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Abstract We establish the L2 theory for the Cauchy–Riemann equations on product
domains provided that the Cauchy–Riemann operator has closed range on each factor.
We deduce regularity of the canonical solution on (p, 1)-forms in special Sobolev
spaces represented as tensor products of Sobolev spaces on the factors of the product.
This leads to regularity results for smooth data.

1 Introduction

In this paper we study the existence and regularity for the solution of the inhomoge-
neous Cauchy–Riemann equations, or the ∂-equation on product domains. When the
product domain is a polydisc in C

n , the solution to the ∂-equation can be obtained
by an inductive process from the solution in one variable given by the Cauchy inte-
gral formula for the disc. This is known as the Dolbeault–Grothendieck Lemma (see
[10, Theorem 2.1.6]; For other approaches, see [27,28]) which is the analog for the
∂-operator of the Poincaré lemma for the exterior derivative d.

We are interested here in the ∂-problem in the L2 setting. For a bounded pseudo-
convex domain in C

n , or more generally in a Stein manifold, L2 existence theorems
have been established in Hörmander [18]. We prove L2 existence on a product, i.e.,
we show that ∂ has closed range on a product provided that ∂ has closed range on each
factor domain.
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978 D. Chakrabarti, M.-C. Shaw

Theorem 1.1 For j = 1, . . . , N, let � j be a relatively compact domain with Lip-
schitz boundary in a complex hermitian manifold M j . Let � ⊂ M1 × · · · × MN be
the product domain � = �1 × · · ·×�N . Suppose the ∂-operator has closed range in
L2(� j ) for all degrees for each j , then the ∂ operator has closed range for all degrees
in L2(�). Furthermore, the Künneth formula holds for the L2 cohomology:

H∗
L2(�) = H∗

L2(�1)̂⊗ · · · ̂⊗H∗
L2(�N ),

where ̂⊗ denotes the Hilbert space tensor product.

If the L2 space on the domain � j is defined with respect to a weight function φ j ,
i.e., if on � j we use the norm

∫

� j
| f |2 e−φ j dV , the same statement holds if

∑N
j=1 φ j

is used as a weight on the product �.
A classical approach to the study of partial differential equations on product domains

is by separation of variables and spectral representation. This method can be applied
to the �-operator (the complex Laplacian ∂∂

∗ + ∂
∗
∂): see [17, pp. 103ff] for the case

of compact complex manifolds and [15] for the case of the polydisc. A proof of a
general version of Theorem 1.1 (without the assumption of relative compactness or
boundary regularity of the � j ) may be given using separation of variables and spectral
theory (see [9].) However, it is difficult to use this method to draw conclusions about
the regularity of the solution of the ∂-equation. There is a different approach, using a
direct construction of a solution operator on a product domain, used first in [34] for the
de Rham complex, and we use this approach to prove Theorem 1.1. Using this method
we not only prove Theorem 1.1, but also obtain regularity results for the canonical
solution of ∂ .

The closed-range property given by Theorem 1.1 has numerous applications. First
it immediately gives that the Hodge decomposition holds for the product domain �.
Notice that it is not assumed that the domains � j are non-compact: the theorem can
be applied to the case when the product domain is a product D × M of a bounded
pseudoconvex domain D in C

n and a compact complex manifold M . Though the proof
for Theorem 1.1 is not difficult, it has not been stated explicitly in the literature.

We obtain boundary regularity results for the canonical solution of the ∂-equation
on product domains in C

n or complex hermitian manifolds. The regularity for the
canonical solution of the ∂-equation and the ∂-Neumann operator on a polydisc have
been studied extensively (see [4,12–14] and the references in these works.) There is
also a considerable amount of work for the ∂-equation on domains with Lipschitz
boundary or piecewise smooth domains (see [25]). Notice that a product domain
is only piecewise smooth even if each factor domain has smooth boundary. Thus
the boundary is only Lipschitz. It is known that on a general Lipschitz domain, the
∂-Neumann operator or even the Green’s operator for the Dirichlet problem (see [3,
30]) is not regular near the singular part of the domain. Thus one cannot expect the
∂-Neumann operator to be regular near the product of the boundaries of the fac-
tor domains. This is confirmed by the explicit computations in [12–14]. One would
expect that the canonical solution might also not be regular. An interesting feature is
that while the ∂-Neumann operator on product domains might not be well-behaved,
the canonical solution still exhibits regularity on certain Sobolev spaces. Before our
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The Cauchy–Riemann equations on product domains 979

results here, only Ck estimates were known for the special case of the polydisc using
an explicit integral formula (see [24].)

In order to state precise regularity results on the canonical solution operator we intro-
duce special Sobolev spaces, called Partial Sobolev spaces, denoted by ˜W k(�) (for
definition of ˜W k(�), see Sect. 5.) If W k(�) denotes the usual Sobolev space of func-
tions having L2-derivatives of order k on �, we have W Nk(�) ⊂ ˜W k(�) ⊂ W k(�).
We prove the following regularity result for the canonical solution operator in the
partial Sobolev spaces on a product pseudoconvex domain.

Theorem 1.2 Let � be the same as in Theorem 1.1. Then the ∂-Neumann operator
N exists for all degrees on (p, q)-forms with L2 coefficients. Assume further that for
each j , the domain � j is smoothly bounded, and the ∂-Neumann operator on � j

preserves the space of forms with coefficients in W k(� j ) for every integer k ≥ 0. For
any p with 0 ≤ p ≤ dimC �, let f be a ∂-closed (p, 1)-form on � orthogonal to
the (p, 1)-harmonic forms such that the coefficients of f are in the partial Sobolev
space ˜W l(�), for some integer l ≥ 0. Then, the canonical solution u = ∂

∗
N f of the

equation ∂u = f also has coefficients in ˜W l(�).

As with Theorem 1.1, if the L2 space on � j is defined with respect to a weight
function φ j , the same conclusion holds if the ∂-Neumann operator Nφ j with weight
φ j preserves W k(� j ) forms, and the canonical solution on the product is taken with
respect to the weight

∑N
j=1 φ j . Note that it follows from the inclusions W Nk(�) ⊂

˜W k(�) ⊂ W k(�) that if the (p, 1)-form f has coefficients in W Nk(�), then the
canonical solution ∂

∗
N f has coefficients in W k(�). Of course this loss of smooth-

ness disappears on using the correct space ˜W k(�). Also note that unless D is a domain
in C

n , the ∂-equation for (p, q) forms on a domain D in a complex manifold cannot
be reduced to the ∂-equation for (0, q) forms.

To use this result, we need to understand the regularity of the ∂-Neumann operator
on the factor domains. There is a vast literature on the regularity of the ∂-Neumann
operator on smooth and pseudoconvex domains. In particular, regularity is known
when the boundary is strongly pseudoconvex (see [22]) or finite type (see [8]), or if
the boundary has a plurisubharmonic defining function (see [6]) or if the boundary has
transverse symmetry ( see [1].) However, for each s > 0, there exists a pseudoconvex
domain with smooth boundary such that the ∂-Neumann operator or the canonical
solution is not regular in the Sobolev space W s (see [2]). Even in this case, we can
obtain regularity in a weighted Sobolev space (see [23].) Using these results, one can
draw many corollaries from Theorem 1.2 regarding the regularity of the solution of
the ∂-problem in Sobolev spaces or spaces of smooth forms (see Corollary 6.1 below.)
One example is the following:

Corollary 1.3 Suppose that the smoothly bounded pseudoconvex domains �1, . . . ,

�N in hermitian manifolds of dimension n1, . . . , n j respectively are such that for
each j , and every 0 ≤ p ≤ n j , the canonical solution operator on � j maps the
space C∞

p,1(� j ) of (p, 1) forms smooth up to the boundary to C∞
p,0(� j ). Let � =

�1 × · · · × �N . For 0 ≤ p ≤ ∑N
j=1 n j , let f be a ∂-closed ( p, 1) form with C∞(�)

coefficients. Then ∂
∗
N f also has coefficients in C∞(�), where N is the ∂-Neumann
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980 D. Chakrabarti, M.-C. Shaw

operator on �. Further, the Bergman projection on the space of functions L2(�)

preserves the space C∞(�).

Note that if f is orthogonal to the harmonic forms, ∂
∗
N f is the canonical solution

to ∂u = f . Also, Corollary 1.3 applies to the product of domains which are strongly
pseudoconvex or more generally of finite type. In contrast, we note that when the
domain is the intersection of two balls, the Bergman projection is not regular near the
nongeneric points of the boundary (see [3]).

Notice that on a smoothly bounded pseudoconvex domain in C
n , if the canonical

solution ∂
∗
N is regular, it follows that the ∂-Neumann operator N, and the adjoint of

the canonical solution operator ∂N are all exact regular on Sobolev spaces (see [10].)
However, the same method cannot be applied to the adjoint of the canonical solution
or to the ∂-Neumann operator on a product domain. On a product domain, the canon-
ical solution is regular, but neither the ∂-Neumann operator N nor the operator ∂N is
regular near the boundary.

The plan of this paper is as follows: in Sects. 2 and 3 we establish terminology and
notation regarding the L2 ∂-problem and tensor products of forms, and discuss some
basic properties of the objects involved. We note here that although our results have
been stated for general manifolds, in these sections, for simplicity of exposition and
notation, we give the definitions for domains in Euclidean space C

n . The generaliza-
tion to manifolds is easy and left to the reader. Also, due to the nature of the proof,
we need to consider spaces of forms of arbitrary degrees. For example, we denote by
L2∗(D) the space of forms with square integrable coefficients on a domain D. The
key observation in Sect. 2 is that closure of the range of the ∂-operator is a necessary
as well as sufficient condition for representation of cohomology classes by harmonic
forms (see Lemma 2.2.) The next Sect. 4 represents the central argument of the paper.
Starting from the canonical solution operator and the harmonic projection on the factor
domains, we write down a formula (18) defining a solution operator S on the product,
which coincides with the canonical solution operator ∂

∗
N on (0, 1)-forms. Using S

we give a simple proof of Theorem 1.1. In Sect. 5 we consider the tensor products of
Sobolev spaces, which gives rise to the partial Sobolev spaces referred to above. This
is used in the last Sect. 6 to prove regularity results.

2 The L2 setting for the ∂ problem

2.1 Spaces of forms on domains

We recall the definition and notation used in the L2 theory of the ∂-operator. Let D
be a bounded domain in C

n , and let φ be a continuous function on D. We denote by
L2(D) the space of square integrable functions on D with respect to weight φ, which
has the norm

‖ f ‖ =
∫

D

| f |2 e−φdV,
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The Cauchy–Riemann equations on product domains 981

where dV is the volume form on C
n induced by the standard hermitian metric. (Note

that we have suppressed φ from the notation.)
We denote by L2∗(D) the space of differential forms with coefficients in L2(D).

More generally, for any space of functions F(D) on D, we will let F∗(D) denote the
space of forms with coefficients in F . Then F∗(D) can be thought of as a vector space
direct sum

F∗(D) =
⊕

0≤p≤n
0≤q≤n

Fp,q(D) (1)

of the spaces of forms of bidegree (p, q).
Often the space F(D) will be a Hilbert space. Then we can give F∗(D) a Hilbert

space structure in the following way: first, we declare that forms of different bide-
grees are orthogonal, so that the sum in (1) is now an orthogonal direct sum of Hilbert
Subspaces. Any form f ∈ Fp,q(D) can be uniquely represented as

f =
′

∑

I,J

f I,J dz I ∧ dz J ,

where I = (i1, . . . , i p) ∈ N
p, and J = ( j1, . . . , jq) ∈ N

q are multi-indices, f I,J ∈
F(D), dzI = dzi1 ∧· · ·∧dzi p and dz̄ J = dz̄ j1 ∧· · ·∧dz̄ jq , and the notation

∑′ means
that the summation is over strictly increasing multi-indices only, i.e. i1 < i2 < · · · < i p

and j1 < j2 < · · · < jq . We define the norm of f as

‖ f ‖2
F∗(D) =

′
∑

I,J

∥

∥ f I,J
∥

∥

2
F(D)

. (2)

In this paper, the Hilbert space F will be either a usual L2 space (possibly with
weight), a Sobolev space, or a partial Sobolev space on product domains (to be defined
in Sect. 5.) These notions easily extend to spaces of forms on domains in hermitian
manifolds (see [10, Chapter 5]) using the natural pointwise inner-product on forms
induced by the hermitian structure.

2.2 The L2 Dolbeault complex

We now recall the definition of the the ∂-operator on the Hilbert space L2∗(D) of forms
with square integrable coefficients on D. The ∂-operator is the closed, densely defined
unbounded operator from L2∗(D) to itself which coincides with the usual ∂ operator
from C∞∗ (D) to C∞∗ (D), and which has been extended as a distributional operator to
the dense domain of definition

dom(∂) = { f ∈ L2∗(D) : ∂ f ∈ L2∗(D)}.
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982 D. Chakrabarti, M.-C. Shaw

In the terminology of [7], the operator ∂ is the differential map of a Hilbert Complex,
i.e., a cochain complex, in which the cochain space dom(∂) is a dense subspace of
a graded Hilbert Space, and the differential is a closed, densely defined unbounded
linear map of the graded Hilbert space into itself. Note that the map ∂ has bidegree
(0, 1), i.e., it maps (p, q) forms to (p, q + 1) forms.

We denote by ∂
∗

the Hilbert space adjoint of ∂ . This is again a closed, densely
defined operator on L2∗(�). Its domain dom(∂

∗
) is in general very different from

dom(∂), because of the natural boundary conditions that the Hilbert space adjoint
must satisfy. The map ∂

∗
is of bidegree (0,−1).

A form f ∈ L2∗(D) is said to be harmonic, if ∂ f = ∂
∗

f = 0. The harmonic forms
H∗(D) form a closed subspace of L2∗(D). The orthogonal projection P : L2∗(D) →
H∗(D) is called the harmonic projection, which is of course a map of bidegree (0, 0).
Note that since ∂

∗
vanishes on L2

0,0(D) ≡ L2(D), the space H0,0(D) can be identified
with the space L2(D) ∩ O(D) of square integrable holomorphic functions, the Berg-
man space associated to D. The operator P0,0 is the Bergman projection onto square
integrable holomorphic functions.

2.3 The closed range property and its consequences

Let g ∈ L2∗(D) be such that ∂g = 0. In order to solve the equation ∂u = g in the L2

sense first we need to show that the L2 ∂-operator has closed range. In general, the
closed-range property is not easy to establish, even with a smooth boundary. Subtle
holomorphically invariant convexity properties of the boundary of D control whether
∂ has closed range on D (see the example on p. 76 of [16].) Note that, in contrast, for
the L2 d-complex on a Riemannian manifold the operator d always has closed range
when the boundary is C2 or even Lipschitz [26,29].

An important consequence of the closed range property on D is the existence of the
Canonical- or Kohn’s solution operator K , which is a bounded map from L2∗(D) to
itself of bidegree (0,−1), and is a right-inverse of the operator ∂ . For every f ∈ img(∂),
we define K f to be the unique solution to ∂u = f which is orthogonal to ker(∂). We
then extend K to all of L2∗(D) by setting K ≡ 0 on (img(∂))⊥ and extending linearly.
The map K is bounded by the closed graph theorem, and is represented in terms of
the ∂-Neumann operator N on D as K = ∂

∗
N. We further have the following:

Lemma 2.1 If ∂ has closed range, and K is the canonical solution operator, then on
dom(∂) we have

I − P = ∂K + K∂. (3)

Further, the ranges of the three operators ∂K , K∂ and P are orthogonal.

Proof Since img(∂) is closed in L2∗(D), we have the Strong Hodge decomposition:

L2∗(D) = (img(∂
∗
)) ⊕ (img(∂)) ⊕ H∗(D),
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The Cauchy–Riemann equations on product domains 983

where H∗(D) is the Hilbert space of harmonic forms, and ⊕ means that the summands
are orthogonal (see [10].) Let Q and R be the orthogonal projections from L2∗(D)

onto the closed subspaces img(∂) and img(∂
∗
) respectively. Then on L2∗(D), we have

I = P + Q + R. From the definition of K , we have ∂K = Q. Also, on dom(∂) we
have K∂ = R by noting that the left hand side is the identity on

(

ker(∂)
)⊥ = img(∂

∗
)

and zero on the orthogonal complement ker ∂ . Equation (3) now follows. The last
statement follows from the method of proof. ��

For any domain D, the L2 Dolbeault Cohomology space is the graded vector space

H∗
L2(D) = ker(∂)

img(∂)
.

Note that in the quotient topology, this is a Hilbert space if img(∂) is closed (and not
even Hausdorff if img(∂) is not closed, see [32, Chapter 1, Sect. 2.3].) If img(∂) is
closed, we have

H∗
L2(D) ∼= (ker(∂)) ∩ (

img(∂)
)⊥

= (ker(∂)) ∩ (ker(∂
∗
))

= H∗(D),

so that the cohomology space is naturally isomorphic to the space of harmonic forms.
We will now recall the less well-known converse to this statement, due to Kodaira (see
[11, p. 165].) Let

[.] : ker(∂) → H∗
L2(D)

denote the natural projection onto the quotient space. We have the following:

Lemma 2.2 Let η be the linear map from the vector space of harmonic forms H∗(D)

to the cohomology vector space H∗
L2(D) given by η( f ) = [ f ]. Then

(i) η is injective.
(ii) If η is also surjective, then the range of ∂ is closed.

Proof (i) For (0, 0)-forms, i.e. functions, the space H0,0(D) coincides by def-
inition with the cohomology space H0,0

L2 (D). For forms of higher degree, a

harmonic form in ker(η) is of the form ∂g with ∂
∗
(∂g) = 0 so that

0 = (∂
∗
(∂g), g)

= ∥

∥∂g
∥

∥

2
.

(ii) Since η is an isomorphism, we can identify H∗(D) with the cohomology space
H∗

L2(D). Since H∗(D) is a closed subspace of the Hilbert Space L2∗(D), the
space H∗

L2(D) becomes a Hilbert space in the natural way. Then the map [·]
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984 D. Chakrabarti, M.-C. Shaw

can be thought of as an operator from the Hilbert space ker(∂) ⊂ L2∗(D) to
the Hilbert space H∗

L2(�). Since η is surjective, every element of ker(∂) can be

written as f + ∂g, where f ∈ H∗(D). Then [( f + ∂g)] = f , using the iden-

tification of H∗(D) and H∗
L2(D). Since

∥

∥ f + ∂g
∥

∥

2 = ‖ f ‖2 + ∥

∥∂g
∥

∥

2 ≥ ‖ f ‖2,

so that
∥

∥[ f + ∂g]∥∥ ≤ ∥

∥ f + ∂g
∥

∥, it follows that [·] is actually a bounded map.
Therefore, ker[·] = img(∂) is closed. ��

3 Differential forms on product domains

3.1 Algebraic tensor product of spaces of forms

Let H1 and H2 be C-vector spaces. We denote by H1 ⊗H2 the algebraic tensor product
(over C) of H1 and H2 : then H1 ⊗ H2 can be thought of as the space of finite sums of
elements of the type x⊗y, where x ∈ H1 and y ∈ H2, where ⊗ : H1×H2 → H1⊗H2 is
the canonical bilinear map (see e.g. [33, Sect. 3.4] for the purely algebraic definition.)
Similarly H = H1 ⊗ H2 ⊗ · · · ⊗ HN denotes the algebraic tensor product of N vector
spaces H1, · · · HN . We call an element of H of the form x1 ⊗· · ·⊗ xN a simple tensor.

When H1, . . . , HN are realized as spaces of forms on domains (or manifolds)
�1, . . . , �N , there is a concrete realization of the algebraic tensor product H as a
space of forms on the product domain � = �1 × · · · × �N . For j = 1, . . . , N , let
f j ∈ H j , so that f j is a form on the domain � j and let π j : � → � j denote the
projection onto the j th factor � j from the product �. We define a form on �, the
tensor product of the forms f1, . . . , fN , by setting

f1 ⊗ · · · ⊗ fN = π∗
1 f1 ∧ · · · ∧ π∗

N fN , (4)

which we will call a simple decomposable form. Then H1 ⊗ · · · ⊗ HN is the linear
span of the simple decomposable forms. It is easy to verify that this construction gives
rise to a vector space isomorphic to the usual algebraic definition of a tensor product
by the universal property.

3.2 Hilbert tensor products

We now specialize to the case where the factors H j are Hilbert spaces. For ease of
exposition, we assume that N = 2, and the general case should be obvious. We can
define an inner product on the algebraic tensor product H1 ⊗ H2 defined above by
setting

(x ⊗ y, z ⊗ w) = (x, z)H1(y, w)H2 ,

and extending bilinearly. This is well-defined thanks to the bilinearity of ⊗. This makes
H1 ⊗ H2 into a pre-Hilbert space, and its completion is a Hilbert space denoted by
H1̂⊗ H2, the Hilbert tensor product of the spaces H1 and H2. The algebraic tensor
product H1 ⊗H2 sits inside H1 ̂⊗ H2 as a dense subspace. We will refer to any element
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The Cauchy–Riemann equations on product domains 985

of H1 ⊗H2 (thought of as a subspace of H1̂⊗ H2) as a decomposable form. For further
details on Hilbert tensor products, see [33, Sect. 3.4], or for a more intrinsic approach
[21, Sect. 2.6, vol. 1].

Now let F(�1) and G(�2) be Hilbert Spaces of functions on �1 and �2 respec-
tively, and let F∗(�1) and G∗(�2) be the Hilbert Spaces of forms with coefficients in
F(�1) and G(�2) respectively, with the norm given by (2). It is easily verified from
the definitions that there is an isometric equality of Hilbert spaces:

F∗(�1) ̂⊗ G∗(�2) = (F ̂⊗ G)∗(�1 × �2), (5)

with an obvious extension to the case of more than two factor domains.

3.3 Forms with square integrable coefficients

We now recall the most important case of the above constructions. Another example
will be considered in Sect. 5.

Recall the following classical fact, which we will use repeatedly:

Lemma 3.1 ([20, p. 369]) Let �1,�2 be domains in Euclidean spaces (or mani-
folds), and let � = �1 × �2. Then every function in C∞

0 (�) can be approximated
in the Ck norm (where 0 ≤ k ≤ ∞) by functions in the algebraic tensor product
C∞

0 (�1) ⊗ C∞
0 (�2).

Now, C∞
0 (�) is dense in L2(�), and the decomposable compactly supported smooth

functions C∞
0 (�1) ⊗ C∞

0 (�2) are dense in the uniform norm (and therefore in the L2

norm) in the space C∞
0 (�). It follows that:

L2(�1)̂⊗L2(�2) = L2(�1 × �2).

Combining with (5) we have:

L2∗(�1)̂⊗L2∗(�2) = L2∗(�1 × �2). (6)

3.4 Tensor products of operators

Again, for clarity we confine ourselves to the case N = 2. Let H1, H2, H′
1, H′

2 be
Hilbert Spaces. Given bounded linear operators T1 : H1 → H′

1 and T2 : H2 → H′
2, we

can define an algebraic tensor product T1⊗T2 which maps the algebraic tensor product
H1 ⊗ H2 into H′

1 ⊗ H′
2 : on decomposable tensors it is given by (T1 ⊗ T2)(x ⊗ y) =

T1x ⊗ T2 y and extended linearly. Then T1 ⊗ T2 is bounded on the dense subspace
H1 ⊗ H2 and therefore extends to a bounded linear operator T1 ̂⊗ T2 from H1 ̂⊗ H2 to
H′

1
̂⊗ H′

2.
This construction can be extended to densely defined unbounded linear operators,

provided they are closed. (see [21, Sect. 11.2, vol. 2].) Given closed (or even clos-
able) operators T1 : dom(T1) → H′

1 and T1 : dom(T2) → H′
2, where dom(T1) and
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986 D. Chakrabarti, M.-C. Shaw

dom(T2) are dense subspaces of the Hilbert spaces H1 and H2, the algebraic tensor
product (which is densely defined on H1 ̂⊗ H2 with domain dom(T1) ⊗ dom(T2)) is
closable (see [21, Proposition 11.2.7 (vol. 2)].) Its closure, denoted by T1 ̂⊗ T2 is a
closed densely defined operator from H1 ̂⊗ H2 to H′

1
̂⊗ H′

2. Note that this definition
agrees with the previous one, when both T1 and T2 are bounded.

4 ∂ on a product domain in the L2 sense

In this section we construct a solution operator to the ∂-problem on a product domain
in terms of the canonical solution operators on the factor domains, and show that
the operator constructed in fact gives the canonical solution on ker ∂ p,1, the ∂-closed
(p, 1)-forms. We use the following notation: for j = 1, . . . , N , let � j be a bounded
domain in Euclidean space C

n j . All our arguments and results will have easy general-
izations to relatively compact domains in hermitian manifolds, which we leave for the
reader. We will assume that the boundary of each domain � j is Lipschitz, i.e., it can be
represented locally in holomorphic coordinates as the graph of a Lipschitz function.
For each j , we also fix a weight function φ j continuous on � j . We use the L2 space
of forms L2∗(� j ) on the domain � j with the weight φ j , i.e., the norm of a function f
is given by ‖ f ‖2 = ∫

� j
| f |2 e−φ j dV , where dV is the volume form induced by the

hermitian metric. (If we want spaces without weights, we simply take φ j ≡ 0.)
The product domain � = �1 × · · · × �N also has Lipschitz boundary. We will

consider L2∗(�) with the weight φ = φ1 + · · · + φN (and with the product hermitian
metric.) The analog of formula (6) holds with this choice of metric and weight:

L2∗(�) = L2∗(�1)̂⊗ · · · ̂⊗L2∗(�N ).

Our fundamental assumption will be the following: For each j , the L2 ∂-operator
(with weight φ j ) on � j has closed range in each degree.

We remark that the closed range property is independent of the weight function φ j

as long as it is continuous to the boundary since the L2 spaces are the same. We will
show that the ∂ operator on � (with weight φ) also has closed range and deduce a
formula for the canonical solution on ker(∂).

4.1 Construction of solution operator on smooth decomposable forms

For simplicity of exposition, we from now on consider the case N = 2, that is we have
two domains �1 and �2 and we are trying to solve the L2 ∂-problem on the product
� = �1 × �2. In this section we write down some algebraic formulas which hold for
smooth decomposable forms on �.

We first note that if f ∈ C∞∗ (�1) and g ∈ C∞∗ (�2), then we have

∂( f ⊗ g) = ∂1 f ⊗ g + σ1 f ⊗ ∂2g, (7)

where ∂1, ∂2, ∂ denote the ∂ operator on the domains �1,�2,� respectively, and σ1
is the map on C∞∗ (�1) which is multiplication by (−1)p+q on C∞

p,q(�1). Note that if
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T be any linear map of odd degree on the space C∞∗ (�1) (i.e. the degrees of T f and
f differ by an odd integer) then we obviously have

σ1T = −T σ1. (8)

Extending (7) bilinearly to C∞∗ (�1) ⊗ C∞∗ (�2), we obtain the Leibnitz formula for
smooth decomposable forms:

∂ = ∂1 ⊗ I2 + σ1 ⊗ ∂2. (9)

Let K1, K2 be the canonical solution operators on �1,�2 (see Sect. 2.3.) We define
an operator S from C∞∗ (�1) ⊗ C∞∗ (�2) into L2∗(�1) ⊗ L2∗(�2) by the formula

S = K1 ⊗ I2 + σ1 P1 ⊗ K2, (10)

where Pj denotes the harmonic projection on the domain � j (see Sect. 2.2.) It will be
proved in the next section that S extends to L2∗(�), and coincides on (0,1)-forms with
the canonical solution operator on the product �. In this section, we take a first step
in this direction by proving the following homotopy formula:

Lemma 4.1 On the space of smooth decomposable forms C∞∗ (�1) ⊗ C∞∗ (�2), we
have

∂S + S∂ = I − P1 ⊗ P2, (11)

where I is the identity map.

Proof First note that

∂S = (∂1 ⊗ I2 + σ1 ⊗ ∂2)(K1 ⊗ I2 + σ1 P1 ⊗ K2)

= ∂1 K1 ⊗ I2 + σ1 K1 ⊗ ∂2 + P1 ⊗ ∂2 K2,

where one term vanishes because ∂1 P1 = 0. Similarly, since by the Hodge decompo-
sition, P1∂1 = 0, we have,

S∂ = (K1 ⊗ I2 + σ1 P1 ⊗ K2)(∂1 ⊗ I2 + σ1 ⊗ ∂2)

= K1∂1 ⊗ I2 + K1σ1 ⊗ ∂2 + P1 ⊗ K2∂2

= K1∂1 ⊗ I2 − σ1 K1 ⊗ ∂2 + P1 ⊗ K2∂2,

where we have used (8) in the last line along with the fact that K1 has degree −1.
Combining the two expressions and canceling the middle terms we have

∂S + S∂ = (∂1 K1 + K1∂1) ⊗ I2 + P1 ⊗ (∂2 K2 + K2∂2)

= (I1 − P1) ⊗ I2 + P1 ⊗ (I2 − P2)

= I1 ⊗ I2 − P1 ⊗ P2,

where we have used the homotopy formula (3) in each factor. The result follows. ��
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4.2 Density results: extension to dom(∂)

In this section we use a density argument to extend the formulas of the last section.
We first recall the following:

Lemma 4.2 ([10, Lemma 4.3.2, part (i)]) If D is a Lipschitz domain, then the space
C∞∗ (D) of forms with C∞(D) coefficients is dense in the graph-norm in the domain
dom(∂) of the L2 ∂ operator on D.

Since D is Lipschitz, it is locally star-shaped. This is a special case of Friedrichs’
Lemma and follows from smoothing by convolution with a mollifier; see Section 1.2
in Chapter I in Hörmander [18] or Part (i) of proof of the Density Lemma 4.3.2 in
[10]. The following is now easy:

Lemma 4.3 C∞(�1) ⊗ C∞(�2) is dense in the domain of ∂ in the graph norm of the
∂-operator on � = �1 × �2.

Proof Given a form f ∈ dom(∂) on �, by the Lemma 4.2, we can approximate it in
the graph norm by a form f̃ ∈ C∞∗ (�). Note that it easily follows from Lemma 3.1
that every form in C∞∗ (�) can be approximated in the Ck norm (where 0 ≤ k ≤ ∞) by
forms in the algebraic tensor product C∞∗ (�1) ⊗ C∞∗ (�2). Therefore, approximating
f̃ by a form in C∞∗ (�1) ⊗ C∞∗ (�2) in the C1 norm (which dominates the graph norm)
our result follows. ��

We now extend the formulas of the previous section from the space C∞∗ (�1) ⊗
C∞∗ (�2) of smooth decomposable forms (which is dense in the graph norm of ∂) to
dom(∂).

Lemma 4.4 On the dense subspace dom(∂) ⊂ L2∗(�) we have:

∂ = ∂1̂⊗I2 + σ1̂⊗ ∂2. (12)

The operator S defined in (10) can be extended to L2∗(�) by the formula

S = K1̂⊗I2 + σ1 P1̂⊗K2, (13)

and on dom(∂) the following homotopy formula holds:

∂S + S∂ = I − P1̂⊗P2. (14)

Proof All three formulas follow from the corresponding formulas for decomposable
forms by taking limits, using Lemma 4.3 for (12) and (14). ��

4.3 Consequences

Using the homotopy formula (14), we can now prove:
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Theorem 4.5 Let �1 and �2 be two bounded domains in complex hermitian man-
ifolds with Lipschitz boundaries. Suppose that the ∂ operator has closed range in
L2(� j ) for all degrees, where j = 1, 2. Then ∂ has closed range in L2(�) for the
product domain � = �1 × �2.

Proof We recall the result established in Lemma 2.2: if the map η( f ) = [ f ] is
surjective, then ∂ has closed range. In other words, we need to show that for every
cohomology class α ∈ H∗

L2(�) there is a harmonic form h ∈ H∗(�) such that α = [h].
We will actually do better. We will show that there is such a h in the tensor product
H∗(�1) ̂⊗ H∗(�2) ⊂ H∗(�). Note that this will also show that

H∗(�1) ̂⊗ H∗(�2) = H∗(�). (15)

Indeed, let f ∈ ker(∂) be a form representing the cohomology class α, i.e. α = [ f ].
Then, from the homotopy formula (14), we have

f − ∂(K f ) = (P1̂⊗P2) f.

Therefore, the form (P1 ̂⊗ P2) f ∈ H∗(�1) ̂⊗ H∗(�2) also represents the same coho-
mology class α, i.e. [(P1 ̂⊗ P2) f ] = α. Therefore every cohomology class in H∗

L2(�)

can be represented by a harmonic form inH∗(�) (indeed by a harmonic form in the pos-
sibly smaller subspace H∗(�1) ̂⊗ H∗(�2).) This shows that the map η of Lemma 2.2
is surjective. The equality (15) now follows from the fact that η is injective. ��

We now note a few important consequences of the above result:

Corollary 4.6 (i) The L2 Künneth formula holds for the Dolbeault cohomology
with L2 coefficients:

H∗
L2(�) = H∗

L2(�1) ̂⊗ H∗
L2(�2) (16)

(ii) The harmonic projections satisfy P = P1 ̂⊗ P2

Proof Part (i) follows from the natural isomorphisms H∗
L2(�) ∼= H∗(�), H∗

L2(�1) ∼=
H∗(�1) and H∗

L2(�2) ∼= H∗(�2) (note that the range of ∂ is closed in each case.)
Part (ii) follows from comparing the homotopy formulas (14) and (3), or directly from
(15). ��

We now come to the most significant consequence:

Theorem 4.7 For 0 ≤ p ≤ n, the restriction of the map S defined in (13) to the
∂-closed (p, 1)-forms coincides with the restriction of the canonical solution opera-
tor ∂

∗
N to the same space.

Proof From the Hodge decomposition, we have for (p, q) forms that ker(∂ p,q) =
img(∂ p,q−1) ⊕ Hp,q(�). If q = 0, it follows that
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ker(∂ p,0) = Hp,0(�) =
⊕

j+k=p

H j,0(�1)̂⊗Hk,0(�2),

by (15).
We claim that the range of Sp,1 is orthogonal to the space ker(∂ p,0). By the com-

putation above, it is sufficient to show that the range of Sp,1 is orthogonal to every
form of the type g1 ⊗ g2, where g1 and g2 are harmonic forms of degrees ( j, 0) and
(p − j, 0), where 0 ≤ j ≤ p. Let f1, f2 be L2 forms such that f1 ⊗ f2 is of bidegree
(p, 1). Then,

(S( f1 ⊗ f2), g1 ⊗ g2) = (K1 f1 ⊗ f2 + σ1 P1 f1 ⊗ K2 f2, g1 ⊗ g2)

= (K1 f1, g1)( f2, g2) + (σ1 P1 f1, g1)(K2 f2, g2)

= 0 · ( f2, g2) + (σ1 P1 f1, g1) · 0

= 0,

where we have used the fact that K1, K2 being canonical solutions, have ranges orthog-
onal to ∂-closed forms.

If f is a ∂-closed (p, 1) form orthogonal to the harmonic forms, it follows from
formula (14) that ∂(S f ) = f . Since S f is orthogonal to ker(∂), it follows that S f =
∂

∗
N f .
To complete the proof, we need to show that S vanishes on the space of (p, 1)

harmonic forms. By formula (15), it follows that we only need to verify this on a
harmonic form of the type f ⊗ g, where f, g are also harmonic forms. We have,

S( f ⊗ g) = K1 f ⊗ g + σ1 P1 f ⊗ K2g

= 0 ⊗ g + f ⊗ 0

= 0,

since K1 and K2 are the canonical solutions on the domains �1 and �2. ��
Remark For arbitrary degrees, the operator S is not equal to the canonical solution
operator K = ∂

∗
N. In fact, an examination of the proof of Lemma 2.1 shows that for

the canonical solution K on a domain, the ranges of the operators ∂K and K∂ are
orthogonal. On the other hand, using the computations used in the proof of Lemma 4.1,
we can check that

(

∂S( f ⊗ g), S∂( f ⊗ g)
) = −‖K1 f ‖2

∥

∥∂2g
∥

∥

2
,

so that S is not the canonical solution on the product.

Using a simple induction argument, we can extend the results of this section to N
factors. Further, as remarked above, all the arguments generalize to relatively compact
domains in hermitian manifolds:

Theorem 4.8 For j = 1, . . . , N, let M j be a hermitian manifold and let � j � M j

be a Lipschitz domain. Suppose that the L2 ∂-operator on � j (with weight φ j ) has
closed range for each 1 ≤ j ≤ N. Then we have the following:
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• the ∂-operator (with weight
∑N

j=1 φ j ) has closed range on �.

• the L2 Künneth formula holds:

H∗
L2(�) = H∗

L2(�1)̂⊗ · · · ̂⊗H∗
L2(�N )

• the harmonic projection on � is given by

P = P1̂⊗ · · · ̂⊗PN . (17)

• a solution operator for ∂ on � is given by

S =
N−1
∑

j=0

TN , j , (18)

with

TN , j = τ j Q j ̂⊗ K j+1 ̂⊗ I j ,

where
– Q j is the harmonic projection on the domain U j = �1 ×· · ·×� j , (the product

of the first j factors),
– τ j is the map on L2∗(U j ) which multiplies forms of degree d by (−1)d ,
– I j is the identity map on forms on � j+2 × · · · × �N , and
– it is understood that TN ,0 = K1̂⊗I0 and TN ,N−1 = τN−1QN−1̂⊗KN .

• let 0 ≤ p ≤ ∑N
j=1 dimC M j ; on the space of ∂-closed (p, 1) forms on �, the

solution operator S coincides with the canonical solution operator ∂
∗
N of the

∂-equation.

In particular, this proves Theorem 1.1.

5 Partial Sobolev spaces

5.1 Definitions

Recall that for a Lipschitz domain D in R
n , and an integer k ≥ 0, the Sobolev space

W k(D) is the Hilbert space obtained by completion of C∞(D) under the norm given
by

‖ f ‖2
W k (D)

=
∑

[α]≤k

∥

∥Dα f
∥

∥

2
L2(D)

,

where α = (α1, . . . , αn) is a multi-index, [α] = α1 + · · · + αn is the length of
multi-index, and Dα is the partial derivative operator of order α:

Dα = ∂ [α]

∂α1 x1 . . . ∂αn xn
.
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We will obtain regularity estimates for the canonical solution on product domains in
a generalized type of Sobolev space suited to the product structure of the domain. We
will call these spaces partial Sobolev spaces. Such spaces are characterized by the
fact that there are some values of the integer l such that the norm controls only some
distinguished partial derivatives of order l. For the usual Sobolev space W k(D), the
norm controls either all or no derivatives of order l, depending on whether l ≤ k or
l > k.

For convenience of exposition, first consider a product domain D � R
n repre-

sented as D = D1 × D2, where D1 � R
n1 and D2 � R

n2 are Lipschitz domains,
with n = n1 + n2. Let α = (α1, . . . , αn) be a multi-index with n components. We can
write α = α(1) + α(2), where

α(1) = (α1, . . . , αn1 , 0, . . . , 0
︸ ︷︷ ︸

n2

),

and

α(2) = (0, . . . , 0
︸ ︷︷ ︸

n1

, αn1+1, . . . , αn).

Then Dα(1) acts only on the variables which come from D1 and Dα(2) acts only on the
variables that come from D2 in the product D, and we have Dα = Dα(1)Dα(2).

The ˜W k-norm of a function f ∈ C∞(D) is defined to be

‖ f ‖
˜W k (D) =

∑

[α(1)]≤k
[α(2)]≤k

∥

∥Dα f
∥

∥

2
L2(D)

(19)

Note that the ˜W k-norm dominates the ordinary W k-norm on D, and is in turn domi-
nated by the W 2k-norm.

We now define the space ˜W k(D) to be the completion of C∞(D) under the norm
(19). It is clear how to extend this definition to more than two factors: if D = D1
× · · · × DN , then the ˜W k-norm on D is defined as

‖ f ‖2
˜W k (D) =

∑

[α( j)]≤k
1≤ j≤N

∥

∥Dα f
∥

∥

2
L2(D)

,

where α( j) is the part of the multi-index α corresponding to the factor D j , defined in
analogy with the case N = 2 considered above.

5.2 Basic properties

We now summarize the basic properties of partial Sobolev space ˜W k(D), where D =
D1 × · · · × DN . From the definition, ˜W k(D) is a Hilbert space in the ˜W k-norm.
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For k = 0, the space ˜W 0(D) coincides with L2(�). In general, for each k, we have
continuous inclusions:

CNk(D) ↪→ W Nk(D) ↪→ ˜W k(D) ↪→ W k(D) ↪→ L2(D). (20)

Since
⋂

k≥0 W Nk(D) = ⋂

k≥0 W k(D) = C∞(D), it follows that

⋂

k≥0

˜W k(D) = C∞(D). (21)

The significance of these spaces is explained by:

Lemma 5.1 For j = 1, . . . , N, let � j � C
n j be a Lipschitz domain, and denote the

product by � = �1 ×· · ·×�N . Then we have an isometric equality of Hilbert spaces
of forms on �:

˜W k∗ (�) = W k∗ (�1)̂⊗ · · · ̂⊗W k∗ (�N ). (22)

Proof For simplicity of exposition, we assume N = 2. Thanks to the comments in
Sect. 3.2, in particular equation (5), it follows that we only need to show that

˜W k(�) = W k(�1)̂⊗W k(�2).

Thanks to Lemma 3.1, it follows easily by C2k approximation, that C∞(�1) ⊗
C∞(�2) is dense on each side. Therefore, all it needs to prove isometric equality is
to show that the ˜W k norm and the tensor product norm coincide on this subspace.
A computation shows that we have ‖ f ⊗ g‖

˜W k (�1×�2)
= ‖ f ‖W k (�1)

‖g‖W k (�2)
=

‖ f ⊗ g‖W k (�1)̂⊗W k (�2) ��

5.3 Partial Sobolev spaces on manifolds

When for each j , the domain � j is smoothly bounded in a hermitian manifold M j ,
we can again define the partial Sobolev space ˜W k(�) on the product. The simplest
approach is to take (22) to be the definition and deduce the description in terms of
distinguished derivatives from there. Alternatively, one can use a partition of unity to
define ˜W k(�) subordinate to a covering of � by coordinate patches.

6 Regularity results

We now prove some results regarding the regularity of the solution of the ∂-equation
on product domains. Our main tool is the operator S defined in Sect. 4.
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6.1 Proof of Theorem 1.2

By Theorem 4.7, the solution operator S on the product � coincides with the canonical
solution operator on ∂-closed (p, 1)-forms. Therefore, it is sufficient to show that S
is bounded from ˜W l

p,1(�) to itself. In fact, it is easy to see that S is bounded from
˜W l∗(�) to itself.

The regularity of the ∂-Neumann operator on W k(� j ) for each k ≥ 0 implies that
the canonical solution operator as well as the harmonic projection preserves the space
of forms with W k coefficients for each k (see [10, Theorem 6.2.2 and Theorem 6.1.4];
note that in this reference (i) the hypothesis of pseudoconvexity is used only to deduce
that the ∂-Neumann operator is bounded in each Sobolev space, and (ii) although the
arguments are stated only for domains in C

n , they generalize easily to relatively com-
pact domains in complex manifolds; for similar results on the Bergman projection,
see [5].) Since S is given by (18), in the notation of theorem 4.8, we have

TN , j = τ j Q j ̂⊗K j+1̂⊗I j

= τ j P1̂⊗ · · · Pj ̂⊗K j+1̂⊗I� j+2 · · · ̂⊗I�N ,

where Pν is the harmonic projection, Kν is the canonical solution operator and I�ν

is the identity map on L2∗(�ν). Therefore, the νth factor in the tensor product rep-
resenting TN , j is a bounded linear map on W k∗ (�ν). It follows (see Sect. 3.4) that
TN , j defines a bounded linear map from the tensor product W k∗ (�1)̂⊗ · · · ̂⊗W k∗ (�N )

to itself, i.e., it is a bounded linear map from ˜W k∗ (�) to itself. The solution operator S
being the sum of the TN , j ’s is bounded on ˜W k∗ (�). The proof is complete.

We note here that the hypothesis of Theorem 1.2 are not really necessary. All we
need to know to conclude that the canonical solution has coefficients in ˜W l(�), if
the form f has coefficients in ˜W l(�) is the following: for each j , both the canonical
solution and the harmonic projection on each factor � j preserves the Sobolev space
W l(�).

6.2 Application to products of weakly pseudoconvex domains

We now consider the ∂-equation on a product of smoothly bounded pseudoconvex
domains:

Corollary 6.1 For j = 1, . . . , N, let � j be a bounded pseudoconvex domain with
smooth boundary in a Euclidean space C

n j . For n = n1 + · · · + nN , let � ⊂ C
n be

the product domain � = �1 × · · · × �N . Then, for each k ∈ N, there is an Ck > 0
such that, if t > Ck, and we use the weight φt (z) = t |z|2 on C

n, we have

• for 1 ≤ q ≤ n, given a ∂-closed form f in the partial Sobolev space ˜W k
0,q(�),

the form u = S f is in ˜W k
0,q−1(�). The form u satisfies ∂u = f , provided f is

orthogonal to the harmonic forms.
• if q = 1, further we have that u coincides with ∂

∗
t Nt f , the canonical solution with

weight t .
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Proof By the classical solution by Kohn of the weighted ∂-Neumann problem (see [10,
Theorem 6.1.3]), for each j = 1, . . . , N , given an integer k ≥ 0, there is a C j

k > 0,

such that if t > C j
k , the ∂-Neumann operator is bounded on W k(� j ) provided the

weight is taken to be the function φ
j
t on C

n j given by φ
j
t (z) = t |z|2. The result now

follows using the same method as in Theorem 1.2, on taking Ck = max1≤ j≤N C j
k and

noting that
∑N

j=1 φ
j
t = φt . ��

Therefore, it is always possible to solve the ∂-equation in a product of pseudocon-
vex domains, with estimates in ˜W k(�) using the weight φt . Using the inclusions (20)
and standard results on interpolation, it follows that for each s ≥ 0, and the operator
S maps forms with coefficients in W s(�) to forms with coefficients in W

s
N (�). From

this, using a standard “Mittag-Leffler argument” (see [10, pp. 127ff., Proof of Theorem
6.1.1.]), one can deduce the following from Corollary 6.1:

Corollary 6.2 Under the same assumption as in Corollary 6.1, if f ∈ C∞
p,q(�), is a

∂-closed form, with q �= 0, then there exists u ∈ C∞
p,q−1(�) such that ∂u = f .

For domains which are the intersection of a finite number of smoothly bounded
pseudoconvex domains, such that the boundaries meet transversely at each point of
intersection, the existence of a solution to the ∂-equation smooth up to the bound-
ary has been obtained before [25] using integral kernels. This includes the result of
Corollary 6.2, but our method here is simpler and also leads to estimates in Sobolev
spaces.

6.3 Proof of Corollary 1.3

Fix 1 ≤ j ≤ N and let 0 ≤ p ≤ n j . The canonical solution operator on � j maps
the space C∞

p,1(�) of (p, 1)-forms smooth up to the boundary to the space C∞
p,0(�).

Using formula (3) on (p, 0) forms, we see that the harmonic projection Pj preserves
the space C∞

p,0(� j ).

By the Sobolev embedding theorem, the Sobolev norms ‖·‖W k (� j )
form a system of

seminorms which define the usual Fréchet space structure on C∞(� j ). Using a Fréchet
space version of the closed graph theorem (see e.g. [20, Theorem 3 on p. 301]), we
easily see that the map K j is continuous from C∞

p,1(� j ) to C∞
p,0(� j ) and Pj is con-

tinuous from C∞
p,0(� j ) to itself. Using the characterization of continuous linear maps

between Fréchet spaces (see [20, Proposition 2 on p. 97]), we conclude that for each
l ∈ N, there is an k = k(l, j, p) such that K j maps the Sobolev space W k

p,1(� j ) con-

tinuously to the Sobolev space W l
p,0(� j ) and Pj maps the Sobolev space W k

p,0(� j ) to

the Sobolev space W l
p,0(� j ). e can assume that for each l, the integer kl = k(l, j, p)

has been chosen to be independent of j and p. Also, since Pj is a projection, it follows
that kl ≥ l.

Using the formula (18), the argument used in the proof of Theorem 1.2 shows that
the operator S maps the Partial Sobolev space ˜W kl

p,1(�) to ˜W l
p,0(�) for each inte-

ger l. It follows from (21) that S maps C∞
p,1(�) to C∞

p,0(�). Using Theorem 4.7 the
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smoothness up to the boundary of ∂
∗
N f follows whenever ∂ f = 0 and the (p, 1)-

form f is smooth up to the boundary. The statement regarding the Bergman projection
now follows from the formula B = I − ∂

∗
N∂ = I − K∂ .

6.4 Some special product domains

We will apply our results to some special cases when the domain is not pseudoconvex
or Stein. The first case is the product of an annulus between two pseudoconvex domain
and a pseudoconvex domain.

Corollary 6.3 Let �1 = D2\D1 be the annulus between two pseudoconvex domains
D1 ⊂⊂ D2 � C

n with smooth boundary and let �2 be a bounded pseudoconvex
domain in C

m with Lipschitz boundary. Let � be the product domain � = �1 × �2.
Then the ∂ operator on L2(�) has closed range. Furthermore, for 0 ≤ p ≤ n + m,
we have

dim H p,q
L2 (�) = dim Hp,q(�) =

⎧

⎨

⎩

∞, i f q = 0;
0, i f q �= 0 or q �= n − 1;
∞ i f q = n − 1.

This corollary follows easily from the fact that ∂ has closed range on any bounded
pseudoconvex domain in C

n by Hörmander [18] (regardless of the smoothness of the
boundary) and for the annulus between smooth pseudoconvex domains (see [29,31])
for all degrees. It also follows from the Hörmander’s L2 existence theorems, the har-
monic space Hp,q(�2) on the pseudoconvex domain �2 vanishes unless p = q = 0,
when H0,0 is the space of L2 holomorphic functions. For the annulus, we have that the
cohomology Hp,q(�1) vanishes except for q = 0 and q = n − 1. Thus the corollary
follows from the theorem above.

For the annulus between two concentric balls �1 = {z ∈ C
n : 1 < |z| < 2}, the

nontrivial harmonic spaces H(p,n−1)(�1) have been computed explicitly by Hörmand-
er (see Theorem 2.2 and equation (2.3) in [19]). We can apply the corollary to the case
when � = {z ∈ C

n : 1 < |z| < 2} × {z ∈ C
m : |z| < 1} in C

n+m . In this case, the
closed range property for the ball follows from the work of Kohn [22]. For the annulus
between two balls, the closure of the range of ∂ in degree (p, q) follows from [16,
pp. 57 ff.] for q �= n − 1 and from [19] if q = n − 1. Thus ∂ has closed range in the
product domain �. The harmonic space H(0,0) on � is spanned by the monomials in
C

m+n . The other nontrivial harmonic spaces H(p,n−1)(�) can be expressed explicitly
as the Hilbert tensor products of harmonic forms H(p,n−1)(�1) with monomials in
C

m . We can therefore obtain a complete description of the harmonic forms in terms
of Hilbert tensor products of spaces. Moreover, we have the following existence and
regularity results for the ∂-operator.

Corollary 6.4 Let � = {z ∈ C
n : 1 < |z| < 2} × {z ∈ C

m : |z| < 1} = �1 × �2 �
C

n+m, n ≥ 1 and m ≥ 1. Then the ∂-Neumann operator N exists on �. For any
(p, q)-form f with ˜W k(�) (or C∞(�)) coefficients, where k is any nonnegative inte-
ger and 1 ≤ q ≤ n + m, such that ∂ f = 0 and f ⊥ Hp,q , there exists a solution u
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which has ˜W k(�) (or C∞(�)) coefficients with ∂u = f in �. If q = 1, we can choose
u = ∂

∗
N f to be the canonical solution.

This answers the question posed by X. Chen. Another interesting case is when
one of the factors in the product is a compact manifold. In this case, the domain is
pseudoconvex in the sense of Levi, but not Stein. Our theorem can also be applied to
the following case.

Corollary 6.5 Let � = �1 × M be the product of a bounded pseudoconvex domain
�1 in C

n and let M be a compact complex hermitian manifold. Then the ∂ operator
on L2(�) has closed range and the Harmonic spaces satisfy the Künneth formula

H∗(�1) ⊗ H∗(M) = H∗(�). (23)

In this case, the space H∗(M) is finite dimensional and the Hilbert Tensor product
coincides with the algebraic tensor product. In particular, ∂ has closed range on the
product D × CP

1 of the disc and the Riemann sphere, each with its natural metric,
thus answering a question raised by J. Cao.
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