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1 Introduction

Any Stein domain Ω can be exhausted by a smooth strictly plurisubharmonic function. It is
natural to ask if there exists a bounded strictly plurisubharmonic exhaustion function for Ω.
Existence of Hölder continuous bounded plurisubharmonic exhaustion functions for pseudo-
convex domains with C2 boundary in Cn (or more generally in a Stein manifold) is proved by
Diederich and Fornaess: For any bounded pseudoconvex domain Ω with C2 boundary in a Stein
manifold, there exist a positive constant η and a defining function r of Ω such that r̂ = −(−r)η

is plurisubharmonic on Ω ([16]; see also [33]). This result of Diederich and Fornæss was gener-
alized to bounded pseudoconvex domains with C1 boundary by Kerzman and Rosay [26] and
those with Lipschitz boundary by Demailly [15] and Harrington [22]. The constant η is called a
Diederich–Fornæss exponent. The supremum of all Diederich–Fornæss exponents is called the
Diederich–Fornæss index of Ω. A similar result for pseudoconvex domains in CP

n is proved by
Ohsawa and Sibony [31]. This result has been extended to pseudoconvex domains in CP

n with
Lipschitz boundary recently by Harrington in [23]. Existence of bounded plurisubharmonic
exhaustion functions has many applications in holomorphic function theory on pseudoconvex
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domains. The Diederich–Fornæss index has implications in regularity theory in the ∂̄-Neumann
problem.

In this paper, we review and elaborate on some recent results on the existence of bounded
plurisubharmonic functions on pseudoconvex domains, the Diederich–Fornæss exponent and
its relations with existence of domains with Levi-flat boundary in complex manifolds. Our
plan of the paper is as follows. We first discuss the relations between strong Oka’s lemma
and bounded plurisubharmonic exhaustion functions. In Section 3, we examine the Diederich–
Fornæss exponent and L2-theory of the ∂̄-Neumann Laplacian for pseudoconvex domains with
Lipschitz boundary in complex Kähler manifolds with nonnegative curvature. In Section 4, an
example of a pseudoconvex Stein domain with smooth boundary is given such that there exist
no bounded plurisubharmonic functions. The domain has real-analytic Levi-flat boundary and
the ∂̄-operator does not have closed range for some degree. This is in sharp contrast to the case
of bounded pseudoconvex domains in Stein manifolds. Finally, we show that the Diederich–
Fornæss exponent is closely related to the non-existence of Levi-flat hypersurfaces; yet bounded
plurisubharmonic exhaustions functions do exist on some domains with Levi-flat boundary.

2 The Strong Oka’s Lemma and Bounded Plurisubharmonic Exhaustion Func-
tions

The classical Oka’s lemma states that if Ω is a pseudoconvex domain in Cn, n ≥ 2, then − log δ

is plurisubharmonic where δ is some distance function to the boundary. Let M be a complex
hermitian manifold with the metric form ω. Let Ω be relatively compact pseudoconvex domain
in M . We say that a distance function δ to the boundary bΩ satisfies the strong Oka condition
if it can be extended from a neighborhood of bΩ to Ω such that δ satisfies

i∂∂̄(− log δ) ≥ c0ω in Ω (2.1)

for some constant c0 > 0.

For a bounded pseudoconvex domain Ω with C2 boundary in Cn or in a Stein manifold,
Diederich–Fornæss [16] shows that there exists a Hölder continuous strictly plurisubharmonic
exhaustion function with Hölder exponent 0 < η < 1. The existence of such bounded plurisub-
harmonic functions is closely related to the existence of a distance function satisfying the strong
Oka’s condition.

Lemma 2.1 Let M be a complex hermitian manifold with metric ω and let Ω ⊂⊂ M be
a pseudoconvex domain with C2 boundary. Suppose that the distance function δ satisfies the
strong Oka condition (2.1). Then the following two conditions are equivalent:

(1) For 0 < t0 ≤ 1,

i∂∂̄(−δt0) ≥ 0.

(2) For any 0 < t < t0, there exists some constant Ct > 0 such that

i∂∂̄(−δt) ≥ Ctδ
t

(
ω + i

∂δ ∧ ∂̄δ

δ2

)
.

The lemma follows from Lemma 2.2 in Cao–Shaw–Wang [9].
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Lemma 2.2 Let M be a complex hermitian manifold and let Ω ⊂⊂ M be a pseudoconvex
domain with C2 boundary bΩ. Let δ(x) = d(x, bΩ) be the distance function to bΩ with respect
to the hermitian metric ω. The following conditions are equivalent:

(1) There exists 0 < t0 ≤ 1 such that for any 0 < t < t0, there exists some constant Ct > 0
satisfying

i∂∂̄(−δt) ≥ Ctδ
t

(
ω + i

∂δ ∧ ∂̄δ

δ2

)
.

(2) The distance function δ satisfies the strong Oka’s condition

i∂∂̄ − log δ ≥ Cω

for some constant C > 0.

Proof That (2) implies (1) is proved in Proposition 2.3 in Cao–Shaw [11]. To show that (1)
implies (2), we use

i∂∂̄(− log δt) = i
∂∂̄(−δt)

δt
+

i∂δt ∧ ∂̄δt

δ2t
.

From assumption (1), we have

i∂∂̄(− log δt) ≥ Ctω.

This proves (2) with C = Ct. �

Theorem 2.3 (Diederich–Fornæss) Let Ω ⊂⊂ M be a pseudoconvex domain with C2 boundary
in a Stein manifold M . Then there exists a defining function ρ and some number 0 < t < 1
such that δ̃ = −(−ρ)t is a strictly plurisubharmonic bounded exhaustion function on Ω.

If Ω is a Lipschitz bounded pseudoconvex domain in a Stein manifold, it is proved in
Demailly [15] that there exists a bounded strictly plurisubharmonic function in Ω (see also
Kerzman–Rosay [26] for the C1 case). It is also true for pseudoconvex domains with Lipschitz
boundary in CPn (see Harrington [23]). We also remark that strictly plurisubharmonic bounded
exhaustion functions might not exist if the Lipschitz boundary (as a graph) condition is dropped
(see [16]).

When the complex manifold is Kähler with positive curvature, the following result is proved
by Ohsawa–Sibony [31] for domains with C2 smoothness.

Theorem 2.4 (Ohsawa–Sibony) Let Ω ⊂⊂ CPn be a pseudoconvex domain with C2 boundary
bΩ and let δ(x) = d(x, bΩ) be the distance function to bΩ with the Fubini–Study metric ω. Then
there exists 0 < t < 1 such that −δt is a strictly plurisubharmonic bounded exhaustion function
on Ω.

For a pseudoconvex domain in CPn with only Lipschitz boundary, it is shown that the
distance function with respect to the Fubini–Study metric may not be strictly plurisubharmonic
(see [23]). But one can construct a different distance function which can be used to yield a Hölder
continuous strictly plurisubharmonic exhaustion function. This is proved more recently in [23]
for domains with Lipschitz boundary. The existence of bounded plurisubharmonic functions
have implication in the existence and regularity for the ∂̄ equation, which we will discuss in the
next section.
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3 The Diederich–Fornæss Exponent and the ∂̄-Equation

Let X be a Kähler manifold with Kähler metric ω. Let Ω be a relatively compact domain in
X with C2-smooth boundary bΩ. Let ρ(z) be the signed distance function from z to bΩ such
that ρ(z) = −d(z, bΩ) for z ∈ Ω and ρ(z) = d(z, bΩ) when z ∈ X \ Ω. Let ϕ be a real-valued
C2 function on Ω. Let L2

p,q(Ω, e−ϕ) be the space of (p, q)-forms u on Ω such that

‖u‖2
ϕ =

∫
Ω

|u|2ωe−ϕdV < ∞.

We will also use (·, ·)ϕ to denote the associated inner product. Let ∂̄∗
ϕ be the adjoint of the maxi-

mally defined ∂̄ : L2
p,q(Ω, e−ϕ) → L2

p,q+1(Ω, e−ϕ). We now recall an integration by parts formula
due to Morrey, Kohn, and Hörmander that is basic to the study of the complex Laplacian.
With the above notations, we can now state the Bochner–Kodaira–Morrey–Kohn–Hörmander
formula: For any u ∈ C1

(p,q)(Ω) ∩ Dom(∂̄∗), we have

‖∂̄u‖2
ϕ + ‖∂̄∗

ϕu‖2
ϕ = ‖∇u‖2

ϕ + +(Θu, u)ϕ + ((∂∂̄ϕ)u, u)ϕ +
∫

bΩ

〈(∂∂̄ρ)u, u〉e−ϕdS, (3.1)

where dS is the induced surface element on bΩ. Herein, for convenience, we use the notations

|∇u|2 =
n∑

j=1

|∇L̄j
u|2 and |∇u|2 =

n∑
j=1

|∇Lj
u|2.

Note that in the integrand of the last term in (3.1), the local frame field L1, . . . , Ln are chosen
so that Ln =

√
2(∂ρ)∗, where (∂ρ)∗ is the dual vector of the (1, 0)-form ∂ρ.

The following proposition is a simple application of a result of Berndtsson and Charpen-
tier [6, Theorem 2.3] (compare [9, 24]).

Proposition 3.1 Let (X, ω) be a Kähler manifold of dimension n. Assume that the curvature
operator Θ is semi-positive on (p, q)-forms for all 1 ≤ q ≤ n. Let Ω be a Stein domain in X.
Suppose that there exist a distance function ρ < 0 and a constant η > 0 such that

−i∂∂̄(−ρ)η ≥ ηK(−ρ)ηω

on Ω for some constant K > 0. Then the ∂̄-Neumann Laplacian � has a bounded inverse N

on L2
p,q(Ω) and for u ∈ Dom(∂̄) ∩ Dom(∂̄∗),

‖∂̄u‖2 + ‖∂̄∗u‖2 ≥ qηK

4
‖u‖2. (3.2)

Furthermore, the operator N is bounded from W
η
2

p,q(Ω) → W
η
2

p,q(Ω) with

‖∂̄∗Nu‖2
η
2
≤ Cη‖u‖2

η
2
; ‖∂̄Nu‖2

η
2
≤ Cη‖u‖2

η
2

(3.3)

for any u ∈ W
η
2

p,q(Ω).

Let ωFS be the Kähler form associated with the Fubini–Study metric on CP
n. Let Ω

be a (proper) pseudoconvex domain in CPn with C2-smooth boundary. Let δ(z) = d(z, bΩ)
be the distance, with respect to the Fubini–Study metric, from z to the boundary bΩ. Let
Ωε = {z ∈ Ω | δ(z) > ε}. It then follows from Takeuchi’s theorem [35] that there exists a
universal constant K0 > 0 such that

i∂∂̄(− log δ) ≥ K0ωFS (3.4)
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on Ω. In particular, there exists ε0 > 0 such that

∂∂̄(−δ)(ζ, ζ) ≥ K0ε|ζ|2ωFS
(3.5)

for all ζ ∈ T 1,0
x (bΩε) for 0 ≤ ε ≤ ε0. (See [10, 21] for different proofs of Takeuchi’s theorem.)

Obsawa and Sibony [31] showed — as a consequence of Takeuchi’s theorem — that, there exists
0 < η ≤ 1 such that

i∂∂̄(−δη) ≥ KηδηωFS (3.6)

on Ω for some constant K > 0. (See [10, Proposition 2.3] and [9, Lemma 2.2] for a more
streamlined proof of this fact.) Such a constant η0 is called a Diederich–Fornæss exponent of
Ω. We refer the reader to [23] for similar results when the boundary is only Lipschitz. We then
have:

Proposition 3.2 Let Ω be a pseudoconvex domain in CP
n with Lipschitz boundary. Then for

0 ≤ p ≤ n and 1 ≤ q < n, the ∂̄-Neumann Laplacian � has a bounded inverse N on L2
p,q(Ω).

Furthermore, we have N , ∂̄∗N ∂̄N and the Bergman projection B = I − ∂̄∗N∂̄ are all exact
regular on W s

p,q(Ω) for all s < η0
2 .

4 Nonexistence of Bounded Plurisubharmonic Functions on Some Stein Domains

Let Ω be a bounded pseudoconvex domain in Cn. Suppose that Ω has Lipschitz boundary. Then
there exists a bounded Hölder continuous plurisubharmonic exhaustion function. However, if
we drop the assumption that Ω is Lipschitz, then this is no longer true. Let

H = {(z, w) | |z| < |w| < 1}
be the Hartogs triangle in C2. Then H admits no bounded plurisubharmonic exhaustion func-
tion. Notice that the Hartogs triangle is not Lipschitz in the sense that it is not the graph of a
Lipschtiz function near (0, 0).

In a complex manifold X , the situation is different. We will give an example of a Stein
domain with smooth boundary in a complex manifold which does not have a plurisubharmonic
exhaustion function.

Let α > 1 be a real number and let Γ be the subgroup of C
∗ generated by α > 0. We will

take α = e2π. Let T = C
∗/Γ be the torus. Let

X = CP 1 × T

be equipped with the product metric ω from the Fubini–Study metric for CP 1 and the flat
metric for T . Let D∞ be the domain in X defined by

D∞ = {(z, [w]) ∈ CP 1 × T | Re zw > 0}, (4.1)

where z is the inhomogeneous coordinate on CP 1. The domain D∞ is biholomorphic to the
product domain Ω in C2 where

Ω = C
∗ × A = C

∗ × {w ∈ C | e−
π
2 < |w| < e

π
2 }

via the map Φ : Ω → D∞ defined by

Φ : (z, w) → (z, [z−1ei log w]).
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Such domain was first introduced by [29]. It is also related to a family of domains studied
by [5]. Notice that the domain D∞ has Levi-flat boundary. Furthermore, it has the following
properties

• The boundary of D∞ is smooth and real-analytic and Levi-flat.
• D∞ is Stein.
• The boundary bD∞ has two tori T0 = {0} × T and T∞ = {∞} × T which decompose the

boundary into two disjoint parts.

Proposition 4.1 There exists no non-constant bounded pluri-subharmonic exhaustion func-
tion on D∞.

Proof Suppose that there exists a bounded continuous plurisubharmonic function φ : D∞ →
(−L, 0], where L > 0. Then we parametrize D∞ by (z, w) ∈ C∗ × A as before. For each fixed
w, we have that φ is a continuous bounded subharmonic function in C

∗, this implies that φ is
constant in z.

On the other hand, φ = 0 on the boundary and each (z, w) will pass through the boundary
points in T0 or T∞, this implies that φ = 0 on D∞. For details of the proof, see [13]. �

Remark 4.2 The defining function Re zw for D∞ is pluriharmonic (hence plurisubharmonic)
but it is not a global defining function on D∞ since it is not defined near T∞. We also remark
that an earlier related result has been proved in [31].

Remark 4.3 Recall that a domain is called hyperconvex if there exists a bounded continuous
plurisubharmonic exhaustion function. The domain D∞ is not hyperconvex.

Proposition 4.4 The range of ∂̄ : L2
2,0(D∞) → L2

2,1(D∞) is not closed. In particular, the
space H2,1

L2 (D∞) is not Hausdorff.

This is proved in [13] using L2 Serre duality [12].

5 The Diederich–Fornæss Exponent and Domains with Levi-flat Boundary

The Diederich–Fornæss index is also related to non-existence of Stein domains with Levi-flat
boundaries in complex manifolds (see [20] and [3]).

Theorem 5.1 Let Ω be a bounded Stein domain with C2 boundary in a complex manifold M

of dimension n. If the Diederich–Fornæss index of Ω is greater than k/n, 1 ≤ k ≤ n − 1, then
Ω has a boundary point at which the Levi form has rank ≥ k.

In particular, we have the following corollary.

Corollary 5.2 If the Diederich–Fornæss index is greater than 1/n, then its boundary cannot
be Levi flat; and if the Diederich–Fornæss index is greater than 1−1/n, then its boundary must
have at least one strongly pseudoconvex boundary point.

Our results above are inspired by the work of Nemirovskii who showed that any smooth
bounded Stein domain with a defining function that is plurisubharmonic on the domain cannot
have Levi-flat boundary ([28, Corollary]).

When n = 2, this is best possible in the sense that there exists a Stein domain with Levi-flat
boundary with Diederich–Fornæss exponent equal to 1

2 .
The domain Ω is given by the example of [18]. It can be described as follows: Let Σ be a
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compact Riemann surface of genus g ≥ 2. Then we can write

Σ = D/Γ

where D is the unit disc and Γ is a discrete subgroup of Aut(D). A linear fractional transfor-
mation

T =
az + b

cz + d

acts on CP 1 via

T

[
z1

z2

]
=

[
a b

c d

][
z1

z2

]

in homogeneous coordinates. Thus Γ can also be considered as a subgroup of Aut(CP 1).
Let U1 = {[z1, z2] ∈ CP 1 | z2 �= 0} and φ1 : U1 → C given by

φ([z1, z2]) =
z1

z2
.

Denote D̂ = φ−1
1 (D) ⊂ CP 1. Let

X = D × CP 1/ ∼Γ,

where (z, ζ) ∼Γ (z′, ζ ′) iff there exists some γ ∈ Γ such that γz = z′ and γζ = ζ ′. Let

Ω = D × D̂/ ∼Γ

and let Ω̃ be the complement of Ω in X. Note that both Ω and Ω̃ share the Levi-flat boundary

∂Ω = ∂Ω̃ = D × ∂D̂/ ∼Γ .

Proposition 5.3 The domain Ω has Diederich–Fornæss index 1/2 in the weak sense1). How-
ever, Ω is not Stein.

Proof The theorem is implicit in [18] (see also [1]). We provide a proof for the reader’s
convenience. Let (z, ζ) be the coordinates for D × U1. Define

ρ(z, ζ) =
∣∣∣∣ z − ζ

1 − z̄ζ

∣∣∣∣
2

− 1. (5.1)

Since ρ(z, ζ) is invariant under Aut(D). It can be pushed down to X and regarded as defining
function for Ω. It follows from straightforward computations that

∂∂̄(− log(−ρ)) − η
∂ρ ∧ ∂̄ρ

ρ2
=

(
1 − η

∣∣∣∣ z − ζ

1 − z̄ζ

∣∣∣∣
2)(

dz ∧ dz̄

(1 − |z|2)2 +
dζ ∧ dζ̄

(1 − |ζ|2)2
)

+
(

1 − η
|z − ζ|2

(1 − |z|2)(1 − |ζ|2)
)(

dz ∧ dζ̄

(1 − zζ̄)2
+

dζ ∧ dz̄

(1 − z̄ζ)2

)
.

The above expression (consider as a Hermitian form) is non-negative if and only if its determi-
nant is non-negative. A direct computation yields that the determinant equals to

|z − ζ|2(2(1 − |z|2)(1 − |ζ|2) + (1 − 2η)|z − ζ|2)
(1 − |z|2)2(1 − |ζ|2)2|1 − z̄ζ|4 ,

1) A constant 0 < η < 1 is a Diederich–Fornæss exponent for a domain Ω in weak sense if one only requires

−(−ρ)η to be plurisubharmonic on Ω where ρ is a defining function of Ω; it is a Diederich–Fornæss exponent in

strong sense if one requires −(−ρ)η to be strongly plurisubharmonic.
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which is non-negative for all (z, ζ) ∈ D × D if and only if η ≤ 1/2. This implies that the
Diederich–Fornæss exponent η for Ω is greater than or equal to 1/2. From Corollary 5.2,
we conclude that the Diederich–Fornæss index in the weak sense for Ω is 1/2. Note that
Ω ⊃ {(z, z) ∈ D × D}/ ∼Γ, a compact Riemann surface. Thus Ω is not Stein. �

We refer the reader to interesting recent results by Adachi [2] on the weighted Bergman
kernel of Ω. As far as we know, whether or not the range of ∂̄ : L2(Ω) → L2

0,1(Ω) is closed
remains open.
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