure in
OL2(D×V) of the linear span of functions of the form (f⊗g)(z,w) = f (z)g(w),
where f ∈ Q and g ∈ R. See [6] for more details on Hilbert tensor products.

5.2. Proof of Proposition 5.1. We first consider the case when the number

of factors N = 2. To conclude that Ȟ1(U,OL2) is Hausdorff, we need to show that
the coboundary map

δ : Č0(U,OL2)→ Č1(U,OL2)

has closed range. As a topological vector space, Č1(U,OL2) is simply OL2(Ω12),
since there is only one double intersection. Therefore, the closed range of δ will
follow, if we show that the map

OL2(Ω1)⊕OL2(Ω2)→ OL2(Ω12),

given by δ(h1, h2) = h2

∣∣Ω12
−h1

∣∣Ω12
, has closed range. Recall that Ω1 = R1×U1,

Ω2 = U1 × R2, and Ω12 = R1 × R2.
Since for j = 1,2 by Lemma 5.2 OL2(Uj)|Rj is closed in OL2(Rj), we obtain

a direct sum decomposition

OL2(Rj) = OL2(Uj)
∣∣
Rj
⊕
(
OL2(Uj)

∣∣
Rj

)⊥
,

and it follows by the distributivity of the Hilbert tensor product over direct sums
that

OL2(Ω12) = OL2(R1 × R2) = OL2(R1)⊗̂OL2(R2) =
4⊕

j=1

Ej ,
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where

E1 = OL2(U1)
∣∣
R1
⊗̂OL2(U2)

∣∣
R2
,

E2 =
(
OL2(U1)

∣∣
R1

)⊥
⊗̂OL2(U2)

∣∣
R2
,

E3 = OL2(U1)
∣∣
R1
⊗̂
(
OL2(U2)

∣∣
R2

)⊥
,

and

E4 =
(
OL2(U1)

∣∣
R1

)⊥
⊗̂
(
OL2(U2)

∣∣
R2

)⊥
,

and for j = 1,2, (OL2(Uj)|Rj )
⊥ denotes the orthogonal complement of the closed

subspace OL2(Uj)|Rj in OL2(Rj). Note that

E1 ⊕ E3 = OL2(U1)
∣∣
R1
⊗̂OL2(R2) = OL2(U1 × R2)

∣∣
R1×R2

⊂ imgδ

and

E1 ⊕ E2 = OL2(R1)⊗̂OL2(U2)
∣∣
R2
= OL2(R1 ×U2)

∣∣
R1×R2

⊂ imgδ,

and by definition of δ,

imgδ = OL2(U1 × R2)
∣∣
R1×R2

+OL2(R1 ×U2)
∣∣
R1×R2

= (E1 ⊕ E3)+ (E1 ⊕ E2) = E1 ⊕ E2 ⊕ E3 = (E4)
⊥

=
((
OL2(U1)

∣∣
R1

)⊥
⊗̂
(
OL2(U2)

∣∣
R2

)⊥)⊥
,

where the outer ⊥ in the last line, and the ⊥ in the previous-to-last line denote
orthogonal complementation in OL2(Ω12). It follows that imgδ is closed, and we
obtain an isomorphism of Hilbert spaces

Ȟ1(U,OL2) ≅ E4 =
(
OL2(U1)

∣∣
R1

)⊥
⊗̂
(
OL2(U2)

∣∣
R2

)⊥
,

valid when the number of factors N = 2 and the dimension n á 2.
Assume n á 3. Since n = n1 +n2, there is a j ∈ {1,2} such that nj á 2. By

Hartogs’ phenomenon, OL2(Uj)|Rj = OL2(Rj) so we have (OL2(Uj)|Rj )
⊥ = {0},

and consequently, Ȟ1(U,OL2) = 0.
Now, we will show that for N á 3 (which forces n á 3), we again have

Ȟ1(U,OL2) = 0. A similar result (with one-dimensional factors) was proved by
Frenkel [9, Proposition 31.1] for the structure sheaf O.

Let N á 3, and suppose that f = (fij)i<j ∈ Ž1(U,OL2). We show that there

is a u ∈ Č0(U,OL2) such that f = δu.
Now, denote by E the subspace of Ž1(U,OL2) consisting of f such that each

fij ∈ OL2(Ωij) extends holomorphically to a function in OL2(U), so that on Ωij ,

(5.1) fij ∈ OL2(Ui)
∣∣
Ri
⊗̂OL2(Uj)

∣∣
Rj
⊗̂OL2(U ′ij),
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where the tensor product has been reordered (we do this in the sequel without
further comment) and U ′ij is the product of all the Uks except Ui and Uj . Define
u ∈ Č0(U,OL2) by setting u1 = 0 on Ω1, and for j á 2, uj = f1j|Ωj , where we
continue to denote the extension of fij to U by the same symbol. Then, on the
set Ωij , we have

uj −ui = f1j − f1i = fij,

since δf = 0. We have, therefore, δu = f .
Hence, we may assume without loss of generality that f ∈ Ž1(U,OL2) actu-

ally belongs to the orthogonal complement E⊥ of E in Ž(U,OL2). Noting that
OL2(Ωij) = OL2(Ri)⊗̂OL2(Rj)⊗̂OL2(U ′ij), and that, by Lemma 5.2, for each k we
have OL2(Rk) = OL2(Uk)|Rk ⊕OL2(Uk)|

⊥
Rk

, we have from (5.1) for each i < j

(5.2) fij ∈ S1 ⊕ S2 ⊕ S3 ⊂ OL2(Ωij),
where

S1 = OL2(Ui)
∣∣⊥
Ri
⊗̂OL2(Uj)

∣∣
Rj
⊗̂OL2(U ′ij),

S2 = OL2(Ui)
∣∣
Ri
⊗̂OL2(Uj)

∣∣⊥
Rj
⊗̂OL2(U ′ij),

S3 = OL2(Ui)
∣∣⊥
Ri
⊗̂OL2(Uj)

∣∣⊥
Rj
⊗̂OL2(U ′ij).

We claim that the component of fij along S3 vanishes, that is, we have

(5.3) fij ∈ S1 ⊕ S2.

To prove the claim, since N á 3, there is a k ∈ {1,2, . . . , N} such that k
is distinct from both i and j. Let U ′ijk be the product of all the Uℓ except Ui,
Uj , and Uk. Consider the restriction map ρ from OL2(Ωij) to OL2(Ωijk). Since
Ωij = Ri ×Rj ×Rk×U ′ijk and Ωijk = Ri ×Rj ×Rk×R′ijk, the restriction map is
a tensor product:

ρ = idOL2 (Ri) ⊗̂ idOL2 (Rj) ⊗̂ρk⊗̂ idOL2 (U ′ijk)
,

where ρk is the restriction map from OL2(Uk) to OL2(Rk). Consequently, we have
a tensor product representation

S3

∣∣Ωijk = OL2(Ui)
∣∣⊥
Ri
⊗̂OL2(Uj)

∣∣⊥
Rj
⊗̂OL2(Uk)

∣∣
Rk
⊗̂OL2(U ′ijk).

Denote by p3 the orthogonal projection from OL2(Ωij) to S3, and by P3 the
orthogonal projection from OL2(Ωijk) onto S3|Ωijk . Then, we have the diagram

(5.4) OL2(Ωij)
p3

//

ρ

��

S3

ρ

��

OL2(Ωijk)
P3

// S3

∣∣Ωijk
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which commutes, since both ρ◦p3 and P3◦ρ are equal to πi⊗̂πj⊗̂ρk⊗̂ idOL2 (U ′ijk)
,

where πi : OL2(Ui)→ OL2(Ui)|
⊥
Ri

and πj : OL2(Uj)→ OL2(Uj)|
⊥
Rj

are the orthog-
onal projections.

We show that P3(fij|Ωijk) = 0. From δf = 0, we conclude that

(5.5) fij
∣∣Ωijk = fik

∣∣Ωijk − fjk
∣∣Ωijk .

Now,

fik
∣∣Ωijk ∈ OL2(Ui)

∣∣⊥
Ri
⊗̂OL2(Uj)

∣∣
Rj
⊗̂OL2(Uk)

∣∣⊥
Rk
⊗̂OL2(U ′ijk),

and

fjk
∣∣Ωijk ∈ OL2(Ui)

∣∣
Ri
⊗̂OL2(Uj)

∣∣⊥
Rj
⊗̂OL2(Uk)

∣∣⊥
Rk
⊗̂OL2(U ′ijk),

so that both fik|Ωijk and fjk|Ωijk lie in subspaces of OL2(Ωijk) which are orthog-
onal to S3|Ωijk . Therefore, P3(fik|Ωijk) = P3(fjk|Ωijk) = 0. Therefore, by (5.5),
we see that P3(fij|Ωijk) = 0.

Now, by the commutativity of the diagram (5.4), we have that

ρ(p3(fij)) = P3(ρ(fij)) = P3(fij
∣∣Ωijk) = 0,

and since, by analytic continuation, ρ is injective, we have p3(fij) = 0. Therefore,
the claim (5.3) follows.

Denote now by P1 and P2 the projections from OL2(Ωijk) onto S1|Ωijk and
S2|Ωijk , respectively. Note that

(5.6)
S1

∣∣Ωijk = OL2(Ui)
∣∣⊥
Ri
⊗̂OL2(Uj)

∣∣
Rj
⊗̂OL2(Uk)

∣∣
Rk
⊗̂OL2(U ′ij),

S2

∣∣Ωijk = OL2(Ui)
∣∣
Ri
⊗̂OL2(Uj)

∣∣⊥
Rj
⊗̂OL2(Uk)

∣∣
Rk
⊗̂OL2(U ′ij).

By the representation in (5.6) above, we see that P1(fij) extends holomorphically

to an element (−u
ij
i ) of OL2(Ωi), and P2(fij) extends holomorphically to an

element uijj of OL2(Ωj). Therefore, we have

(5.7) fij = u
ij
j

∣∣Ωij −u
ij
i

∣∣Ωij .

We note two features of this decomposition. First, it is independent of the choice
of the auxiliary index k, since the decomposition (5.2) in no way depends on k.

Second, by construction, u
ij
i |Ωijk and u

ij
j |Ωijk belong to the orthogonal subspaces

S1|Ωijk and S2|Ωijk of OL2(Ωijk). (The orthogonality is immediate from (5.6).)

We claim that if k is an index distinct from i and j, we have u
ij
i = uiki .

To see this, we substitute expressions like (5.7) into (5.5), and obtain that, when
restricted to Ωijk, we have

(u
jk
k −u

jk
j )− (u

ik
k −u

ik
i )+ (u

ij
j −u

ij
i ) = 0,
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which gives rise to the condition that

(u
jk
k

∣∣Ωijk −u
ik
k

∣∣Ωijk)+ (u
ij
j

∣∣Ωijk −u
jk
j

∣∣Ωijk)+ (u
ik
i

∣∣Ωijk −u
ij
i

∣∣Ωijk) = 0.

The three terms of the above sum belong to three orthogonal subspaces ofOL2(Ωijk).
The first term is in

OL2(Ui)
∣∣
Ri
⊗̂OL2(Uj)

∣∣
Rj
⊗̂OL2(Uk)

∣∣⊥
Rk
⊗̂OL2(U ′ij),

the second term is in S2|Ωijk , and the third term is in S1|Ωijk , where the notation
is as in (5.6). Therefore, all three terms vanish. Thus, by analytic continuation,
it will follow that there is for each i ∈ {1, . . . , N} an ui ∈ OL2(Ωi) such that, if
u = (ui)

N
i=1 ∈ Č

0(U,OL2), then δu = f . It follows that Ȟ1(U,OL2) = 0 if N á 3.

6. PROOF OF THEOREM 1.4

6.1. The L2-Dolbeault cohomology of an annulus between product do-
mains. Let W = U \K ⊂ Cn be as in Section 5, an annulus between the products
U = U1 × · · · × UN and K = K1 × · · · ×KN , and let Rj = Uj \Kj ⊂ Cnj denote
the factor annuli for j = 1, . . . , N. In this section, we compute the L2-Dolbeault
cohomology of W.

Proposition 6.1. Suppose that for each j,H0,1
L2 (Rj) is Hausdorff. Then,H0,1

L2 (W)

is Hausdorff. Further, if H0,1
L2 (Uj) = 0 for each j, then H0,1

L2 (W) vanishes if n á 3.

Proof. By Proposition 5.1, the Čech group Ȟ1(U, Z
0,0
L2 ) is Hausdorff. Now,

in the cover U, we can write Ωj = U1 × · · · × Rj × . . . UN . If nj = 1, then

H0,1
L2 (Uj) = 0 (and therefore Hausdorff ), and if nj á 2, then by Proposition 2.2,

since each H0,1
L2 (Rj) is Hausdorff, and Rj = Uj \ Kj is an annulus, it follows that

each H0,1
L2 (Uj) is also Hausdorff. It follows from the results of [3, 6] regarding

the L2-cohomology of product domains, that since Ωj is a product of domains
whose L2-Dolbeault cohomology is Hausdorff in degrees (0,0) and (0,1), the

cohomology H0,1
L2 (Ωj) is also Hausdorff. Now, by part (1) of Theorem 3.1, since

we have covering U of W such that for each Ωj ∈ U we have H0,1
L2 (Ωj) Hausdorff,

as well as the Čech group Ȟ1(U, Z0,0
L2 ) Hausdorff, we conclude that H0,1

L2 (W) is
Hausdorff.

Now, let n á 3. Apply part (2) of Theorem 3.1, and assume H0,1(Uj) = 0

for each j. By Proposition 5.1, Ȟ1(U,OL2) = 0, so the cohomology H0,1
L2 (Ω) is

isomorphic to a subspace of
⊕N
k=1H

0,1
L2 (Ωk) contained in

{(
γk
)N
k=1, γk ∈ H

0,1
L2 (Ωk) | for i 6= j, γi

∣∣Ωij = γj
∣∣Ωij

}
.

It is therefore sufficient to show that the above space vanishes. Recall that

Ω1 = R1 ×U2 ×U
′
12,
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and

Ω2 = U1 × R2 ×U
′
12,

Where U ′12 = U3 × · · · × UN . Then, Ω12 = R1 × R2 × U
′
12. We have, by the

Künneth formula for L2-cohomology (cf. [3, 6]),

H0,1
L2 (Ω1) = H

0,1
L2 (R1)⊗̂H

0,0
L2 (U2)⊗̂H

0,0
L2 (U ′12),

and

H
0,1
L2 (Ω2) = H

0,0
L2 (U1)⊗̂H

0,1
L2 (R2)⊗̂H

0,0
L2 (U ′12),

where the other terms vanish, since H0,1(Uj) = 0 for each j. Similarly, we obtain

H0,1(Ω12) = H
0,1
L2 (R1)⊗̂H

0,0
L2 (R2)⊗̂H

0,0(U ′12)(6.1)

⊕ H
0,0
L2 (R1)⊗̂H

0,1
L2 (R2)⊗̂H

0,0
L2 (U ′12).

Note, also, that the two direct summands in (6.1) are orthogonal to each other

because of the tensor nature of the inner product onH0,1
L2 (Ω12) (see [6]). Consider

now the restriction map

(6.2) H
0,1
L2 (Ω1)→ H

0,1
L2 (Ω12),

written as γ → γ|Ω12 , whose image is

(6.3) H
0,1
L2 (Ω1)

∣∣Ω12
≅ H

0,1
L2 (R1)⊗̂H

0,0(U2)
∣∣
R2
⊗̂H

0,0
L2 (U ′12).

The map (6.2) may be represented as a tensor product of maps

idH0,1
L2 (R1)

⊗̂ρ⊗̂ idH0,0
L2 (U

′
12)
,

where
ρ : H0,0

L2 (U2)→ H
0,0
L2 (R2)

is the restriction map f ֏ f |R2 fromH0,0
L2 (U2) = OL2(U2) toH0,0

L2 (R2) = OL2(R2),
which is injective by analytic continuation, since R2 is connected. Therefore the
map (6.2) is also injective, being the tensor product of injective maps. A similar

reasoning shows that the restriction map H0,1
L2 (Ω2) → H

0,1
L2 (Ω12) is also injective,

and has image

(6.4) H0,1
L2 (Ω2)

∣∣Ω12
≅ H0,0

L2 (U1)
∣∣
R1
⊗̂H0,1

L2 (R2)⊗̂H
0,0
L2 (U ′12).

The subspaces of H0,1
L2 (Ω12) given by (6.3) and (6.4) are orthogonal, being

contained in different summands of the orthogonal direct sum (6.1), so that we
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have H0,1
L2 (Ω1)|Ω12 ∩H

0,1
L2 (Ω2)|Ω12 = {0}, and since this reasoning applies if 1 and

2 are replaced by i and j with i 6= j, we see that

(6.5) H
0,1
L2 (Ωi)

∣∣Ωij ∩H
0,1
L2 (Ωj)

∣∣Ωij = {0}, ∀ i, j ∈ {1, . . . , N}.

Now, in (3.1), we will let the N-tuple (γk)
N
k=1 ∈

⊕N
k=1H

0,1
L2 (Ωk) be such that

γi|Ωij = γj|Ωij whenever i 6= j. Therefore, by (6.5), we have γi|Ωij = 0 for
all i 6= j. Now, the same reasoning that shows that the map (6.2) is injective

shows that the restriction map H0,1
L2 (Ωi)→ H0,1(Ωij) is injective when i 6= j,

and this shows that γi = 0 for each i. Part (2) of Theorem 3.1 now shows that
H0,1
L2 (W) = 0. ❐

6.2. Proof of Theorem 1.4. We begin by noting the following variant of
Theorem 1.4 with minimal boundary regularity, when the factors are each one
dimensional.

Proposition 6.2. For j = 1, . . . , n, let Kj be a compact subset of C, and let
K = K1 × · · · × Kn ⊂ Cn be their Cartesian product. Then, if K is regular, we have
H

0,n−1
W 1 (K) = 0.

Proof. For each j, let Uj be a large disc containing the compact Kj . Apply
Proposition 2.1, with Ω̃ = U = U1 × · · · × Un, and K = K1 × · · · × Kn. A
simple topological reasoning shows that, for large enough Uj , the annulus U \ K
is connected. Since U is pseudoconvex, the result follows. ❐

The proof of the general case is similar.

Proof of Theorem 1.4. For each j, choose a large ball Uj ⊂ Cnj such that

Vj ⋐ Uj . If nj á 2, since H
0,nj−1
W 1 (Vj) = 0, and H0,1

L2 (Uj) = 0, it follows by

Theorem 1.1 that H0,1
L2 (Rj) is Hausdorff, where Rj = Uj \ sVj . In case nj = 1,

then H0,1
L2 (Rj) = 0, and so it is Hausdorff. Now, we will let W = U \ sV ,

where U = U1 × U2 × · · · × UN . Therefore, by Proposition 6.1, we see that

H0,1
L2 (W) is Hausdorff. We now invoke Theorem 1.1 again in order to conclude

that H0,n−1
W 1 (V) = 0. ❐

7. PROOF OF THEOREM 1.8

7.1. Extension of solvability. In this section, to prove Theorem 1.8, we
consider the following situation. Let D ⋐ Ω̃ be a bounded domain in Cn, and
let K be a compact set contained in D. We consider the relation between the
cohomologies of the annuli

Ω = Ω̃ \K and W = D \K.
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Proposition 7.1. Suppose that in some degree (p, q), q á 1, we have that
H
p,q
L2 (Ω̃) = 0, and the L2-cohomology Hp,qL2 (W) is Hausdorff. Then, we have the

following:

(a) Hp,qL2 (Ω) is Hausdorff.
(b) The natural restriction map on cohomology Hp,qL2 (Ω) → Hp,qL2 (W) is injective.

Consequently, if Hp,q(W) = 0 then Hp,q(Ω) = 0.
The proof is based on the following observation.

Lemma 7.2. With hypothesis and notation as above, there is a constant C > 0
with the following property. Suppose that g ∈ Zp,qL2 (Ω) is such that the restriction g|W
is in Bp,qL2 (W). Then, there is a u ∈ Ap,q−1

L2 (Ω) such that s∂u = g and

‖u‖L2(Ω) à C‖g‖L2(Ω).

Proof. We denote by C any constant that depends solely on the geometry of
the domains W and Ω̃, and C may have different values at different occurrences.

Since H
p,q
L2 (W) is Hausdorff, there is a u0 ∈ A

p,q−1
L2 (W) such that s∂u0 = g|W, and

we have an estimate

(7.1) ‖u0‖L2(W) à C‖g‖L2(W).

We take a cutoff χ ∈ C∞0 (D) such that χ ≡ 1 near K. As usual, we assume that
after multiplying by a cutoff, we extend functions and forms by zero outside the
support of the cutoff. We note that s∂(χu0) = s∂χ ∧ u0 + χ · g on Ω, so that we
have an estimate

(7.2) ‖s∂(χu0)‖L2(Ω) à C‖g‖L2(Ω).

Let h = g−s∂(χu0). Since, by hypothesis, g ∈ Zp,qL2 (Ω), we see that h ∈ Zp,qL2 (Ω),
and near K, we have h = g − s∂u0 = 0. If we define

h♯ =

{
h on Ω,
0 on K,

then h♯ belongs to Zp,qL2 (Ω̃), and we have

(7.3) ‖h♯‖L2(Ω̃) = ‖h‖L2(Ω) à C‖g‖L2(Ω),

where the last estimate follows immediately from the definition of h and (7.2).

Since H
p,q
L2 (Ω̃) = 0, by the open mapping theorem there is a v ∈ A

p,q−1
L2 (Ω̃) such

that s∂v = h♯ and

‖v‖L2(Ω̃) à C‖h
♯‖L2(Ω̃) = C‖h‖L2(Ω),
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where the last equality holds since h♯ = 0 on K. So, if we set u = v
∣∣Ω + χu0,

then
s∂u = s∂v

∣∣Ω + s∂(χu0) = h
♯
∣∣Ω + s∂(χu0) = h+ s∂(χu0) = g,

by the definition of h. Furthermore, we have

‖u‖L2(Ω) à ‖v‖L2(Ω) + ‖χu0‖L2(Ω)
à C‖h‖L2(Ω) + C‖u0‖L2(W) à C‖g‖L2(Ω),

using (7.1) and (7.3). ❐

Proof of Proposition 7.1.
(a) Let λ : Z

p,q
L2 (Ω) → Z

p,q
L2 (W) be the restriction map g ֏ g|W. It follows

immediately from Lemma 7.2 that Bp,qL2 (Ω) = λ−1(B
p,q
L2 (W)). But, since Bp,qL2 (W)

is closed in Z
p,q
L2 (W), it follows that B

p,q
L2 (Ω) is closed in Z

p,q
L2 (Ω).

(b) Let g ∈ Z
p,q
L2 (Ω) be such that class(g) ∈ Hp,qL2 (Ω) is in the kernel of the

restriction map. Then, g|W is in B
p,q
L2 (W), so by Lemma 7.2 above, g ∈ B

p,q
L2 (Ω),

and g represents 0 in Hp,qL2 (Ω). ❐

7.2. Proof of Theorem 1.8. We let W = U \ K in Proposition 7.1. Let

Rj = Uj \ Kj be the factor annuli. Therefore, H0,1
L2 (Rj) is Hausdorff for each j,

and by Proposition 6.1, we know that H0,1
L2 (W) is Hausdorff and vanishes if n á 3.

Since by hypothesis, H0,1
L2 (Ω̃) = 0, we conclude by part (a) of Proposition 7.1 that

H
0,1
L2 (Ω) is Hausdorff, and by part (b) that H0,1

L2 (Ω) = 0 if n á 3.
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