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1 Introduction

A fundamental problem in function theory on a domain � in a complex manifold is
the study of the Cauchy-Riemann operator, or the ∂-equation. The understanding of
the existence and regularity of the solutions of the system of inhomogeneous Cauchy-
Riemann equations on�plays central role in complex analysis.On aboundeddomain
in C

n (or more generally in a Stein manifold), two theorems (see [13, 14, 16, 17])
for ∂ on pseudoconvex domains are of paramount importance.

Theorem (Hörmander) Let � ⊂⊂ C
n be a pseudoconvex domain. For any f ∈

L2
p,q(�), where 0 ≤ p ≤ n and 1 ≤ q < n, such that ∂ f = 0 in �, there exists

u ∈ L2
p,q−1(�) satisfying ∂u = f and

∫
�

|u|2 ≤ C
∫
�

| f |2 where C depends only
on the diameter of � and q.

Furthermore, if the boundary b� is smooth, we also have the following global
boundary regularity results for ∂ .

Theorem (Kohn) Let � ⊂⊂ C
n be a pseudoconvex domain with smooth boundary

b�. For any f ∈ C∞
p,q(�), where 0 ≤ p ≤ n and 1 ≤ q < n, such that ∂ f = 0 in

�, there exists u ∈ C∞
p,q−1(�) satisfying ∂u = f .

Let D be a domain inCn or a complex manifold. A natural question to ask is when
the ∂ equation has closed range for forms in L2 or smooth coefficients. The closed
range property gives solvability for ∂ from the point of view of functional analysis.
In this paper, we survey the recent progress related to this problem. For closed-range
property of the ∂-equations, we refer the readers to the many books and papers and
the references therein (see [2, 6, 10, 13, 14] or [28]). In this paper, we focus on the
non-closed range property for the ∂-equation.

In Sect. 2, we first study the non-closed range property for ∂ in the L2 setting for
domains in C

n . For any bounded non-pseudoconvex domain D in C
2 such that its

complement is connected, the ∂ equation does not have closed range in L2 for (0, 1)-
forms if D. In Sect. 3 we study the Hartogs triangle H for forms smooth up to the
boundary. In this case, the ∂ : C∞(H) → C∞

0,1(H) does not have closed range.Hence
the corresponding cohomology group is non-Hausdorff. The non-hausdorff property
is new, since we only knew that the cohomology is infinite dimensional. In Sect. 4, an
example of a Stein domain with smooth boundary in a compact complex manifold is
given where ∂ does not have closed range in L2. In other words, the Hörmander type
L2 results do not hold on a bounded pseudoconvex domain � ⊂⊂ X in a complex
manifold X which is not Stein, even though the domain � is Stein and with smooth
boundary.
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2 Non-closed Range in L2 for ∂ on Domains in C
n

It is well-known that in C
n , ∂ : L2(Cn) → L2

0,1(C
n) does not have closed range.

This follows from the fact that the Poincaré inequality does not hold for compactly
supported functions in C

n .
For bounded domains in C

n , it is known that there exists a non-pseudoconvex
domain on which the L2 range of ∂ is not closed (see the example on page 76 in
Folland-Kohn [10]). One can show explicitly that ∂ cannot have closed range by an
explicit example of a (0, 1)-form. Using duality, one can show the following result
(see [19]).

Theorem 2.1 Let D be a bounded domain in C
2 such that C2 \ D is connected. Sup-

pose D is not pseudoconvex and the boundary of D is Lipschitz. Then ∂̄ : L2(D) →
L2
0,1(D) does not have closed range.

The proof of Theorem2.1 is based on the Serre duality in the L2 sense. Let ∂c be
the strong minimal closure of the ∂ operator

∂c : Dp,q−1(�) → Dp,q(�)

where D is the set of compactly supported functions in �. By this we mean that ∂c

is the minimal closed extension of the operator such that Dom(∂c) containsDp,q−1.
The Dom(∂c) contains elements f ∈ L2

p,q−1(�) such that there exists sequence

fν ∈ Dp,q−1(�) such that fν → f in L2
p,q−1(�) and ∂ fν → ∂ f in L2

p,q(�).

Lemma 2.2 Let � be a bounded domain in C
n. The following conditions are equiv-

alent

(1) ∂ : L2
p,q−1(�) → L2

p,q(�) has closed range.

(2) ∂c : L2
n−p,n−q(�) → L2

n−p,n−q+1(�) has closed range.

Proof Let ∂
∗
denote the Hilbert space adjoint of ∂ . Following the definition, f ∈

Dom(∂c) if and only if � f ∈ Dom(∂
∗
). Suppose (1) holds. Then ∂

∗ : L2
p,q(�) →

L2
p,q−1(�) has closed range. Thus we have �∂

∗
� = ∂c has closed range. Thus (1)

implies (2). The other direction is proved similarly.

We may also consider ∂ c̃, the minimal closure of ∂ in the weak sense, which is
related to solving ∂ with prescribed support in � and we refer it as the ∂-Cauchy
problem. When the boundary is Lipschitz, the weak and strong minimal extension
are the same (see Lemma 2.4 in [19]).

Definition Let � be a domain in a hermitian manifold X . We define the L2 coho-
mology group for (p, q)-forms by

H p,q
L2 (�) = { f ∈ L2

p,q(�) | ∂ f = 0 in �}
{ f ∈ L2

p,q(�) | f = ∂u for some u ∈ L2
p,q−1(�)} .
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We also define the L2 cohomology group with compact support by

H p,q
c,L2(�) = { f ∈ L2

p,q(�) | f ∈ Dom(∂c), ∂c f = 0 in �}
{ f ∈ L2

p,q(�) | f = ∂cu in � for some u ∈ L2
p,q−1(�) ∩ Dom(∂c)}

.

Lemma 2.3 Let D be a bounded Lipschitz domain in C
n, n ≥ 2, such that Cn \ D

is connected, then H0,1
c,L2(D) = 0.

Proof Let f ∈ L2
0,1(D)∩Dom(∂c) and ∂c f = 0. Let f 0 denote the trivial extension

of f to C
n by setting f equal to zero outside D. It follows that ∂ f 0 = 0 in C

n in
the distribution sense. This follows from the assumption that the boundary of D is
Lipschtiz (see Lemma 2.4 in [19]). The form f 0 is a compactly supported (0, 1)-form
in Cn .

Let B be a large ball inCn containing D. By Hörmander’s theorem (see [13]), we
can solve ∂u = f 0 in B and the solution u is in W 1(D) from the interior regularity
for ∂ . The function u is holomorphic on B \ D. From our assumption that Cn \ D
is connected and n ≥ 2, the holomorphic function u |B\D can be extended as a
holomorphic function h in B. Let U = u − h in B. Then U is a compactly supported
solution in W 1(D) such that ∂U = f 0 in C

n in the distribution sense. The solution
U ∈ Dom(∂c) and ∂cU = f . This proves that H0,1

c,L2(D) = 0.

Lemma 2.4 Let D be a bounded domain in C
n with Lipschitz boundary. Then the

following conditions are equivalent:

(1) The domain D is pseudoconvex.
(2) H0,q

L2 (D) = 0, 1 ≤ q ≤ n − 1.

Proof If D ⊂⊂ C
n is bounded pseudoconvex, then H0,q

L2 (D) = 0 for all 1 ≤ q ≤
n − 1 by Hörmander L2-theory. The converse is true provided D has Lipschitz
boundary or more generally, D satisfies interior(D) = D (see e.g. the remark at the
end of the paper in [11]).

Proof of Theorem 2.1. Suppose that

∂̄ : L2(D) → L2
0,1(D) (2.1)

has closed range. Using Lemma2.2, we have that

∂̄c : L2
2,1(D) → L2

2,2(D) (2.2)

has closed range.
On the other hand, for top degree (0, 2)-forms, we always have that

∂̄ : L2
0,1(D) → L2

0,2(D) (2.3)
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has closed range since D is a bounded domain in C2. From the L2 Serre duality (see
[4]), we have

H0,1
L2 (D) 
 H2,1

c,L2(D). (2.4)

Since the domain D is in C
n , the exponent p plays no role, the same proof

for Lemma2.3 also holds for (n, 1)-forms or any (p, 1)-forms. Thus we have
H2,1

c,L2(D) = 0. From (2.4), this will gives that H0,1
L2 (D) = 0 and from Lemma2.4,

D is pseudoconvex, a contradiction. The theorem is proved. �
Corollary 2.5 Let D be a bounded Lipschitz domain in C

2 such that C2 \ D is
connected. Then

(1) If the domain D is pseudoconvex, then H0,1
L2 (D) = 0.

(2) If the domain D is non-pseudoconvex, then H0,1
L2 (D) is not Hausdorff.

In other words, for bounded Lipschitz domains inC2 with connected complement
we have only two kinds of L2 cohomology groups H0,1

L2 (D): either it is trivial or
it is non-Hausdorff. There is nothing in between. We remark that some related re-
sults for the Fréchet space cohomology were proved by Trapani ([29], Theorem 2),
where a characterization of Stein domains in a Stein manifold of complex dimen-
sion 2 is given. In particular he proves that Corollary2.5 also holds for H0,1(D) the
cohomology of C∞-smooth (0, 1)-forms in D.

Let � be a relatively compact pseudoconvex domain with smooth boundary in a
Stein manifold with a hermitian metric. We use H p,q(�) or H p,q(�) to denote the
cohomology group of (p, q)-forms with C∞(�) coefficients or C∞(�) respectively
and since X is hermitian, we use H p,q

L2 (�) to denote the cohomology group of

(p, q)-forms with L2 coefficients. Then

H p,q(�) = H p,q
L2 (�) = H p,q(�) = 0, q > 0.

Next we will compare the L2-cohomology groups H p,q
L2 (�) and H p,q(�) for a

domain � when the boundary is not smooth.

3 The Hartogs Triangle

Let us consider the Hartogs triangle H in C2

H = {(z, w) ∈ C
2 | |z| < |w| < 1}.

It is a bounded pseudoconvex domain in C
2 with Lipschitz boundary outside the

origin. Near the origin, it is not a Lipschitz domain since its boundary is not the graph
of a Lipschitz function. The Hartogs triangle and it smooth cousins, the Diederich-
Fornaess (see [8])wormdomains, providemany counter examples for function theory
on pseudoconvex domains in C

n .
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Let Ck,α(H) denote the Hölder space of functions in H whose kth derivatives are
Cα in H , where k ∈ N and 0 < α < 1. On H , we can consider the space C∞(H) of
smooth functions on the closure of H . Several natural definitions could be used.

Definition We define the smooth functions on H as follows:

(1) The space of the restrictions to H of C∞-smooth functions on C2, which can be
identified with the quotient of the space of C∞-smooth functions on C

2 by the
ideal of the functions vanishing with all their derivatives on H .

(2) The intersection for some 0 < α < 1 of all spaces Ck,α(H), k ∈ N.
(3) The space of C∞-smooth functions on H in the sense of Whitney’s jets.

Lemma 3.1 The three definitions are equivalent.

Proof The space defined by (1) is clearly contained in the other two. The Whitney
extension theorem implies that the spaces defined by (1) and (3) coincide. Using the
extension theorem for uniformly continuous functions, it is easy to see that the space
defined by (2) is included in the space defined by (3), which implies finally that all
the three definitions are equivalent.

For a bounded domain D in C
n with Lipschitz boundary, it is well-known that

the dual of the topological vector space C∞(D) is the space E ′
D
(Cn) of distributions

with compact support in D ([19], Lemma 2.3). We will determine the dual of the
topological vector space C∞(H) endowed with the Fréchet topology of uniform
convergence on H of functions and all derivatives.

Theorem 3.2 The spaces C∞(H) and E ′
H

(C2) are dual to each other.

Proof By the definition of C∞(H), the restriction map R : E(C2) → C∞(H) is
continuous and surjective. Taking the transpose map t R we get an injection from
(C∞(H))′ into E ′(C2) the space of distributions with compact support in C2. More
precisely the image of (C∞(H))′ by t R is clearly included in E ′

H
(C2), the space of

distributions on C
2 with support contained in H .

For any current T ∈ E ′
H

(C2), we set, for f ∈ C∞(H), T ( f ) =< T, f̃ >, where

f̃ is a C∞-smooth extension of f to C2. We have to prove that T ( f ) is independent
of the choice of the extension f̃ of f .

Since the difference of two extensions of f is an infinite order flat function on
H , we will prove that for any C∞-smooth function ϕ flat to infinite order on H and
with compact support in C

2, we have < T, ϕ >= 0. Since T has compact support,
it is a distribution of finite order k0.

Let r be a positive real number and χ a C∞-smooth function in C2 with compact
support in the ball B(0, r) of radius r , centered at the origin and equal to 1 on the
closed ball B(0, r/2). Then χϕ is flat to infinite order on H . Notice that though the
Hartogs triangle is not Lipschitz near the origin, it satisfies the exterior cone property
at the origin. Thus for any z ∈ C

2\ H ∩ B(0, r), d(z, bH) ≤ |z|. This implies that for
any k ∈ N and any multi-index α with |α| ≤ k, there exists a positive real constant
Ck such that



Non-closed Range Property for the Cauchy-Riemann Operator 213

‖Dα(χϕ)‖∞ ≤ Ckr. (3.1)

Fix ε > 0 and choose r such that

sup
k≤k0

(Ckr) <
ε

2‖T ‖ . (3.2)

SinceC2 \ (H ∪ B(0, r)) has Lipschitz boundary, there exists a C∞-smooth function
θ with compact support in C2 \ (H ∪ B(0, r)) such that

∑

|α|≤k0

‖Dα(1 − χ)ϕ − Dαθ‖∞ ≤ ε

2‖T ‖ . (3.3)

Then, since T has support in H and θ in C
2 \ (H ∪ B(0, r)), < T, θ >= 0 and we

have from (3.2) and (3.3) that

| < T, ϕ > | ≤ | < T, χϕ > | + | < T, (1 − χ)ϕ > |
≤ | < T, χϕ > | + | < T, (1 − χ)ϕ − θ > | + | < T, θ > | (3.4)

≤ ‖T ‖ ε

2‖T ‖ + ‖T ‖ ε

2‖T ‖ ≤ ε.

This gives that < T, ϕ >= 0. Consequently T defines a linear form on C∞(H),
which is continuous by the open mapping theorem. This proves that Rt is one-to-one
with range equal to E ′

H
(C2). �

Since H is a pseudoconvex domain, we have H0,1(H) = 0. Moreover it follows
from results by Sibony [26, 27] (see also the paper by Chaumat and Chollet [5]) that
for any ζ in the bidisc P = �×� and ζ ∈ P \ H , their exists aC∞-smooth, ∂-closed
(0, 1)-form αζ defined in C

2 \ {ζ } such that there does not exist any C∞-smooth
function β on H such that ∂β = αζ , which means that H0,1(H) �= 0.

Theorem 3.3 The cohomology group H0,1(H) is not Hausdorff.

Proof By Theorem 3.2, for 0 ≤ p ≤ 2, the complexes (C∞
p,•(H), ∂) and

(E ′2−p,•
H

(C2), ∂) are dual from each other. So it follows from Serre duality (see

[22] or Corollary 2.6 in [19]) that it is sufficient to prove that we can solve the ∂ with
prescribe support in H in the current category.

Lemma 3.4 For each current T ∈ E ′
2,1(C

2) with support contained in H there exists

a (2, 0)-current S with compact support in C
2, whose support is contained in H,

such that ∂S = T .

Proof Let T ∈ E ′
2,1(C

2) be a current with support contained in H . Since one can

solve the ∂ equation with compact support for bidegree (2, 1) in C
2, there exists a

(2, 0)-current S with compact support in C
2 such that ∂S = T . The support of T is
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contained in H , so the current S is an holomorphic (2, 0)-form onC2 \ H . Moreover
S has compact support inC2 and hence vanishes on an open subset ofC2 \ H . By the
analytic continuation theorem, the connectedness of C2 \ H implies that the support
of S is contained in H . �

Remark 1 One does have almost smooth solutions to the ∂ problem on the Har-
togs triangle. Let H p,q

Ck,α (H) denote the Dolbeault cohomology of (p, q)-forms with

Ck,α(H) coefficients. Using integral kernel method, Chaumat and Chollet [5] prove
that H0,1

Ck,α (H) = 0.

Notice that the intersection∩kCk,α(H) = C∞(H).This shows the delicate nature
of such problem on non-Lipschitz domains.

Remark 2 We also mention that if � is a bounded pseudoconvex domain in Cn with
a good Stein neighborhood basis, then one has that H0,1(�) = 0 (see [9]). The
Hartogs triangle is a prototype of domains without Stein neighborhood basis.

Let ∂s denote the strong maximal extension of ∂ . By this we mean that ∂s is the
maximal closed extension of the operator such that Dom(∂s) contains C∞

p,q−1(H).

The Dom(∂s) contains elements f ∈ L2
p,q−1(H) such that there exists sequence

fν ∈ C∞
p,q−1(H) such that fν → f in L2

p,q−1(H) and ∂ fν → ∂ f in L2
p,q(H).

Since the boundary of H is rectifiable, ∂ c̃, the weak minimal closure of ∂ , is dual to
∂s .

We do know H0,1
L2 (H) = 0 from Hörmander’s result. It is not known if the weak

maximal extension ∂ : L2(H) → L2
0,1(H) is the same as the strong maximal

extension ∂s . So we only get from Lemma2.3 (the Lipschitz hypothesis is only used
to get ∂c at the place of ∂ c̃) and L2 Serre duality (see [4]) that

Proposition 3.5 The cohomology group H0,1
∂s ,L2(H) is either 0 or not Hausdorff.

Again, if the boundary is Lipschitz, then the weak ∂ and strong ∂s are the same
following the Friedrichs’ lemma (see [13] or [6]).

Consider the annulus between a pseudoconvex domain and the Hartogs triangle.
We have the following result (see Corollary 4.6 in [19]).

Theorem 3.6 Let � be a pseudoconvex domain in C
2 such that H ⊂ �. Then

H0,1(� \ H) is not Hausdorff.

Let D be the annulus between two bounded domains�1 ⊂⊂ � ⊂⊂ C
2. Suppose

that the Dolbeault cohomology H0,1(D) is Hausdorff. It follows from a result of
Trapani (see Theorem 3 in [30]) that both � and �1 have to be pseudoconvex.
Theorem 3.6 shows that the converse is not true.

If we replace H by the bidisc �2, then H0,1(� \ �2) is Hausdorff since �2 has
a Stein neighborhood basis (see [18] or Corollary 4.3 in [19]).

In fact, Trapani (see Theorem 4 in [30]) proves that, if D has smooth boundary, a
sufficient condition for H0,1(D) to be Hausdorff is that � is pseudoconvex and �1
is strictly pseudoconvex. It is no longer true if �1 is only pseudoconvex, taking for
example �1 to be the Diederich-Fornaes domain [7].
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On the other hand, if� and�1 are pseudoconvex andwe assume that the boundary
of�1 isC2-smooth, then the L2 cohomology H0,1

L2 (D) is Hausdorff (Hörmander [15]
or Shaw [23–25]). The following problem remains unsolved.

Question Let B be a ball of radius two in C
2 and �2 be the bidisc. Determine if the

L2 cohomology H0,1
L2 (B \ �2) is Hausdorff.

4 Non-closed Range Property for ∂ on Pseudoconvex
Domains in Complex Manifolds

When X is a Hermitian complex manifold and � ⊂⊂ X is a pseudoconvex domain
with smooth boundary, the ∂ problem could be very different ifX is not Stein.Wefirst
note that if � is strongly pseudoconvex, Grauert proved that the ∂ has closed range
in the Fréchet space of C∞-smooth forms. If the domain � is relatively compact
strongly pseudoconvex, (or more generally of finite type) with smooth boundary, the
closed range property for the ∂ equation in the L2 setting has been established by
Kohn [17] via the ∂-Neumann problem.

However, function theory on general weakly pseudocnvex domains in a complex
manifold can be quite different. Grauert (see [12]) first gives an example of a pseudo-
convex domain� in a complex torus which is not holomorphically convex. He shows
that the only holomorphic functions on� are constants. The domain in the Grauert’s
example actually has Levi-flat boundary. The boundary splits the complex two torus
into two symmetric parts. Based on the example of Grauert, Malgrange proves the
following theorem.

Theorem (Malgrange [20]) There exists a pseudoconvex domain � with Levi-flat
boundary in a complex torus of dimension two whose Dolbeault cohomology group
H p,1(�) is non-Hausdorff in the Fréchet topology, for every 0 ≤ p ≤ 2.

Malgrange shows that for the Grauert’s example, the ∂ equation does not neces-
sarily have closed range in the Fréchet space of C∞-smooth forms and the corre-
sponding Dolbeault cohomology H p,1(�) is non-Hausdorff. The domain � is not
holomorphically convex. Recently the following result is proved in [3].

Theorem 4.1 There exists a compact complex manifoldX of complex dimension two
and a relatively compact, smoothly bounded, Stein domain � with smooth boundary
in X, such that the range of ∂ : L2

2,0(�) → L2
2,1(�) is not closed. Consequently, the

L2-cohomology space H2,1
L2 (�) is not Hausdorff.

The domain � is defined as follows. Let α > 1 be a real number and let � be the
subgroup of C∗ generated by α. We will standardize α = e2π . Let T = C

∗/� be
the torus.

Let X = CP1 × T be equipped with the product metric ω from the Fubini-Study
metric for CP1 and the flat metric for T . Let � be the domain in X defined by
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� = {(z, [w]) ∈ CP1 × T | �zw > 0} (4.1)

where z is the inhomogeneous coordinate onCP1. The domain�was first introduced
by Ohsawa [21] and used in Barrett [1]. It was proved in [21] that� is biholomorphic
to the product domain of an annulus and a pictured disc in C

2. In particular, � is
Stein.

Thus we have
H p,q(�) = 0, q > 0.

The range of ∂ : L2
(2,0)(�) → L2

(2,1)(�) is not closed (see [3]). Theorem 4.1 shows
that on a pseudconvex domain in a complex manifold X , there is no connection
between the Dolbeault cohomology groups in the classical Fréchet space of smooth
forms and the L2 space. This is in sharp contrast with the case when the manifold X
is Stein. We note that � is Stein, but the ambient space X is not Stein. The idea of
the proof is to use the L2 Serre duality and the extension of holomorphic functions.
For details of the proof of the theorem, we refer the reader to [3]. We end the paper
by raising the following question.

Question Let � be defined by (4.1). Determine if the range of ∂ : L2
p,0(�) →

L2
p,1(�) is closed, where p = 0 or p = 1.
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