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Topology of Dolbeault cohomology groups
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Abstract. In this paper we give a systematic discussion of the Hausdorff
property for Dolbeault cohomology groups on a domain in a complex manifold.

1. Introduction

A fundamental problem in function theory on a domain Ω in a complex manifold
is the Cauchy-Riemann operator, or the ∂-equation. The understanding of the
existence and regularity of the solutions of the system of inhomogeneous Cauchy-
Riemann equations on Ω plays central role in complex analysis. The obstruction to
the solvability of the Cauchy-Riemann equations (in a given topology) is measured
by the Dolbeault Cohomology. We consider cohomology with respect a cohomological
complex (E∗, ∂), i.e., we are given for each bidegree (p, q) a topological vector space
Ep,q of (p, q)-forms, such that the operator ∂p,q mapping Ep,q to Ep,q+1 is closed.
Then the Dolbeault Cohomology group of degree (p, q) with respect to E∗ is defined
to be:

Hp,q(Ω; E∗) =
ker(∂p,q : Ep,q → Ep,q+1)

Range(∂p,q−1 : Ep,q−1 → Ep,q)
,

which is a topological vector space with the quotient topology.
Such a quotient is Hausdorff if and only if the range ∂p,q−1 : Ep,q−1 → Ep,q

is closed. The property of ∂ having closed range has important consequences for
function theory on the manifold. First of all, it gives the solution to the ∂-operator
from functional analysis point of veiw. It also has other applications. For exam-
ple, closed range in appropriate degrees implies certain kinds of duality between
cohomology groups, the prototype of this kind of result being the classical Serre
duality theorem (see [Ser55]). Furthermore, in the L2 setting, such closed range
implies the existence of a canonical solution, i.e., a solution with smallest L2-norm.
More generally, closed range of ∂ and the corresponding Hausdorff property for the
groups is equivalent to solving the ∂-problem with estimates in a given topology.

Among the topologies on the spaces of forms are the C∞ forms with its natural
Fréchet topology. This is the classical Dolbeault cohomology groups. We can also
consider the space of forms smooth up to the boundary (with its natural topology),
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the space of forms with L2 or the space of forms with compact support and so on.
A general form of duality may be formulated between these spaces (see Laurent-
Shaw [LTS13] for a systematic discussion of these spaces and their duals.) The
main purpose of this paper is to compare Dolbeault cohomology groups in different
topological spaces.

On bounded pseuedoconvex domains in Cn, or more generally relatively com-
pact pseudoconvex domains in Stein manifolds, the classical work of Kohn and
Hörmander studies the vanishing of Dolbeault cohomology groups with L2-methods.
The following L2 existence and regularity theorems for ∂ on pseudoconvex domains
in Cn (or a Stein manifold X ) are well known. We use Hp,q(Ω) or Hp,q(Ω) to
denote the cohomology group of (p, q)-forms with C∞(Ω) coefficients or C∞(Ω)
respectively. If X is hermitian, we use Hp,q

L2 (Ω) to denote the cohomology group of
(p, q)-forms with L2 coefficients.

Theorem 1.1 (Hörmander [Hör65]). Let Ω ⊂⊂ Cn be a bounded pseudo-
convex domain. We have

Hp,q
L2 (Ω) = 0. q ≥ 1.

Thus the range of ∂ in L2
(p,q)(Ω) is equal to the kernel of ∂. Furthermore, if we

assume that the boundary bΩ is smooth, the following global boundary regularity
results also hold for ∂.

Theorem 1.2 (Kohn [Koh63, Koh73]). Let Ω ⊂⊂ Cn be a pseudoconvex
domain with smooth boundary bΩ. We have

Hp,q(Ω) = 0, q ≥ 1.

Thus for a bounded smooth pseudoconvex domain in Cn (or in a Stein manifold
with a hermitian metric), all the cohomology groups vanish and we have

Hp,q(Ω) = Hp,q
L2 (Ω) = Hp,q(Ω) = 0, q > 0.

In fact, it can be shown that for any bounded Lipschitz domain Ω which is not pseu-
doconvex in C2, the L2 ∂-operator does not have closed range from L2 to L2

(0,1)(Ω).

Thus the Dolbeault cohomology H0,1
L2 (Ω) is non-Hausdorff. This and several new

examples of this phenomenon were recently obtained in [LTS13] (see also Theorem
3.2 in this paper). Moreover there are other properties of the Dolbeault groups
which are related to the boundary smoothness and the function theory on a do-
main. In other words, even for domains in Cn, we do not know the topology of many
simple examples in various function spaces. Much less is known for domains in com-
plex manifolds which are not Stein. However, examples have been known for a long
time for pseudoconvex domains in which the Dolbeault cohomolgy in Fréchet or L2

space is not Hausdorff, or equivalently, the ∂-operator does not have closed range
(see Serre [Ser55] or Malgrange [Mal75]). Recent results by Chakrabarti-Shaw
[CS13] show that ∂ does not have closed range in L2 on a general pseudoconvex
domain Ω in a complex manifold, even if the domain Ω is Stein and with smooth
boundary. In other words, the L2 Dolbeault cohomology for a Stein domain could
be non-Hausdorff even though the classical Dolbeault cohomology group vanishes
in the Fréchet topology. All these examples provide interesting leads for further
exploration.

In this paper we survey some recent results on the Hausdorff property for
Dolbealt cohomology groups using L2 methods. We first formulate the maximal
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closure of ∂ and the minimal L2 closure ∂c, the closure for forms with compact
support and discuss the dual relations between ∂ and ∂c. From this formulation,
a simple proof for the L2 version of the Serre duality theorem will be obtained via
the Hodge star operator directly. In Section 3 we discuss some recent results on
Dolbeault coholomology groups with respect to various topological complexes, and
obtain information regarding the non-closed range property on ∂ in the L2 setting
in Cn. In Section 4, we give an example of a pseudoconvex domain which is Stein,
but whose ∂ does not have closed range in L2. In the last section, we analyze
holomorphic functions on domains with Levi-flat boundaries in complex manifolds
and use it to prove the non-Hausdorff property of some Dolbeault cohomology
group.

2. The L2 ∂ problem in complex manifolds

Let X be a complex hermitian manifold of dimension n ≥ 2 and let Ω be a
relatively compact domain in X . Let L2

(p,q)(Ω) be the space of (p, q)-forms with

L2 coefficients in Ω. We recall the ∂-Neumann problem and its dual the ∂-Cauchy
problem on Ω. Let ∂ be the maximal closure of the ∂ operator

∂ : L2
(p,q−1)(Ω) → L2

(p,q)(Ω)

Let ∂c be the (strong minimal) closure of the ∂ operator

∂c : D(p,q−1)(Ω) → D(p,q)(Ω)

where D is the set of compactly supported functions in Ω. By this we mean that ∂c is
the minimal closed extension of the operator such that Dom(∂c) contains D(p,q−1).

The Dom(∂c) contains elements f ∈ L2
(p,q−1)(Ω) such that there exists sequence

fν ∈ D(p,q−1)(Ω) such that fν → f in L2
(p,q−1)(Ω) and ∂fν → ∂f in L2

(p,q)(Ω). The

∂c operator is a closed operator. It is related to solving ∂ with vanishing boundary
data in the weak sense and we refer it as the ∂-Cauchy problem.

The L2 adjoint of ∂ is denoted by ∂
∗
, the Hilbert space adjoint. Let ϑ denote

the weak maximal closure of the formal adjoint ϑ defined on Dom(ϑ) = {f ∈
L2

(p,q)(Ω) | ϑf ∈ L2
(p,q−1)(Ω)}. Similarly, we also define ϑc as the strong minimal

closure of ϑ by approximation in the graph norm of compactly supported smooth
forms only.

Recall that the complex Hodge star operator ⋆ = ∗̄ where ∗ is the Riemannian
Hodge star opearator. Then for any L2

(p,q)-form f and L2
(n−p,n−q)-form g, we have

(⋆f, g)|Ω = (−1)p+q

∫

Ω
g ∧ f =

∫

Ω
f ∧ g.

The following lemma follows directly from the definition.

Lemma 2.1. The operator ∂
∗

is equal to the strong minimal closure ϑc. Simi-
larly, the operators ∂c and ϑ are Hilbert space adjoints to each other. i.e., ∂c = ϑ∗.
An L2 form f ∈ Dom(∂c) if and only if ⋆f ∈ Dom(∂

∗
) and ∂c = ⋆∂

∗
⋆.

Lemma 2.2. Let Ω be a relatively compact domain in X . The following condi-
tions are equivalent

(1) ∂ : L2
(p,q−1)(Ω) → L2

(p,q)(Ω) has closed range.

(2) ∂c : L2
(n−p,n−q)(Ω) → L2

(n−p,n−q+1)(Ω) has closed range.
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Proof. From Lemma 2.1, we have that f ∈ Dom(∂c) if and only if ⋆f ∈
Dom(∂

∗
). Suppose (1) holds. Then ∂

∗
: L2

(p,q)(Ω) → L2
(p,q−1)(Ω) has closed range.

Thus we have ⋆∂
∗
⋆ = ∂c has closed range. Thus (1) implies (2). The other direction

is proved similarly. !

Let ! = ∂∂
∗

+ ∂
∗
∂ be the ∂-Laplacian. Recall that the inverse of !, denoted

by the ∂-Neumann operator N(p,q), exists if and only if ∂ : L2
(p,q−1)(Ω) → L2

(p,q)(Ω)

and ∂ : L2
(p,q)(Ω) → L2

(p,q+1)(Ω) have closed range (see [CS01]). Let H(p,q)(Ω)

denote the space of harmonic (p, q)-forms, i.e.,

H(p,q)(Ω) = {h ∈ L2
(p,q)(Ω) ∩ Dom(∂) ∩ Dom(∂

∗
) | ∂h = 0, ∂

∗
h = 0}.

We formulate the ∂c-Laplacian similarly by setting !c = ∂c∂
∗
c + ∂

∗
c∂c as the closed

operator defined on

Dom(!c) = {f ∈ L2
(p,q)(Ω) | f ∈ Dom(∂c) ∩ Dom(∂

∗
c),

∂cf ∈ Dom(∂
∗
c), ∂

∗
cf ∈ Dom(∂c).}

It is a closed densely defined operator on L2
(p,q)(Ω). We define the Ker(!c) to be

the corresponding harmonic forms, denoted by Hc
(p,q)(Ω). Thus

Hc
(p,q)(Ω) = Ker(!c) = {f ∈ Dom(∂c) ∩ Dom(d∗c), ∂cf = 0, ∂

∗
cf = 0}.

Following the same arguments as for the ∂-Neumann problem, if the range of !c is
closed, then there exists an inverse operator, denoted by Nc

(p,q) which is bounded

on L2
(p,q)(Ω) and vanishes on Hc

(p,q)(Ω).

Definition. We define the L2 cohomology group for (p, q)-forms by

Hp,q
L2 (Ω) =

{f ∈ L2
(p,q)(Ω) | ∂f = 0 in X}

{f ∈ L2
(p,q)(Ω) | f = ∂u for some u ∈ L2

(p,q−1)(Ω)}
.

We also define the L2 cohomology group with compact support by

Hp,q
c,L2(Ω) =

{f ∈ L2
(p,q)(Ω) | f ∈ Dom(∂c), ∂cf = 0 in Ω}

{f ∈ L2
(p,q)(Ω) | f = ∂cu in Ω for some u ∈ L2

(p,q−1)(Ω) ∩ Dom(∂c)}
.

Using the Hodge star operator, we see that !c and ! are naturally related.

Theorem 2.3. Let Ω be a relatively compact domain with Lipschitz boundary
in a complex hermitian manifold X . Then for each 0 ≤ p ≤ n and 1 ≤ q ≤ n,
f ∈ Dom(!(p,q)) if and only if ⋆f ∈ Dom(!c) ∩ L2

(n−p,n−q). In particular, we have

⋆! = !c ⋆ on Dom(!).

The ∂̄-Neumann operator N(n−p,n−q) exists on L2
(p,q)(Ω) if and only if the ∂-Cauchy

operator Nc
(n−p,n−q) exists for L2

(n−p,n−q)(Ω) with

⋆Nc
(n−p,n−q) = N(p,q) ⋆ .

This theorem follows easily from Lemma 2.1 and Lemma 2.2. It immediately
gives the following L2 version of the Serre duality theorem.
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Corollary 2.4 (L2 Serre Duality). Let Ω be a relatively compact domain in a
complex hermitian manifold X . Suppose that the ∂-Neumann operator N(n−p,n−q)

exists for some 0 ≤ p ≤ n and 0 ≤ q ≤ n. We have

H(p,q)(Ω) ≃ Hc
(n−p,n−q)(Ω)

and
Hp,q

L2 (Ω) ≃ Hn−p,n−q
c,L2 (Ω).

This corollary follows Theorem 2.3 and the Hodge theorem. If N(n−p,n−q)

exists, then the Hodge theorem implies Hp,q
L2 (Ω) ≃ H(p,q)(Ω) and Hn−p,n−q

c,L2 (Ω) ≃
Hc

(n−p,n−q)(Ω). For details of the proof, see [CS11].

Let ∂s be the strong L2 closure of ∂. A form f ∈ Dom(∂s)∩L2
p,q(D) if and only

if there exists a sequence fν ∈ C∞
p,q(X) such that fν → f and ∂fν → ∂f in L2(D)

strongly. We denote the L2 adjoint of the strong closure ∂s by ∂
∗
s. It is well-known

that Dom(∂s) ⊂ Dom(∂). If the boundary is Lipschitz as a Lipschtiz graph locally,
then the strong closure is equal to the weak closure ∂s = ∂ (see [CS01]). Similarly,
we define ϑs as the strong L2 closure of ϑ.

Lemma 2.5. Let Ω be a relatively compact domain with Lipschitz boundary in
X . Then f ∈ Dom(∂c) if and only if f ∈ L2

(p,q−1)(Ω) and ∂f0 ∈ L2(X ) where f0 is

the extension of f to be zero outside Ω and ∂f0 = (∂cf)0. In particular, the strong
minimal closure ∂c is equal to the weak minimal closure ϑ∗

s and we have ∂c = ϑ∗
s

and ∂
∗
c = ϑs.

From now on we will simply use ∂cf instead of ∂cf0 whenever the derivative is
taking in the whole space. We will apply the L2 Serre duality to study holomorphic
extension of CR functions. This extends the results of the work by Kohn-Rossi
[KR65] where extension of smooth functions are discussed. Let Ω be a bounded
domain with Lipschtiz boundary bΩ. Let f be a function defined on the boundary
bΩ. We recall the following definition for L2 CR functions.

Definition. An function f in L2(bΩ) is CR if f is annihilated by the tangential
Cauchy-Riemann equations in the weak sense. By this we mean that

∫

bΩ
f ∧ ∂φ = 0

for any smooth (n, n − 1)-form φ smooth in a neighborhood of bΩ.

Theorem 2.6. Let X be a complex hermitian manifold of dimension n ≥ 2. Let
Ω be a relatively compact domain in X with Lipschitz boundary. We assume that the
∂̄-Neumann operator N(n,n−1) in Ω exists and assume that H(n,n−1)(Ω) = {0}. For

every CR function f ∈ W
1
2 (bΩ), one can find a holomorphic function F ∈ W 1(Ω)

such that F = f on bΩ.

Proof. By our assumption, the ∂̄-Neumann operator N(n,n−1) in Ω exists and
H(n,n−1)(Ω) = {0}. From the L2 Serre Duality, we have

(2.1) Hc
(0,1)(Ω) = H0,1

c,L2(Ω) = {0}.

For any CR function or form f with W
1
2 (bΩ) coefficients, we extend f to be f̃ ∈

W 1(Ω). This can be done since the boundary is Lipschitz. Let g = ∂f̃ . Then g is
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in L2
(0,1)(Ω) ∩ Dom(∂c) and ∂cg = 0. Thus from (2.1), there exists an u such that

∂cu = g. This implies that F = f̃ − g is holomorphic and F = f on the boundary
bΩ. This proves the theorem. !

Corollary 2.7. Suppose that bΩ is smooth. Then there exists a small ϵ > 0
such that for every CR function f ∈ W

1
2−ϵ(bΩ), one can extend f holomorphically

into Ω.

If the boundary is smooth, the ∂̄-Neumann operator N(n−p,n−q) is regular for
some small ϵ > 0. This is true for pseudoconvex domains in Cn (see [BC00] or
[CSW04]). For domains in complex manifolds, this follows from the arguments in
Kohn-Nirenberg [KN65]. Then we use the arguments in Theorem 2.6 to see that
one can extend any CR functions in W

1
2−ϵ(bΩ).

3. On the Hausdorff property for Dolbeault cohomology groups for
domains in Cn

Let Ω be a domain in a complex manifold X . Suppose X is Stein. It is well-
known that Hp,q(Ω) = 0 for all q ≥ 1.

Theorem 3.1. Let X be a complex hermitian manifold and let Ω be a relatively
compact domain with Lipshitz boundary in X. Suppose that Hn,1

c (X) = 0 and X \Ω
is connected. Then either H0,n−1

L2 (Ω) = 0 or H0,n−1
L2 (Ω) is not Hausdorff.

Proof. If f ∈ L2
(n,1)(Ω) with ∂cf = 0, we may first assume that f is smooth.

Using the assumption Hn,1
c (X) = 0, there exists u with compact support in X

such that ∂cu = 0. This implies that u is analytic outside its support. Thus
from analytic continuation and interior regularity for ∂, we have u = 0 in X \ Ω
since X \ Ω is connected. We have that u has compact support in Ω. By the
regularity for ∂, we have Hn,1

c,L2(Ω) = 0 (for details for the proof, see [LTS13]).

Thus ∂c : L2
(n,0)(Ω) → L2

(n,1)(Ω) has closed range and it is equal to the Ker(∂c).

From the L2 duality, this gives that

∂ : L2
(0,n−1)(Ω) → L2

(0,n)(Ω)

has closed range. Suppose ∂ : L2
(0,n−2)(Ω) → L2

(0,n−1)(Ω) has closed range. The

∂-Neumann operator N(0,n−1)(Ω) exists and from the L2 Serre duality (Corollary
2.4),

Hn,1
c,L2(Ω) = H0,n−1

L2 (Ω) = 0.

On the other hand, if ∂ : L2
(0,n−2)(Ω) → L2

(0,n−1)(Ω) does not have closed range,

we have that H0,n−1
L2 (Ω) is not Hausdorff. The theorem is proved. !

The following theorem gives a simple criterion for closed range property for ∂̄
for domains in C2.

Theorem 3.2. Let Ω be a bounded domain in C2 with Lipschitz boundary such
that C2 \ Ω is connected. Then ∂ : L2(Ω) → L2

(0,1)(Ω) has closed range if and

only if Ω is pseudoconvex. In particular, if Ω is not peudoconvex, then H0,1
L2 (Ω) is

non-Hausdorff. Suppose Ω is not pseudoconvex, then H0,1(Ω) is non-Hausdorff.
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Proof. It follows from Höremander that if Ω is pseudoconvex, then H0,1
L2 (Ω) =

0. This is also necessary for the domain with Lipschitz boundary (see Fu [Fu05]).
On the other hand, if the range of ∂ : L2(Ω) → L2

(0,1)(Ω) is not closed, then H0,1
L2 (Ω)

is not zero, thus non-Hausdorff. The result is also true for Dolbeault cohomology
in the Fréchet space from similar arguments (see [LTS13]).

!

Note that earlier known non-closed range example in Cn was given in Folland-
Kohn’s book [FK72]. Our results show that from L2 duality, any bounded non-
pseudoconvex domain with Lipschitz boundary will provide such an example. We
also remark an earlier papers by Laufer [Lau67, Lau75] show that if Ω is not
pseudoconvex, then H0,1(Ω) is infinite dimensional. In fact, it was even proved
by Siu [Siu67] that H0,1(Ω) cannot be countably infinite dimensional. Our simple
duality arguments actually gives the non-Hausdorff property.

In the case of Hausdorff property for H0,1(Ω) for pseudoconvex domain Ω with
non-smooth boundary, Kohn’s result does not always hold in this case. We first
recall a theorem by Dufresnoy [Duf79] states that for any bounded pseudoconvex
domain in Cn with a “nice” Stein neighborhood basis, H0,1(Ω) = 0. But this is
not the case if the domain is non-smooth and does not have a Stein neighborhood
basis. The prototype non-smooth domain with no Stein neighborhood basis is the
Hartogs triangle. We will discuss some known results for ∂ on Hartogs triangle sinc
it provides some insights to the subtlety of the problem.

Consider the Hartogs triangle

H = {(z1, z2) ∈ C2 | |z1| < |z2| < 1}.

The Hartogs triangle and it smooth cousins, the Diederich-Fornaess worm domains,
provide many counter examples for function theory on pseudoconvex domains in
Cn. The Hartogs triangle is not smooth at (0,0), where it is not even Lipschitz (as
a graph). The map

(z1, z2) → (
z1

z2
, z2)

maps the Hartogs domain bi-holomorphically to a product domain D × D∗, where
D∗ is the punctured disc. In [CS12], we use the weighted space to study the
∂-Neumann operator on the Hartogs triangle.

However, one does have almost smooth solutions to the problem in the following
sense. Let Ck,α(H) denote the Hölder space of restriction of functions in C2 whose
k-th derivatives are Cα in Ck,α(C2) to H. Let Hp,q

Ck,α(H) denote the Dolbeault

cohomology of (p, q)-forms with Ck,α(H) coefficients. Using the integral kernel
method, Chomat-Chollet prove the following results.

Theorem (see [CC91]). For every k ∈ N and 0 < α < 1, H0,1
Ck,α(H) = 0, but

H0,1(H) is infinite dimensional.

Notice that the intersection ∩kCk,α(H) = C∞(H). In other words, for each
k, one can have a solution operator bounded in Ck,α(H). But the solution oper-
ator is different for each k. This shows the delicate nature of such problem on
non-Lipschitz domains. On the other hand, it is still an open question if Ω is a
bounded pseudoconvex domain in Cn with Lipschitz boundary, one can conclude
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that Hp,q(Ω) = 0 for q ≥ 1. The following related result is proved in Laurent-Shaw
[LTS13].

Theorem 3.3. Let Ω = Ω1 \ H be the annulus between a pseudoconvex domain
Ω1 and H with H ⊂⊂ Ω1 ⊂⊂ C2. Then the Dolbeault cohomology group H0,1(Ω) is
non-Hausdorff.

We do not know if the corresponding L2 cohomology is non-Hausdorff. If the
domain is an annulus has C2-smooth boundary in the interior boundary, the closed
range property for ∂ has been established earlier in [Sha85,Sha10].

Theorem 3.4. Let Ω ⊂⊂ Cn be the annulus domain Ω = Ω1 \ Ω
−

between
two pseudoconvex domains Ω1 and Ω− where Ω− ⊂⊂ Ω1 and Ω− has C2 boundary.
Then the ∂-Neumann operator N(p,q) exists on L2

(p,q)(Ω) for 0 ≤ p ≤ n and 0 ≤
q ≤ n. For any f ∈ L2

(p,q)(Ω), we have

f = ∂
∗
∂N(p,0)f + H(p,0)f, q = 0.

f = ∂∂
∗
N(p,q)f + ∂

∗
∂N(p,q)f, 1 ≤ q ≤ n − 2.

f = ∂∂
∗
N(p,n−1)f + ∂

∗
∂N(p,n−1)f + H(p,n−1)f, q = n − 1.

f = ∂∂
∗
N(p,n)f, q = n.

We have used the notation H(p,q) to denote the projection operator from L2
(p,q)(Ω)

onto the harmonic space H(p,q)(Ω) = ker(!(p,q)).

For a proof of Theorem 3.4, see [Sha85] and [Sha10]. We can further es-
tablish the isomorphism between the spaces Hp,n−1

L2 (Ω) and the Bergman space
H(n−p,0)(Ω−) (see Theorem 3.1 in [Sha11]).

Theorem 3.5. Let Ω ⊂⊂ Cn be the annulus domain Ω = Ω1 \Ω−
between two

pseudoconvex domains Ω1 and Ω−, where Ω− ⊂⊂ Ω1, n ≥ 2. We assume that the
boundary of Ω− is C2 smooth. Then we have the isomorphism:

(3.1) Hp,n−1
L2 (Ω) ≃ H(n−p,0)(Ω

−).

Theorem 3.5 is inspired by the paper of Hörmader [Hör04], where he proves
the isomorphism explicitly between two concentric balls. We do not know if we can
relax the condition on the smoothness of Ω−. Another interesting problem to ask
is the following question.

Theorem (Chinese Coin Problem). Let Ω = B2(0) \ D
2

where B2(0) is a ball
of radius 2 centered at 0 and D2 is the bidisc contained in B. Determine if H0,1

L2 (Ω)
is Hausdorff.

The domain has the abstract shape of an ancient Chinese coin. We remak
that the corresponding Dolbeault cohomology H0,1(Ω) is Hausdorff (see Laurent-
Leiterer [LTL00]). The Hausdorff property for this domain is related to the W 1

estimates for the bidisc, which is still unknown. From the work by Chakrabarti-
Shaw [CS11] on product domains, regularity for W̃ s is obtained where W̃ s is the
special Sobolev space of order s ∈ N. We remark that we do have the following
isomorphism (see Theorem 2.2 in [Sha11]):

(3.2) Hp,n−1
W 1 (Ω) ≃ H(n−p,0)(Ω

−).
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The question is whether we have the following isomorphism:

H(p,n−1)
W 1 (Ω) ≃ H(p,n−1)(Ω).

We are only beginning to understand these cohomology groups and their relations
with each other.

4. Non-closed range property for ∂ on pseudoconvex domains in
complex manifolds

When X is a Hermitian complex manifold and Ω ⊂⊂ X is a pseudoconvex
domain with smooth boundary, the ∂ problem is very different. We first note that
if Ω is strongly pseudoconvex, Grauert proves that the ∂ has closed range in the
Frechét spaces. If the domain Ω is relatively compact strongly pseudoconvex, or
more generally of finite type with smooth boundary, the closed range property for
the ∂ equation in the L2 setting has been established by Kohn [Koh73] via the
∂-Neumann problem. There have been numerous work in the study of the existence
and regularity of ∂, we refer the reader to the books by Chen-Shaw [CS01] and
Boas-Straube [BS91], [BS99] and Straube [Str10] for references.

For general complex manifolds, function theory on pseudocnvex domains on
general complex manifolds can be quite different from that of Stein manifolds.
Grauert (see [Gra58]) first gives an example of a pseudoconvex domain Ω in a
complex torus which is not holomorphically convex. He shows that the only holo-
morphic function on Ω are constants. The domain in the Grauert’s example actually
has Levi-flat boundary. The boundary splits the complex two torus into two sym-
metric parts. Based on the examples of Grauert, Malgrange proves the following
theorem.

Theorem (Malgrange [Mal75]). There exists a pseudoconvex domain Ω with
Levi-flat boundary in a complex torus of dimension two whose Dolbeault cohomology
group Hp,1(Ω) for every 0 ≤ p ≤ 2 is non-Hausdorff in the Fréchet topology.

Malgrange shows that for some Grauert’s example, the ∂ equation does not
necessarily have closed range in the Frechét space and the corresponding Dolbeault
cohomology Hp,1(Ω) is non-Hausdorff. The domain Ω is not holomorphically con-
vex. Recently Chakrabarti-Shaw show that there exists a domain D∞ in a complex
manifold with Levi-flat boundary such that D∞ is Stein, but the ∂ equation does
not have closed range in L2

2,1(D∞). The domain D∞ is defined as follows.
Let α > 1 be a real number and let Γ be the subgroup of C∗ generated by α

We will standardize α = e2π. Let T = C∗/Γ be the torus.
Let X = CP 1×T be equipped with the product metric ω from the Fubini-Study

metric for CP 1 and the flat metric for T . Let D∞ be the domain in X defined by

(4.1) D∞ = {(z, [w]) ∈ CP 1 × T | ℜzw > 0}
where z is the inhomogeneous coordinate on CP 1. The domain D∞ was first
introduced by Ohsawa [Ohs82] and used in Barrett [Bar86].

Theorem (Ohsawa [Ohs82]). The domain D∞ is biholomorphic to a product
domain of an annulus and puctured disc in C2. In particular, D∞ is Stein.

The domain D∞ is Stein, we have

Hp,q(D∞) = 0, q > 0.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



220 MEI-CHI SHAW

The following results have been obtained recently by Chakrabarti-Shaw.

Theorem 4.1 (see [ChS4]). The range of ∂ : L2
(2,0)(D∞) → L2

(2,1)(D∞) is not

closed. In particular, the space H2,1
L2 (D∞) is non-Hausdorff.

Theorem 4.1 shows that on a pseudconvex domain in a complex manifold X,
there is no connection of the Dolbeault cohomology groups in the classical Fréchet
spaces and the L2 spaces. This is in sharp contrast with the case when the manifold
X is Stein. We note that D∞ is Stein, but the ambient space X is not Stein. The
idea of the proof is to use the L2 Serre duality and the extension of holomorphic
functions. For details of the proof of the theorem, we refer the reader to [CS13].

Let ∂c be the minimal closure of the ∂ operator for compactly supported forms
in D∞. The following lemma was proved in [ChS4].

Lemma 4.2. Suppose that operator ∂c : L2(D∞) → L2
0,1(D∞) has closed range

in L2
0,1(D∞). Then we have

(4.2) H0,1
c,L2(D∞) =

Ker(∂c) ∩ L2
0,1(D∞)

Range(∂c)
= {0}.

Suppose that ∂ : L2
(2,0)(D∞) → L2

(2,1)(D∞) has closed range. Then ∂c :

L2(D∞) → L2
0,1(D∞) has closed range. From the Hodge theorem,

H2,1
L2 (D∞) ≃ H2,1(D∞).

From the L2 Serre duality, we have

(4.3) H0,1
c (D∞) ≃ H2,1(D∞) ≃ H2,1

L2 (D∞) = {0}.

Thus on D∞, we have either H2,1
L2 (D∞) = {0} or H2,1

L2 (D∞) is not Hausdorff.
The boundary bD∞ has two tori, which divide the boundary into two disjoint
parts. Thus there exists a CR function which is constant on each disjoint part.
By analyzing the holomorphic extension of CR functions on bD∞ (see Corollary
5.4 and Proposition 5.5), we conclude using Corollary 2.7 that H2,1

L2 (D∞) cannot
be zero, hence non-Hausdorff. In the next section, we will analyze holomorphic
functions on the domain D∞.

Remark: It is still an open question if ∂ : L2
p,0(D∞) → L2

(p,1)(D∞) has closed
range or not for p = 0 or p = 1.

5. Holomorphic functions on domains with Levi-flat boundary

The examples in [Gra58] [Mal75] or [ChS4] are all pseudoconvex domains
with Levi-flat boundary. Such domains are both pseudoconvex and pseudoconcave.
These domains provide interesting examples to show that function theory on pseu-
doconvex domains in a non-Stein manifold is very different from the Stein case.
In this section, we will analyze holomorphic functions on domains with Levi-flat
boundary.

Let Ω be a relatively compact domain in a complex manifold X . We assume
that the boundary is smooth and Levi-flat. This implies that locally it is foliated by
complex submanifolds of dimension n−1. We can also define Levi-flat hypersurfaces
for Lipschitz boundary (see [CS07]). Let O(Ω) be the set of holomorphic functions
on Ω.
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Lemma 5.1. Let Ω be a relatively compact domain in a complex manifold X
with Levi-fflat boundary. Suppose that h ∈ O(Ω) ∩ W 1+ϵ(Ω) for some ϵ > 0. Then
h is Hölder continuous on the boundary.

Proof. This is essentially a Sobolev embedding theorem for Levi-flat hyper-
surfaces. From the trace theorem, we have that the restriction of h to the boundary
is in W

1
2+ϵ(bΩ). Locally in a neighborhood U near a point p in the boundary, bΩ∩U

is foliated by complex submanifold Σt, where 0 < t < δ, i.e.,

(5.1) bΩ ∩ U = ∪tΣt.

Denote (z′, t) as the local coordinates on bΩ ∩ U . If we restrict the function h to
each leaf, it is in W ϵ(Σt). Since the function h is CR on the boundary, it satisfies
the Cauchy-Riemann equations on each leaf

∂̄z′h(z′, t) = 0, on Σt.

Using the regularity for the Cauchy-Riemann equations, we see that h is holomor-
phic on each leaf. This implies that h is bounded on bΩ ∩ U . It remains to see
h is Hölder continuous. This is done by using the arguments similar to the proof
of Lemma 5.2 and Lemma 5.3 in [CSW04]. We refer the reader to the paper for
details. !

Let D∞ be the domain in X defined as in (4.1). The domain D∞ is biholomor-
phic to the product domain Ω in C2 where

(5.2) Ω = C∗ × A = C∗ × {w ∈ C | e−
π
2 < |w| < e

π
2 }

via the map Φ : Ω → D∞ defined by

(5.3) Φ : (z, w) → (z, [z−1eiw]).

Theorem 5.2. Let O(D∞) be the set of holomorphic functions on D∞. Then

(1) O(D∞) separates points,.
(2) There exist non-constant bounded holomoprhic functions on D∞.
(3) There exist no non-constant holomorphic function in D∞ which is con-

tinuous up to the boundary bD∞.

Proof. Since the domain D∞ is biholomorphic to the product of two circular
domains, using Fourier series expansion, any holomorphic functions on Ω admits a
Laurent expansion. Let (z̃, w̃) be coordinates on Ω. Then any holomorphic function
h on Ω can be expressed as

h(z̃, w̃) = →
m,n∈Z

∑
hm,nz̃m(w̃)n.

From (5.3), we have that any holomorphic function h ∈ O(D∞) admits an expansion
of the form

(5.4) h(z, [w]) = →
m,n∈Z

∑
hm,nzm(zw)in.

The term (zw)in is well defined since ℜzw > 0 and (zwe2π)in = (zw)in. The term
(zw)i = ei log(zw) is bounded by e

π
2 . Thus all the functions (zw)in are bounded

holomorphic functions on D∞.
The boundary bD∞ of D∞ is Levi-flat since it is defined by the real part of a

holomorphic function locally. This shows that locally the boundary is foliated by
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complex curves. The boundary bD∞ consists of two torus T0 (when z = 0) and T∞
(when z = ∞). We parametrize the boundary bD∞ \ {T0, T∞} by

(r, θ, τ ) ∈ (0,∞) × S1 × S1× → (z, [w]) = (reiθ, ieτ (r−1e−iθ)]).

Let Σt ⊂ bD∞ be the complex curve defined by

[w] = [z−1ieτ ] = [
it

z
], e−π < eτ = t < eπ, z ∈ C∗.

Then the boundary bD∞ is the union of complex curves

bD∞ = ∪t>0Σt ∪ T0 ∪ T∞.

If f is a continuous CR function on bD∞, then f must be constant on T0 and T∞.
Since each leave Σt is biholomorphic to the punctured disc C∗, the continuous CR
function f must be a constant on each leaf Σt for each t > 0. The closure of each
Σt intersect T0 and T∞, we conclude that f must be constant on bD∞. We remark
that (3) has already been observed in [Bar86]. !

We next discuss the existence and nonexistence of holomorphic functions in L2

and Sobolev spaces.

Theorem 5.3. On D∞, we have

(1) O(D∞) ∩ L2(D∞) is infinite dimensional but does not separates points.
(2) O(D∞) ∩ W 1(D∞) = {C}.
(3) For any 0 < ϵ ≤ 1, the set O(D∞) ∩ W 1−ϵ is infinite dimensional.

Proof. From the Fourier expansion (5.4) for any holomorphic function in D∞,
we see that the term z−1 /∈ L2(D∞). We also can check that the function z is not
in L2 at ∞ for the same reason. Thus the term zm is in L2(D∞) only when m = 0.
This shows that the set O(D∞) ∩ L2(D∞) consists of functions of the form

(5.5) h(z, [w]) = →
n∈Z

∑
cn(zw)in.

This set is infinite dimensional and does not separate points.
Further inspection shows that the holomorphic (zw)in is not in W 1(D∞) for

each n ̸= 0 since the function z−1 is not L2. Any W 1(D∞) holomorphic function is
a convergent sequence of the form (5.5). We see that any f ∈ O(D∞) ∩ W 1(D∞),
each coefficient in (5.5) must be 0 except the constant term.

We will show that the function (zw)in is in W 1−ϵ(D∞). It is easy to see that
the function is smooth up to the boundary except at the two tori T0 ∪ T∞. Let
δ denote the distance function from a point in D∞ to the boundary bD∞. To see
this, we will use the fact that h ∈ W 1−ϵ(D∞) ∩ O(Ω), one can use the equivalent
norm (see Jerison-Kenig [JK95] or Theorem C.2 in the Appendix of the book by
Chen-Shaw [CS01]).

∥h∥W 1−ϵ = ∥δ2ϵ∇h∥ + ∥h∥.
Since

δ(z, w) ≤ C|z|,
near z = 0, it is easy to see that the function (zw)in is in W 1−ϵ(D∞). !

Corollary 5.4. There exists CR function f ∈ W
1
2−ϵ(bD∞)∩L∞(bD∞), where

ϵ > 0 such that f does not extend holomorphically to D∞.
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Proof. Let D−
∞ = X \ D∞. From Theorem 5.2, there exist bounded holomor-

phic functions (zw)in on D−
∞ in W 1−ϵ(D−

∞). The restriction of any such function
gives a CR function in W

1
2−ϵ(bD∞) ∩ L∞(bD∞) which does not extend holomor-

phically to D∞. !
In fact, there exist CR functions which do not extend to either side of the

boundary bD∞.

Proposition 5.5. There exists non-constant bounded CR function f ∈
W

1
2−ϵ(bD∞)∩L∞(bD∞) for ϵ < 1

2 which does not extend holomorphically to either
D∞ or D−

∞.

Proof. Notice that the two tori on the boundary divides the boundary into
two disjoint parts. If we take the value one and zero on each component, one can
see that the function is CR and in W

1
2−ϵ(bD∞) for any ϵ > 0. The CR function

does not extend since such extension must be a constant. !
Proposition 5.6. There exists no non-constant bounded pluri-subharmonic

exhaustion function on D∞.

Proof. Suppose that there exists a bounded continuous plurisubharmonic
function φ : D∞ → (−L, 0], where L > 0. Then we parametrize D∞ by (z, [w]) ∈
C∗ ×A as before. For each fixed w, we have that φ is continuous bounded subhar-
monic function in C∗, this implies that φ is constant in z.

On the other hand, φ = 0 on the boundary and each (z, [w]) will pass through
the boundary point T0 or T∞, this implies that φ = 0 on D∞.

!

Remark 1 Recall that a domain is called hyperconvex if there exists a bounded
continuous plurisubharmonic exhaustion function. The domain D∞ is not hyper-
convex. This is in sharp contrast with domains in Cn or CPn where pseudoconvex
domains with smooth boundary in Cn are hyperconvex (see Diederich-Fornaess
[DF77] or Ohsawa-Sibony [OS98]).
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