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The Hartogs Triangle in Complex Analysis

Mei-Chi Shaw

Abstract. The Hartogs triangle serves as an important example in several
complex variables. The Hartogs triangle is pseudoconvex, but its boundary is
not Lipschitz, yet rectifiable. In this paper will analyze the Hartogs triangle
in C2 and in CP 2 using both geometric measure theoretic approach and the ∂̄
approach.

Introduction

The Hartogs triangle is an important example in several complex variables. It
provides many interesting phenomena in several complex variables which do not
exist in one complex variable. In this paper we will summarize some well-known
facts corresponding to the Hartogs triangle. Some of the results are well-known but
many are newly obtained results for the Hartogs triangle both in C2 and in CP 2.

In Chapter 1 we discuss some basic properties for the Hartogs triangle in C
2.

The Hartogs triangle is the first example of a pseudoconvex domain which do not
admit a Stein neighborhood basis. It also does not admit a bounded plurisubhar-
monic exhaustion function. The Hartogs triangle as well as its smooth cousins, the
so-call Diederich-Fornaess worm domains (see [DF1], [DF2]), have play important
role in the function theory for pseudoconvex domains.

In Chapter 2, L2 theory for ∂̄ on the Hartogs triangle is summarized. The Har-
togs triangle is a bounded pseudoconvex domain. Hence we have the L2 existence
theorem for ∂̄ as well as the ∂̄-Neumann operator from the Hörmander theorem.
But the Sobolev regularity for the ∂̄-Neumann operator or weighted ∂̄-Neumann op-
erator are different. Since the domain is not Lipschitz, we need to define the Sobolev
spaces carefully. For a general pseudoconvex domain with smooth boundary, the
∂̄-Neumann operator is not smooth on Sobolev spaces W s for s > 0 (see [Ba2]).
Yet there is some regularity for the ∂̄-Neumann operator on the Hartogs triangle
measured in the weighted Sobolev spaces singular near the origin (see [ChS3]).

In Chapter 3 we examine the regularity for ∂̄ other than the L2 approach. It
follows from the kernel approach, one does have regularity in certain Hölder spaces.
But the global regularity for ∂̄ in the smooth category does not hold. This gives
very different Dolbeault cohomology groups when measured in different function
spaces. We also discuss the non-Hausdorff property for the annulus between a ball
and the Hartogs triangle which was obtained by Laurent-Thiébaut and Shaw (see
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[LS]). In Chapter 4, we discuss function theory for the related Hartogs triangle in
the complex projective space CP 2. We also raise some open questions concerning
function theory for the Hartogs triangle and other domains.

1. Basic properties of the Hartogs triangle in C2

The Hartogs triangle in C
2 is defined by

H = {(z, w) ∈ C
2 | |z| < |w| < 1}.

We first recall the following well-known facts about the Hartogs triangle H.

Proposition 1.1. Any function holomorphic in a neighborhood of H is holo-
morphic in the polydisc D2 = {|z| < 1|} × {|w| < 1}. In fact, any holomorphic
function f ∈ C∞(H) extends holomorphically to the unit bidisc D2.

Proof. Let D∗ = D \ {0} be the punctured disc. We notice that the Hartogs
triangle is biholomorphic to the product D ×D∗ via the map

(z, w) ∈ H → (
z

w
,w) ∈ D ×D∗.

Thus for any holomorphic function f on H admits an expansion of the form

(1.1) f =

∞∑
i=0

∞∑
j=−∞

aijz
iwj =

∞∑
i=0

∞∑
j=−∞

aij

( z

w

)i

wi+j .

If f ∈ C∞(H), then aij = 0 for all j < 0. Thus f is actually holomorphic on D2.

Since the Hartogs triangle is biholomorphic to the product of D and D∗, it is
a domain of holomorphy. But its boundary is singular at the point (0,0), where it
is not Lipschitz (as a graph of a locally Lipschtz function).

Corollary 1.2. The Hartogs triangle H is a domain of holomorphy, but it
does not admit a Stein neighborhood basis.

By a Stein neighborhood basis we mean that H = ∩kΩk where each Ωk is a
pseudoconvex domain. The corollary follows from Proposition 1.1 easily. Thus the
Hartogs triangleH cannot be approximated from outside by domains of holomorphy.
For a smooth pseudoconvex domain with no Stein neighborhood, see [DF1].

Let O(H) denote the space of holomorphic functions on H. For each k ∈ N, the
space Ck(H) denote the space of functions whose k-th derivatives are continuous
in H. For 0 < α < 1, the space Ck,α(H) denote the space of functions whose k-th
derivatives are Hölder continuous with exponent α. A function f is in Ck,α(H) if
and only if f is in Ck(H) and for each multiindex m with |m| ≤ k, one has

sup
x,y∈H

|Dmf(x)−Dmf(y)|
|x− y|α < ∞.

Proposition 1.3. For each k ≥ 0, the space Ck+1(H) ∩ O(H) is not dense in
Ck(H) ∩ O(H). It is not even dense uniformly on compact subsets of H.

Proof. Suppose that f is holomorphic and f ∈ Ck(H) for some nonnegative
integer k. Using the expansion (1.1), it is easy to see that for all (i, j) �= (0, 0), we
must have

aij = 0, for all j ≤ −i+ k, i = 0, 1, 2, . . . .
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On the other hand, the term ( z

w

)i

wk+1,

where i = 0, 1, 2, . . . is in Ck(H). This shows that Ck+1(H) ∩ O(H) is not dense
in Ck(H) ∩ O(H). Since the coefficients aij can be determined by integration on
curves inside the domain, it is not even dense uniformly on compact subsets of H.

Proposition 1.4. There exists no bounded continuous plurisubharmonic ex-
haustion function on H.

Proof. To see this, if there exists real-valued plurisubharmonic bounded ex-
haustion φ on H such that φ < 0 on H and φ = 0 on bH, we have that the function
h(w) = φ(0, w) is subharmonic with interior maximum, thus it must be constant
h = 0. This means that φ = 0, a contradiction.

In contrast, on any bounded pseudoconvex domain with C2 bounary in Cn,
there exists a continuous plurisubharmonic exhaustion function φ. This is the well-
known resuts by Diederich-Fornaess [DF2]. The result is also true if the domain
has only Lipschitz boundary in C

n (see [KeR], [De].) In fact, one can even take φ
to be Hölder continuous (see [Ha1]). We remark that there exists strictly plurisub-
harmonic exhaustion function on H since it is pseudoconvex, but it does not have
bounded continuous plurisubharmonic exhaustion function.

2. L2 theory for ∂̄ on the Hartogs triangle

Following Hörmander’s L2 theory for ∂̄, the ∂̄-Neumann operator exists on any
bounded pseudoconvex domain Ω. If the boundary of Ω is Lipschitz, then the ∂̄-
Neumann operator N is bounded on W s(Ω) to itself for some s > 0 (see [BC],
[CSW]). For the Hartogs triangle, the ∂̄-Neumann operator N exists on L2

(0,1)(H)

and the Hodge decomposition holds. We will study the regularity in the Sobolev
spaces of the ∂̄-Neumann operator on the Hartogs triangle.

For each s ∈ N, let W s(H) denote the Sobolev space of order s. A function f
is in W s(H) if the weak derivative of f up to order s is in L2(H).

Proposition 2.1. The space W 1(H)∩O(H) is not dense in the Bergman space
L2(H) ∩ O(H).

Proof. Let f be any holomorphic function f on H, we expand

f =

∞∑
i=0

∞∑
j=−∞

aijz
iwj =

∞∑
i=0

∞∑
j=−∞

aij

( z

w

)i

wi+j .

It is easy to see the following few facts:

(1) The function 1
w is in L2(H) but not in W 1(H).

(2) The terms in the Laurent expansion are orthogonal to each other.
(3) If f ∈ L2(H), then aij = 0 for all i+ j < −1.
(4) If f ∈ W 1(H), then all aij = 0 for i+ j < 0.

Thus W 1(H) ∩O(H) is not dense in L2(H) ∩ O(H).

Recall that the Bergman projection B is defined as the orthogonal projection
operator from L2(H) onto the closed subspace L2(H) ∩ O(H), where O(H) is the
space of holomorphic functions on H. We also have the following regularity and
irregularity results for the Bergman projection on H.
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Proposition 2.2. The Bergman projection B is not bounded from W 1(H) to
W 1(H). In fact, B(C∞

0 (H)) is not contained in W 1(H)

Proof. We will show that the Bergman projection is not bounded from C∞
0 (H)

to W 1(H). Let f ∈ L2(H) ∩ O(H) and let fn ∈ C∞
0 (H) → f in L2(H). Then

Bfn → Bf in L2(H).
Suppose that the Bergman projection is bounded in W 1(H), then Bfn is in

W 1(H). This implies that W 1(H) ∩ O(H) is dense in the Bergman space L2(H) ∩
O(H), a contradiction to Proposition 2.1.

Let δ be the distance function from z to the boundary bH. The distance
function is always a Lipschitz function. To define the Sobolev spaces W s(H) for
fractional order s, we recall the following results.

For any domain Ω with Lipschtz boundary, the space f ∈ W k+ε(Ω) ∩ O(Ω),
where k = 0, 1, . . . and 0 ≤ ε < 1 implies that ∇kf ∈ L2(Ω, δ−2ε). In fact, for the
space of harmonic functions or holomorphic functions, one can use the equivalent
norm (see [JK]).

(2.1) ‖f‖Wk+ε =

k∑
|mI=0

‖Dmf‖+ ‖δ−εDmf‖.

It is known that if Ω is a pseudoconvex domain in Cn with Lipschitz boundary, the
∂̄-Neumann operator N is bounded on W s

(0,1)(Ω) for some s > 0 (see Berndtsson-

Charpentier[BC] and [CSW] ).

Definition. For each 0 < s < 1, we define the space W s(H) ∩O(H) to be the
space of holomorphic functions f satisfying

‖f‖W ε = ‖f‖L2 + ‖δ−sf‖L2 < ∞.

Theorem 2.3. The space W s(H) ∩ O(H) is desne in L2(H) ∩ O(H) for any
0 < s < 1

2 . The space W s(H)∩O(H) is not desne in L2(H)∩O(H) for any s ≥ 1
2 .

Proof. It is easy to show that the function z/w is in W 1(H). The function
w−1 is square-integrable on H and in W s(H) for any s < 1

2 but not in s ≥ 1
2 . The

distance function δ(z, w) = |w| − |z|. near 0. We have for s = 1
2 ,∫

H

1

(|w| − |z|)
1

|w|2 dV = 4π2

∫∫
r1<r2<1

(
1

(r2 − r1)r22

)
r2dr2r1dr1

= 4π2

∫ 1

0

(∫ 1

r1

1

(r2 − r1)
− 1

r2
dr2

)
dr1

= ∞.

On the other hand, if 0 < s < 1
2 ,∫

H

1

(|w| − |z|)2s
1

|w|2 dV = 4π2

∫∫
r1<r2<1

(
r1

(r2 − r1)2sr2

)
dr1dr2

= 4π2

∫ 1

0

(∫ r2

0

r1
(r2 − r1)2s

dr1

)
1

r2
dr2

< ∞.

The theorem is proved.
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Corollary 2.4. The Bergman projection B is not bounded from B(C∞
0 (H)) to

W
1
2 (H). The weighted Bergman metric is not bounded from B(C∞

0 (H)) to W
1
2 (H)

for any weight function smooth in a neighborhood of H.

Theorem 2.3 and Corollary 2.4 show that irregularity of the Bergman projection
in the Sobolev spaces. But the following theorem obtained in Chakrabarti-Shaw
[ChS3] shows that the singularity of the Bergman projection does not propagate.

Theorem 2.5. If f ∈ C∞(H), then Bf ∈ C∞(H \ {0}) ∩ O(H). On the other
hand, B does not map the space C∞

0 (H) of smooth functions compactly supported
in H into W 1(H) ∩O(H).

Note that this result shows that the singularity of the Bergman projection
for the Hartogs triangle is contained at the singular point (0,0) and it does not
propagate.

Proposition 2.6. On the Hartogs triangle H, The ∂̄-Neumann operator N2

on L2
(0,2)(H) is bounded from W s

(0,2)(H) to itself for s ≤ 1.

Proof. We notice that the ∂̄-Neumann problem for (0,2)-forms is actually the
Dirichlet problem. In this case, we have the Poincaré inequality for the bounded
domain: There exists some C > 0 such that∫

H

|u|2 ≤ C

∫
H

|∇u|2, u ∈ C∞
0 (H).

Let W 1
0 (H) be the space of completion of C∞

0 (H) under the W 1(H)-norm, we have
that the Dirichlet solution is in W 1

0 (H). This proves the theorem.

Remark: Let Ω be a bounded domain in Rn, n ≥ 2. Suppose that the boundary

is Lipschitz, then the Dirichlet operator is bounded from L2(Ω) to W
3
2 (Ω) (see

Jerison-Kenig [JK]).

3. Boundary regularity for ∂̄ on the Hartogs triangle

Despite the fact that the canonical solution for ∂̄ is not regular on the Hartogs
triangle, one can always find sufficiently smooth solution in the Hölder spaces. Let
Ω be a bounded domain in Cn. We use C∞(Ω) to denote the set of all functions
which are smooth in an open neighborhood of Ω. Recall the following definition of
Dolbeault cohomology groups with various function spaces.

Definition. Let Ω be a domain in Cn. We define the Dolbeault cohomology
Hp,q(Ω) and Hp,q(Ω) where 0 ≤ p, q ≤ n as follows:

Hp,q(Ω) =
{f ∈ C∞

(p,q)(Ω) | ∂̄f = 0}
{∂̄C∞

(p,q−1)(Ω)}
,

Hp,q(Ω) =
{f ∈ C∞

(p,q)(Ω) | ∂̄f = 0}
{∂̄C∞

(p,q−1)(Ω)}
,

Hp,q
L2 (Ω) =

{f ∈ L2
(p,q)(Ω) | ∂̄f = 0}

{f ∈ L2
(p,q)(Ω) | f = ∂̄u for some u ∈ L2

(p,q−1)(Ω)}
.

It follows from a well-known result of Hörmander [Hö1], we have that
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Theorem (Hörmander). Let Ω be a bounded pseudoconvex domain in Cn.
Then we have

Hp,q(Ω) = Hp,q
L2 (Ω) = {0}, q > 0.

If we assume that the boundary is smooth, we have the following theorem of
Kohn [Ko2].

Theorem (Kohn). Let Ω be a bounded pseudoconvex domain in Cn. Suppose
that the boundary is C∞-smooth. For g ∈ C∞

p,q+1(Ω), ∂̄g = 0, there exists u ∈
C∞(Ω) such that ∂̄u = g. In particular, we have

Hp,q(Ω) = {0}, q > 0.

When the boundary is not smooth, one also has the following result by Dufres-
noy [Du].

Theorem (Dufresnoy). Let Ω be a bounded domain in Cn such that Ω has a
special Stein neighborhood basis, then

Hp,q(Ω) = {0}, q > 0.

We refer the reader to the papers [Du] or [St] for the special Stein neighborhood
basis. The theorem can be applied to non-smooth domains like polydiscs. We also
recall a theorem by Michel-Shaw [MS] which shows that one also have the vanishing
cohomology groups

Hp,q(Ω) = {0}, q > 0

for any bounded piecewise smooth pseudoconvex domains in Cn. Yet there exists
pseudoconvex domain Ω in C2 such that the cohomology group H0,1(Ω) is infinite
dimensional. In fact, the Hartogs triangle is such a domain. The following theorem
was proved by Chaumat-Chollet [CC].

Theorem 3.1. On the Hartogs triangle H, for every f ∈ Ck,α(H) with ∂̄f = 0,
where k = 1, 2, . . . and 0 < α < 1, there exists u ∈ Ck,α(H) such that ∂̄u = f . But
there exists f ∈ C∞

(0,1)(H) with ∂̄f = 0 such that there does not exist any u ∈ C∞(H)

satisfying ∂̄u = f .

It follows from [CC] that for any ζ in the bidisc P = Δ × Δ and ζ ∈ P \ H,
there exists a ξ-smooth, ∂̄-closed (0, 1)-form αζ defined in C2 \ {ζ} such that there

does not exist any ξ-smooth function β on H such that ∂̄β = αζ . In particular the
∂̄-equation ∂̄u = αζ cannot be solved in the ξ-smooth category in any neighborhood

of H.

Corollary 3.2. The cohomology group H0,1(H) is infinite dimensional. But
H0,1(H) = 0.

Using an argument due to Laufer [La], the Dolbeault cohomology groupH0,1(H)
is either zero or infinite dimensionnal, we can conclude the theorem. Since the Har-
togs triangle is pseudoconvex, hence

H0,1(H) = 0.

It has been shown by the authors recently that the group is non-Hausdorff (see
Theorem 2.3 in the recent paper by the authors [LS1]). The following theorem is
proved by Laurent-Shaw [LS].
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Theorem 3.3. Let V be a simply-connected open bounded domain in C2 such
that V is not pseudoconvex (i.e., Stein). Then ∂̄ : C∞(V ) → C∞

(0,1)(V ) dose not

have closed range in C∞
(0,1)(V ). Suppose we further assume that the domain V

is Lipschitz, then operator ∂̄ : L2(V ) → L2
(0,1)(V ) does not have closed range in

L2
(0,1)(V ) either.

For a proof of Theorem 3.3, see Theorem 3.4 in [LS]. The following theorem is
also proved in [LS] (See Corollary 4.6 in the paper).

Theorem 3.4. Let Ω1 ⊂⊂ C2 such that H ⊂ Ω1. Let Ω = Ω1 \ H. Then
H0,1(Ω) is non-Hausdorff.

Question. Let Ω be the same as in Theorem 3.4. Is H0,1
L2 (Ω) non-Hausdorff?

This is in sharp contrast to the case when the domain Ω = Ω1 \Ω2, where Ω2 is

pseudoconvex and smooth. In this case, the spaces H0,1(Ω) and H0,1
L2 (Ω) are both

Hausdorff (see [Hö2] and [Sh1]). However, we need to assume that the boundary
of Ω2 is C2 smooth. If the boundary of Ω2 is only Lipschitz, it is not known if
the corresponding cohomology groups are Hausdorff. In particular, one has the
following specific question.

Question (Chinese Coin Problem). Let Ω = B2(0)\D2 be the domain between

the ball B2(0) of radius 2 centered at 0 and the bidisc D2. Is H0,1
L2 (Ω) Hausdorff?

The domain Ω has the shape of an ancient Chinese coin five pence in the Han
dynasty. The problem will be answered affirmatively if we can show the following
W 1 estimates for ∂̄ on D2.

Question. For any f ∈ W 1
(0,1)(D

2) with ∂̄f = 0, can one find a solution

u ∈ W 1(D2) such that ∂̄u = f?

We remark that in an earlier paper by Chakrabarti-Shaw [ChS1], we obtain
estimates for ∂̄ on the bidisc in special Sobolev spaces. For a pseudoconvex domain
with C2 boundary, W 1 estimates for ∂̄ have been obtained in [Ha2]. Such simple
question on bidisc has not yet been answered.

4. Holomorphic functions on the Hartogs triangle in CP 2

Let Ω be a domain in CPn and let δ be the distance function from z to the
boundary. For any domain Ω with Lipschtz boundary, the space f ∈ W k+ε(Ω) ∩
O(Ω), where k = 0, 1, . . . and 0 ≤ ε < 1 is defined as in (2.1). We first recall some
known results for holomorphic extension of functions from domains in CPn (see
[CSW], [CS1] or [ChS2]).

Theorem 4.1. Let Ω be a pseudoconvex domain with Lipschitz boundary in
CPn, n ≥ 2, with the Fubini-Study metric. Let Ω+ = X \ Ω be a pseudoconcave
domain with Lipschtiz boundary. For any f ∈ W s

(p,q)(Ω
+), where 0 ≤ p ≤ n,

0 ≤ q < n− 1 and s > 1 such that ∂̄f = 0 in Ω+, there exists F ∈ W s−1
(p,q)(X ) with

F |Ω+ = f and ∂̄F = 0 in X in the distribution sense.

Corollary 4.2. Let Ω ⊂⊂ X be a pseudoconvex domain with Lipschitz bound-
ary in CPn with the Fubini-Study metric. Let Ω+ = X \ Ω be a pseudoconcave
domain with Lipschtiz boundary. Suppose that f ∈ W 1+ε

(p,0)(Ω
+) and ∂̄f = 0, where

0 ≤ p ≤ n and ε > 0, then f is a constant if p = 0 and f = 0 if p > 0.
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Next we study the boundary values of holomorphic functions on pseudoconvex
domains in CPn. A function f on the Lipschitz boundary is called CR if f is
annihilated by any tangential Cauchy-Riemann equations. We start from following
jump formula (see also Lemma 9.3.5 in [CS]) or [Sh3]).

Lemma 4.3. Let M ⊂ CPn be a compact Lipschitz hypersurface which divides
CPn into two connected domains CPn \ M = Ω+ ∪ Ω−, n ≥ 2. For any 0 ≤
ε ≤ 1

2 and f ∈ W
1
2+ε(M) which is CR on M , there exist F+ ∈ W 1+ε(Ω+) and

F− ∈ W 1+ε(Ω−) such that ∂̄F+ = 0 in Ω+, ∂̄F− = 0 in Ω− and the following
decomposition holds:

F+ − F− = f on M.

Proof. We extend f ∈ W
1
2+ε(M) to be f̃ with f̃ ∈ W 1+ε(CPn). We define a

(0, 1)-form g on CPn by

g =

⎧⎪⎨
⎪⎩
−∂f̃ , if z ∈ Ω−,

0, if z ∈ M,

∂f̃ , if z ∈ Ω+.

Then g ∈ W ε
(0,2)(CP

n) and ∂g = 0 in the distribution sense in CPn.

We can solve ∂̄G = g for some G ∈ W 1+ε(CPn) since the space of harmonic
(0, 1)-forms H(0,1)(CP

n) is trivial.
Setting

F+ =
1

2
(f̃ −G), z ∈ Ω+,

F− = −1

2
(f̃ +G), z ∈ Ω−,

we see that

f = f̃ = (F+ − F−) on M.

We also have

∂F+ =
1

2
(∂f̃ − ∂G) =

1

2
(∂f̃ − ∂f̃) = 0 in Ω+,

and

∂F− = −1

2
(∂f̃ + ∂G) = −1

2
(∂f̃ − ∂f̃) = 0 in Ω−.

The lemma is proved.

Notice that in Lemma 4.3, there is no assumption on the pseudoconvexity of
M .

Theorem 4.4. Let Ω ⊂ CPn be a domain with Lipschitz boundary bΩ. For
any CR function f ∈ W s(bΩ), where s > 1

2 , there exists an F ∈ W s(Ω) such that
F is holomorphic in Ω and F = f on bΩ.

Proof. Let f = F+−F− where F+ and F− are the ∂̄-closed functions on Ω+

and Ω− respectively obtained in Lemma 4.1. Then we have F+ ∈ W 1+s(Ω+) and
F− ∈ W 1+s(Ω−).

By our assumption, Ω+ = CPn \ Ω is a pseudoconcave domain with Lipschitz

boundary. It follows that there exist a ∂̄-closed extension F̃+ ∈ (CPn). But this
implies that F+ is a constant. Thus f = F− modulo a constant.
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The extension results on Lipschitz domain is maximal in the sense that the
results might not hold if the Lipschitz condition is dropped. We will analyze the
holomorphic extension of functions on a non-Lipschitz domain. Let Ω be the Har-
togs’ triangle in CP 2 defined by

Ω = {[z0, z1, z2] | |z1| < |z2|}
where [z0, z1, z2] are the homogeneous coordinates for CP 2.

Theorem 4.5. Let Ω ⊂ CP 2 be the Hartogs’ triangle. Then we have the
following results:

(1) The space of holomorphic functions in L2(Ω) ∩Ker(∂̄) separate points in
Ω.

(2) Let f be an holomorphic function on Ω and f ∈ W 2(Ω). Then f is a
constant.

(3) There exist holomorphic functions in W 1(Ω). The space of holomorphic
functions in W 1(Ω) ∩ Ker(∂̄) does not separate points in Ω and is not
dense in L2(Ω) ∩Ker(∂̄).

The L2 theory for ∂̄ on Ω is not fully understood except for (0, 1)-forms.

Question. For p = 1 or p = 2, is Hp,1
L2 (Ω) = {0} ?

We remark that the Hartogs domain Ω is Stein, we have Hp,q(Ω) = {0} for all
q > 0. It also follows that

H0,1
L2 (Ω) = 0.

For any pseudoconvex domain with C2 boundary, we also have the vanishing L2

cohomology for all q > 0 (see [HI]).

Theorem 4.6. Let Ω ⊂ CP 2 be the Hartogs’ triangle. Let f be a CR function
f ∈ W 1(bΩ). Then f is a constant. However, there exist nonconstant CR functions

in W
1
2 (bΩ) on the boundary.

For a proof of these results see [ChS2].

References

[Ba1] D. E. Barrett, Biholomorphic domains with inequivalent boundaries, Invent. Math. 85
(1986), no. 2, 373–377, DOI 10.1007/BF01389095. MR846933 (87j:32087)

[Ba2] D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta
Math. 168 (1992), no. 1-2, 1–10, DOI 10.1007/BF02392975. MR1149863 (93c:32033)

[BC] B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel,
Math. Z. 235 (2000), no. 1, 1–10, DOI 10.1007/s002090000099. MR1785069 (2002a:32039)

[BS] H. P. Boas and M.-C. Shaw, Sobolev estimates for the Lewy operator on weakly pseudo-
convex boundaries, Math. Ann. 274 (1986), no. 2, 221–231, DOI 10.1007/BF01457071.
MR838466 (87i:32029)

[CC] J. Chaumat and A.-M. Chollet, Régularité höldérienne de l’opérateur ∂ sur le triangle de
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