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Abstract We study the Diederich–Fornæss exponent and relate it to non-existence
of Stein domains with Levi-flat boundaries in complex manifolds. In particular, we
prove that if the Diederich–Fornæss exponent of a smooth bounded Stein domain in
an n-dimensional complex manifold is greater than k/n, then it has a boundary point
at which the Levi-form has rank greater than or equal to k.
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1 Introduction

Diederich and Fornæss showed in 1977 that for any bounded pseudoconvex domain�

with C2 boundary in a Stein manifold, there exist a positive constant η and a defining
function r such that r̂ = −(−r)η is plurisubharmonic on � ([12]; see also [24]). In
particular, any bounded pseudoconvex domain with C2 boundary in Cn is necessarily
hyperconvex (i.e., there exists a bounded plurisubharmonc exhaustion function on the
domain). This result of Diederich and Fornæss was generalized to bounded pseudo-
convex domains with C1 boundary by Kerzman and Rosay [18] and with Lipschitz
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Diederich–Fornæss Exponent 221

boundary by Demailly [11] and Harrington [16]. The constant η is called a Diederich–
Fornæss exponent. The supremum of all Diederich–Fornæss exponents is called the
Diederich–Fornæss index of�. The Diederich–Fornæss index has implications in reg-
ularity theory in the ∂-Neumann problem. Kohn established a quantitative relation-
ship between global regularity in the ∂̄-Neumann problem and the Diederich–Fornæss
exponents ([19]; see also [17,23]). In particular, he provided an effective approach
to an earlier result of Boas and Straube [3] on global regularity of the ∂̄-Neumann
operator on a smooth bounded pseudoconvex domain with a defining function that is
plurisubharmonic on the boundary. Berndtsson and Charpentier further showed that
for a bounded pseudoconvex domain � with Lipschitz boundary in C

n , the Bergman
projection and the canonical solution operator for the ∂̄-operator is bounded on L2-
Sobolev spaces W s(�) for any s less than one half of the Diederich–Fornæss index
([4]; see also [6]). The Diederich–Fornæss index also plays a role in estimates of the
pluri-complex Green function [5] and comparison of the Bergman and Szegö kernels
[10].

For a given bounded pseudoconvex domain in C
n , it is difficult to compute

the Diederich–Fornæss index in general. Diederich and Fornæss showed that the
Diederich–Fornæss index of the worm domain �γ goes to 0 as γ → ∞, where
γ is the total winding of �γ [13]. Indeed, it follows from the work of Barrett [1] and
the aforementioned work of Berndtsson and Charpentier that the Diederich–Fornæss
index of �γ is less than or equal to 2π/γ . Sibony proved that for a smooth bounded
pseudoconvex domain in C

n that satisfies property (P) in the sense of Catlin, the
Diederich–Fornæss index is one (see [9,26]). More recently, Fornæss and Herbig [14]
showed that a smooth bounded pseudoconvex domain in C

n with a defining function
that is plurisubharmonic on the boundary also has Diederich–Fornæss index one.

In this paper, we first establish an effective lower bound for the Diederich–Fornæss
index on a C2-smoothly bounded domain that satisfies the strong Oka property (see
Sect. 2 below for detail). It was shown by Ohsawa and Sibony that such a domain has
positive Diederich–Fornæss index [22]. We then relate the Diederich–Fornæss index
to non-existence of Stein domains with Levi-flat boundaries in complex manifolds.
Our main result can be stated as follows:

Theorem 1.1 Let � be a bounded Stein domain with C2 boundary in a complex
manifold M of dimension n. If the Diederich–Fornæss index of � is greater than
k/n, 1 ≤ k ≤ n − 1, then � has a boundary point at which the Levi form has rank
greater than or equal to k.

In particular, we have the following corollary:

Corollary 1.2 If the Diederich–Fornæss index is greater than 1/n, then its boundary
cannot be Levi flat; and if the Diederich–Fornæss index is greater than 1− 1/n, then
its boundary must have at least one strongly pseudoconvex boundary point.

Lins Neto [20] first proved the nonexistence of real-analytic Levi-flat hypersurfaces
in CP

n with n ≥ 3. The nonexistence of smooth Levi-flat hypersurfaces in CP
n with

n ≥ 3 was established by Siu [25]. Subsequently, it was proved by Cao et al. [6]
that there exist no C2 Levi-flat hypersurfaces in CP

n, n ≥ 3. The nonexistence of
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222 S. Fu, M.-C. Shaw

Lipschitz Levi-flat hypersurfaces in CPn with n ≥ 3 was proved by Cao and Shaw in
[8]. In [6], it was stated that there exist no C2 Levi-flat hypersurfaces in CP

n for all
n ≥ 2, but the proof onlyworks for n ≥ 3. The nonexistence of Levi-flat hypersurfaces
in CP2 remains open.

Our result above was inspired by the work of Nemirovskii who showed that any
smooth bounded Stein domain with a defining function that is plurisubharmonic on the
domain cannot have Levi-flat boundary ([21, Corollary]). We thank Professor Takeo
Ohsawa for informing us that similar resultswere obtained byAdachi andBrinkschulte
independently using different methods. 1

2 The Diederich–Fornæss Index

Let M be an n-dimensional complex manifold with hermitian metric ω. Let � be a
bounded domain in M . A continuous real-valued function r on M is called a defining
function of� if r < 0 on�, r > 0 on M \�, and C1δ(z) ≤ |r(z)| ≤ C2δ(z) near b�,
where δ(z) is the geodesic distance from z to the boundary b�. We will also assume
that the defining function r is in the same smoothness class as that of the boundary
b�. A defining function r is said to be normalized if limz→b� |r(z)|/δ(z) = 1. Note
that the signed distance function ρ(z) = −δ(z) on � and ρ(z) = δ(z) on M \ � is a
normalized defining function for �.

A constant 0 < η ≤ 1 is called aDiederich–Fornæss exponent of a defining function
r of � if there exists a neighborhood U of b� such that

i∂∂(−(−r)η) ≥ 0 (2.1)

on U ∩ � in the sense of distribution. The supremum of all such η’s is called the
Diederich–Fornæss index of r and is denoted by IDF(r). The supremum of IDF(r)

over all defining functions of � is called the Diederich–Fornæss index of � and is
denoted by IDF(�). Notice that in the above definition of theDiederich–Fornæss index,
we only assume −(−r)η to be plurisubharmonic on � near the boundary. When the
underlying complex manifold M is Stein, the above definition is equivalent to the
one that requires −(−r)η to be strongly plurisubharmonic on �. This equivalence
can be seen easily by first replacing r with r̃ = re−εψ(z), where ψ(z) is a smooth
strongly plurisubharmonic exhaustion function for M and ε a sufficiently small positive
constant, and then extending r̃ to the whole domain � (see, e.g., [12, p. 133]).

A defining function r is said to satisfy the strong Oka property if there exist a
constant K and a neighborhood U of b� such that

i∂∂(− log(−r)) ≥ Kω (2.2)

onU ∩� in the sense of distribution. Denote by K (r) the supremum of all constants K
such that (2.2) holds. By Takeuchi’s theorem, the signed distance function of a (proper)

1 See:Adachi andBrinkschulte,A global estimate for the Diederich–Fornæss index of weakly pseudoconvex
domains, Preprint, 2014.
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Diederich–Fornæss Exponent 223

pseudoconvex domain in CP
n with the Fubini-Study metric satisfies the strong Oka

property ([29]; see also [7,15]). Hereafter, the Fubini–Study metric is normalized
so that its holomorphic sectional curvature is 2 and hence its holomorphic bisectional
curvature is greater than or equal to 1. In this case, one can take, for example, K = 1/6
(see [7, Theorem 2.5]).

Let� ⊂⊂ M be a bounded domain with C2-boundary. Let r be a defining function
of�. Letων = ∂r/|∂r |ω. Let Lν be the dual vector ofων . For any (1, 0)-vector X near
b�, let Xν = 〈X, Lν〉ωLν be the complex normal component of X and Xτ = X − Xν

the complex tangential component. Write T 1,0(r) = {(z, X) ∈ T 1,0(M) | Xr = 0}.
For z ∈ b�, we further decompose Xτ = Xs + Xl , where Xl is in the null spaceNz of
the Levi-form ∂∂r at z and Xs ⊥ Xl . Let S1,0(M) = {(z, X) ∈ T 1,0(M), |X |ω = 1}.
Let W be the set of all weakly pseudoconvex points on b�. Let

S(r) = max{|∂∂r(Xl , Lν)(z)|; |Xl |ω = 1, Xl ∈ Nz, z ∈ W }.
If b� is strongly pseudoconvex, we set S(r) = 0. Define

I0(r) = max
{

min
{ K (r)

8(S(r))2
,
1

2

}

, 1 − 2(S(r))2

K (r)

}

> 0. (2.3)

With the above notations, our main result in this section can be stated as follows:2

Theorem 2.1 Let � be a bounded domain with C2-boundary in a complex hermitian
manifold with a normalized defining function r that satisfies the strong Oka property.
Then IDF(�) ≥ IDF(r) ≥ I0(r).

Proof A simple computation yields that

∂∂(− log(−r)) = ∂∂r

−r
+ ∂r ∧ ∂r

r2
(2.4)

and

∂∂(−(−r)η) = η(−r)η
(∂∂r

−r
+ (1 − η)

∂r ∧ ∂r

r2

)

= η(−r)η
(

∂∂(− log(−r)) − η
∂r ∧ ∂r

r2

)

. (2.5)

It follows from (2.5) that (2.1) is equivalent to

i∂∂(− log(−r)) ≥ η
i∂r ∧ ∂r

r2
. (2.6)

Let c0 be a constant such that 0 < c0 < K (r). Then

i∂∂(− log(−r)) ≥ c0ω (2.7)

2 We refer the reader to related work of Biard [2] which we became aware of after this work was completed.
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224 S. Fu, M.-C. Shaw

for z ∈ � near the boundary. It follows from (2.4) that

∂∂r(Xτ , X τ )

−r
≥ c0|Xτ |2ω. (2.8)

Let C1 be any constant such that C1 > S(r). Then there exists a neighborhood U of
N 1,0(W ) = {(z, X) | z ∈ W, X ∈ Nz, |X |ω = 1} in S1,0(M) such that

|∂∂r(X, Lν)| ≤ C1, (z, X) ∈ U. (2.9)

For (z, Xτ ) ∈ S1,0(�) \ U with z near b�,

∂∂r(Xτ , X τ ) ≥ C2|Xτ |2ω (2.10)

for some constant C2 > 0. We write X = Xτ + Xν with Xl ∈ Nz as before. Then

∂∂(− log(−r))(X, X) = ∂∂r(Xτ , X τ )

−r
+ ∂∂r(Xν, Xν)

−r

+ 2Re ∂∂r(Xτ , Xν)

−r
+ |Xr |2

r2
. (2.11)

Note that |Xr | = |Xν |ω · |∂r |ω. Let K0 = sup{|∂∂r |ω; z ∈ �}. Then

|∂∂r(Xν, Xν)| ≤ K0|Xr |2/|∂r |2ω (2.12)

Similarly,
|Re ∂∂r(Xτ , Xν)| ≤ K0|Xτ |ω · |Xr |/|∂r |ω. (2.13)

We first deal with the strongly pseudoconvex directions. For (z, X) ∈ T 1,0(�)with
(z, Xτ /|Xτ |ω) ∈ S1,0(�) \ U with z near b�, it follows from (2.13) and (2.10) that
for any positive constant M ,

|2Re ∂∂r(Xτ , Xν)| ≤ K0

(

1

M
|Xτ |2ω + M

|∂r |2ω
|Xr |2

)

≤ K0

MC2
∂∂r(Xτ , X τ ) + K0M

|∂r |2ω
|Xr |2.

(2.14)

Therefore,

∂∂(− log(−r))(X, X) ≥
(

1 − K0

MC2

)

∂∂r(Xτ , X τ )

−r

+
(

1 − K0(M + 1)|r |
|∂r |2ω

) |Xr |2
r2

.

(2.15)

By choosing M sufficiently large and then letting z be sufficiently close to b�, we
know that (2.6) holds for any η < 1.
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Diederich–Fornæss Exponent 225

We now deal with weakly pseudoconvex directions. For (z, X) ∈ T 1,0(�) with
(z, Xτ /|Xτ |ω) ∈ U , we have

2|∂∂r(Xτ , Xν)| ≤ 2C1|Xτ |ω|Xr |/|∂r |ω ≤ C1

( |r |
ε

|Xτ |2ω + ε

|r |
|Xr |2
|∂r |2ω

)

, (2.16)

where ε is a positive constant to be chosen. Since r is a normalized defining function,
|∂r |ω = 1/

√
2 on b�. Combining (2.16) with (2.8), we have for any ˜C1 > C1,

∂∂(− log(−r))(X, X) ≥ (c0 − C1/ε)|Xτ |2ω + 1 − (C1ε + K0|r |)|∂r |−2
ω

r2
|Xr |2

≥ (c0 − ˜C1/ε)|Xτ |2ω + 1 − 2˜C1ε − K ′|r |
r2

|Xr |2 (2.17)

for some positive constant K ′, after possible shrinking of U .
We consider two cases: 4˜C2

1 ≤ c0 and 4˜C2
1 > c0. When 4˜C2

1 ≤ c0, we take
ε = ˜C1/c0. Then

∂∂(− log(−r))(X, X) ≥ (1 − 2˜C2
1/c0 − K ′|r |)|Xr |2/r2. (2.18)

When 4˜C2
1 > c0, we take ε = 1/4˜C1 < ˜C1/c0. Then combining (2.17) with (2.7), we

have

∂∂(− log(−r))(X, X) ≥ −
(

˜C1

c0ε
− 1

)

∂∂(− log(−r))(X, X) + 1 − 2˜C1ε − K ′|r |
r2

|Xr |2.

Therefore,

∂∂(− log(−r))(X, X) ≥
(

c0ε(1 − 2˜C1ε)

˜C1
− K ′c0ε|r |

˜C1

) |Xr |2
r2

.

Hence

∂∂(− log(−r))(X, X) ≥
(

c0
8˜C2

1

− K ′c0ε|r |
2˜C2

1

)

|Xr |2
r2

. (2.19)

Note that when 4˜C2
1 ≤ c0, we have

1 − 2˜C2
1

c0
≥ 1

2
and

c0
4˜C2

1

≥ 1

2
. (2.20)

Furthermore, when 4˜C2
1 > c0,

1

2
>

c0
8˜C2

1

> 1 − 2˜C2
1

c0
. (2.21)

Combining (2.18)–(2.21), we know that (2.6) holds for any η < I0(r). We thus con-
clude the proof of Theorem 2.1 ��
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226 S. Fu, M.-C. Shaw

Combining Theorem 2.1 with Takeuchi’s theorem (taking K = 1/6), we then have:

Corollary 2.2 Let � be a proper pseudoconvex domain in CP
n with C2 boundary.

Then its Diederich–Fornaess index

IDF(�) ≥ I0(ρ) = max
{

min
{ 1

48(S(ρ))2
,
1

2

}

, 1 − 12(S(ρ))2
}

> 0,

where ρ is the signed distance function to b� with respect to the Fubini–Study metric.

Let z be a point in � near the boundary and π(z) be its closest point on b�. Let
γ (t) be the geodesic through z parameterized by arc-length such that γ (0) = π(z).
For any (1, 0) tangent vector X at z near b�, let X (t) be the vector at γ (t) obtained
by parallel translation (of the real and imaginary parts) of X along the geodesic from
z to γ (t) and let X0 = X (0).

Proposition 2.3 Let � ⊂⊂ M be a bounded domain with C2 boundary and let r be
a normalized defining function. Let W be the set of weakly pseudoconvex boundary
points. Suppose (2.2) holds and there exists a positive constant K1 > 1 such that

lim inf
��w→z

∂∂r(Xτ , Xτ )(w)

|r(w)| ≤ K K1|Xτ |2ω, (2.22)

for any z ∈ W and (1, 0)-vector field X near z such that Xτ ∈ Nz . Then

IDF(�) ≥ max

{

min

{

1

8(K1 − 1)
,
1

2

}

, 3 − 2K1

}

. (2.23)

Proof From (2.2), we know that

� = i∂∂(− log(−r)) − Kω

is positive semi-definite. Applying the Cauchy–Schwarz inequality to �(Xτ , Lν) at
w, we then have

|�(Xτ , Lν)| ≤ |�(Xτ , Xτ )|1/2|�(Lν, Lν)|1/2.

(See [27, Proof of Theorem 1] for a related argument.) Therefore,
∣

∣

∣

∣

∣

∂∂r(Xτ , Lν)

r(w)

∣

∣

∣

∣

∣

2

≤
(

∂∂r(Xτ , Xτ )

−r(w)
− K |Xτ |2ω

) (

∂∂r(Lν, Lν)

−r(w)
+ |Lνr |2

(r(w))2
− K |Lν |2ω

)

.

Multiplying both sides by (r(w))2 and taking the limit, we then have at z:

∣

∣∂∂r(Xτ , Lν)
∣

∣ ≤ ((K1 − 1)K )1/2|Xτ |ω.

The Inequality (2.23) then follows by applying Theorem 2.1 with S(r)

= ((K1 − 1)K )1/2. ��
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Diederich–Fornæss Exponent 227

Let f ∈ C2(M). Recall that the real Hessian H f is defined by

H f (ξ, ζ )(z) = 〈∇ξ (∇ f ), ζ 〉

for ξ, ζ ∈ TR(M2n), where∇ξ denotes the covariant derivative. For any X ∈ T 1,0
C

(M),
we write X = 1√

2
(ξX − √−1JξX ) where J is the complex structure.

Proposition 2.4 Let � be a proper pseudoconvex domain with C2 boundary in CP
n.

Let ρ be the signed distance function to b� with respect to the Fubini–Study metric.
Let

M(X) = |∇ξX (∇ρ)|2ω + |∇JξX (∇ρ)|2ω + R(∇ρ, J∇ρ, ξX , JξX )

where R is the Riemannian curvature tensor and let

K2 = max{M(X); z ∈ W, X ∈ Nz, |X |ω = 1}.

Then

IDF(�) ≥ max

{

min

{

1

8(K2 − 1)
,
1

2

}

, 3 − 2K2

}

.

Proof It follows from the Riccati equation that

lim
t→0+

1

t

(

∂∂ρ(Xτ (t), Xτ (t)) − ∂∂ρ(X0, X0)
)

= M(X0).

(The above identity was proved in [28] for � in Cn . For � in CPn , see [7, pp. 66–69]
for related arguments.) We then conclude the proof by applying Proposition 2.3 with
K = 1 and any K1 > K2. ��

From Proposition 2.1, we also obtain the following slight variation of a result of
Ohsawa and Sibony ([22]; see also [6,8]):

Corollary 2.5 Let � be a bounded domain in M with C2 boundary. Suppose r is
a normalized defining function that satisfies (2.2). Then for any c ∈ (0, K ) and
η ∈ (0, I0(r)), there exists a neighborhood V of b� such that

i∂∂(− log(−r)) ≥ cω +
(

1 − c

K

)

η
i∂r ∧ ∂r

r2

and

i∂∂(−(−r)η) ≥ η(−r)η
(

cω + (1 − c

K
)η

i∂r ∧ ∂r

r2

)

.

3 Non-Existence of Stein Domains with Levi-Flat Boundaries

We prove Theorem 1.1 in this section. We first recall the following well-known simple
lemma.Let� be a bounded domainwithC2 boundary in a complex hermitianmanifold
M of dimension n. Let ρ be a defining function for �. For t > 0, let �−t = {z ∈
�; ρ < −t}. Let it : b�−t → M be the inclusion map. Let 1 ≤ k ≤ n be an integer.
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228 S. Fu, M.-C. Shaw

Lemma 3.1 If the rank of the Levi form of b� is less than or equal to k − 1 at all
z ∈ b�, then

i∗t (dcρ ∧ (ddcρ)n−1) = O(tn−k)d St (3.1)

where d St is the surface element of b�−t .

We sketch the proof for the reader’s convenience. Note that d St = i∗t (∗dρ)/|dρ|ω
and

i∗t (dcρ ∧ (ddcρ)n−1) = ν�((dρ/|dρ|) ∧ dcρ ∧ (ddcρ)n−1)

where ν is the dual vector of dρ/|dρ|ω. By choosing local holomorphic coordinates
that diagonalize the Levi form, we then obtain (3.1).

WenowproveTheorem1.1. Letρ be a defining function of� such that ρ̂ = −(−ρ)η

is plurisubharmonic on � for some constant η > k/n. Let �−t = {ρ < −t}, t >

0. Since � is Stein, �−t has at least a strongly pseudoconvex boundary point for
sufficiently small t . Let

f (t) =
∫

�−t

(ddcρ̂)n .

Then f (t) ≥ 0 and f (t) is decreasing. By Stokes’s theorem,

f (t) =
∫

b�−t

i∗t (dcρ̂ ∧ (ddcρ̂)n−1).

Since

dcρ̂ = iη(−ρ)η−1(∂ρ − ∂ρ) and ddcρ̂ = 2iηρη

(

∂∂ρ

−ρ
+ (1 − η)

∂ρ ∧ ∂ρ

ρ2

)

,

we have
dcρ̂ ∧ (

ddcρ̂
)n−1 = ηn(−ρ)n(η−1)dcρ ∧ (

ddcρ
)n−1

.

Suppose the Levi rank of b� is less than or equal to k − 1 at all boundary points, then
by Lemma 3.1,

i∗t (dcρ ∧ (

ddcρ
)n−1

) = O(tn−k)d St .

Thus
f (t) = O(tnη−k).

Therefore, limt→0+ f (t) = 0 and hence f (t) = 0 for small t > 0. This implies
that b�−t has Levi rank less than or equal to n − 2 at each point, which leads to a
contradiction. This concludes the proof of Theorem 1.1.

Corollary 1.2 follows easily. The following theorem is a variation of Theorem 1.1.

Theorem 3.2 Let M be a complex manifold of dimension n with a hermitian metric
ω. Let � be a bounded Stein domain in M with C2 boundary. Suppose there exist a
defining function ρ, a constant η > 0, and a neighborhood U of b� such that

i∂∂(−(−ρ)η) ≥ c(−ρ)η
(

ω + i∂ρ ∧ ∂ρ

ρ2

)

(3.2)
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Diederich–Fornæss Exponent 229

on U ∩� for some constant c > 0. If η ≥ 1/n, then � cannot have Levi-flat boundary.

Proof In light of Theorem 1.1, it remains to prove the case when η = 1/n. We follow
the notations as in the above proof of Theorem 1.1. Let ε0 be sufficiently small such
that � \ �−ε0 ⊂ U ∩ �. We set

f (t) =
∫

�−t \�−ε0

(ddcρ̂)n

for 0 < t < ε0. Suppose b� is Levi-flat, then as in the proof of Theorem 1.1,

dcρ̂ ∧ (

ddcρ̂
)n−1

∣

∣

∣

b�−t
= ηn(−ρ)n(η−1)dcρ ∧ (

ddcρ
)n−1

∣

∣

∣

b�−t
= O(tnη−1) d St ≤ C d St .

By Stokes’s theorem,

f (t) =
∫

b�−t

dcρ̂ ∧ (ddcρ̂)n−1 −
∫

b�−ε0

dcρ̂ ∧ (ddcρ̂)n−1 ≤ C. (3.3)

On the other hand, it follows from (3.2) that

(ddcρ̂)n ≥ C(−ρ)nη
(

ω + i∂ρ ∧ ∂ρ

ρ2

)n ≥ C(−ρ)nη−2dV,

where dV is the volume element. Thus

f (t) =
∫

�−t \�−ε0

(ddcρ̂)n ≥ C
∫

�−t \�−ε0

(−ρ)nη−2dV

≥ C
∫ −t

−ε0

(−ρ)−1dρ ≥ C(− log t + log ε0).

Therefore, limt→0+ f (t) = ∞, which leads to a contradiction with (3.3). This con-
cludes the proof of Proposition 3.2. ��
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