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SOLVING ∂ WITH PRESCRIBED SUPPORT

ON HARTOGS TRIANGLES IN C2 AND CP2

CHRISTINE LAURENT-THIÉBAUT AND MEI-CHI SHAW

Abstract. In this paper, we consider the problem of solving the Cauchy–
Riemann equation with prescribed support in a domain of a complex manifold
for forms or currents. We are especially interested in the case when the domain
is a Hartogs triangle in C2 or CP2. In particular, we show that the strong

L2 Dolbeault cohomology group on the Hartogs triangle in CP2 is infinitely
dimensional.

In this paper, we consider the problem of solving the Cauchy–Riemann equation
with prescribed support. More precisely, let X be a complex manifold of complex
dimension n, and let Ω ⊂ X be a subdomain of X. We ask the following questions:

Let T be a ∂-closed (r, 1)-current, 0 ≤ r ≤ n, on X with support contained in
Ω. Does there exist an (r, 0)-current on X, with support contained in Ω, such that
∂S = T?

If moreover T = f is a smooth form or a Ck-form or an Lp
loc-form, can we find

g with support contained in Ω and with the same regularity as f such that ∂g = f?
This leads us to introduce the Dolbeault cohomology groups with prescribed

support in Ω. Let us denote by Hr,1

Ω,∞(X) the quotient space

{f ∈ C∞
r,1(X) | ∂f = 0, supp f ⊂ Ω}/∂{f ∈ C∞

r,0(X) | supp f ⊂ Ω}.

In the same way, we define Hr,1

Ω,Ck
(X), Hr,1

Ω,Lp
loc

(X), and Hr,1

Ω,cur
(X) for Ck, Lp

loc, and

the current category.
The cohomology groups Hr,1

Ω,∞(X), Hr,1

Ω,Ck
(X), Hr,1

Ω,Lp
loc

(X), and Hr,1

Ω,cur
(X) de-

scribe the obstruction to solve the Cauchy–Riemann equation with prescribed sup-
port in Ω, respectively, in the smooth or Ck or Lp

loc or current category. Their
vanishing is equivalent to the solvability of the Cauchy–Riemann equation with
prescribed support in Ω in the corresponding category (see [11, section 2], [10]).

Notice that the kernel of ∂ is always closed by definition. The topology for the
quotient space is Hausdorff if and only if the range of ∂ is closed. If the coholomogy
group is finite dimensional, then it is trivially Hausdorff since it is isomorphic to RN

for some N . When these groups are infinite dimensional, the Hausdorff property
for the quotient topology is equivalent to the closedness of the denominator, which
means that the ∂ operator has closed range (see [18, Proposition 4.5]).
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Note that, if Ω is a relatively compact domain with Lipschitz boundary, by the
Serre duality (see [14] or [11]), the properties of the groups Hr,1

Ω,∞(X), Hr,1

Ω,Lp
loc

(X),

and Hr,1

Ω,cur
(X) are directly related to the properties of the Dolbeault cohomology

groups Ȟn−r,n−1(Ω), Hn−r,n−1

Lp′
loc

(Ω), with 1 < p < ∞, 1
p +

1
p′ = 1, and Hn−r,n−1

∞ (Ω)

of Dolbeault cohomology for extendable currents and Lp′
-forms, and of smooth

forms up to the boundary.
If Φ is a family of supports in the complex manifold X, for example, the family,

usually denoted by c, of all compact subsets of X, we can consider the Dolbeault
cohomology with support in Φ. The group Hr,q

Φ,∞(X) is the quotient of the space of

∂-closed, smooth (r, q)-forms on X with support in the family Φ by the range by ∂
of the space of smooth (r, q−1)-forms on X with support in the family Φ. Similarly,
we can define the groups Hr,q

Φ,Ck(X), Hr,q
Φ,Lp

loc
(X), and Hr,q

Φ,cur(X). It follows from [7,

Corollary 2.15], [10, Proposition 1.2] that the Dolbeault isomorphism holds for the
Dolbeault cohomology with support condition. This means that all these groups
are isomorphic, and we denote them by Hp,q

Φ (X). In this paper, we will show that
such a Dolbeault isomorphism no longer holds if we change the condition supported
in a family of sets in X to prescribed support. For Dolbeault cohomology groups
with prescribed support, the following proposition is proved in Proposition 2.1.

Proposition 0.1. Let X be a complex manifold, and let Ω ⊂ X be a domain in
X. The natural morphisms from H0,1

Ω,∞(X) (resp., H0,1

Ω,Ck
(X), k ≥ 0, H0,1

Ω,Lp
loc

(X),

1 ≤ p ≤ +∞) into H0,1

Ω,cur
(X) are injective. In particular, if H0,1

Ω,cur
(X) = 0, then

H0,1

Ω,∞(X) = 0, H0,1

Ω,Ck
(X) = 0, k ≥ 0, and H0,1

Ω,Lp
loc

(X) = 0.

When Ω is a Hartogs triangle type set in C
2 or CP2, we show that the Dolbeault

isomorphisms fail to hold for the cohomology with prescribed support. When Ω is
an unbounded Hartogs triangle in C2, we get (see Corollary 3.3 and Theorems 3.5,
3.7, and 3.8)

Theorem 0.2. If X = C2 and Ω = H− = {(z, w) ∈ C2 | |z| > |w|}, then

H0,1

Ω,∞(X) = 0, but H0,1

Ω,Ck
(X), k ≥ 0, H0,1

Ω,cur
(X), and H0,1

Ω,L2
loc

(X) are infinite di-

mensional.

In the case when Ω is a Hartogs triangle in CP
2, we prove (see Corollaries 4.3

and 4.10 and Theorem 4.5) the following.

Theorem 0.3. If X = CP
2 and Ω = H

− = {[z0, z1, z2] ∈ CP
2 | |z1| > |z2|}, then

H0,1

Ω,∞(X) = 0 and H0,1

Ω,Ck
(X) = 0, k ≥ 0, but H0,1

Ω,cur
(X) and H0,1

Ω,L2
(X) are infinite

dimensional and Hausdorff.

The nonvanishing of H0,1
H−,L2(CP

2) is especially interesting since it is in sharp

contrast to the case of solving ∂ with compact support for a bounded Hartogs
triangle in C2 (see Remark 7). The infinite dimensionality of H0,1

H−,L2(CP
2) gives

the following result (see Theorem 4.11):
Let ∂s be the strong L2 closure of ∂ on smooth forms up to the boundary in the

graph norm. Let H2,1

∂s,L2
(H−) be the quotient of the kernel of ∂s over the range of

∂s, i.e., the Dolbeault cohomology with respect to the operator ∂s.
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Theorem 0.4. Let H− be the same as in Theorem 0.3. The space H2,1

∂s,L2
(H−) is

infinite dimensional.

It is not known whether ∂s agrees with the weak L2 extension or if the range
of ∂s is closed. If the domain Ω is bounded and Lipschitz, then the weak and
strong closure are the same from the Friedrichs lemma. The Hartogs triangle is a
candidate in which the weak and strong closure of ∂ might not be the same.

The vanishing of the Dolbeault cohomology groups with prescribed support in Ω
in bidegree (0, 1) is directly related to the extension of holomorphic functions defined
on the complement of Ω. This implies the following result (see Corollary 2.6 and
Proposition 2.7).

Proposition 0.5. Let X be a complex manifold, and let Ω ⊂ X be a domain in
X. Assume that H0,1

Ω,∞(X) = 0; then X \ Ω is connected. If moreover X is not

compact, H0,1
c (X) = 0, and Ω is relatively compact, then H0,1

Ω,∞(X) = 0 if and only

if X \ Ω is connected.

We also prove (see Theorem 2.14) some characterization of pseudoconvexity for
domains in C2 in terms of Dolbeault cohomology with the prescribed support.

Theorem 0.6. Let D be a bounded domain in C2 with Lipschitz boundary. Then
the following assertions are equivalent:

(i) D is a pseudoconvex domain.

(ii) H0,1

D,∞(C2) = 0 and H0,2

D,∞(C2) is Hausdorff.

The plan of this paper is as follows: In section 1, we recall some basic properties
of the support and the uniqueness of the solution for ∂. In section 2, we discuss
solving ∂ with prescribed support and its relations with the holomorphic extension
of functions in various function spaces. In section 3, we study the nonvanishing of
Dolbeault cohomology with prescribed support on the unbounded Hartogs triangle
in C

2. We analyze the Hartogs triangles in CP
2 in section 4. Theorems 0.2 and 0.3

provide interesting examples which give the nonvanishing for the Dolbeault coho-
mology groups. This is in sharp contrast with the well-known results of solving ∂
for (0,1)-forms with prescribed support for a bounded domain in Cn. We prove the
results on the ∂s operator for the domain H− in CP2 using L2 Serre duality. This
gives us some insight about the intriguing problem on weak and strong extensions of
the ∂ operator in the L2 sense, when the domain is not Lipschitz. The unbounded
Hartogs domain in C

2 or Hartogs domains in CP
2 provide us with new unexpected

phenomena. Many open questions and remarks are given at the end of the paper.

1. Properties of the support and uniqueness of the solution

Let X be a complex manifold of complex dimension n, and let T be a ∂-exact
(0, 1)-current on X. We will describe some relations between the support of the
current T and the support of the solution S of the Cauchy–Riemann equation
∂S = T .

Proposition 1.1. Let X be a complex manifold of complex dimension n, and let T
be a ∂-exact (0, 1)-current on X. If Ωc denotes a connected component of X\supp T
and if S is a distribution on X such that ∂S = T , then either supp S ∩ Ωc = ∅ or
Ωc ⊂ supp S.
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Proof. Note that, since ∂S = T , S is a holomorphic function on X \ supp T and
in particular on the connected set Ωc. Assume that the support of S does not
contain Ωc. Then S vanishes on an open subset of Ωc and by analytic continuation
S vanishes on Ωc, which means that supp S ∩ Ωc = ∅. �

Corollary 1.2. Let X be a complex manifold of complex dimension n, and let T be
a ∂-exact (0, 1)-current on X. Assume that X \supp T is connected. Then if S is a
distribution on X such that ∂S = T , then either supp S = supp T or supp S = X.

Proof. The support of T is always contained in the support of S. If supp S 	= X,
then the other inclusion holds by Proposition 1.1 since X \supp T is connected. �

Note that the difference between two solutions of the equation ∂S = T is a holo-
morphic function on X. Then analytic continuation implies the following unique-
ness result.

Proposition 1.3. Assume that the complex manifold X is connected. Let T be
a ∂-exact (0, 1)-current on X such that X \ supp T 	= ∅, and let S and U be two
distributions such that

∂S = ∂U = T

and there exists a connected component Ωc of X \ supp T such that

supp S ∩ Ωc = supp U ∩ Ωc = ∅.
Then S = U .

In particular, the equation ∂S = T admits at most one solution S such that
supp S = supp T .

Remark 1. The equation ∂S = T may have no solution S with supp S = supp T .
Consider, for example, a relatively compact domain D with C∞-smooth boundary
in a complex manifold X and a function F ∈ C∞(D) which is holomorphic in D.
Denote by f the restriction of F to the boundary of D, and set S = FχD, where
χD is the characteristic function of the domain D. Then, by the Stokes formula,
∂S = f [∂D]0,1, where [∂D]0,1 is the part of bidegree (0, 1) of the integration current
over the boundary of D. Clearly the support of T = f [∂D]0,1 is the boundary of
D, but, by Proposition 1.3, S is the unique solution of ∂S = T whose support is
contained in D. So there is no solution whose support is equal to the support of T .

Let us end this section by considering the regularity of the solutions.

Proposition 1.4. Let X be a complex manifold, and let f be a (0, 1)-form with
coefficients in Ck(X), 0 ≤ k ≤ +∞ (resp., Lp

loc(X), 1 ≤ p ≤ +∞), which is ∂-exact

in the sense of currents. Then any solution g of the equation ∂g = f is in Ck(X),
0 ≤ k ≤ +∞ (resp., Lp

loc(X), 1 ≤ p ≤ +∞).

Proof. By the regularity of the Cauchy–Riemann operator (injectivity of the Dol-
beault isomorphism [7], [10]), if f has coefficients in Ck(X), 0 ≤ k ≤ +∞ (resp.,
Lp
loc(X), 1 ≤ p ≤ +∞), then, since f is ∂-exact in the sense of currents, the equation

∂S = f has a solution in Ck(X), 0 ≤ k ≤ +∞ (resp., Lp
loc(X), 1 ≤ p ≤ +∞). With

the difference between two solutions of the equation ∂S = f being a holomorphic
function on X, all of the solutions have the same regularity. �

Associating Propositions 1.3 and 1.4, we get the following corollary.
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Corollary 1.5. Assume that the complex manifold X is connected. If f is a (0, 1)-
form such that X \ supp f 	= ∅, then the equation ∂g = f has at most one unique
solution such that supp g = supp f , and this solution has the same regularity as f .

2. Solving ∂ with prescribed support

Let X be a connected, complex manifold, and let Ω be a domain such that Ω
is strictly contained in X and that the interior of Ω coincides with Ω. We set
Ωc = X \ Ω, it is a nonempty open subset of X.

Let us denote by H0,1

Ω,∞(X) (resp., H0,1

Ω,cur
(X), H0,1

Ω,Ck
(X), H0,1

Ω,Lp
loc

(X)) the Dol-

beault cohomology group of bidegree (0, 1) for smooth forms (resp., currents, Ck-
forms, k ≥ 0, Lp

loc-forms, 1 ≤ p ≤ +∞) with support in Ω. The vanishing of these

groups means that one can solve the ∂ equation with prescribed support in Ω in
the smooth category (resp., the space of currents, the space of Ck-forms, the space
of Lp

loc-forms).
Propositions 1.3 and 1.4 and the Dolbeault isomorphism with support condi-

tions [7, Corollary 2.15], [10, Proposition 1.2] lead to the following.

Proposition 2.1. The natural morphisms from H0,1

Ω,∞(X) (resp., H0,1

Ω,Ck
(X), k ≥

0, H0,1

Ω,Lp
loc

(X), 1 ≤ p ≤ +∞) into H0,1

Ω,cur
(X) are injective. In particular, if

H0,1

Ω,cur
(X) = 0, then H0,1

Ω,∞(X) = 0, H0,1

Ω,Ck
(X) = 0, and H0,1

Ω,Lp
loc

(X) = 0.

In the next sections, examples are given proving that there exist domains in C2

and CP 2 such that H0,1

Ω,∞(X) = 0, but H0,1

Ω,cur
(X) 	= 0.

We will now consider the link between the vanishing of the group H0,1

Ω,cur
(X) and

the extension properties of some holomorphic functions in Ωc.

Proposition 2.2. Assume that H0,1

Ω,cur
(X) = 0. Then any holomorphic function

on Ωc = X \ Ω which is the restriction to Ωc of a distribution on X extends as a
holomorphic function to X.

Proof. Let f ∈ O(Ωc) and Sf ∈ D′(X) be a distribution such that Sf |Ωc
= f . Con-

sider the (0, 1)-current ∂Sf ; it is closed and has support in Ω. Since H0,1

Ω,cur
(X) = 0,

there exists U ∈ D′(X), with support in Ω such that ∂U = ∂Sf in X. Set
h = Sf − U . It is a holomorphic function on X and h|Ωc = Sf |Ωc = f . �

In the same way, we can prove the following.

Proposition 2.3. Assume that H0,1

Ω,Lp
loc

(X) = 0, p ≥ 1. Then any holomorphic

function on Ωc = X \Ω which is the restriction to Ωc of a form with coefficients in

W 1,p
loc (X) extends as a holomorphic function to X.

Proposition 2.4. Assume that H0,1

Ω,Ck
(X) = 0, k ≥ 0. Then any holomorphic

function on Ωc = X \ Ω which is of class Ck+1 on X \ Ω = Ωc extends as a
holomorphic function to X.

Proposition 2.5. Assume that H0,1

Ω,∞(X) = 0. Then any holomorphic function on

Ωc = X \ Ω which is smooth on X \ Ω = Ωc extends as a holomorphic function
to X.
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Corollary 2.6. Assume that H0,1

Ω,∞(X) = 0. Then Ωc = X \ Ω is connected.

Proof. Assume that Ωc is not connected. Let f be a holomorphic function which
is a constant equal to 1 in one connected component of Ωc and vanishes identically
on all the other ones. By analytic continuation, f cannot be the restriction to Ωc

of a holomorphic function on X, and by Proposition 2.5 we get H0,1

Ω,∞(X) 	= 0. �

Remark 2. Note that, by Proposition 1.1, H0,1

Ω,cur
(X) 	= 0 if and only if there exists

at least one ∂-exact (0, 1)-current T with support contained in Ω such that the
support of each solution of the equation ∂S = T contains at least a connected
component of Ωc.

Let us give a partial converse to Corollary 2.6. LetH0,1
c (X) denote the Dolbeault

cohomology group for (0, 1)-forms with compact support in X.

Proposition 2.7. Assume that Ω is relatively compact in a noncompact complex
manifold X such that H0,1

c (X) = 0. If Ωc = X \ Ω is connected, then

H0,1

Ω,cur
(X) = H0,1

Ω,∞(X) = H0,1

Ω,Ck
(X) = H0,1

Ω,Lp
loc

(X) = 0.

Proof. By Proposition 1.4, it suffices to prove that H0,1

Ω,cur
(X) = 0. This vanishing

result follows directly from Proposition 1.1. More precisely, if T is a ∂-closed current
on X with support contained in Ω, there exists a distribution S with compact
support such that ∂S = T since H0,1

c (X) = 0. Then the support of S cannot
contain the connected set Ωc, otherwise X = Ω ∪ supp S would be compact, and
hence supp S is contained in Ω. �

In particular, if X is a Stein manifold with dimC X ≥ 2 and Ω a relatively
compact domain in X, then

H0,1

Ω,cur
(X) = H0,1

Ω,∞(X) = H0,1

Ω,Ck
(X) = H0,1

Ω,Lp
loc

(X) = 0 ⇔ Ωc is connected.

An immediate corollary of Propositions 2.7 and 2.2 is the following.

Corollary 2.8. Let X be a noncompact, connected complex manifold such that
H0,1

c (X) = 0, and let Ω be a relatively compact, open subset of X with connected
complement. Then any holomorphic function on Ωc extends as a holomorphic func-
tion to X.

Proof. It is sufficient to apply Propositions 2.7 and 2.2 to a neighborhood D of Ω
with connected complement and to conclude by analytic continuation. �

Corollary 2.8 is the classical Hartogs extension phenomenon. Note that all of
the previous results remain true if we replace the family of all compact subsets of
a noncompact manifold by any family Φ of supports in a manifold X, unlike the
family of all closed subsets of X (see, e.g., [14] for the definition of a family of
supports).

Proposition 2.9. Assume that the complex manifold X satisfies H0,1(X) = 0.
If any holomorphic function on Ωc which is smooth on X \ Ω = Ωc extends as a

holomorphic function to X, then H0,1

Ω,∞(X) = 0.
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Proof. Let f be a smooth ∂-closed form in X with support contained in Ω. Since
H0,1(X) = 0, there exists a function g ∈ C∞(X) such that ∂g = f . Since the
support of f is contained in Ω, g is holomorphic in Ωc, and by the extension
property it extends as a holomorphic function g̃ to X. Set h = g − g̃. Then the
support of h is contained in Ω and ∂h = f . �

Similarly, since H0,1(X) = H0,1
Ck (X) = H0,1

Lp
loc
(X) = H0,1

cur(X) = 0 by the Dol-

beault isomorphism, we have the following.

Proposition 2.10. Assume that the complex manifold X satisfies H0,1(X) = 0. If
any holomorphic function on Ωc which is of class Ck, k ≥ 0 on X \Ω = Ωc extends

as a holomorphic function to X, then H0,1

Ω,Ck
(X) = 0.

Proposition 2.11. Assume that the complex manifold X satisfies H0,1(X) = 0. If
any holomorphic function on Ωc = X \Ω which is the restriction to Ωc of a function

Lp
loc(X), p ≥ 1 extends as a holomorphic function to X, then H0,1

Ω,Lp
loc

(X) = 0.

Proposition 2.12. Assume that the complex manifold X satisfies H0,1(X) = 0.
If any holomorphic function on Ωc = X \ Ω which is the restriction to Ωc of a

distribution on X extends as a holomorphic function to X, then H0,1

Ω,cur
(X) = 0.

Let us end this section by a characterization of pseudoconvexity in C2 by means
of the Dolbeault cohomology with prescribed support.

Theorem 2.13. Let D be a bounded domain in C2 with Lipschitz boundary. Then
the following assertions are equivalent:

(i) D is a pseudoconvex domain.

(ii) H0,1

D,∞(C2) = 0, and H0,2

D,∞(C2) is Hausdorff.

Proof. By Serre duality ([3] or [11, Theorem 2.7]) assertion (ii) implies that Ȟ2,q(D)
is Hausdorff for all 1 ≤ q ≤ 2, and moreover Ȟ2,1(D) = 0 as the dual space to

H0,1

D,∞(C2). Let us prove now that the condition Ȟ2,1(D) = 0 implies that D is

pseudoconvex. We will follow the methods used by Laufer [9] for the usual Dolbeault
cohomology and prove by contradiction.

Assume that D is not pseudoconvex. Then there exists a domain D̃ strictly
containing D such that any holomorphic function on D extends holomorphically

to D̃. Since interior (D)= D, after a translation and a rotation, we may assume

that 0 ∈ D̃ \ D and that there exists a point z0 in the intersection of the plane
{(z1, z2) ∈ C

2 | z1 = 0} with D which belongs to the same connected component

of the intersection of that plane with D̃.
Let us denote by B(z1, z2) the (0, 1)-form defined by

B(z1, z2) =
z1 dz2 − z2 dz1

|z|4 ∧ dz1 ∧ dz2.

It is derived from the Bochner–Martinelli kernel in C2 and is a ∂-closed form on
C2 \ {0}. Then the L1

loc-form
z2

|z|2 ∧ dz1 ∧ dz2 defines a distribution in C2 which

satisfies

∂(
z2
|z|2 dz1 ∧ dz2) = z1B(z1, z2) on C

2 \ {0}.
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On the other hand, if Ȟ2,1(D) = 0, there exists an extendable (2, 0)-current v such
that ∂v = B on D, and by the regularity of ∂ in bidegree (2, 1), v is smooth on D
since B is smooth on C2 \ {0}. Set

F = z1v −
z2
|z|2 ∧ dz1 ∧ dz2.

Then F is a holomorphic (2, 0)-form on D, so its coefficient F12 should extend

holomorphically to D̃, but we have F12(0, z2) = 1
z2

on D ∩ {z1 = 0}, which is

holomorphic and singular at z2 = 0. This gives the contradiction since 0 ∈ D̃ \D.
This proves that (ii) ⇒ (i).

For the converse, first note that if D is a pseudoconvex domain in C2, then
C2 \ D is connected and, by Proposition 2.7, we have H0,1

D,∞(C2) = 0. Then we

apply [4, Theorem 5] to get that if D is pseudoconvex with Lipschitz boundary,
then H0,1

∞ (C2 \ D) is Hausdorff. Let us prove that if H0,1
∞ (C2 \ D) is Hausdorff,

then H0,2

D,∞(C2) is Hausdorff.

Let f be a ∂-closed (0, 2)-form on C2 with support contained in D such that
for any ∂-closed (2, 0)-current T on D extendable as a current to C2, we have
〈T, f〉 = 0. Since H0,2(C2) = 0, there exists a smooth (0, 1)-form g on C2 such that
∂g = f on C2, in particular ∂g = 0 on C2 \D.

Let S be any ∂-closed (2, 1)-current on C
2 with compact support in C

2 \ D.
Then, since H2,1

c (C2) = 0, there exists a compactly supported (2, 0)-current U on
C2 such that ∂U = S and in particular ∂U = 0 on D.

Thus

〈S, g〉 = 〈∂U, g〉 = 〈U, ∂g〉 = 〈U, f〉 = 0,

by hypothesis on f . Therefore the Hausdorff property of H0,1
∞ (C2 \D) implies that

there exists a smooth function h on C2 \D such that ∂h = g. Let h̃ be a smooth

extension of h to C2. Then u = g − ∂h̃ is a smooth form with support in D and

∂u = ∂(g − ∂h̃) = ∂g = f.

This proves that H0,2

D,∞(C2) is Hausdorff, which proves that (i) ⇒ (ii). �

3. The case of the unbounded Hartogs triangle in C2

In C
2, let us define the domains H+ and H

− by

H
+ = {(z, w) ∈ C

2 | |z| < |w|},
H

− = {(z, w) ∈ C
2 | |z| > |w|}.

Then H
+ ∩H

− = ∅ and H
+ ∪H

−
= C

2.
Let us denote by H0,1

H
−
,∞

(C2) (resp., H0,1

H
−
,cur

(C2), H0,1

H
−
,L2

loc

(C2), H0,1

H
−
,Ck

(C2)) the

Dolbeault cohomology group of bidegree (0, 1) for smooth forms (resp., currents,

L2
loc-forms, Ck-forms) with support in H

−
.

The vanishing of these groups means that one can solve the ∂ equation with

prescribed support in H
−
in the smooth category (resp., the space of currents, the

space of L2-forms, the space of Ck-forms).
We can apply Propositions 2.5 and 2.10 for Ω = H− since H0,1(C2) = 0, and we

get the following.
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Proposition 3.1. We have H0,1

H
−
,∞

(C2) = 0 if and only if any holomorphic function

on H+ which is smooth on H
+

extends as a holomorphic function to C2.

Proposition 3.2. Any holomorphic function on H+ which is smooth on H
+
extends

as a holomorphic function to C
2.

Proof. Let f ∈ C∞(H
+
)∩O(H+). By Sibony’s result [16, page 220], for any R > 0,

the restriction of f to H+∩Δ(0, R)×Δ(0, R) extends holomorphically to the bidisc
Δ(0, R) × Δ(0, R) and then by analytic continuation f extends holomorphically
to C

2. �

Propositions 3.1 and 3.2 immediately lead to the following.

Corollary 3.3. H0,1

H
−
,∞

(C2) = 0.

Let us consider now the case of currents. We can apply Proposition 2.4 to get
the following.

Proposition 3.4. Assume that we have H0,1

H
−
,Ck

(C2) = 0, k ≥ 0. Then any holo-

morphic function on H+, which is of class Ck+1 on H
+
, extends as a holomorphic

function to C2.

Theorem 3.5. For any k ≥ 0, H0,1

H
−
,Ck

(C2) is infinite dimensional.

Proof. Consider the function hl defined on H+ by hl(z, w) = zl( z
w ), l ≥ 0. It is of

class Ck+1 on H
+
if l ≥ k + 2, but it does not extend as a holomorphic function to

C2. In fact, if hl admits a holomorphic extension Hl to C2, then we would have

Hl(z, w) = zl(
z

w
) on C

2 \ {w = 0},

which is not bounded nearby {(z, w) ∈ C2 | z 	= 0, w = 0}. By Proposition 3.4, we

get H0,1

H
−
,Ck

(C2) 	= 0.

For l ≥ k + 2, let h̃l be an extension of class Ck+1 of hl to C2. We set gl =

∂h̃l. Then ∂gl = 0 and supp gl ⊂ H
−
, so the cohomology class [gl] belongs to

H0,1

H
−
,Ck

(C2). We shall prove that the cohomology classes [gl], l ≥ k+2 are linearly

independent, and hence H0,1

H
−
,Ck

(C2) is infinite dimensional. For any N ≥ 1, we set

GN =
∑N

l=1 clgl for some complex constants cl, and we assume that [GN ] = 0 in

H0,1

H
−
,Ck

(C2), which means that there exists a Ck function u with support contained

in H
−

such that ∂u = GN . Set HN =
∑N

l=1 clhl. The function HN is holomorphic

in H+ and H̃N =
∑N

l=1 clh̃l is an extension of class Ck+1 of HN to C2, which verifies

that ∂H̃N = GN , and therefore H̃N − u is a holomorphic extension of HN to C2.
Moreover by analytic continuation,

H̃N − u = (
z

w
)(

N∑
l=1

clz
l) on C

2 \ {w = 0},

which is not bounded nearby {(z, w) ∈ C2 | z 	= 0, w = 0} unless c1 = · · · =
cN = 0. �
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Proposition 3.1 still holds if we replace smooth forms by W 1
loc-forms (for D ⊂ C2,

W 1
loc(D) is the space of functions which are in W 1(D ∩B(0, R)) for any R > 0) in

the following way.

Proposition 3.6. We have H0,1

H
−
,L2

loc

(C2) = 0 if and only if any function f ∈

O(H+) ∩ W 1
loc(H

+
), which is the restriction to H

+
of a form with coefficients in

W 1
loc(C

2), extends as a holomorphic function to C2.

Theorem 3.7. H0,1

H
−
,L2

loc

(C2) is infinite dimensional.

Proof. Let us consider the function hl defined on H+ by hl(z, w) = zl( z
w ), l ≥ 3. It

is of class C2 on H
+
, and it is in W 1

loc(H
+
) and extends as a C2 function to C2 by

the Whitney extension theorem, but it does not extend as a holomorphic function
to C2. In fact, if hl would admit a holomorphic extension Hl to C2, then we would
have

Hl(z, w) = zl(
z

w
) on C

2 \ {w = 0},

which is not bounded nearby {(z, w) ∈ C
2 | z 	= 0, w = 0}. By Proposition 3.6, we

get H0,1

H
−
,L2

loc

(C2) 	= 0.

In the same way as for the Ck case, we get that in fact H0,1

H
−
,L2

loc

(C2) is infinite

dimensional. �

Theorem 3.8. H0,1

H
−
,cur

(C2) is infinite dimensional and Hausdorff.

Proof. Using Proposition 2.1, it follows from Theorem 3.5 that H0,1

H
−
,cur

(C2) is in-

finite dimensional. By the Serre duality, to prove that H0,1

H
−
,cur

(C2) is Hausdorff, it

is sufficient to prove that H2,2
∞ (H

−
) = 0.

Let f be a smooth (2, 2)-form on H
−
. Then f extends as a smooth (2, 2)-form on

C
2, called f̃ . Since the top degree Dolbeault cohomology group H2,2(C2) vanishes,

there exists a smooth (2, 1)-form u on C
2 such that ∂u = f̃ on C

2. Then v = u|
H
− is

a smooth form on H
−

which satisfies ∂v = f on H−. �

Remark 3. Note that if we replace H− with the classical Hartogs triangle T− =
H− ∩Δ×Δ, where Δ is the unit disc in C, then by Proposition 2.7 we have

H0,1

T
−
,cur

(C2) = H0,1

T
−
,L2

(C2) = H0,1

T
−
,∞

(C2) = 0.

Remark 4. We can also consider the classical Hartogs triangle T− as a domain in
the bidisc Δ2 = Δ×Δ, but now we have that both H0,1

T
−
,cur

(Δ2) and H0,1

T
−
,L2

(Δ2)

are infinite dimensional and H0,1

T
−
,∞

(Δ2) = 0, since we can repeat the arguments

used for the unbounded Hartogs triangle H− in C2.

So for solving the ∂-equation with prescribed support in a noncompact complex
manifold X such that H0,1

c (X) = 0, which is the case for both C
2 and Δ2, it is

quite different to consider a relatively compact domain or a nonrelatively compact
domain as support.
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4. The case of the Hartogs triangles in CP2

In CP2, we denote the homogeneous coordinates by [z0, z1, z2]. On the domain
where z0 	= 0, we set z = z1

z0
and w = z2

z0
. Let us define the domains H+ and H− by

H
+ = {[z0 : z1 : z2] ∈ CP

2 | |z1| < |z2|},
H

− = {[z0 : z1 : z2] ∈ CP
2 | |z1| > |z2|}.

Then H+ ∩ H− = ∅ and H
+ ∪ H

−
= CP2. These domains are called Hartogs’

triangles in CP2. The Hartogs triangles provide examples of non-Lipschitz Levi-flat
hypersurfaces (see [6]).

For k ≥ 0 or k = ∞, we denote by H0,1

H
−
,Ck

(CP2) (resp., H0,1

H
−
,cur

(CP2), H0,1

H
−
,L2

(CP2)) the Dolbeault cohomology group of bidegree (0, 1) for Ck-smooth forms

(resp., currents, L2-forms) with support in H
−
.

Again the vanishing of these groups means that one can solve the ∂ equation with

prescribed support in H
−

in the Ck-smooth category (resp., the space of currents,
the space of L2-forms).

We can also apply Propositions 2.4 and 2.10 for Ω = H
− since H0,1(CP2) = 0,

and we get the following.

Proposition 4.1. We have, for k ≥ 0 and for k = ∞, H0,1

H
−
,Ck

(CP2) = 0 if and

only if any holomorphic function on H+ which is Ck+1-smooth on H
+

extends as a
holomorphic function to CP2.

Proposition 4.2. Any holomorphic function on H+ which is continuous on H
+
is

constant.

Proof. Let f ∈ C(H+
) ∩ O(H+). Notice that the boundary bH+ of H+ is foliated

by a family of compact complex curves described in nonhomogeneous coordinates
by

(4.1) Sθ = {z = eiθw}, θ ∈ R.

Restricted to each fixed θ, f is a continuous CR function on the compact Riemann
surface Sθ. Thus f must be a constant on each Sθ. Since every Riemann surface
Sθ contains the point (0, 0), this implies that f must be constant on bH+. �

Note that in the case of the unbounded Hartogs triangle in C2, the function f

needs to be of class C∞ on H
+

to be extendable as a holomorphic function to C
2

(see Proposition 3.1 and the beginning of the proof of Theorem 3.5). But in CP2,
contrary to C2 we get the following (compare to Corollary 3.3 and Theorem 3.5)
from the previous propositions.

Corollary 4.3. For each k ≥ 0, H0,1

H
−
,Ck

(CP2) = 0, and H0,1

H
−
,∞

(CP2) = 0.

As in the case of C2, we get the following for extendable currents.

Proposition 4.4. Suppose that H0,1

H
−
,cur

(CP2) = 0. Then any holomorphic function

on H
+ which is extendable in the sense of currents is constant.

Theorem 4.5. H0,1

H
−
,cur

(CP2) does not vanish and is Hausdorff.
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Proof. Let us consider the function h defined on the open subset H+ of CP2 by
h([z0 : z1 : z2]) =

z1
z2
. It is holomorphic and bounded and hence defines an extend-

able current, but it is not constant, so by Proposition 4.4, we get H0,1

H
−
,cur

(CP2) 	= 0.

By the Serre duality, to prove thatH0,1

H
−
,cur

(CP2) is Hausdorff, it is sufficient to prove

that H2,2
∞ (H

−
) = 0.

Let f be a smooth (2, 2)-form on H
−
, and let U be a neighborhood of H

−
. We

can choose U such that U is a connected proper subset of CP2. Then f extends

as a smooth (2, 2)-form on U , called f̃ . By Malgrange’s theorem, the top degree
Dolbeault cohomology group H2,2(U) vanishes since U is a noncompact connected

complex manifold. Thus there exists a smooth (2, 1)-form u on U such that ∂u = f̃

on U . Then v = u|
H
− is a smooth form on H

−
which satisfies ∂v = f on H−. �

Let us now consider the L2 Dolbeault cohomology with prescribed support in
a Hartogs triangle in CP2. As usual we endow H+ with the restriction of the
Fubini–Study metric of CP2. The following proposition was already proved in [4,
Proposition 6].

Proposition 4.6. Let H+ ⊂ CP2 be the Hartogs triangle. Then we have the
following:

(1) The Bergman space of L2 holomorphic functions L2(H+) ∩ O(H+) on the
domain H+ separates points in H+.

(2) There exist nonconstant functions in the space W 1(H+)∩O(H+). However,
this space does not separate points in H

+ and is not dense in the Bergman
space L2(H+) ∩O(H+).

(3) Let f ∈ W 2(H+)∩O(H+) be a holomorphic function on H+ which is in the
Sobolev space W 2(H+). Then f is a constant.

Proposition 4.7. Let H
+ ⊂ CP

2 be the Hartogs triangle. Any function f ∈
W 1(H+) ∩ O(H+) can be extended to a function in W 1(CP2).

Proof. In the nonhomogeneous holomorphic coordinates (z, w) for H+, any function
f ∈ W 1(H+) ∩ O(H+) has the form (see [4, Proposition 6])

fk(z, w) =
( z

w

)k

, k ∈ N.

It suffices to prove the proposition for each fk(z, w).
Let χ(t) ∈ C∞(R) be a function defined by χ(t) = 0 if t ≤ 0, and χ(t) = 1 if

t ≥ 1. Let f̃k be the function defined by

(4.2) f̃k(z, w) = χ

(
1 +

1

3
(1− |z|2

|w|2 )
)
fk(z, w).

On |z| < |w|, it is easy to see that f̃k = fk. Thus f̃k is an extension of fk to CP2.

To see that f̃k is in W 1(CP2), we first note that the function

χ

(
1 +

1

3
(1− |z|2

|w|2 )
)

= 0

when restricted to {|z| ≥ 2|w|}. Thus it is supported in {|z| ≤ 2|w|}. On its

support, the function |z|
|w| is bounded. Using this fact and differentiating under the
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chain rule, we have

(4.3) |∇χ

(
1 +

1

3
(1− |z|2

|w|2 )
)
| ≤ C(sup |χ′|) 1

|w| ≤ C
1

|w| .

Repeating the arguments as before, we see that the function 1
|w| is in L2 on {|z| ≤

2|w|}. Since the function fk is bounded on the set {|z| ≤ 2|w|}, we conclude from

4.3 the partial derivatives of f̃k are in L2(CP2). Thus f̃k is an extension in W 1(CP2)
of fk. �
Remark 5. Suppose that D is a bounded domain with Lipschitz boundary. Then
any function f ∈ W 1(D) extends as a function in W 1(CP2). It is not known if this
is true for the Hartogs triangle H

+. In the proof of Proposition 4.7, we have used
the fact that the function fk is in W 1(H+) and is bounded on H+.

Theorem 4.8. Let H− ⊂ CP2 be the Hartogs triangle. Then the cohomology group
H0,1

H
−
,L2

(CP2) 	= 0 and is infinite dimensional.

Proof. We recall that H+ = CP2 \H−
. From Proposition 4.6, the space of holomor-

phic functions in W 1(H+)∩O(H+) is infinite dimensional. In the nonhomogeneous
coordinates, consider the holomorphic functions of the type fk = ( z

w )k, k ∈ N.

We define the operator ∂ c̃ as the weak minimal realization of ∂. Then the domain

of ∂ c̃ is the space of L2-forms f in CP2 with support in H
−
such that ∂f is also an

L2-form in CP
2.

Using Proposition 4.7, each holomorphic function fk can be extended to a func-
tion f̃k ∈ W 1(CP2). Suppose thatH0,1

H
−
,L2

(CP2) = 0. Then we can solve ∂̄c̃uk = ∂f̃k

in CP2 with prescribed support for uk in H
−
. Let Hk = f̃k − uk. Then Hk is a

holomorphic function in CP2, and hence a constant. But Hk = fk on H+, a con-
tradiction. This implies that the space H0,1

H
−
,L2

(CP2) is nontrivial.

Next we prove that H0,1

H
−
,L2

(CP2) is infinite dimensional. Each function f̃k cor-

responds to a (0,1)-form ∂f̃k. We set gk = ∂f̃k. Then gk is in Dom(∂ c̃) and satisfies

∂ c̃gk = 0. Thus it induces an element [gk] in H0,1

H
−
,L2

(CP2). To see that [gk]’s are

linearly independent, let N > 1 be a positive integer and FN =
∑N

k=1 ckfk, where

ck are constants. Set GN =
∑N

k=1 ckgk. Suppose that [GN ] = 0. Then we can solve

∂ c̃u = GN , and the function FN holomorphic in H+ extends holomorphically to
CP2. Thus FN must be a constant and c1 = · · · = cN = 0. Thus [gk]’s are linearly

independent. This proves that H0,1

H
−
,L2

(CP2) is infinite dimensional. �

Remark 6. It follows from Proposition 2.1 and Theorem 4.8 that H0,1

H
−
,cur

(CP2) is

also infinite dimensional.

Lemma 4.9. The range of the strong L2 closure of ∂,

(4.4) ∂s : L
2
2,1(H

−) → L2
2,2(H

−),

is closed and equal to L2
2,2(H

−).

Proof. It is clear that ∂ has closed range in the top degree, and the range is
L2
2,2(H

−). Let f ∈ L2
2,2(H

−). We extend f to be 0 outside H−. Let U be an

open neighborhood of H
−
. Then f is in L2

2,2(U). We can choose U such that U is
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a proper subset of CP2 and U has Lipschitz boundary. Since one can solve the ∂
equation for top degree forms on U , there exists u ∈ L2

2,1(U) such that

∂u = f

in the weak sense.
It suffices to show that f is in the range of ∂s. Since U has Lipschitz boundary,

using Friedrichs’s lemma, there exists a sequence uν ∈ C∞(U) such that uν → u

and ∂uν → f in L2
2,2(U). Restricting uν to H

−
, we find that u is in the domain of

∂s and that

∂su = f.

Thus the range of ∂s is equal to L2
2,2(H

−). The lemma is proved. �

Corollary 4.10. The cohomology group H0,1

H
−
,L2

(CP2) is Hausdorff and infinite

dimensional.

Theorem 4.11. Let us consider the Hartogs triangle H− ⊂ CP2. Then the coho-
mology group H2,1

∂s,L2
(H−) is infinite dimensional.

Proof. Suppose that ∂s : L2
2,0(H

−) → L2
2,1(H

−) does not have closed range. Then

H2,1

∂s,L2
(H−) is non-Hausdorff, and hence infinite dimensional.

Suppose that ∂s : L
2
2,0(H

−) → L2
2,1(H

−) has closed range. Using Lemma 4.9, ∂s :

L2
2,1(H

−) → L2
2,2(H

−) has closed range. From the L2 Serre duality, ∂ c̃ : L
2(H−) →

L2
0,1(H

−) and ∂ c̃ : L
2
0,1(H

−) → L2
0,2(H

−) both have closed range. Furthermore,

(4.5) H2,1

∂s,L2
(H−) ∼= H0,1

H
−
,L2

(CP2).

Thus from Theorem 4.8, it is infinite dimensional. �

Remark 7.

(1) Let T = {(z1, z2) ∈ C2 | |z2| < |z1| < 1} be the Hartogs triangle in C2.
Then by Proposition 2.7,

H0,1

∂c̃,L2
(T) = H0,1

T,L2
(C2) = 0.

This is in sharp contrast to Corollary 4.10.
It is well known that H0,1(T) = 0 since T is pseudoconvex, but H0,1

∞ (T)
(cohomology with forms smooth up to the boundary) is infinite dimensional
(see [16]). In fact, H0,1(T) is even non-Hausdorff (see [12]). We also refer
the reader to the recent survey paper on the Hartogs triangle [15].

(2) If D is a domain in CPn with C2 boundary, then we have L2 existence
theorems for ∂ on D for all degrees (see [1], [6], [2]). This follows from the
existence of bounded plurisubharmonic functions on pseudoconvex domains
in CPn with C2 boundary (see [13]). This is even true ifD has only Lipschitz
boundary (see [5]).

(3) Suppose that D is a pseudoconvex domain in CP
n with Lipschitz boundary.

We have Hp,q
L2 (D) = 0 for all q > 0. By the L2 Serre duality (see [4]), we

have H0,1

∂c,L2
(D) = H0,1

D,L2
(CPn) = 0. Corollary 4.10 shows that the Lipschtz

condition cannot be removed.
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(4) From a result of Takeuchi [17], H− is Stein. It is well known that for any p,
0 ≤ p ≤ 2, ∂ : L2

p,0(H
−, loc) → L2

p,1(H
−, loc) has closed range (see [8]), and

the cohomology Hp,1
L2

loc
(H−) in the Fréchet space L2

0,1(H
−, loc) is trivial.

(5) The (weak) L2 theory holds for any pseudoconvex domain without any
regularity assumption on the boundary for (0, 1)-forms. The (weak) L2

Cauchy–Riemann operator ∂ : L2(H−) → L2
0,1(H

−) has closed range and

H0,1
L2 (H−) = 0 (see [6] or [2]).

(6) For p = 1 or p = 2, it is not known if the Cauchy-Riemann operator
∂ : L2

p,0(H
−) → L2

p,1(H
−) has closed range. It is also not known if ∂ in the

weak sense is equal to ∂s.
(7) It is not known if the strong L2 Cauchy–Riemann operator ∂s : L

2
2,0(H

−) →
L2
2,1(H

−) has closed range.
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